10-11高等数学 期末试题

合集下载

高数期末考试题及答案

高数期末考试题及答案

高数期末考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)趋近于A,则称A为f(x)的极限。

以下哪个选项是正确的?A. 若f(x)在x=a处连续,则f(x)在x=a处的极限存在B. 若f(x)在x=a处不连续,则f(x)在x=a处的极限不存在C. 若f(x)在x=a处的极限存在,则f(x)在x=a处连续D. 若f(x)在x=a处的极限不存在,则f(x)在x=a处不连续答案:A2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^53. 以下哪个函数是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:A4. 以下哪个函数是周期函数?A. f(x) = e^xB. f(x) = sin(x)C. f(x) = ln(x)D. f(x) = x^2答案:B5. 以下哪个函数是单调递增函数?B. f(x) = x^2C. f(x) = e^xD. f(x) = ln(x)答案:C二、填空题(每题4分,共20分)6. 函数f(x) = 3x^2 - 2x + 1的导数是______。

答案:6x - 27. 函数f(x) = sin(x)的不定积分是______。

答案:-cos(x) + C8. 函数f(x) = e^x的不定积分是______。

答案:e^x + C9. 函数f(x) = x^3的不定积分是______。

答案:(1/4)x^4 + C10. 函数f(x) = ln(x)的不定积分是______。

答案:x*ln(x) - x + C三、计算题(每题10分,共30分)11. 求极限lim(x→0) [(x^2 + 1) / (x^2 + x)]。

答案:112. 求不定积分∫(3x^2 - 2x + 1)dx。

答案:(x^3 - x^2 + x) + C13. 求定积分∫(0 to 1) (x^2 - 2x + 3)dx。

高等数学期末试题(含答案)

高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。

选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。

3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。

4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。

5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。

二。

填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。

2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。

3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。

4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。

10-11(1)高数A(三)试卷

10-11(1)高数A(三)试卷
------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------
《高等数学 A(三)》(B 卷) 第 6 页 共 6 页
三、计算题(本大题 10 分)
11.计算 n 阶行列式
a1 − m a2 "
Dn =
a1 "
a2 − m " ""
a1
a2 "
an an 的值. " an − m
得分
《高等数学 A(三)》(B 卷) 第 2 页 共 6 页
答 题勿超装 订 线
------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------
通过正交变换 X = QY 化成标准形 f ( y1, y2 , y3 ) = 3y12 + 3y22 + by32 . (1)求参数 a, b 的值; (2)求正交矩阵 Q .
《高等数学 A(三)》(B 卷) 第 3 页 共 6 页
14.(本小题 10 分)甲、乙二人之间经常用 e-mail 联系,他们约定在收到对方邮件的当天即 给回复(即回一个 e-mail),由于线路问题,每 n 份 e-mail 中会有1份不能在当天送达收件人. 甲在某日发了1份 e-mail 给乙, (1)试求甲在当天收到乙的回复的概率; (2)如果已知甲在当天未收到乙的回复,试求乙在当天收到甲发出的 e-mail 的概率.

大学高等数学高数期末考试试卷及答案

大学高等数学高数期末考试试卷及答案

华南农业大学2010/2011学年第一学期经济数学期中考试试卷一、选择题(每题3分,共30分)1、设函数3()1f x x =- ,则()f x -=( )A.31x - B. 31x -- C. 31x -+ D. 31x +2、函数y ( )A .3x <B .3x ≤C .4x <D . 4x ≤3、( )中的两个函数相同.A .()f x x = ,()g t = B .2()lg f x x =,()2lg g x x =C .21()1x f x x -=+,()1g x x =-D . sin 2()cos xf x x=,()2sin g x x =4、下列函数中 ( )是奇函数。

A .3sin()4x x - B .1010x x-+ C .2cos x x - D .sin xx5、1lim(1)nn n→∞-=( ) A . 1 B .2e C .1e - D .∞+ 6、下列函数在给定变化过程中是无穷大量的是( ) A.1sin (0)x x x→ B. (0)x e x → C. ln (0)x x +→ D. sin ()x x x→∞7、设10()10x e x f x x x ⎧+≤=⎨->⎩,则在0=x 处,)(x f ( )A .连续B .左、右极限不存在C .极限存在但不连续D .左、右极限存在但不相等8、若曲线()f x 在点0x x =处的切线平行于直线234x y +=,则0()f x '=( )A .2B .3C .23 D .23- 9、设()xf x e =,则[(sin )]f x '=( )。

A .xe B .sin xeC .sin cos xx eD .sin sin xx e10、下列推导正确的是( )A .若0dy =,则0y =B .若()dy f x dx =,则()y f x '=C .若22y x y =+,则(22)dy x y dx =+ D .若(),()y f u u x ϕ==,则(())dy f x dx ϕ'=二、解答题(每题10分,共50分) 1、求极限:(1)n →∞ (2)1111122lim11144n n n -→∞-++++++ 2、求极限:(1)0sin 2lim sin 3x x x → (2)1)21(lim -∞→++x x x x3、设1(12),0()0x x x f x x ax ⎧⎪+>=⎨⎪+≤⎩,求常数a 的值,使()f x 在0x =处连续。

10-11 高等数学1试题(A卷)及解答

10-11 高等数学1试题(A卷)及解答

广州大学2010-2011学年第一学期考试卷课 程:高等数学Ⅰ1(90学时) 考 试 形 式:闭卷考试学院:__________专业班级:__________ 学号:__________ 姓名:_________一.填空题(每小题3分,本大题满分15分)1.设函数1,||1()0,||1x f x x ≤⎧=⎨>⎩,则 )]([x f f = .2.设函数sin 2,0()2,0xx f x x x a x ⎧<⎪=⎨⎪+≥⎩,当常数=a ______时,)(x f 在0x =处连续.3.曲线xe y 2=上点(0,1)处的切线方程为______ __.4.曲线53523++-=x x x y 的凹区间为_______ _____. 5.若xe -是)(xf 的原函数,则dx x f x )(ln 2⎰= .二.选择题(每小题3分,本大题满分15分)1. 当1x →时,无穷小量x -1是x -1的( ).A. 高阶无穷小;B. 低阶无穷小;C. 等价无穷小;D. 同阶但不等价无穷小. 2.若∞=→)(lim x f ax ,∞=→)(lim x g ax 则必有( ).A. ∞=+→)]()([lim x g x f ax ; B. ∞=-→)]()([lim x g x f ax ;C. 0)()(1lim=+→x g x f ax ; D. ∞=→)(lim x kf a x ,(0≠k 为常数).3.函数xx x x f πsin )(3-=的可去间断点个数为( ).A .1; B. 2; C. 3; D. 无穷多个.4.设函数)(x f y =在点0x 处可导, 则 xdyy x ∆-∆→∆0lim等于( ).A. 0;B. -1;C. 1;D. ∞ .5. 设)(x f 连续,且240()x f t dt x =⎰,则)4(f = ( ).A. 2;B. 4;C. 8;D. 16 .三.解答下列各题(每小题6分,本大题满分18分)1.)3ln(tan 2x x y ⋅=,求dy .2.求由方程0)cos(=-+xy e yx 所确定的隐函数()y f x =在0x =处的导数.3.设⎩⎨⎧=+=ty t x cos 12,求dx dy 和22dx y d .四.解答下列各题(每小题6分,本大题满分12分)1.计算极限13)1232(lim +∞→++x x x x .2.设21cos ,02(),0x x f x xx x ⎧<<⎪=⎨⎪≤⎩,讨论)(x f 在0=x 处的连续性与可导性.五.计算下列积分(每小题6分,本大题满分18分) 1.xdx x 2sin ⎰.2.12dx x. 3.221(1)dx x -⎰.六.(本题满分5分)证明方程015=-+x x 只有一个正根.七.(本题满分5分)设)(x f 在),(+∞-∞内连续,且0()(2)()x F x x t f t dt =-⎰,试证:若)(x f 为偶函数,则)(x F 亦为偶函数.八.(本大题满分12分)设抛物线c bx ax y ++=2通过点(0,0),且当]1,0[∈x 时,0≥y .求c b a ,,的值,使得抛物线c bx ax y ++=2与直线0,1==y x 所围图形的面积为94,且使该图形绕x 轴旋转而成的旋转体的体积最小.广州大学2010-2011学年第一学期考试卷高等数学Ⅰ1(90学时A 卷)参考解答与评分标准一.填空题(每小题3分,本大题满分15分)1.设函数⎩⎨⎧>≤=1||01||1)(x x x f ,则 )]([x f f = 1 ),(+∞-∞∈x 。

高数期末考试题及答案选择

高数期末考试题及答案选择

高数期末考试题及答案选择一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是:A. 0B. 1C. 2D. 4答案: A2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. \( \frac{3}{4} \)答案: A3. 若 \( \lim_{x \to 0} \frac{f(x)}{g(x)} \) 存在,则\( \lim_{x \to 0} f(x) \) 与 \( \lim_{x \to 0} g(x) \) 必须:A. 都存在B. 都不存在C. 至少有一个存在D. 至少有一个不存在答案: D4. 函数 \( y = \sin(x) \) 的周期是:A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{1}{2} \)答案: A5. 根据泰勒公式,函数 \( e^x \) 在 \( x = 0 \) 处的泰勒展开式为:A. \( 1 + x \)B. \( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \)C. \( 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots \)D. \( 1 + x - \frac{x^2}{2!} + \frac{x^3}{3!} - \cdots \)答案: B6. 级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 收敛于:A. \( \frac{1}{2} \)B. \( \frac{\pi^2}{6} \)C. \( \frac{e}{2} \)D. \( \frac{1}{e} \)答案: B7. 若 \( \lim_{x \to \infty} f(x) = L \),则函数 \( f(x) \) 必须:A. 在 \( x \) 足够大时,值接近 \( L \)B. 在 \( x \) 足够大时,值等于 \( L \)C. 在 \( x \) 足够大时,值小于 \( L \)D. 在 \( x \) 足够大时,值大于 \( L \)答案: A8. 函数 \( y = x^3 - 3x^2 + 2x \) 的拐点是:A. \( x = 0 \)B. \( x = 1 \)C. \( x = 2 \)D. \( x = 3 \)答案: B9. 若 \( f(x) \) 在区间 \( I \) 上连续,则 \( \int_{a}^{b}f(x) dx \) 存在,其中 \( a, b \) 是区间 \( I \) 上的任意两点:A. 正确B. 错误答案: A10. 函数 \( y = \ln(x) \) 的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案: A二、填空题(每题2分,共20分)11. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 1 \) 处的导数是_______。

高等数学复习期末试题含答案

高等数学复习期末试题含答案

高等数学试题(一)(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

第1—10题,每小题1分,第11—20小题,每小题2分,共30分) 1.函数y=5-x +ln(x -1)的定义域是( )A. (0,5]B. (1,5]C. (1,5)D. (1,+∞) 2. limsin 2x xx →∞等于( ) A. 0 B. 1 C.12D. 23.二元函数f(x,y)=ln(x -y)的定义域为( ) A. x -y>0 B. x>0, y>0 C. x<0, y<0 D. x>0, y>0及x<0, y<04.函数y=2|x |-1在x=0处( ) A.无定义 B.不连续 C.可导 D.连续但不可导5.设函数f(x)=e 1-2x,则f(x)在x=0处的导数f ′(0)等于( ) A. 0 B. e C. –e D. -2e 6.函数y=x -arctanx 在[-1,1]上( ) A.单调增加 B.单调减少 C.无最大值 D.无最小值7.设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f ′(x)>0,则( ) A. f(0)<0 B. f(1)>0 C. f(1)>f(0) D. f(1)<f(0) 8.以下式子中正确的是( ) A. dsinx=-cosx B. dsinx=-cosxdx C. dcosx=-sinxdx D. dcosx=-sinx 9.下列级数中,条件收敛的级数是( )A. n nn n =∞∑-+111()B. n nn =∞∑-11()C.n nn=∞∑-111()D.n nn=∞∑-1211()10.方程y ′—y=0的通解为( )A. y=ce xB. y=ce -xC. y=csinxD. y=c 1e x +c 2e -x11.设函数f(x)=x x x kx +-≠=⎧⎨⎪⎩⎪4200,,在点x=0处连续,则k 等于( )A. 0B. 14C.12D. 212.设F(x)是f(x)的一个原函数,则∫e -x f(e -x )dx 等于( ) A. F(e -x )+c B. -F(e -x )+c C. F(e x )+c D. -F(e x )+c13.下列函数中在区间[-1,1]上满足罗尔中值定理条件的是( ) A. y=1xB. y=|x|C. y=1-x 2D. y=x -1 14.设f t dt x ()0⎰=a 2x -a 2,f(x)为连续函数,则f(x)等于( )A. 2a 2xB. a 2x lnaC. 2xa 2x -1D. 2a 2x lna 15.下列式子中正确的是( )A. e dx edx xx112⎰⎰≤B.e dx edx xx112⎰⎰≥C.e dx edx xx0112⎰⎰=D.以上都不对16.下列广义积分收敛的是( ) A. cos 1+∞⎰xdxB. sin 1+∞⎰xdxC.ln xdx1+∞⎰D.121xdx+∞⎰17.设f(x)=e x --21,g(x)=x 2,当x →0时( ) A. f(x)是g(x)的高阶无穷小 B. f(x)是g(x)的低阶无穷小C. f(x)是g(x)的同阶但非等价无穷小D. f(x)与g(x)是等价无穷小18.交换二次积分dy f x y dx yy (,)⎰⎰01的积分次序,它等于()A. dxf x y dyxx(,)⎰⎰1B. dxf x y dy xx (,)201⎰⎰C.dxf x y dy xx (,)⎰⎰1D.dxf x y dy xx(,)21⎰⎰19.若级数n n u =∞∑1收敛,记S n =i i u =∞∑1,则( )A. lim n n S →∞=0B.lim n n S S→∞=存在C.lim n nS →∞可能不存在D. {S n }为单调数列20.对于微分方程y ″+3y ′+2y=e -x ,利用待定系数法求其特解y *时,下面特解设法正确的是( )A. y *=ae -xB. y *=(ax+b)e -xC. y *=axe -xD. y *=ax 2e -x 二、填空题(每小题2分,共20分)1. lim x x x →∞+-⎛⎝ ⎫⎭⎪=121______。

2019最新高等数学(下册)期末考试试题(含答案)PU

2019最新高等数学(下册)期末考试试题(含答案)PU

2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.设F (x , y , z )=0可以确定函数x = x (y , z ), y = y (x , z ), z = z (x , y ),证明:1x y z y z x∂∂∂⋅⋅=-∂∂∂. 证明:∵,,,y xz x y zF F F x y z y F z F x F ∂∂∂=-=-=-∂∂∂ ∴ 1.y z x y z x F F F x y zF F F y z x ⎛⎫⎛⎫∂∂∂⎛⎫---⋅⋅=⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭2.证明本章关于梯度的基本性质(1)~(5).证明:略3.求下列微分方程满足所给初始条件的特解:00(1)430,6,10x x y y y y y ==''''-+===;解:特征方程为 2430r r -+=解得 121,3r r ==通解为 312e e x xy c c =+312e 3e x xy c c '=+由初始条件得 121122643102c c c c c c +==⎧⎧⇒⎨⎨+==⎩⎩故方程所求特解为 34e 2e x x y =+.00(2)440,2,0;x x y y y y y ==''''++===解:特征方程为 24410r r ++=解得 1212r r ==-通解为 1212()e x y c c x -=+22121e 22xx y c c c -⎛⎫'=-- ⎪⎝⎭由初始条件得 11221221102c c c c c =⎧=⎧⎪⇒⎨⎨=-=⎩⎪⎩故方程所求特解为 12(2)e x y x -=+.00(3)4290,0,15;x x y y y y y ==''''++===解:特征方程为 24290r r ++=解得 1,225r i =-±通解为 212e (cos5sin 5)x y c x c x -=+22112e [(52)cos5(52)sin 5]x y c c x c c x -'=-+--由初始条件得 112120052153c c c c c ==⎧⎧⇒⎨⎨-==⎩⎩ 故方程所求特解为 23e sin 5x y x -=.00(4)250,2,5x x y y y y =='''+===.解:特征方程为 2250r +=解得 1,25r i =±通解为 12cos5sin 5y c x c x =+125sin 55cos5y c x c x '=-+由初始条件得 112222551c c c c ==⎧⎧⇒⎨⎨==⎩⎩ 故方程所求特解为 2cos5sin 5y x x =+.4.计算下列对坐标的曲面积分:(1)22d d x y z x y ∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧; (2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x , y , z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧; (5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面z 与平面z = h (h >0)所围成的立体的整个边界曲面,取外侧为正向; (6)()()22d d d d d d +++-⎰⎰y y z x z x x y y xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:z =Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.。

华东交大历年高数上册期末试题及答案高等数学(A)1-10--11上

华东交大历年高数上册期末试题及答案高等数学(A)1-10--11上

华东交通大学2010—2011学年第一学期考试卷试卷编号: ( A )卷高等数学(A)Ⅰ 课程 课程类别:必考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。

2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、选择题(每题 2 分,共 10 分)22 D. C. B. 1 A.)()21lim 1-∞→=-e e e nn n (极限、 不连续可导不连续不可导连续可导连续不可导处在点,,函数、 D. C. B. A.) (00 001sin )( 2=⎪⎩⎪⎨⎧=≠=x x x xx x f单减且凸单减且凹单增且凸单增且凹内在,则,内有设在区间、 D. C. B. A.)()) ,()(0)(0)() ,( 3b a x f y x f x f b a =>''<'C42sin 2 D. C 42sin 2 C. sin B. sin A.)(d cos 4222+++-+-+=⎰x x x x C x C x x x 不定积分、 ) (322 3) 2 (1 5=--的距离为到平面,,点、z y x二、填空题(每题 3 分,共 15 分)____d sin 013 0 2=→⎰a ax t t x x为等价无穷小,则与时、若当_____)0()(12='=+=y x y y xe y y ,则确定隐函数、设方程____________1232的斜渐进线为、曲线+=x x y______d 4 02=⎰∞+-x xe x 、广义积分____________________222222322 05为平面上的投影曲线方程在、曲线yOz z y x z y x ⎩⎨⎧=++=-+ 三、计算题(每题 7 分,共 49 分)1、求极限)111(lim1ee x x x ---→2、求极限)12111(lim nn n n n ++++++∞→3、设11cot arc 22-+=x x y ,求y d4、求函数223)(32+-=x x x f 在闭区间]231[,-上的最大值 与最小值5、求不定积分x x x ⎰+d 1126、求不定积分x x e x ⎰d cos 27、求定积分x x x d sin sin 03⎰-π四、综合题(每题 9 分,共 18 分)1、设由抛物线2x y =及其在点)1 1(,处的切线与x 轴所围 平面图形为D ,(1)求图形D 的面积;(2)图形D 绕y 轴 旋转一周所得旋转体的体积2、已知直线L 方程为⎩⎨⎧=+-+=-+-0232012z y x z y x ,(1)求过点)4 1 2(,,-且与直线L 平行的直线方程(对称式);(2)求过直线L 且与平面01=-+-z y x 垂直的平面方程五、证明题(每题 8 分,共 8 分)证明方程x e x -=2在)1 0(,内有且仅有一个实根。

高数下学期期末试题(含答案)3套

高数下学期期末试题(含答案)3套

高等数学期末考试试卷1一、单项选择题(6×3分)1、设直线,平面,那么与之间的夹角为( )A.0B.C.D.2、二元函数在点处的两个偏导数都存在是在点处可微的()A.充分条件B.充分必要条件C.必要条件D.既非充分又非必要条件3、设函数,则等于()A. B.C. D.4、二次积分交换次序后为()A. B.C. D.5、若幂级数在处收敛,则该级数在处()A.绝对收敛B.条件收敛C.发散 C.不能确定其敛散性6、设是方程的一个解,若,则在处()A.某邻域内单调减少B.取极小值C.某邻域内单调增加D.取极大值二、填空题(7×3分)1、设=(4,-3,4),=(2,2,1),则向量在上的投影=2、设,,那么3、D 为,时,4、设是球面,则=5、函数展开为的幂级数为6、=7、为通解的二阶线性常系数齐次微分方程为三、计算题(4×7分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。

2、求过曲线上一点(1,2,0)的切平面方程。

3、计算二重积分,其中4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。

25、求级数的和。

四、综合题(10分)曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。

五、证明题 (6分)设收敛,证明级数绝对收敛。

一、单项选择题(6×3分)1、 A2、 C3、 C4、 B5、 A6、 D二、填空题(7×3分)1、22、3、 4 、5、6、0 7、三、计算题(5×9分)1、解:令则,故2、解:令则所以切平面的法向量为:切平面方程为:3、解:===4、解:令,则当,即在x 轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则===5、解:令则,即令,则有=四、综合题(10分)4解:设曲线上任一点为,则过的切线方程为:在轴上的截距为过的法线方程为:在轴上的截距为依题意有由的任意性,即,得到这是一阶齐次微分方程,变形为: (1)令则,代入(1)得:分离变量得:解得:即为所求的曲线方程。

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)1、 满分100分。

要求卷面整洁、字迹工整、无错别字。

2、 考生必须将、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题一、单选题(请将正确的答案填在对应括号,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(⎰--为( )(A) c e F x+)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x 。

4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。

5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→xx x 11lim20_____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。

《高等数学》期末考试试卷(专科、本科通用)

《高等数学》期末考试试卷(专科、本科通用)

《高等数学》期末考试试卷(专科、本科通用)一、选择题(每题7分共70分)1. 当 x 0 时, y ln(1 x) 与下列那个函数不是等价的() [单选题] *A) 、 y xB)、 y sin xC) 、 y 1 cos x(正确答案)D)、 y ex 12. 函数 f(x) 在点 x0 极限存在是函数在该点连续的() [单选题] *A、必要条件(正确答案)B 、充分条件C、充要条件D、无关条件3. 若 f ( x) 在 x x0 处可导,则 f (x) 在 x x0 处() [单选题] *A、可导B、不可导C、连续但未必可导(正确答案)D、不连续4、设a,b为2个实数,且a<b,数集表示为{x|a<x<b},可记为() [单选题] *A.(a,(正确答案)b) B.(a,b]C.[a,b)D.[a,b]5、.函数的常用表示方法不包括( ) [单选题] *A.表格法B.图像法C.公式法D.奇偶法(正确答案)6.函数的三要素不包括() [单选题] *A.定义域B.单调性C.对应法则D.值域(正确答案)7.y=sinx是( ) [单选题] *A.周期为2π的奇函数(正确答案)B.周期为2π的偶函数C.周期为π的偶函数D.周期为π的偶函数8.下列论述正确的是()。

[单选题] *A.驻点必是极值点B.极值点必是最值点C.可导的极值点必是驻点(正确答案)D.极值点必是拐点9.当x→0时,f(x)=tanx-sinx是的()。

[单选题] * A.低阶无穷小(正确答案)B.等阶无穷小C.同阶但不等阶无穷小D.高阶无穷小10.函数f(x)=In|x|在x=0点()。

[单选题] * A.连续且可导(正确答案)B.连续但不可导C.不连续但可导D.不连续且不可导二、判断题(每题5分共20分)1、两个偶函数之和为偶函数。

() [判断题] *对(正确答案)错2、两个奇函数之和是奇函数。

() [判断题] *对(正确答案)错3、y=arcsinx的定义域为(-1,1)。

安徽大学期末试卷MK10-11(1)高数C(三)答案.pdf

安徽大学期末试卷MK10-11(1)高数C(三)答案.pdf

∫ ∫ fY
(
y)
=
+∞ −∞
f
(x,
y)dx
=
⎧ ⎪6 ⎨ ⎪⎩
y 0
xdx, 0,
0
<
y
< 1,
=
⎧3 y 2 , ⎨
其它 ⎩ 0,
0 < y < 1, . 其它
(4)因为在 0 ≤ x ≤ y ≤ 1 内, f (x, y) ≠ fX (x) fY ( y) ,所以, X ,Y 不相互独立。
16. (本小题 14 分)【解】(1) f (x) = ⎧⎪⎨θ1 , 0 < x < θ, ⎪⎩ 0, 其他.
15. (本小题 12 分)【解】
∫ ∫ ∫ ∫ ∫ (1)因为1 =
+∞ +∞
f
−∞ −∞
(x, y)dxdy
=
1
A
0
1
xdx dy
x
=
1
A
0
x(1 −
x)dx
=
A[ x2 2

x3 3
]
|10
=
A; 6
所以 A = 6 。
1
1
1
∫∫ ∫ ∫ ∫ (2)
P ⎛⎜⎝Y

1⎞ 2 ⎟⎠
=
y

1 2
f
( x,
= C22 ⋅ 4 + C31 ⋅ C21 ⋅ 5 + C32 ⋅ 6 = 13 C52 10 C52 10 C52 10 25
C31 ⋅ C21 ⋅ 5
(2) P(B1
|
A)
=
P( AB1) P( A)
=

10-11高数二(A卷)期未考答案1 北京信息科技大学

10-11高数二(A卷)期未考答案1    北京信息科技大学

4分
7分 四.7 分*2=14 分
1、计算曲线积分 ∫
L
2 y d s ,其中 L 是抛物线 y = x 上点(0,0)与点(1,1)之间的弧.
2、 用格林公式计算 ∫ ( 2 x − y + 4 )d x + ( 5 y + 3 x − 6 )d y , 其中 L 为三顶点分别为
L
( 0, 0) , ( 3, 0) , (3,2)的三角形正向边界。
∫∫
D
∂ 2u ∂ 2u ( 2 + ) dxdy ∂x ∂y 2
v 证明:设 n 与 x 轴正方向夹角为 α ,则曲线的切向量与 x 轴正方向夹角为 π ---2 分 θ =α + 2
所以, v =
∂u ∂n
∂u ∂u ∂u ∂u cosα + sinα = sinθ − cosθ ∂y ∂x ∂y ∂x
北京信息科技大学 2010-2011学年第2学期 《高等数学》176学时课程期末考试试卷标准答案(A卷) 一.7 分*2=14 分 1. 已知函数 z = x 2 y + y 2 , 求全微分 dz 。
解 :dz =
∂z ∂z dx + dy LLLLL (2) ∂x ∂y
= 2 xydx + (x 2 + 2 y)dy LL (7)
(
3
a,3 a,3 a
)
7分
由于问题的实质是在曲面 xyz = a 位于第一卦限内的部分上求一点,使其到原点 的距离平方为最小,而最小距离是存在的。因此应把 a 分成三个 等的正数,即 x = y = z = 3 a ,这时它们的平方和为最小。 2.设 f ( x, y) 是连续函数,其中 a, m 为常数,且 a > 0. 证明

安徽大学10-11(1)高数A(一)、B(一)答案

安徽大学10-11(1)高数A(一)、B(一)答案
安徽大学 2010—2011 学年第一学期 《高等数学 A(一)、B(一)》 (B 卷)考试试题 参考答案及评分标准
一、 填空题(本题共 5 小题,每小题 2 分,共 10 分)
1 1. 2
2. y = x + e 2
π
3.
π
2
4.0
5.
2 (2 2 −,每小题 2 分,共 10 分) 6. C 7. C 8. D 9. B 10. A
+∞
+∞
2
dx x −1=t = x x −1
2

+∞
1
2dt π +∞ = 2 arctan t |1 = ,收敛 2 (t + 1) 2
1
dx =π x x −1
四、综合分析题(本题共 2 小题,每小题 8 分,共 16 分) x dy 18. = 1 + ∫ [t − y (t )]dt , y (0) = 1 0 dx 方程两边求导有: 对应齐次方程为 y " + y = 0
[‰Y'•Q~ÜNf^—
19. (1) 若 a = 0 时
A = ∫ ax + b dx = ∫ b dx = b ,
0 0 1 1
则 V = π A2 。 (2) 若 a ≠ 0 时,由几何对称性仅需讨论 a > 0 情形: 设直线与 x 截距为 t ,则直线可表为 y = a ( x − t ) , ⎧a( 1 2 − t ), t < 0 ⎪ 2 1 A = ∫ a x − t dx = ⎨a[(t − 1 2 ) + 4 ], 0 ≤ t ≤ 1 0 ⎪a (t − 1 ), t > 1 2 ⎩ 再由几何对称性, t < 0 与 t > 1 情形相同, i) 当 t < 0 时: 1 1 1 1 V = π a 2 ∫ ( x − t ) 2 dx = π a 2 [(t − ) 2 + ] = π A2 + π a 2 > π A2 0 2 12 12 ii) 当 0 ≤ t ≤ 1 时,可得 2 A ≤ a ≤ 4 A , 1 1 3 4 V = π a 2 ∫ ( x − t ) 2 dx = − π (a − 3 A) 2 + π A2 ≥ π A2 。 0 6 2 3

华东交大历年高数上册期末试题及答案高等数学(A)1标准答案10--11上

华东交大历年高数上册期末试题及答案高等数学(A)1标准答案10--11上

华东交通大学2010~2011学年第一学期期末考试高等数学(A)Ⅰ评分标准一、选择题(每题 2 分,共 10 分)1、D ;2、A ;3、C ;4、D ;5、B二、填空题(每题 3 分,共 15 分)1、31;2、e ;3、4121-=x y ;4、41;5、⎩⎨⎧==+ 03322x z y三、计算题(每题 7 分,共 49 分)1、原式))(1(1lim 1e e x x e e x x x --+--=→xx x x e x e e e )1(1lim 1-+--=→∞=2、n ni ni n 111lim1∑=∞→+=原式x xd 1110 ⎰+=101ln x +=2ln =3、因为 )11()11(1122222'-+-++-='x x x x y 2222422)1()1(2)1(222)1(-+--+--=x x x x x x x 124+=x x所以 x y y d d '=x x x d 124+=4、 311)(--='x x f 0)(10)(='=='∴x x f x x f 不存在点为, 得令 又 23)1(=f ,2)0(=f ,21)1(-=-f ,2])23(1[23)23(23+-=f故最大值为2=M 6分,最小值为21-=m 5、令t x tan =,则t t x d sec d 2=原式⎰⎰=⋅=t t t t tt d csc d sec sec tan 12C t t +-=cot csc ln C x x +-+=11ln2 6、⎰⎰=x e x x e x x sin d d cos 22 ⎰-=x x e x x e 22d sin sin ⎰-=x x e x e x x d sin 2sin 22⎰+=x e x e x x dcos 2sin 22⎰-+=x x e x e x e x x x d cos 4cos 2sin 222C x x e x ++=∴5)cos 2(sin 2原式 7、x x x d cos sin 0⎰=π原式x x x x x x d cos sin d cos sin 22⎰⎰-=πππ⎰⎰-=πππ22dsin sin dsin sin x x x x πππ2232023)(sin 32)(sin 32x x -=34=四、综合题(每题 9 分,共 18 分)1、x y 2=' ,2=切k )1(21-=-∴x y 切线方程为(1) 面积y y y S d )21(10 ⎰-+=10232)3224(y y y -+=121= (2) 体积-+=⎰y y V d )21(12πy y d )(12⎰π1021032)1(12y y ππ-+=12π=2、(1) 3221--=kj s 方向向量 }351{,,-= 345112-=+=--∴z y x 对称式方程为 (2) 设所求平面方程为0)232()12(=+-++-+-z y x z y x λ即012)32()12()1(=-+-+-++λλλλz y x ,由已知得032)12(1=-+--+λλλ 1=⇒λ 故所求方程为012=+-+z y x五、证明题(每题 8 分,共 8 分)x e x f x +-=2)(令 01)1(1)0(10[)(>-=-=e f f x f ,】上连续且,在则 内至少有一个实根,在,即方程,使,至少存在)10(20)()10(x e f x -==∈⇒ξξ 01)(>+='x e x f 又 内单调增加,在所以)10()(x f 内至多有一个实根,在方程)10(2x e x -=⇒ 故方程x e x -=2在)1 0(,内有且仅有一个实根。

高等数学期末考试题和答案

高等数学期末考试题和答案

一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnn n ππππ .8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13.求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1)求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰q f x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()答案一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x y e y xy xy y +''+++=cos()()cos()x yx ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:1033()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江海洋学院 2010 - 2011学年第 二 学期
《高等数学A2》课程期末考试卷A
一、单项选择题(每小题3分,共计18分) 1.函数
),(y x f z =在点),(00y x 处连续是它在该点偏导数存在的( )
A .必要非充分条件
B .充分非必要条件
C .充分必要条件
D .无关条件 2.已知||2=a
,||2=b ,且2⋅=a b ,则|⨯a b |=( )
A .2
B .22
C .
2
2 D .1
3.设
),(y x f 是连续函数,则0
(,a
x
dx f x y dy =⎰⎰)( )
A .
(,a
y dy f x y dx ⎰
⎰) B .0(,a a
y
dy f x y dx ⎰⎰)
C .
(,a
y a
dy f x y dx ⎰
⎰) D .0
(,a a
x
dx f x y dy ⎰⎰)
4. 设曲线积分
()(
)
⎰-++-L
p p dy y y x dx xy x
4214
564与路径无关,则p =( )
A .1
B .2
C .3
D .4
5. 函数6
3
x Cx y +
=(其中C 是任意常数)对微分方程
x dx y
d =2
2而言,( ) A .是通解 B .是特解 C .是解,但既非通解也非特解 D .不是解
6.设
()2
1,01,0x f x x x ππ
--<≤⎧=⎨+<≤⎩,则该函数以2
π
为周期的傅里叶级数在点
x π=处收敛于( )
A .2
1π+ B .2
12
π
+ C .
2π D .2
2
π
二、填空题(每小题3分,共计18分)
1. 设y x e z 2
=,则=dz .
2. 微分方程0584=-'-''y y y 的通解为 .
3. 曲面32=+-xy z e z
在点)0,1,2(处的法线方程为 .
4.幂级数
()∑

=-1
2
1n n n x 的收敛域为 .
5. 设L 是沿抛物线x y =2上从点)1,1(-到点)1,1(的一段弧,则曲线积分⎰L
ydx
= .
6. 设c z b y a x ≤≤≤≤≤≤
Ω0,0,0:,则三重积分=⎰⎰⎰Ω
xyzdv .
三、计算题(每小题8分,共计56分) 1.求过点()302,-,M 且与直线2470
35210
x y z x y z -+-=⎧⎨
+-+=⎩垂直的平面方程.
2.设t uv z sin +=,而t e u =,t v cos =,求
dt
dz

3.设区域D 为422≤+y x ,求σ
d e y x
⎰⎰+D
2
2
.
4.计算
⎰⎰

++zdxdy ydzdx xdydz ,其中∑为半球面2
22y x R z --=的上侧.

5.判断级数()∑∞
=--111
1n n n
的敛散性,若收敛,请指出是绝对收敛还是条件收敛.
6.求幂级数∑∞
=1
1
-n n nx
的收敛域及和函数()x S
,并求∑∞
=1
2
n n n 的和.
7.求一曲线方程,这曲线过原点,并且它的任一点()y x ,处切线斜率为y x +2.
四、解答题(8分)
求函数y x y x z 161222+-+=在有界闭域2522≤+y x 上的最大值和最小值.
浙江海洋学院 2010 - 2011学年第 二 学期
《高等数学A2》课程期末考试卷B
一、单项选择题(每小题3分,共计18分)
1.函数11sin sin ,0(,)0,,0x y xy y x f x y xy ⎧
+≠⎪=⎨⎪=⎩,则极限0
0lim (,)x y f x y →→=( )
A .1
B .2
C .0
D .不存在
2.两条直线1158:121x y z L --+==-与26:23
x y L y z -=⎧⎨+=⎩的夹角为( )
A .6π
B .4π
C .2π
D .3
π
3.设
),(y x f 是连续函数,则2
2
(,x dx f x y dy =⎰⎰
)( )
A .4
20(,y dy f x y dx ⎰⎰
) B .4
0(,y
dy f x y dx ⎰⎰
) C .
24
2
(,x
dy f x y dx ⎰
⎰) D .40
2
(,y
dy f x y dx ⎰⎰

4. 设曲线L 为圆周922
=+y x
,取顺时针方向,则()()=-+-⎰dy x x dx y xy L
4222 ( )
A .0
B .π2
C .π6
D .π18 5. 微分方程
x y y cos =+''的一个特解*y 可设为( )
A .x ax cos
B .x b x ax sin cos +
C .x b x a sin cos +
D .)sin cos (x b x a x +
6.幂级数
()∑

=-1
3n n n
x 的收敛域为( )
A .
[]4,2 B .()4,2 C .[)4,2 D .(]4,2
二、填空题(每小题3分,共计18分) 1. 设y x z
2sin 2=,则
=∂∂y
z


2. 微分方程02=+'+''y y y 的通解为 .
3. 曲面22y xy x z +-=在点)7,2,3(处的切平面方程为 . 4.设
()222,,z y x z y x f ++=,则()=-2,1,1gradf .
5. 设平面曲线L 为下半圆周2
1x y --=,则曲线积分
()
⎰+L
ds y x
22
= .
6. 级数
()∑

=0
23ln n n
n 的和为 .
三、计算题(每小题8分,共计56分) 1.求过点()420,,M ,且与两平面12=+z x 和23=-z y 平行的直线方程.
2.设v e z u sin =,而xy u =,y x v +=,求
x z ∂∂,y
z
∂∂. 3.计算
dxdy x ⎰⎰D
2,其中区域D :4122≤+≤y x .
4.计算
⎰⎰∑
+-yzdxdy dzdx y xzdydz 2
4,其中∑是平面0=x ,0=y ,0=z ,1=x , 1=y ,1=z 所围成的立方体的全表面的外侧.
5.判断级数()
∑∞
=+++-1
1
1
1sin
1n n n n ππ
的敛散性,若收敛,请指出是绝对收敛还是条件
收敛.
6.将函数()2
312
+-=x x x f 展成x 的幂级数,并指出其收敛区间.
7.设函数
()x y y =满足微分方程x e y y y 223=+'-'',且其图形在点()1,0的切线与曲线
12+-=x x y 在该点的切线重合,求函数()x y y =.
四、解答题(8分)
设有一圆板占有平面闭区域(){}1
|,22
≤+y x
y x ,该圆板被加热,以致在点()y x ,的温度是
x y x T -+=222,求该圆板的最热点和最冷点.。

相关文档
最新文档