三元相图

合集下载

三元相图

三元相图

L+ A+ B
L+A+C L+A+B+C
C C B+ B+ L+ L+
C B
A+B+C
A
L+B L+ A+ B
L+A+C L+ A C L+ L
C C B+ B+ L+ L+
e1
四、变温截面图
TA A3 A2 A1 TB E1 E3 TC E C3 C2 C1 E2 B3 B2 B1
A e
e3 e2
L
L+α
α
20
4. 垂直截面
类型一:
B
C
C
A
类型二:
B
C
A
• 从变温截面图可知: • (1)合金冷却过程中相变次序; • (2)转变温度范围; • (3)不同温度下相组成。
第三节 固态互不溶解的三元共晶相图 • 液态无限互溶,固态互不溶解,并且其中 任意两个组元具有共晶转变的三元相图。
一、相图空间模型
B
C
L L+A L+B L+A+C A+B+C L+B+A
A
B
C
34
e1
A e
TA A3 A2 A1 TB E1 TC E3 C3 C2 C1 E B3 B2 B1 E2
B
e2
e3
C
L L+A L+B L+A+C L+A+B L+B+C A+B+C

第五章 三元相图

第五章 三元相图

B
B%
C%
A
← A% C% →
C
b c
a
图 部分浓度三角形
§5.1.2 浓度三角形中具有特定意义的线
1)与某一边平行的直线
C
含对角组元浓度相等
A% d C% c
Bc C% 100% BC
A
B B% 图 平行于浓度三角形某一条边的直线
确定O点的成分 1)过O作A角对边的平行线 2)求平行线与A坐标的截距 得组元A的含量 3)同理求组元B、C的含量
三元系中如果任意两个组 元都可以无限互溶,那么它们 所组成的三元合金也可以形 成无限固溶体,这样的三元合 金相图,叫三元匀晶相图。
相图概况
[1] 特征点: ta, tb, tc- 三个纯组 元的熔点; [2]特征面:液相面、固相面; [3]相区:L, α, L+α。
图 三元匀晶相图
§5.3.1 相图分析
( A B )
Ax nE nA Ee
( A B C )
Ax ne nA Ee
§5.4.2 组元在固态下有限溶解,具有共晶转变的三 元相图
1.相图分析
从占有空间的角度看,固态有限互溶三元共晶相图比固态 完全不互溶三元共晶相图要多三个单相区(α、 β、 γ)和三个 固态两相区(α+β、 β+ γ、 α+ γ)。
图 过成分三角形顶点的变温截面图
图 平行于成分三角形一边的变温截面图
用垂直截面图可以分析合金的平衡结晶过程,了解合金在 平衡冷却过程中发生相变的临界温度,以及可以了解合金在 一定温度下所处的平衡状态。 但是,用垂直截面图不能了解合金在一定温度下的平衡相 成分和平衡相的重量。
图 变温截面图的应用

第六章 三元相图

第六章 三元相图

来计算。
如右图中的合金o,其中的
A
C
相与 相的相对量分别为:
% mo 100%
mn
三元相图中的杠杆定律
% on 100%
mn
6-1 三元相图基础
3. 重心法则:当三元系合金
B
处于三相平衡时,研究它们之间
的成分和相对量的关系,则须用
重心法则。如右图中,O为合金
( )
的成分点,P、Q、S分别为三个
三条三相共晶转变线相交于 a
E点。成分为 E 的液相在该点温
l
度下发生四相平衡共晶转变: f
LE TE A B C
E点称为三元共晶点,其所对应 m
的温度成为四相共晶转变温度。 A
c
e3 k
j
e1
b
e2
p g Eh
C
三元共晶点 E与三个固相的 成分点m、n、p 组成的水平面称 为四相平衡共晶转变平面。
由于第三组元的加入,三个
二元共晶点在三元系中均演化成
为三相共晶转变线 e1E、e2E 和 e3E。当液相成分沿着这三条曲 线变化时,则分别发生三相共晶
转变: e1 E e2E e3E
L AB L BC L AC
a c
e3
l
k
f j
e1
b
e2
m
p
g
A
Eh C
n
B
固态互不溶解的三元共晶相图
6-2 固态互不溶解的三元共晶相图
6-1 三元相图基础
三、三元相图中的杠杆定律及重心法则
1. 直线法则:一定温度下,三元系材料处于两相平衡 时,材料的成分点和其两个平衡相的成分点必然位于同一条 直线上,该规律称为直线法则或三点共线原则。

第八章三元相图

第八章三元相图

第八章三元相图第八章三元相图三元合金系(ternery system)中含有三个组元,因此三元相图是表示在恒压下以温度变量为纵轴,两个成分变量为横轴的三维空间图形。

由一系列空间区面及平面将三元图相分隔成许多相区。

第一节三元相图的基础知识三元相图的基本特点:(1) 完整的三元相图是三维的立体模型;(2) 三元系中可以发生四相平衡转变。

四相平衡区是恒温水平面;(3) 三元相图中有单相区、两相区、三相区和四相区。

除四相平衡区外,一、二、三相平衡区均占有一定空间,是变温转变。

一、三元相图成分表示方法三元相图成分通常用浓度(或成分)三角形(concentration/composition triangle)表示。

常用的成分三角形有等边成分三角形、等腰成分三角形或直角成分三角形。

(一) 等边成分三角形-图形1. 等边成分三角形图形在等边成分三角形中,三角形的三个顶点分别代表三个组元A、B、C,三角形的三个边的长度定为0~100%,分别表示三个二元系(A—B系、B—C系、C—A系)的成分坐标,则三角形内任一点都代表三元系的某一成分。

其成分确定方法如下:由浓度三角形所给定点S,分别向A、B、C顶点所对应的边BC、CA、AB 作平行线(sa、sb、sc),相交于三边的c、a、b点,则A、B、C组元的浓度为:WA = sc = Ca WB = sa= AbWC = sb= Bc注:sa+ sb+ sc = 1 Ca + Ab+ Bc= 12. 等边成分三角形中特殊线(1) 平行等边成分三角形某一边的直线。

凡成分点位于该线上的各三元相,它们所含与此线对应顶角代表的组元的质量分数(浓度)均相等。

(2) 通过等边成分三角形某一顶点的直线位于该线上的所有三元系,所含另外两顶点所代表的的组元质量分数(浓度)比值为恒定值。

(二) 成分的其它表示法1.等腰成分三角形当三元系中某一组元B含量较少,而另外两组元(A、C)含量较多,合金点成分点必然落在先靠近成分三角形的某一边(如AC)附近的狭长地带内。

第八章 三元相图

第八章   三元相图
共晶转变线,这就是3个液相面两两相交所形成的3条熔化沟线e1E, e2E和e3E。当液相成分沿这3条曲线变化时,分别发生共晶转变:
e3 e1
LA+ C
e2
LA+ B
E
L B +C


图中a,b,c分别是组元A,B,C的熔点。在共 晶合金中,一个组元的熔点会由于其他组 元的加入而降低,因此在三元相图中形成 了三个向下汇聚的液相面。其中, ae1Ee3a是组元 A的初始结晶面; be1Ee2b是组元 B的初始结晶面; ce2Ee3c是组元C的初始结晶面
四、三元相图中的杠杆定律及重心定律
3.重心定律
当一个相完全分解成三个新相,或是一个相在分 解成两个新相的过程时,研究它们之间的成分和 相对量的关系,则须用重心定律。 根据相律,三元系处于三相平衡时,自由度为1。 在给定温度下这三个平衡相的成分应为确定值。 合金成分点应位于三个平衡相的成分点所连成的 三角形内。
第八章 三元相图
三元合金系(ternery system)中含有三个组元,因此 三元相图是表示在恒压下以温度变量为纵轴,两个成分变量 为横轴的三维空间图形。由一系列空间区面及平面将三元图 相分隔成许多相区。
8.1 三元相图的基础知识
三元相图的基本特点: (1) 完整的三元相图是三维的立体模型; (2) 三元系中可以发生四相平衡转变。四相 平衡区是恒温水平面; (3) 三元相图中有单相区、两相区、三相区 和四相区。除四相平衡区外,一、二、三相平 衡区均占有一定空间,是变温转变。
二、三元相图的空间模型
三、三元相图的截面图 投影图

三元相图各类图形有等温(水平)截面图、垂直 (变温)截面图、投影图。
1. 等温水平截面图

材料科学基础-第8章-三元相图

材料科学基础-第8章-三元相图
B
L
α C A B L1 S1 L+α L+α n L o L2
7
m
α S2
C
A
第五章 材料的变形与再结晶 L
4、变温截面(垂直截面)图 变温截面(垂直截面) (1)通过成分三角形顶点的截面
α
★ 位于该截面上的所有合金含另外两 顶点组元量之比w 相同。 顶点组元量之比wA/wC相同。 ★ 此图可反映合金在不同温度时所存 在相的种类; 在相的种类;
α
β
γ
L+α L+α+β、α+β+γ 一个四相平衡区:L+α 一个四相平衡区:L+α+β+γ
19
20
2、投影图
E1 A B
o
E E3 E2
C
合金o冷却过程中的相变: 合金o冷却过程中的相变:
L+α L+(α )+α→L+(α )+(α )+α L→ L+α→ L+(α+β)+α→L+(α+β+γ)+(α+β)+α→ )+(α )+α (α+β+γ)+(α+β)+α
A C L L+α α
α B
9
第五章 材料的变形与再结晶
5、投影图
L
α A B
C
10
第五章 材料的变形与再结晶
第二节 固态互不溶解的三元共晶相图
1、相图分析 每个侧面为组元固态下互不溶的二 元共晶相图。 三个共晶点。 元共晶相图。E1、E2、E3三个共晶点。 三个液相面: ★ 三个液相面: tAE1EE3tA、 tBE1EE2tB、 tCE2EE3tC。 三元四相共晶点E ★ 三元四相共晶点E:L→A+B+C ★ 重要的线: 重要的线: 三元三相共晶线E 三元三相共晶线E1E:L→A+B 三元三相共晶线E 三元三相共晶线E2E:L→B+C 三元三相共晶线E 三元三相共晶线E3E:L→A+C

第七章 三元相图

第七章 三元相图

C
← A%
8
Examples
B
determine alloy compositions
90
M:A75B10C15 N:A50B20C30
80 70 60 B% 50
10
20
30
40 C%
50
40
60
30
20 N
10
M
70 80 90
A 90 80 70 60 50 40 30 20 10 9 C ← A%
组元在固态有限相溶
47
a 立体图
相区的立体图 曲面的立体图 曲线的立体图 点
组元在固态互不相溶
48
TA
A3 A2 A1
E3
A
E1
TC
E C3 C2 C1
C
TB B3 B2 E2 B1
B
总立体图
49
相区的立体图
LA
TA
A3 A2 A1
E3
A
两相区
初始结晶面
E1
TC
E C3 C2 C1
C LC
(3) 浓度三角形内任意一点的合金 ——三元合金。
(4)平行于浓度三角形某一边的 直线上的合金,含该线所对顶点组 元的浓度相等。
(5)位于通过浓度三角形某一顶点的直线上的合金,其 所含另外两个组元的成分比例是常数;
14
2. 三元相图中的杠杆定律和重心定律
(1) 直线法则
在一定温度下三组元合金两相平衡时, 合金的成分点和其两个平衡相的成分点 必然位于成分三角形内的一条直线上, 该规律称为直线法则或三点共线法则。
20
30
40
C% 50
2
60
70 80 90

第8章三元相图

第8章三元相图


根据需要只把一部分相界面 的等温线投影下来。经常用 到的是液相面投影图或固相 面投影图。图为三元匀晶相
图的固相液相投影图。
6
8.1 三 元 相 图 基 础
8.1.4 三元相图的杠杆定律及重心定律
1. 直线法则:在一定温度下三组元材料两相平衡时, 材料的成分点和其两个平衡相的成分点必然位于成
分三角形内的一条直线上。
21
8.2 固 态 互 不 溶 解 的 三 元 共 晶 相 图
☆ 投影图应用举例(以合金o为例)
合金组织组成物的相对含量可以利用杠杆法
则进行计算。如合金o刚要发生两相共晶转变
时,液相成分为q,初晶A和液相L的质量分
数为:
22
8.2 固 态 互 不 溶 解 的 三 元 共 晶 相 图
☆ 投影图应用举例(以合金o为例) q成分的液体刚开始发生两相共晶转变时,液体含量几乎 占百分之百,而共晶体(A+C)的含量近乎为零,所以这 时(A+C)共晶的成分点应是过 q点所作的切线与AC边 的交点d。继续冷却时,液相和两相共晶(A+C)的成分 都将不断变化,液相成分沿 qE线改变,而每瞬间析出的 (A+C)共晶成分则可由 qE线上相应的液相成分点作切 线确定。在液相成分达到E点时,先后析出的两相共晶(A +C)的平均成分应为 f(Eq连线与AC边的交点)。因为 剩余液相E与所有的两相共晶(A+C)的混合体应与开始 发生两相共晶转变时的液相成分q相等。因此合金o中两相 共晶(A+C)和三相共晶(A+B+C)的质量分数应为

相 图
25
8.3 固 态 有 限 溶 解 的 三 元 共 晶 相 图
8.2 固态有限溶解的三元共晶相图
8.3.1 相图的空间模型 1.相图分析

三元相图

三元相图

—— 适用于两相平衡的情况
WB
A
M"
O"
N" N (b)
B
O
M
(a)
N’ MNO点在一条直线上 O’ ON Wa 100% M’ MN
OM Wb 100% MN
证明:任取两组元在相变前后质量相等 C
—— 适用于两相平衡的情况

推论

当给定合金在一定温度下处于两相平衡时, 若其中一相的成分给定,另一相的成分点 必在已知相成分点与合金成分点连线的延 长线上;
的相对数量比为:
水平截面图--连接线性质
在给定的温度下,两平衡相的成分之间的连接线段称 为连接线。上述的线段mn就是连接线。
连接线上各成分的合金在该 温度下平衡的两相成分为连 接线两端点的成分。液相线 上每一点对应的液体都有固 定的固相与之平衡,即在液 相线上每一点在固相线上都 有一个与之对应的点,所以 称为共轭线。在一定温度下 ,同一成分的合金有固定的 平衡相,所以连接线不可能 相交。
第六节
三元相图
含有三个组元的系统成为三元系,第三个组元 的加入,不仅会改变原来两个组元之间的溶解 度,而且第三组元可溶入原可形成的相中改变 其性质,并且还可产生新的相,出现新的转变, 引起材料的组织、性能和相应的加工处理工艺 的变化。三组元的材料在工程中用的也相当普 遍,例如合金钢、铸铁、铝镁铜合金、ZrO2- Al2O3-SiO2陶瓷等,所以需要了解三元系相图。
元越少,而其他两组元成分比例
不变。
3、三元相图的表示方法
以水平浓度三角形表示成分,以垂直浓度三 角形的纵轴表示温度,三元相图是一个三角 棱柱的空间图形。一般由实验方法测定。 但由于形状复杂,多采用等温截面、垂直截 面和投影图来表示和研究。

第五章 三元相图

第五章  三元相图

5.1
三元相图的成分表示法
C
二元系的成分可用一条 直线上的点来表示;三元 系合金有两个独立的成分 参数,所以必须用一个平 面三角形来表示,这个三 角形叫做成分三角形或浓 度三角形。常用的成分三 角形是等边三角形,有时 也用直角三角形或等腰三 角形。 A
A%
C%
B%
B
浓度三角形
5.1.1 浓度三角形 1. 等边三角形 三角形的三个顶点A,B, C分别表示3个纯组元, 三角形的边AB,BC, CA分别表示3个二元系 的成分坐标,三角形内 的任一点都代表一定成 分的三元合金. A 一般按顺时针(或逆时针) 标注组元浓度。
L(三元) ΔT α(三元)
自由度:f=c-P+1=3-2+1=2 故三元匀晶转变区可有两个自由度: 温度和相成分。
5.3.1 相图分析
1 画图 (1) 先画一成份三角形 (应为正三角形) (2) 画温度轴 (3) 画二元匀晶相图(每 两个合金上存在一个二 元相图) ---三元系立体图可视为三 个二元系在空间的延伸 液相面----三个二元系的液相线 所围成的面. 固相面----三个二元系的固相线 所围成的面.
5.4
三元共晶相图
TA A2 A3 A1 E3 E C2 C3 C1 C TB
5.4.1 组元在固态互不溶,具有共晶转变的相图
一、相图分析
1. 画图 (1) 先画一成份三角形
(2) 画温度轴
(3) 画二元共晶相图
E1 TC E2
B2 B3
B1 B
三个二元共晶相图向空间 A 延伸 (4) 画出四相平衡共晶转变平 面A1B1C1 (5) 三个二元系共晶点向空间 延伸为三条共晶沟线,交 A1B1C1面于E点,称为共晶点

三元相图

三元相图

三元相图工业上所使用的金属材料,如各种合金钢和有色合金,大多由两种以上的组元构成,这些材料的组织,性能和相应的加工,处理工艺等通常不同于二元合金,因为在二元合金中加入第三组元后,会改变原合金组元间的溶解度,甚至会出现新的相变,产生新的组成相。

目录1释义2正文3表示方法4特定意义图5-101oa+ob+oc=AB=BC=CA由于oa=bC=WAob=Ac=WBoc=Ba=WC因此,可用oa代表A组元的含量,ob代表B组元的含量,oc代表C组元的含量.直角成分坐标表示法当三元系成分以某一组元为主,其他两个组元含量很少时,合金成分点将靠近等边三角形某一顶点.若采用直角坐标表示成分,则可使该部分相图更为清楚的表示出来,一般用坐标原点代表高含量组元,而两个互相垂直的坐标轴代表其他两个组元的成分。

等腰成分三角形当三元系中某一组元含量较少,而另两组元含量较大时,合金成分点将靠近等边成分三角形的某一边.为了使该部分相图清晰的表示出来,常采用等腰三角形,即将两腰的刻度放大,而底边的刻度不变.如图5-103所示.对于O点成分的合金,其成分的确定方法与前述等边三角形的确定方法相同,即过O点分别引两腰的平行线与AC边相交于a和c 点,则:Ca=WA=30%Ac=WC=60%Ab=WB=10%.虽然,上述成分表示方法在三元相图中都有应用,但应用最为广泛的还是等边三角形.4特定意义等边成分三角形中特定意义的线平行于三角形某一边的直线凡成分位于该线上的所有合金,它们所含的由这条边对应顶点所代表的组元的含量为一定值。

通过三角形顶点的任一直线凡成分位于该直线上的所有合金,它们所含的由另两个顶点所代表的两组元的含量之比为一定值。

定量法则应用相律f=c-p+1当三元系时f=4-p故当两相平衡共存时,有f=4-2=2即两个平衡相的成分只有一个独立改变,当一个平衡相的成分发生变化时,另一相的成分随之而改变,即两相的成分之间具有一定的关系,此关系称为直线法则.①直线法则和杠杆定律直线法则:三元合金中两相平衡时,合金的成分点和两个平衡相的成分点,必须在同一直线上.如图5-105所示,当合金O在某一温度处于α+β两相平衡时,这两个相的成分点便定为a和b,则aob三点必位于同一条直线上,且o点位于a,b两点之间,此时α,β两相的质量比为:由直线法则可得到以下规律:a:当温度一定时,若已知两平衡相的成分,则合金的成分必位于两平衡相成分的连线上;b:当温度一定时,若已知一相的成分及合金的成分,则另一平衡相的成分必位于两已知成分点的连线的延长线上;c:当温度变化时,两平衡相的成分变化时,其连线一定绕合金的成分点而转动;1 相图分析a,b,c为三组元A,B,C的熔点,且Tb>Ta>Tc.液相面:abc黄色面;固相面:abc蓝色面;液相区L:abc黄色面以上空间;固相区α:abc蓝色面以下空间;液固两相共存区L+α:abc黄色面和蓝色面之间区域。

材料学基础第5章三元相图

材料学基础第5章三元相图

材料科学基础
第五章
5.6三元相图小结
材料科学基础
第五章
一、单相状态 f=3-1+1=3,而一个温度变量和两个成分变量之间没有任何
相互制约的关系,因此,不论是等温截面还是变温截面,单相区可能具 有多种多样的形状。 二、两相平衡 立体图:共轭曲面。 成分变化:蝶形规则。 等温图:共轭曲线(可用杠杆定律) 变温截面:判定转变温度范围和相转变过程,不能用杠杆定律。 三、三相平衡 立体图:三棱柱,棱边是三个平衡相单变量线。
二、投影图
材料科学基础
第五章
投影图的作用:合金结晶过程分析、相组成物相对量计算、组织组成 物相对量计算。
图8.17 三元共晶相图的投影区
表8.2 各典型区域合金的凝固组织过程及室温组织
材料科学基础
第五章

凝固过程
室温组织

L→α
α

L→α ,α→βⅡ
α+βⅡ

L→α ,α→βⅡ,α β
α+βⅡ+γⅡ
(1)当给定合金在一定温度下处于两相平衡状态时,若其中一相的成分 给定,则根据直线法则,另一相的成分点必位于两已知成分点连线的 延长线上。 (2)如果两个平衡相的成分点已知,则合金的成分点必然位于两平衡相 成分点的连线上,根据两平衡相的成分,可用杠杆定律求出合金的成 分。
5.2.2重心定律
x,y,z分别为α,β,γ成分点,则
材料科学基础
第五章
投影图有两种。一种是把空间相图中所有相区间的交线部投影到浓度 三角形中,借助对立体图空间构造的了解,可以用投影图来分析合 金的冷却和加热过程。另一种是把一系列水平截面中的相界线投影 到浓度三角形中。每一条线上注明相应的温度,这样的投影图叫等 温线投影图。等温线可反映空间相图中各种相界面的变化趋势,等 温线越密,表示这个相面越陡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用水平面去切空间模型 —三角形 所以水平截面上的三相区 是三角形(边是直线)
5.12.2 几种典型的三相平衡三元系
1. 两个共晶、一个匀晶二 元系组成的三元系 1) 空间模型 • 曲面 液相面 空间模型中最上面 的两个曲面 (TATCe1e), (TBee1) 固相面 (TATCa1a), (TBbb1) 溶解度曲面 (aa1c1c), (bb1dd1) 三相区界面
5.10 三元相图的基本概念
三元相图水平截面
5.10 三元相图的基本概念
三元相图垂直截面
5.10 三元相图的基概念
A
5.10.1 成分表示方法
b a’
a. 等边三角形 B 1) 成分三角形 2) 三角形中的点如何表示成分 XA=Ca, XB=Ab, XC=Bc, 可证: XA+XB+XC=100%
5.14 包共晶系
5.15包晶相图 包晶相图
5.15
三元包晶相图
5.15.1 特点 1、存在四相平衡包晶反应 LP+αa+βb——γc 2、四相平衡区的上方一个三相平衡区,下方三个三相平衡区 L+α+β…………L+α+β+γ…………L+α+γ L+β+γ α+β+γ
5.15 包晶相图 5.15.2 空间模型
可能是:
L——β+γ 或 L+β——γ
5.14 包共晶系 5.14.1 概述
即无论是上方和下方各种搭配都可能, 即无论是上方和下方各种搭配都可能,关键是包共晶反应的 温度必须在两个二元系的三相平衡反应温度之下, 温度必须在两个二元系的三相平衡反应温度之下,在另一个 二元系的三相平衡反应温度之上。 二元系的三相平衡反应温度之上。 四相平衡反应面的上下接口:
5.11.2 垂直截面 二元相图的垂直曲面有两种形式: 1、固定某一组元含量:类似于二元匀晶相图, 但两端不封口,且两端不代表组元 2、截面通过三角形某一顶点 一端封口
5.11 三元匀晶相图
5.11 三元匀晶相图 5.11.2 垂直截面
垂直截面的用途?
确定在截面范围内的材料组织和相变温度
注意!
(1)不能用杠杆定理 (2)使用前必须弄清垂直截面测定的条件
5.11 三元匀晶相图
5.11.3 水平截面 平行于底面三角形底的平面截立体模型-水平截面
5.11.4 相平衡与连接线
5.11 三元匀晶相图
1)连接线:共轭曲线对应点的连线 自由焓— 成分曲面公切面切点连线 2)用途:计算 两相平衡时各相 的相对百分数。 3)连接线的确定: 实验测定。
5.11.5 等温线投影图
5.12 三相平衡三元系
(aa1e1e) , (bb1e1e), (aa1b1b)
相区 单相区 三个: L相区, α相区, 两相区三个:L+α, L+β, α+β 三相区:L+α+β
5.12 三相平衡三元系 β相区
5.12 三相平衡三元系 5.12.2 几种典型的三相平衡三元系
三相区的上下端封闭为直线: (aeb), (a1e1b1)
三相区的反应开始面: (aee1a1), (ee1b1b) 三相区的反应终止面: (aa1b1b)
5.12.2 几种典型的三相平衡三元系 • 将空间模型中的单变量线投影到底面成分三角形 • 从投影图可以看出在三相区内温度变化时,各相成 分变化的走向 2) 投影图 • 从投影图可以看出各相区的投影,从而对成分进行区划 • 根据投影图可以做出各种成分的热分析曲线示意图
5.12.2 几种典型的三相平衡三元系
5.12 三相平衡三元系
两包晶、 2. 两包晶、一匀晶构成的三元相图
(a)共晶三相平衡
(b)包晶三相平衡区
5.12.2 几种典型的三相平衡三元系
5.12 三相平衡三元系
3、一共晶、一包晶、一匀晶构成的三元相图 一共晶、一包晶、
三相区分成两部分
5.13 四相平衡共晶系
1、作法:将每个三相区 的三条棱边(单变量线) 投影到成分三角形 2、用途: a、可得到各个面的投影 b、可得到各相区的投影 c、各种成分的平衡冷却 过程 d、组织分区图
5.13.4 综合投影图
5.13 四相平衡共晶系
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系
5.13.4 综合投影图
4) 成分三角形中的特殊的点和线 顶点: 纯组元 三条边上的点: 二元系中的材料
A
a’
a
B M 平行于三角形某边的直线: 此材料中和边相对的组元含量相等
C
过三角形顶点的直线: 对应的材料中两组元浓度比相等
5.10 三元相图的基本概念 5.10.1 成分表示方法
b.直角三角形表示法 P点的成分: XB=Ab, XC=Ac, XA=1-XB-XC c、其它表示法 (1)等腰成分三角形 (2)局部图形
相区界面 1、液相面 TAe1pp2 TBe1pp3 TCp2pp3 2、固相面 TAa1aa2 TBb1bb2 TCc2cc3
5.13
四相平衡共晶系
特点: 1、发生 L——α+β+γ α β γ 四相平衡共晶反应 2、四相平衡反应温度小于各 二元系三相平衡反应温度
5.13.1 空间模型
曲面 1. 液相面 ae1Ee3 2. 固相面 be1Ee2 ce3Ee2 afml bgnh ckpi 3、三相共晶反应区界面 L+α+β 反应开始 le3Em e3Epk lkpm fe1Em e1Eng fgnm he2En e2Epi hipn L+β+γ L+γ+α
5.14 包共晶系
5.14 包共晶系
综合投影图
5.14.2 典型实例一 5. 典型成分的平衡冷却过程分析 (成分O)
5.14 包共晶系
5.14.2 典型实例一
5.14.2 典型实例一
5.14 包共晶系
5.14.2 其它实例
5.14 包共晶系
5.14.2 其它实例
5.14 包共晶系
5.14.2 其它实例
第五章-II
三元相图
1. 基本概念:成分表示法、公切面法则、杠杆定理和重心法则 2. 二相平衡(匀晶)三元系 3. 三相平衡三元系 三相平衡区 共晶 4. 四相平衡三元系 包共晶 包晶 5. 形成化合物的三元系
6. 实用三元相图
四相平衡小结: 三相区、四相区的特征
5.10
三元相图的基本概念
三元系: 三个组元组成的合金系 独立变量:温度 T 组元浓度 XA、XB (XC=1-XA-XB) 三元相图的几何形状 : 完整的三元相图: 空间三维模型 实用三元相图: 平面图(截面图和投影图)
5.10.3 杠杆定理和重心法则
共线法则:当三元系处于两相平衡时,此两相的 成分点和材料的成分点位于成分三角形的同一直 线上。此线即为连接线。
5.10 三元相图的基本概念 5.10.3 杠杆定理和重心法则
1)杠杆定理 成分三角形中有一点O,该点代表的材料由两相 组成 ,其中: a点表示 α相的成分, b点表示β 相的 成分 则:两相的百分数分别为:
5.14 包共晶系 5.14.2 典型实例一 1、空间模型 1)液相面 A0E2Pp B0E1Pp 2) 固相面 A0dai B0ebf 3) 三相平衡区界面 L+α+β 相区 上端封口,下端△abP dpPa(开始) deba(终止) pPbe(终止) C0E2PE1 C0hcg
5.14.2 典型实例一 L+α+γ 相区 上端封口,下端△aPc iaPE2(开始) hcPE2(开始) iach(终止) L+β+γ 相区 上端△cPb, 下端封闭成一条直线。 gE1Pc(开始) fE1Pb(开始) cgfb(终止) α+β+γ 相区 上端△abc, 下端△a1b1c1 三个侧面 aa1c1c aa1b1b bb1c1c
垂直截面的缺陷:限于某一组元固定的材料 水平截面的缺陷:限于某一固定温度 投影图:将不同 水平截面上的液相线和固相线分别投影到两个 成分三角形内,得到等温线投影图,反映不同温度的状态。 用途:研究凝固过程
5.11.6. 组元在固态时有限固溶的匀晶相图 有些组元之间在固态下有限固溶,此时相图中会出现两 相区,它由溶解度曲面包围而形成。 1)一对组元有限固溶 一对共轭曲面
5.13 四相平衡共晶系
α γ
β
5.13.1 空间模型 4、四相平衡区 mnp
5.13 四相平衡共晶系 发生四相平衡反应: LE——αa+βb+γc
5.13 四相平衡共晶系
5.13.2 水平截面
5.13 四相平衡共晶系
5.13.3、 5.13.3、垂直截面
5.13 四相平衡共晶系
5.13.4 综合投影图
5.12.2 几种典型的三相平衡三元系
5.12三相平衡三元系 三相平衡三元系
3)水平截面 截面的高度不同,所得的 截面也不同。
用水平截面可以得知在相应温度下各 相区的成分范围,及各种成分的材料 在此温度下的组成相。
5.12.2 几种典型的三相平衡三元系
5.12 三相平衡三元系
4)垂直截面
• 可以根据需要在不同的位置截 得垂直截面 • 用垂直截面可以准确地得到截面成 分范围内各成分材料在各温度下的 组成相 • 对于三元相图,不能在垂直截面上 用杠杆定理
5.11. 三元匀晶相图 5.11.6 组元在固态时有限固溶的匀晶相图
2) 两对组元有限固溶
两对共轭面
5.11 三元匀晶相图 5.11.6 组元在固态时有限固溶的匀晶相图
3) 三对组元有限固溶
三对共轭面
共轭面之间可以是互相独立,也可能相交
5.12
三相平衡三元系
5.12.1 三相平衡区
空间模型: 三棱边是曲线的三棱柱 三条棱边称之为单变量线
5.13 四相平衡共晶系
5.13.4 综合投影图
相关文档
最新文档