卟啉及金属卟啉的瞬态表面光伏特性
锌卟啉-富勒烯配合物的光谱和光伏性质研究
锌卟啉-富勒烯配合物的光谱和光伏性质研究张文保;韩燕;单立冬;凡素华【摘要】采用光谱法研究了不同电子取代基的锌卟啉-富勒烯配合物[ZnP-C60和(p-OCH3) ZnP-C60]的光谱性质.结果表明,与ZnP-C60相比,含甲氧基修饰的锌卟啉-富勒烯(p-OCH3)ZnP-C60的紫外-可见吸收光谱和荧光光谱发射谱带均发生红移.以氙灯作光源,利用三电极光化学电池系统研究了两者在O2/H2O、I2/I3-、Fe(CN)63-/Fe(CN)64-和BQ(苯醌)/H2Q(氢醌)四种介质中的的光伏性质.结果显示,(p-OCH3) ZnP-C60具有优良的光伏性能,尤其在O2/H2O介质电对中,光生电压最大为215 mV.【期刊名称】《阜阳师范学院学报(自然科学版)》【年(卷),期】2013(030)004【总页数】4页(P47-50)【关键词】卟啉-富勒烯;光谱性质;光伏性质【作者】张文保;韩燕;单立冬;凡素华【作者单位】阜阳师范学院化学化工学院,安徽阜阳236037;阜阳师范学院化学化工学院,安徽阜阳236037;阜阳师范学院化学化工学院,安徽阜阳236037;阜阳师范学院化学化工学院,安徽阜阳236037【正文语种】中文【中图分类】O613.7作为卟啉母体的卟吩(Porphine)是由4个吡咯环和4个次甲基桥联起来的大环共轭化合物。
通过在卟吩环的5,10,15,20 位即中位(meso)或者β位进行修饰得到带有取代基的同系物和衍生物的总称即卟啉[1]。
卟啉化合物由于独特的大环共轭结构、在近红外区有强的光谱响应、优良的化学、光、热稳定性等优点使之不仅是良好的电子给体(D)而且是优良的光敏剂[2,3]。
富勒烯(C60)由于具有高度共轭的三维结构、较小的重组能使之成为“人工模拟光合作用反应中心”的理想电子受体(A)[4]。
在卟啉与富勒烯(C60)形成的D-A 二元体系化合物中[5,6],富勒烯可以加速正向电子转移和减小逆向电子转移,从而可以大大提高电荷分离态的寿命。
卟啉和金属卟啉配合物的合成及其在传感器中的应用
卟啉和金属卟啉配合物的合成及其在传感器中的应用姑力米热·吐尔地;阿达来提·阿不都热合曼;阿布力孜·伊米提【摘要】气敏材料是气体(化学)传感器的核心部位,直接影响传感器的稳定性、选择性、灵敏度和响应时间等各种性能。
卟啉与金属卟啉配合物具有优良的气敏性能,目前国内外卟啉与金属卟啉传感器已应用于VOCs的检测。
该文介绍了卟啉及其结构、合成方法、卟啉和金属卟啉配合物的合成及影响因素;卟啉和金属卟啉在传感器中的应用和对挥发性有机气体的检测原理。
%Gas sensitive material is the core part of gas (chemical) sensor; it would directly affects the sensors stability, selectivity, sensitivity and its response time. Porphyrins and metalloporphyrins have excellent gas sensing properties, at present, porphyrins and metalloporphyrins sensors have been applied to detected the VOCs, both in China and abroad.In this paper,has been Introduced the porphyrins and its structure, synthesis method, synthesis of porphyrins and metalloporphyrins complexes and the influencingfactors;metalloporphyrins application in sensors and the detection principle of VOCs.【期刊名称】《化学传感器》【年(卷),期】2014(000)003【总页数】5页(P32-36)【关键词】卟啉;金属卟啉;金属卟啉传感器对VOCs的检测【作者】姑力米热·吐尔地;阿达来提·阿不都热合曼;阿布力孜·伊米提【作者单位】新疆大学化学化工学院,新疆乌鲁木齐830046;新疆大学化学化工学院,新疆乌鲁木齐830046;新疆大学化学化工学院,新疆乌鲁木齐830046【正文语种】中文0 引言卟啉最早是1912年由Ktister首次提出的,其结构为大环的“四吡咯”结构[1]。
卟啉金属有机框架材料在光催化领域的应用
卟啉金属有机框架材料(Porphyrin-based Metal-Organic Frameworks,简称Por-MOFs)是近年来新兴的一类多孔材料,由卟啉化合物和金属离子组成。
由于其大表面积、丰富的功能化合物和优异的稳定性,Por-MOFs在光催化领域展现出了广阔的应用前景。
以下是关于Por-MOFs在光催化领域应用的相关内容:一、Por-MOFs的结构特点1. Por-MOFs是一种典型的金属有机框架材料,具有大量的孔隙结构,其结构特点包括:(1)卟啉化合物与金属离子之间形成稳定的配位键;(2)孔隙结构丰富,有利于光吸收和分子传输;(3)材料稳定性高,能够在光催化反应条件下保持结构完整性。
二、Por-MOFs在光催化领域的应用研究1. 光催化分解水制氢Por-MOFs材料因其良好的光催化活性被广泛用于光解水制氢反应中,其应用研究包括:(1)探索不同金属离子对Por-MOFs光催化活性的影响;(2)改变卟啉化合物的结构,提高光催化反应的效率;(3)设计结构独特的Por-MOFs,提高光解水制氢的稳定性。
2. 光催化CO2还原制备化学品Por-MOFs材料在光催化CO2还原反应中表现出了良好的活性和选择性,其应用研究包括:(1)探索不同金属离子对Por-MOFs光催化CO2还原活性和选择性的影响;(2)功能化卟啉化合物,提高CO2吸附和催化活性;(3)构建Por-MOFs与辅助催化剂的复合体系,提高CO2还原的效率和产物选择性。
3. 光催化有机污染物降解Por-MOFs材料因其高效的光催化活性被应用于有机污染物的光降解反应,其应用研究包括:(1)探索不同金属离子和卟啉化合物对Por-MOFs光催化有机污染物降解活性的影响;(2)构建可见光响应型的Por-MOFs,扩展其光催化应用范围;(3)探索Por-MOFs在光催化有机污染物降解反应中的反应机理和影响因素。
三、Por-MOFs在光催化领域的发展前景1. Por-MOFs具有良好的光催化活性和稳定性,因此在光催化领域具有广阔的应用前景,主要包括:(1)用于太阳能光催化制氢和CO2还原等可再生能源领域;(2)用于环境治理和有机废水处理等环境保护领域;(3)用于有机合成和精细化工等化工领域。
卟啉及金属卟啉的瞬态表面光伏特性
3 d o a Dp r etfJun l Jl nvrt, h ncu 3 0 1 C i ) .E i r l eat n ora inU i sy C a gh n102 , hn ti m o f o i ei a
Ab ta t r n i n s ra e h t v ha e o e t o o p y i s n meal p r h rn we e t did. Th s r c :T a se t u fc p oo o g pr p ri f p r h rn a d e tl op yis o r su e e
p oo e e ae l cr n h l u l e a ain t fp r h rn mo o rwa h r rt a h t f h i r n h tg n r td ee t — oe f l s p r t i o op y i n me s s o t n t a e d me ,a d o o me e h o t
t e h tg n r td lcr n— o e f l s p r t n i o p r y i m o m e wa s o tr h n h s o h p oo e e a e e e to h l u l e a a i tme f o ph rn o no r s h re t a t o e f me alpop rns Th r n in u f c h t v hac sg a fp r h rn— s a s ca n mo g t o e o tlo r hy i . e ta se ts Ya e p oo o i in lo o p y i Cu i n e pe ilo e a n h s f me alp r hy i . I h d i lrte t t o e f m ea fe p r h rn tlo o p rns t a smia i s o h s o tl l e o p y s, a d lo i lrte t t o e f i i n as smia i s o h s o i me alp r hy ns Th i e e tc n r lin a i e e ti fu n e n t e s p r to ae o hag are s tlo o p r . i e df rn e ta o s h d df r n n e c so h e a ai n r t fc r e c rir . f f l
卟啉与金属卟啉化合物_图文
命名与结构
相互关系
卟吩(porphine) 卟啉的骨架
中位碳或外环碳被取代
卟啉(porphyrin)
与金属离子结合
金属卟啉(metalloporphyrin)
命名与结构
3
5
7
4
6
2
8
外环碳
1 20
9 10
19 18
11
中位(meso)碳
12
16
14
17
15
13
IUPAC编号法
卟吩(porphq3
八乙基卟啉铂(PtOEP)与TPP相比具有更 高的光致发光量子效率,在利用单线态能量 同时还利用了三线态能量发光,使器件的内 量子效率理论上突破了25%的极限。将其掺 杂于PNP中可使发光效率达到29%。
(a)PtOE
吉林大学的研究小组也在这方面开展了 一些工作 ,他们把四苯基羰基钌掺杂Alq3以 及把四苯基卟啉铂(PtTPP)掺杂双(酚基吡啶) 铍(BePP2),利用主客体的能量转移获得了纯 红光器件。
A paradigm
2.在生物化学方面的应用
由于卟啉在生物体内起着及其重要的作 用,是血红素、细胞色素和叶绿素等生物大 分子的核心部分,故可以用作生物体内氧化 过程的模型,而其中以模拟单加氧酶P-450 、血红蛋白及肌红蛋白最引人注目。
关于模拟单加氧酶P-450
在具多转化底物能力的血红素蛋白中, 细 胞色素P-450意义重大, 它能催化各种有机物 和分子氧之间称之为混合功能氧化的化学反应 ,但由于它们的分子量巨大, 很难研究其催化 反应的详细机制。同时由于它们不稳定, 制备 很困难。由于铁卟啉配合物和P-450有类似的 结构性质, 人们利用它去对P-450进行模拟。 一种由咪唑的铁卟啉络合物和亚甲基丙烯酸共 价结合的模拟体系,如下所示:
卟啉 光催化
卟啉及其衍生物在光催化领域扮演着重要的角色,这是因为它们具有优异的光物理和光化学性质,包括对光的强烈吸收、稳定的化学结构以及作为光敏剂的潜力。
以下是卟啉在光催化中的几个关键应用和特点:
1. 光催化降解有机污染物:
- 卟啉能够吸收可见光并将其转化为化学能,激活氧气或水分解生成高活性的氧自由基和氢氧根自由基,这些自由基能够有效氧化分解水体或大气中的有机污染物,使其转化为无害的产物如二氧化碳和水。
2. 光催化合成有机化合物:
- 卟啉作为光催化剂可以参与各种有机合成反应,利用可见光驱动,将简单原料转化为复杂的有机化合物,这种方法环保且能源效率较高。
3. CO2还原:
- 最新的研究显示,将CuInS2量子点作为光敏剂与Co-卟啉协同作用,可以实现高效的CO2光还原为有价值的化学品,表现出较高的量子产率。
4. 金属卟啉复合催化剂:
- 卟啉可以与金属如铂(Pt)负载在一起,形成金属-卟啉复合催化剂,这类催化剂在光催化还原水制氢等方面表现出色,能够有效地捕获光激发产生的电子并将太阳能转化为化学能。
5. 半导体复合材料:
- 卟啉与半导体材料(如TiO2)复合形成“有机-无机”复合光敏催化材料,显著增强了光催化活性,特别是在可见光响应范围,这对于处理水污染问题尤为有利。
总之,卟啉因其在光催化过程中的独特性能,成为了环境修复、清洁能源生成和有机合成等多个领域的重要研究对象,科学家们不断致力于优化卟啉结构、开发新型卟啉基光催化剂以及探究其内在的光催化机理,以期提高光催化效率和拓展其应用范围。
卟啉类化合物的应用及其前景
在光催化领域,卟啉类化合物可以作为催化剂在可见光条件下促进有机反应。 例如,在环己烷的液相氧化反应中,卟啉类化合物可以吸收可见光,激发电子, 并促进氧气与环己烷的电子转移,从而实现氧化反应。此外,卟啉类化合物还 可以应用于光催化降解污染物,例如在污水处理中,通过光催化反应可以有效 地降解有机污染物。
2、金属卟啉的制备
将四苯基卟啉和金属盐按照1:1的摩尔比例混合,加入适量的溶剂,搅拌均匀。 将混合物加热至适宜温度,保持一定时间,然后冷却至室温。经过滤、洗涤、测定产物的吸光度,对比标准曲线,确定产物中四苯基卟啉和 金属卟啉的含量。进一步分析实验结果可知,反应条件和溶剂用量对四苯基卟 啉和金属卟啉的合成具有重要影响。优化反应条件和溶剂用量可提高产物收率 和纯度。
根据现有的研究成果和实验验证,卟啉类化合物的应用前景非常广阔。首先, 由于卟啉类化合物具有优异的光电性能和良好的生物相容性,其在太阳能电池、 光催化反应和生物医学领域的应用潜力巨大。其次,通过结构优化和分子设计, 可以进一步提高卟啉类化合物的性能,从而拓展其应用范围。此外,随着绿色 化学和可持续发展的理念日益受到重视,卟啉类化合物的合成方法也将得到进 一步改进,提高其生产效率并降低成本。
参考内容
基本内容
卟啉类试剂是一类具有特殊化学结构的有机化合物,其在化学、生物学、材料 科学等领域具有广泛的应用。近年来,随着科学技术的不断进步,卟啉类试剂 的合成方法与技术也得到了长足的发展。本次演示将简要介绍卟啉类试剂合成 的进展,以期让读者了解其未来的发展方向。
一、卟啉类试剂概述
卟啉类试剂是指由四个吡咯环组成的环形化合物,其具有独特的物理和化学性 质,如大环共轭体系、较强的吸电子能力、高稳定性等。这些特性使得卟啉类 试剂在很多领域都具有重要的应用价值,如光电器件、生物传感器、药物开发 等。
卟啉化合物的合成及光电性能
卟啉化合物的合成及光电性能卟啉是一种重要的天然有机化合物,其分子结构为四个吡啶环通过甲烷桥相连而成,是许多生物体内重要的分子构建块。
因其具有独特的光电性能,广泛应用于光电领域。
本文主要探讨卟啉化合物的合成方法以及其在光电领域的性能表现。
首先,卟啉化合物的合成可通过多种途径实现。
其中,自然界中往往通过生物合成途径产生,而在实验室中,化学合成是常见的方法之一。
通过闭环合成法,可以较为高效地合成卟啉化合物。
闭环合成是指通过碳环的闭合反应,在不断逐步构建分子骨架的过程中,最终合成目标产物。
这种方法具有较高的选择性和效率,是实验室合成卟啉化合物的常用手段之一。
其次,卟啉化合物在光电领域中表现出色的性能。
由于其分子结构的特殊性质,卟啉具有较好的光吸收和电子传输性能。
在太阳能电池中,卟啉化合物可以作为光敏染料,吸收阳光的能量转化为电能。
此外,在光导纤维和光合成中也起到重要作用。
卟啉还可以通过与不同金属配合形成卟啉金属络合物,拓展了其在光电领域的应用领域。
最后,通过对卟啉化合物的研究和合成,可以不断拓展其在光电领域的应用。
通过调控卟啉分子结构,改善其光电性能,提高其在光伏和光催化领域的效率。
同时,进一步研究卟啉与金属的配合反应,探索新的卟啉金属络合物的光电性能,为光电材料的开发提供新的思路和途径。
总的来说,卟啉是一种重要的有机化合物,其在光电领域的应用潜力巨大。
通过合成方法的不断改进和性能研究的深入探索,将为卟啉化合物在光电领域的应用提供更为广阔的前景。
希望未来能够有更多的研究者加入到这一领域,共同推动卟啉化合物的应用与发展。
卟啉分子结构与性质的理论研究
卟啉分子结构与性质的理论研究卟啉分子结构与性质的理论研究卟啉是一类特殊的有机分子,具有广泛的应用价值。
如何理解卟啉分子的结构和性质,对于深入研究其应用和开发新的卟啉类化合物具有重要意义。
本文将从卟啉分子的结构、电子结构和光谱性质等方面进行理论研究,探讨卟啉分子在不同环境下的性质变化和应用前景。
首先,我们来看卟啉分子的结构。
卟啉分子由四个吡咯环通过共轭双键连接而成,中间有一个金属离子与卟啉分子配位。
卟啉分子的结构决定了其独特的光学和电化学性质。
吡咯环之间的共轭双键使得卟啉分子呈现出扁平的结构,而金属离子的存在会造成卟啉分子内部的电子重新分布。
这些结构特点不仅影响了卟啉分子的电子结构,还决定了其物理化学性质,如光谱响应和电化学活性。
在理论研究中,电子结构计算是一个重要的手段。
通过量子化学计算方法,我们可以计算卟啉分子的电子能级、分子轨道和电子密度分布等信息。
这些计算结果有助于解释实验观测到的光谱和电化学行为,并揭示卟啉分子内部电子的行为规律。
同时,通过与实验结果的对比,可以验证理论模型的准确性,并不断改进模型以提高计算精度。
卟啉分子的电子结构对其光谱性质有着决定性影响。
卟啉分子吸收、荧光和振动光谱的研究已成为理论和实验研究的热点。
通过理论模拟,在不同环境下模拟卟啉分子的光谱响应,可以预测不同条件下的荧光效率、荧光寿命和吸收峰位置等。
这对于设计新的荧光材料和开发光电子器件具有重要意义。
此外,卟啉分子在电化学领域也具有广泛的应用。
卟啉分子可以作为催化剂、电极材料和传感器等用于电化学系统中。
通过理论计算,我们可以研究卟啉分子在电极表面的吸附行为、电荷转移过程和催化反应机理等。
这些研究有助于优化电化学系统的性能,并指导实验工作的开展。
总之,卟啉分子结构和性质的理论研究对于深入了解其光学、电化学性质具有重要意义。
通过电子结构计算和光谱模拟,可以揭示卟啉分子的电子行为规律,并为开发新的卟啉类化合物提供理论指导。
两种高分子化锌卟啉络合物与特丁津相互作用的光谱性能研究
dition, both the Soret and Q absorption bands of ZnPP鄄PGMA exhibited red shift in the electronic rescence quenching for ZnHPP鄄PGMA was a little less than ZnPP鄄PGMA. It is because the hydrogen terbuthylazine. 摇 bonding between ZnHPP鄄PGMA and terbuthylazine led to the weaker axial coordination. Moreover, the fluorescence quenching of ZnHPP鄄PGMA was strengthed with the increasing concentration of
characterized by nuclear magnetic resonance ( 1 H鄄NMR) spectroscopy. The spectroscopic properties spectroscopy. The axial coordination reaction between two kinds of Zn porphyrin鄄functionalized
Spectroscopic Properties of Two Kinds of Zn Porphyrin鄄functionalized Polymer and Their Coordination Products with Terbuthylazine
YU Long1 , WANG Rui鄄xin1* , GAO Bao鄄jiao1 , GENG Tian鄄qi2 , CHEN Mei鄄jun2 ,
金属卟啉类化合物特性及光催化机理与应用研究
n s ( u e o i e a i n m e h n s ) h h t — x ie n r y t a s e c a i m h tS g e t o h rD i m s p r x d n o c a im ,t e p o o e c t d e e g r n f rme h n s t a U g s s h w t e t i
W a n Lu a f Ca ng i g Ra i Fa g Ya f n Hua g Yi g i g ng Pa o Gu ng u o Ti tn o Zh n ne g n n pn
( g n e i g Re e r h Ce t r o c — n io me ti r e Go g s Re e v i Re i n M i s r En i e rn s a c n e fE o e v r n n n Th e r e s r o r g o nit y ofEdu a i n, c to
合 物 的光 电特 性和 光 电化 学性质 , 括 光致 电子 转 移、 包 光激 发 能 量 转移 和 高 价 金属 卟 啉氧 化 物 种 形 成等 , 归纳 了其 光催化 作用机 理 , 包括 光致 电子 转移 产 生 的对分 子 氧 的活 化机 理( 氧 阴离 子 自 超 由基 机理 ) 光 激发 能量 转移 导致基 态三 线 态氧 活 化产 生 的单 线 态氧 机 理 和 高价 氧 化 物 种 对分 子 、 氧和 H2 Oe的活化产 生具 有高 氧化 活性 自由基 机理 , 并对 异 相光催 化体 系及光 催化 应用 作 了概 括
t e p o o i d c d e e t o — r n f r me h n s ,t e a tv t n fmo e u a x g n b y - e s t e c a h h t — u e lc r n t a s e c a im n h c i a i s o l c lr o y e y d e s n i z d me h o i
金属卟啉类化合物特性及光催化机理与应用研究_王攀
第3 等 金属卟啉类化合物特性及光催化机理与应用研究 3 卷 第 5 期 王 攀 ,
8 5
1 卟啉类 化 合 物 分 子 结 构 特 性 与 化 学 合成
卟啉类化 合 物 是 一 类 中 心 由 2 0个 C 和4个 N 形成的具有一个 2 并且 4 个中心 2 6 个电子的大 π 键 , 所有大环原子处于同一平面上的大共轭杂环类芳香
2 性化合物 , 其中 C 和 N 均 为 s C 上 P轨道的 p 杂 化,
大量焦油状的副产物 , 也给分离纯化带来了一定 的 困 然后再氧化生 难. L i n d s e y 法是基于还原卟啉的合成 , 成卟啉 , 此法能 够 克 服 酸 对 反 应 体 系 的 影 响 , 反应的 然而其反应体系中原料 浓 度 产率较高且易分离纯化 ,
图 2 卟啉的合成方法
2 金属卟啉类化合物特性
图 1 卟啉分子的 Q 带和 B 带吸收光谱
卟啉因其吡 咯 环 上 的 -NH 键 的 存 在 而 具 有 一 作为弱 碱 , 其p 它们可 定的弱碱性 . K 7, K 4, p a 1≈ a 2≈ 以被质子化形成双阳离子型卟啉 . 卟啉和它们的金属 例如在 m 配合物均可被 亲 电 试 剂 取 代 , e s o- 和 吡 咯 的 β 位上发 生 氘 代 、 硝化和 V i l s m e i e r酰 化 等 取 代 反 应, 形成各种各 样 的 卟 啉 及 金 属 卟 啉 . 卟啉类化合物 / 经硼氢化钠 、 N a H g或催化加氢可以得到还原卟啉 类化合物 . 卟啉化合物是 用 吡 咯 或 者 取 代 吡 咯 与 各 种 醛 通 过缩合反应制 得 , 在 合 成 卟 啉 过 程 中, 反应条件及方 式对卟啉的产率有较大的影响 . 已有众多经典的合成 方法 , 包括 A l d e r L o n o法机理与应用研究
卟啉mofs的组成分类
卟啉mofs的组成分类摘要:一、卟啉MOFs的概述1.卟啉的定义与特性2.卟啉MOFs的组成结构二、卟啉MOFs的分类1.金属卟啉MOFs2.金属卟啉酸盐MOFs3.卟啉共轭MOFs三、卟啉MOFs的应用1.催化应用2.光电器件3.吸附与分离4.生物医学正文:卟啉MOFs是一类具有卟啉结构的金属有机框架材料,其独特的结构与性质使其在催化、光电器件、吸附与分离、生物医学等领域具有广泛的应用前景。
卟啉是一种含有四个吡咯环的有机化合物,具有共轭结构,能有效吸收光能并传递电子。
卟啉MOFs是由卟啉分子与金属离子通过配位键形成的一种具有周期性结构的材料。
根据金属离子的不同,卟啉MOFs可分为金属卟啉MOFs、金属卟啉酸盐MOFs和卟啉共轭MOFs。
金属卟啉MOFs是由金属离子与卟啉分子通过配位键形成的具有金属卟啉结构的MOFs。
这类材料的结构稳定,具有良好的催化性能。
例如,Co(bpy)3(NO3)3·3H2O是一种典型的金属卟啉MOFs,具有高效的氧还原反应催化性能。
金属卟啉酸盐MOFs是由金属离子与卟啉酸盐分子形成的MOFs。
这类材料的结构中,卟啉酸盐起到了桥接作用,使得材料具有更稳定的结构。
例如,Zn(tppa)2是一种金属卟啉酸盐MOFs,具有高效的光催化性能。
卟啉共轭MOFs是由卟啉分子通过共轭作用形成的MOFs。
这类材料的共轭结构使其具有良好的光学性能和电子传输性能。
例如,卟啉共轭MOFs材料可以作为光电器件中的光敏剂,实现高效的光电转换。
卟啉MOFs材料在催化、光电器件、吸附与分离、生物医学等领域具有广泛的应用前景。
例如,卟啉MOFs可以作为催化剂,实现氧还原反应、水氧化反应等。
此外,卟啉MOFs还可以作为光电器件中的光敏剂,实现高效的光电转换。
在吸附与分离领域,卟啉MOFs可以用于吸附有害气体和重金属离子,以达到环境保护和资源回收的目的。
四苯基卟啉(TPP)及其金属配合物的合成及光谱表征
四苯基卟啉及其金属配合物的制备卟啉简介 1.卟啉的结构卟吩(Porphine )是由4个吡咯分子经4个次甲基桥联起来的共轭大环分子。
环中碳、氮原子都是sp 2杂化,剩余的一个p 轨道被单电子或孤对电子占用,形成了24中心26电子的大π键,具有稳定4n+2π电子共轭体系,具有芳香性。
卟啉(porphyrins ),是卟吩的外环带有取代基的同系物和衍生物。
卟啉化合物的命名主要有两种即fischer 命名和IUPAC 命名法,IUPAC 命名法将卟吩环与甲叉相连的吡咯环上的碳开始依次编号,fischer 命名法是将卟吩的四个甲叉用α,β,γ,δ表示。
NH NNN H12345678910111213141516181920IUPAC 命名编号方法 Fisher 命名编号方法卟吩核的α,β,γ,δ位由于不同的取代基取代后就成为中位取代卟啉,它是一类与血卟啉相似的化合物。
如四苯基卟啉,结构式如图1:N HN NNH图1 四中位取代四苯基卟啉化合物的结构式卟啉环中心的氢原子电离后,形成的空腔可以与金属离子配位形成金属卟啉配合物。
周期表中几乎所有金属元素都可以和卟啉类大环配位,金属卟啉也广泛存在于自然界。
例如动物体内的血红素是含铁卟啉化合物,血蓝素是铜卟啉化合物,植物体内的叶绿素是含镁的卟啉化合物,维生素B 12是含钴的卟啉化合物。
卟啉化合物由于其母体卟吩具有刚性为主兼有柔性的大环共轭结构,因而具稳定性好,光谱响应宽,对金属离子络合能力强的特性。
卟啉化合物巨大的应用前景激起了化学家和生物学家对卟啉化学极大的兴趣和研究热情。
人们相信卟啉化合物在医学、仿生学、材料化学、药物化学、电化学、光物理与化学、分析化学、功能分子的设计、合成及应用研究等各个领域都有很大应用前景。
2、中位取代卟啉的一般光谱特征 红外光谱(1)卟啉化合物的的红外光谱特征峰为在1590-1300cm -1C=N 伸缩振动峰, 在1000cm -1左右的卟啉骨架振动峰, 在3550-3300cm -1的 N-H 伸缩振动峰和在970-960cm -1的N-H 面内变形峰。
卟啉的特征
卟啉的特征
卟啉是一种含有四个吡咯环的有机化合物,其化学结构中心有一个质子和四个氮原子。
以下是卟啉的一些特征:
1. 稳定性:卟啉具有很高的稳定性,不容易发生化学反应。
2. 光吸收性:卟啉分子能够吸收可见光范围内的光线,使其显现出紫色至红色的颜色。
3. 金属配位性:卟啉分子可以与金属离子形成配合物,形成金属卟啉络合物。
4. 生物活性:卟啉是许多生物体中重要的结构单元,如血红素和叶绿素是卟啉的衍生物。
它们在生物体内承担着氧气输送、光合作用等重要生理功能。
5. 发光性:某些卟啉分子在光激发下可以发出荧光或磷光,被广泛应用于荧光探针和光敏剂等领域。
6. 抗氧化性:卟啉分子具有较强的抗氧化性能,可以捕捉自由基,减少氧化反应的发生。
7. 光催化性:某些卟啉分子在光照条件下可以催化化学反应,如光解水制氢等。
总的来说,卟啉具有稳定性高、光吸收性强、金属配位性好、生物
活性高等特征,使其在多个领域有着广泛的应用和研究价值。
金属卟啉类化合物的合成及其光催化性能研究
金属卟啉类化合物的合成及其光催化性能研究引言:金属卟啉类化合物是一类重要的有机金属配合物,具有广泛的应用前景。
本文将探讨金属卟啉类化合物的合成方法以及其在光催化领域的应用和性能研究。
一、金属卟啉类化合物的合成方法金属卟啉类化合物的合成方法多种多样,常用的方法包括:1. 氧化反应法:通过金属离子与卟啉前体在氧化剂的作用下发生氧化反应,得到金属卟啉类化合物。
这种方法简单易行,常用于合成一些常见的金属卟啉类化合物。
2. 置换反应法:通过将金属离子与卟啉前体反应,置换掉卟啉前体中的原子或基团,从而合成金属卟啉类化合物。
这种方法可以合成一些特殊结构的金属卟啉类化合物,如金属卟啉配合物。
3. 氨合反应法:通过将金属离子与卟啉前体在氨溶液中反应,生成金属卟啉类化合物。
这种方法适用于合成一些特殊的金属卟啉类化合物,如金属卟啉氨合物。
二、金属卟啉类化合物的光催化性能研究金属卟啉类化合物在光催化领域具有广泛的应用前景,其光催化性能的研究成为热点领域。
主要研究内容包括:1. 光吸收性能:金属卟啉类化合物具有较强的光吸收性能,可以吸收可见光和近红外光,从而实现光催化反应。
研究金属卟啉类化合物的光吸收性能,可以为其在光催化领域的应用提供理论依据。
2. 光电转换效率:金属卟啉类化合物可以将光能转化为电能,实现光电转换。
研究金属卟啉类化合物的光电转换效率,可以评估其在光催化领域的应用潜力。
3. 光催化活性:金属卟啉类化合物在光催化反应中具有较高的催化活性,可以促进光催化反应的进行。
研究金属卟啉类化合物的光催化活性,可以为其在光催化领域的应用提供指导。
三、金属卟啉类化合物在光催化领域的应用金属卟啉类化合物在光催化领域有着广泛的应用,主要包括:1. 水分解产氢:金属卟啉类化合物可以作为催化剂,促进水分解反应,产生氢气。
这对于解决能源危机和环境污染问题具有重要意义。
2. 有机污染物降解:金属卟啉类化合物可以催化有机污染物的降解,如光催化降解有机染料、农药等。
金属卟啉配合物的性能及应用研究进展
金属卟啉配合物的性能及应用研究进展王冬华;丁二雄;马勇【摘要】Metallic porphyrin complexes are the main compounds of porphyrin derivatives, they are widely researched and applied due to the physiological function. Some of the excellent performance and related applications of metallic porphyrin complexes were briefly reviewed in this paper in such fields as: bionic system, molecular recognition, catalyst, material, organic synthesis and medicine and so on, aiming at making people understand and be familiar with the properties and applications of metallic porphyrin complexes.%金属卟啉配合物是卟啉衍生物中的主体化合物,因其具有优异性能而被广泛地研究与应用.分别从仿生体系、分子识别、催化、材料、有机合成和医疗等方面简要介绍了金属卟啉配合物的优异性能及其应用,旨在让人们了解并熟悉金属卟啉配合物的性能及用途.【期刊名称】《化学与生物工程》【年(卷),期】2011(028)010【总页数】4页(P7-10)【关键词】金属卟啉;分子识别;催化剂【作者】王冬华;丁二雄;马勇【作者单位】渭南师范学院化学与生命科学学院,陕西渭南714000;渭南师范学院化学与生命科学学院,陕西渭南714000;渭南师范学院化学与生命科学学院,陕西渭南714000【正文语种】中文【中图分类】O626卟啉是由20个碳原子和4个氮原子组成的具有共轭大环结构的有机化合物,它含有4个吡咯分子,中心的4个氮原子都含有孤电子对,可与金属离子结合生成18个p电子的大环共轭体系的金属卟啉。
卟啉及金属卟啉配合物的研究进展
卟啉及金属卟啉配合物的研究进展摘要:金属卟啉化学是现代化学领域中重要的研究分支之一.卟啉及金属卟啉配合物在生物医学、仿生化学、分析化学、合成催化、材料化学、能源等领域有广泛的应用.本文综述了近年来卟啉及金属卟啉类配合物的结构、性质、应用及合成方法的研究进展,并作出展望。
关键词:卟啉金属卟啉配合物综述1前言卟啉配合物是一类特殊的大环共轭芳香体系,自然界中存在许多天然卟啉及其金属配合物,如血红素、叶绿素、维生素B12、细胞色素P-450、过氧化氢酶等。
天然卟啉配合物具有特殊的生理活性。
人工合成卟啉来模拟天然卟啉配合物的各种性能一直是人们感兴趣和研究的重要课题。
由于卟啉配合物独特的结构、优越的物理、化学及光学特征,使得卟啉配合物在仿生学[1]、材料化学[2]、药物化学、电化学、光物理与化学、分析化学[3]、有机化学等领域都具有十分广阔的应用前景,正吸引着人们对卟啉化学不断深入地研究。
2卟啉及金属卟啉配合物的结构卟啉和金属卟啉类化合物的母体结构均为卟吩,卟吩是由4个吡咯环和4个次甲基团所取代, 生成各种各样的卟吩衍生物, 即卟啉.卟啉的合成主要是构造卟吩核。
当卟吩中 N 上的 H 被取代, 金属离子可与卟啉形成金属配合物[4], 现在卟啉几乎与所有的金属离子都能形成配合物。
3卟啉及金属卟啉配合物的性质卟啉及金属卟啉配合物的物理性质:它们是高熔点,深色的固体,大多数不溶于水,但能溶于矿酸而且无树脂化作用,溶液有荧光,不溶于碱,对热非常的稳定.卟啉及金属卟啉配合物的化学性质:易与金属离子生成1:1的配合物卟啉,与周期表中各类金属元素(包括稀土金属元素[5])的配合物都已经得到.金属卟啉配合物还具有独特的反应性质,如配体交换反应、络合反应、活化小分子、氧化反应、还原反应等.4卟啉及金属卟啉配合物的应用由于卟啉及其化合物是具有 18 个π电子的大共轭体系,其环内电子流动性非常好.卟啉化合物在光电材料、分子光电器件、分子识别、分子组装、医药、香料、食品检测、分析化学、荧光分析[6]、显色剂、环境保护、光电转换、药物合成、太阳能贮存、气体传感器、模拟天然产物、微量分析、电催化、有机合成、生命科学、能源以及地球化学等众多领域都具有广阔的应用前景.近年来,人们对卟啉化合物的合成及在仿生催化领域的应用[7]关注度越来越高。
光激发金属配位四苯基卟啉瞬态吸收和衰减动力学性质研究
Vol.42 2021年3月No.3767~775 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES高等学校化学学报光激发金属配位四苯基卟啉瞬态吸收和衰减动力学性质研究马子辉2,王梦妍2,曹洪玉1,唐乾1,王立皓2,郑学仿1(1.大连大学生命科学与技术学院,2.环境与化学工程学院,大连116622)摘要以四苯基卟啉为实验模板,结合稳态吸收光谱、荧光光谱、瞬态吸收光谱、动力学数据及理论计算结果研究了光激发4种金属配位卟啉的光谱性质.光激发后,四苯基卟啉化合物TPP-2H,TPP-Zn和TPP-Mg稳态吸收光谱Soret带谱峰强度均明显降低,TPP-Ni吸收强度由0.3a.u.增至1.3a.u.,TPP-FeCl谱峰变化较小.TPP-2H和镁、锌配位卟啉的瞬态吸收光谱Soret带出现明显负峰,激光激发后其瞬态中间体的消光系数(εt)小于基态的消光系数(εG),ΔOD值为负值;3种卟啉正负峰微秒级衰减动力学过程表明,光激发后分子产生较为稳定的中间态,有利于光电转换或光反应.实验和理论研究表明,金属卟啉光学性质差异由金属配位空轨道和电子排布引起.以上卟啉光学性质可协助理解光合作用过程,并为选择光电转换新型卟啉材料的配位金属提供实验支持.关键词金属卟啉;光激发;瞬态吸收光谱;衰减动力学;电子转移中图分类号O644文献标志码A叶绿素和血红素(铁卟啉)等金属卟啉化合物对生命体内光合作用、输氧、储氧及电子传递等过程起着至关重要的作用[1].光合作用中叶绿素是光能转换的反应中心,血红素类蛋白能够在光诱导下发生氧化还原反应[2].Sakai等[3]发现365nm氙灯光能诱导高铁血红蛋白(metHb)还原生成碳氧血红蛋白(HbCO),推测电子可能是从卟啉环转移至卟啉环中心铁;Gu等[4]发现醇的加入有利于血红素类蛋白的光还原.紫外光或可见光激发色氨酸对其它生物分子会有电子转移反应影响[5],实验表明游离色氨酸受光激发后可以发生能量转移到铁卟啉中,引起蛋白光谱变化[6].以上研究表明光对金属卟啉均有明显的反应重要引发作用,其中确定光反应中间体是理解反应的关键.光激发金属卟啉至激发态是光合作用反应的第一步.过渡金属配位卟啉分子具有大共轭结构,在吸收光后其激发态具有复杂性和多样性,从而具备优异的光化学和光物理性质[7],因此在金属有机骨架(MOFs)材料[8]、染料太阳能电池、光动力学治疗光敏剂、光催化及光能转化材料科学等领域引起广泛关注.Steven等[9]在其实验条件下表征了四苯基卟啉的时间分辨共振拉曼光谱,通过同位素位移技术与各谱带的偏振系数,准确地归属了四苯基卟啉的基态和激发态在共振拉曼光谱上的信号.Seiji等[10]根据卟啉的激发态弛豫过程推测出卟吩激发态的衰变过程经历B带内转换到Q y带和Q x带;Q x激发态与溶剂发生能量交换振动弛豫后再经过衰变12ns返回基态,并根据卟啉的激光激发后的短时激发性质对光谱进行归属.吴骊珠等[11]以四苯基卟啉铂为光敏剂构建二氧化硅纳米颗粒的三重态-三重态湮灭上转换体系,光敏剂所占比例小(1∶40),效率较高,光敏剂吸收低能量的光子跃迁至其单重激发态并通过系间窜越过程到达其三重激发态,随后处于三重激发态的光敏剂通过能量传递将其三重态能量传递给发光体分子.血红素和叶绿素分别以铁和镁为金属活性中心,卟啉光敏剂的研究倾向于采用锌或镍等过渡态金doi:10.7503/cjcu20200736收稿日期:2020-10-08.网络出版日期:2020-12-30.基金项目:国家自然科学基金(批准号:21601025,21571025,21601024,21506018)、大连市高层次创新人才项目(批准号:2017Q156)和大连大学博士启动项目(2019)资助.联系人简介:曹洪玉,男,博士,副教授,主要从事光激发生物大分子光谱学性质及机理研究.E-mail:*****************.cn 郑学仿,男,博士,教授,主要从事生物无机化学研究.E-mail:*****************768Vol.42高等学校化学学报属,选择原因均与金属配位性质相关,但尚缺乏光激发实验和理论数据;光激发金属卟啉氧化还原反应中长时中间态是反应基础,相关实验报道较少,致使其机理也尚缺乏解析.叶绿素和铁卟啉侧链过长,不利于金属卟啉核心部位的光学性质研究,本文以四苯基卟啉为模板分子,采用稳态吸收光谱和激光闪光光解方法,以间-四苯基卟吩(TPP-2H),间-四苯基卟啉氯化铁(Ⅲ)(TPP-FeCl),5,10,15,20-四苯基卟啉-21H,23H-卟吩镍(Ⅱ)(TPP-Ni),5,10,15,20-四苯基卟啉-21H,23H-卟吩镁(TPP-Mg)和5,10,15,20-四苯基卟啉-21H,23H-卟吩锌(TPP-Zn)5个化合物为模型研究光激发后卟啉衍生物的光学性质,归属谱峰,分析5种卟啉化合物在光激发前后的特点与差异机理,发现并理解金属配位对卟啉光学性质的影响,进而协助理解光激发的光合作用或血红素氧化还原反应.1实验部分1.1试剂与仪器TPP-FeCl(分析纯)购自上海阿法埃莎(中国)化学有限公司;TPP-Ni、TPP-Mg、TPP-2H(纯度>99%,TPP-2H,无氯)和二甲基亚砜(纯度>99.9%,DMSO)均为分析纯,购自上海阿拉丁生化科技股份有限公司;TPP-Zn(纯度95%)购自北京百灵威科技有限公司.经紫外-可见光谱检测TPP-FeCl中均是三价铁.Jasco-V-560型紫外-可见分光光度计和FP6500型荧光分光光度计(日本分光株式会社);LP980型激光闪光光解仪(英国爱丁堡仪器公司).1.2实验方法紫外-可见光谱和荧光光谱测定:将5×10−6mol/L TPP-FeCl,TPP-Mg,TPP-Ni,TPP-Zn和TPP-2H的DMSO溶液分别置于比色皿中,采用紫外-可见分光光度计测量样品激光照射前后300~700nm的紫外-可见吸收光谱,狭缝宽度2nm,扫描速度400nm/min;使用荧光分光光度计测定激发波长为355nm的发射光谱,测定范围380~420nm,激发光和发射光狭缝宽度均为3nm.激发态瞬态光谱和动力学测定:将5×10−6mol/L TPP-FeCl,TPP-Mg,TPP-Ni,TPP-Zn和TPP-2H的DMSO溶液分别置于石英比色皿中,经过固定波长(355nm)的激光发射器激发,测量其瞬态吸收的变化及衰减曲线.采用激光闪光光解仪测量,激光模式1Hz;检测时间范围为4000ns;每次测量2次激光脉冲.检测器狭缝宽度为2nm;检测波长范围360~750nm.在获取激光瞬态吸收光谱之后,进行谱图分析并将捕捉到的谱图进行截取,截取0~2000ns数据,谱线平均宽度为10ns.其它参数设为默认数值.ΔOD=(εt-εG)cd(1)式中:ΔOD(a.u.)为激发态和基态的光密度差值;εt和εG(L·mol−1·cm−1)分别为瞬态中间体和基态的消光系数;c(mol/L)为基态分子转移到瞬态中间体的浓度,d(cm)为探测光束的有效光程长度[12].激光闪光光解检测的ΔOD(a.u.)值是时间(t)和波长(λ)两个变量的函数:ΔOD(t,λ)=εΤ(λ)cΤ(t)-εG(λ)[cΤ(t)+c s(t)]d-ϕ(λ)c s(t)(2)式中:εT(L·mol−1·cm−1)为激发态的消光系数;c T(mol/L)为三重激发态的浓度;c s(mol/L)为单重激发态的浓度;ϕ(a.u.)为样品的荧光光谱强度.测定过程中采用定时或定波长转为单变量函数.激发态衰减动力学拟合曲线采用下式:R(t)=A+ΣBe(-t/τi)(3)i式中:B i和τi分别为指前因子和特征寿命;A为附加背景.R(t)通常被称为样品衰减模型,其是样品对无限短激发响应的理论表达式,实验以ΔOD值作为R(t)值进行动力学分析,拟合曲线采用卡方检验方法,在最低χ2值时确定最佳拟合曲线各参数.1.3理论计算TPP-2H和金属配位卟啉结构的理论计算采用密度泛函理论在Gaussian09程序包[13]中完成,几何构型均采用已经证实卟啉类分子计算与实验结果吻合的B3LYP/lanl2dz基组水平优化[14,15],采用开壳层No.3马子辉等:光激发金属配位四苯基卟啉瞬态吸收和衰减动力学性质研究UB3LYP/lanl2dz 基组对TPP -FeCl 进行优化,频率分析无虚频,表明优化的结果是稳定的构型;采用含时密度泛函理论在B3LYP/lanl2dz 基组下进行激发态计算,TPP -FeCl 采用开壳层UB3LYP/lanl2dz 基组水平计算,激发态数量设置为240.基态和激发态计算结果利用Gausssum3.0软件[16]对前线轨道和电子吸收光谱进行分析.2结果与讨论2.1金属卟啉激发前后稳态吸收光谱5种卟啉化合物TPP -2H ,TPP -FeCl ,TPP -Ni ,TPP -Mg 和TPP -Zn 的差异仅在于中心原子不同(图1),但卟啉化合物的稳态紫外吸收谱图差异较大[图2(A )~(E )].光激发前,TPP -2H 紫外吸收谱中Soret 带有一个较强吸收峰,Q 带有4个弱吸收峰,金属卟啉TPP -FeCl ,TPP -Ni ,TPP -Mg 和TPP -Zn 的Soret 带最大吸收峰分别位于414,416,426和428nm 处[图2(B )~(E )].光激发次数较少时,各卟啉化合物稳态光谱性质稳定,紫外光谱基本不变.在受多次355nm 激光激发后,不同卟啉的光谱变化趋势和程度各有差异.经过激光照射,不含金属配体的TPP -2H 在Soret 带418nm 处最大吸收峰在光激发后明显降低,其降低程度与光激发TPP -Zn 后在428nm 处最大吸收峰降低程度相同,说明这2种卟啉化合物受光激发后其共轭结构发生变化.TPP -Ni 经光激发后,Soret 带和Q 带吸收强度均出现大幅上升,Soret 带吸光度由0.3a.u.升至1.3a.u.;Q 带吸光度由0.04a.u.上升到0.11a.u.,且峰位置没有发生变化.光激发后TPP -2H ,TPP -Zn 和TPP -Mg 的Q 带峰位置未发生变化但强度均明显降低,表明多次激光照射后原分子减少.TPP -FeCl 的紫外吸收光谱Soret 带和Q 带谱峰Fig.1Structures of tetraphenylporphyrin and metal⁃coordinatedtetraphenylporphyrinsFig.2UV⁃Vis spectra of TPP⁃2H(A),TPP⁃FeCl(B),TPP⁃Ni(C),TPP⁃Mg(D),TPP⁃Zn(E)before and after355nm laser excitation and fluorescence spectra with 355nm light excitation(F)769Vol.42高等学校化学学报强度降低均不明显,表明Fe 与卟啉环的配位较为稳定,且不易受到激光激发影响.以上化合物光激发后长时间(>5min )放置,其稳态光谱均不能恢复至激光照射前,说明光激发可使卟啉化合物的结构发生改变.2.2金属卟啉光激发瞬态吸收光谱TPP -2H ,TPP -FeCl ,TPP -Ni ,TPP -Mg 和TPP -Zn 的瞬态动力学吸收有显著差异(图3).5种卟啉化合物在396nm 处均有瞬态吸收光谱负峰.根据5种卟啉化合物在激发波长为355nm 时的发射光谱,396nm 处的谱峰为卟啉的荧光峰[图2(F )],根据稳态荧光和式(2),此负峰归属为卟啉荧光项[ϕ(λ)c s (t )].不同分子396nm 处的谱峰强度差异很大,其中TPP -FeCl 最强,其ΔOD 值达到−0.038a.u.;TPP -2H 的396nm 谱峰ΔOD 值为−0.018a.u.;TPP -Ni ,TPP -Mg 和TPP -Zn 的谱峰强度均小于−0.001a.u.,以上差异是受环内离子对TPP 三重激发态稳定性影响.TPP -FeCl *的瞬态吸收光谱中Soret 带的ΔOD 为0,即无明显谱峰,说明激光激发过程中,TPP -FeCl 未产生中间态.TPP -2H ,TPP -Ni ,TPP -Mg 和TPP -Zn 的稳态紫外-可见吸收峰中Soret 带谱峰位置在瞬态吸收光谱中也均出现明显负峰,根据式(1)可知,激光激发后中间体的εt 明显小于基态的εG ,导致ΔOD值为负值.瞬态吸收光谱中,Soret 带负吸收峰在不同卟啉中明显不同,TPP -2H *和TPP -Zn *分别在418和428nm 的负峰较为显著,TPP -Ni *和TPP -Mg *分别在416和426nm 的Soret 带负峰较弱(图3).Soret 带是分子被激发至第二激发单重态S 2(0-0)跃迁的吸收峰,卟啉环中心原子或金属影响分子的电子排布和共轭结构[17],光谱表明氢和锌对光激发后分子内电子跃迁至S 2变化影响较明显,ΔOD 值变化较大.在TPP -2H *,TPP -Mg *和TPP -Zn *的瞬态吸收光谱中出现了3个正的弱峰,分别位于448,452和450nm ,与其各自的Soret 带强负吸收峰位置接近,其中正吸收峰归属为激发态吸收εt 大于基态吸收εG ,说明3种卟啉均产生了三重激发态中间体.吸收谱带可表明激发态特征[18].Q 带吸收是最低能级单重激发态S 1的电子态,TPP -2H ,TPP -Mg 和TPP -Zn 在稳态吸收谱相应具有Q 带吸收峰位置处均未发现瞬态吸收谱峰,表明基态和激发态的Q 带吸收强度无差别,ΔOD 值无变化,即S 0→S 1的跃迁未改变;TPP -Ni 在524nm 处有明显负峰,表明激光激发后中间态改变了最低能级跃迁,中间体的εt 明显小于基态的εG ,导致ΔOD 值为负值.TPP -2H *,TPP -Ni *,TPP -Mg *和TPP -Zn *的瞬态光谱中分别在650nm/718nm ,654nm/716nm ,608nm/664nm 和624nm/664nm 处有负峰,谱峰信号均呈现强度大、宽度大的特性,根据式(2),这些负峰信号为基态漂Fig.3Transient absorption spectral maps of TPP⁃2H(A),TPP⁃FeCl(B),TPP⁃Ni(C),TPP⁃Zn(D)and TPP⁃Mg(E)photoexcited by 355nm laser pulse770No.3马子辉等:光激发金属配位四苯基卟啉瞬态吸收和衰减动力学性质研究白峰,归属为基态吸收εG (λ)值.TPP -FeCl *的瞬态吸收光谱中Soret 带和Q 带无明显谱峰,这一显著差别表明Fe 电子排布的独特性致使卟啉瞬时激发态中间体异于其它金属配位卟啉.2.3金属卟啉激发态瞬态动力学对TPP -2H ,TPP -FeCl ,TPP -Ni ,TPP -Mg 和TPP -Zn 的瞬态吸收光谱中各自特征吸收波长的激发态衰减曲线根据式(3)进行拟合(表1).5种卟啉化合物光激发下在396nm 负峰的瞬态衰减时长均相同,在5ns 内此峰消失,这是5种卟啉化合物中共有的瞬态衰减过程,根据此峰的特点,可以推测卟啉大环的共轭结构受到光激发后有相同能量弛豫路径产生,产生共同的荧光峰.此谱峰可以归属为卟啉大分子配体的S 0→S 1跃迁,但各种卟啉化合物在396nm 处的谱峰强度不同,说明此跃迁在不同卟啉之间的几率差异较大,也显示出分子处于激发态后能量弛豫途径不同.特征吸收波长的激发态衰减曲线拟合数据表明,金属配位卟啉三重激发态的正峰衰减过程中,TPP -2H *的446nm 处的峰衰减时长为1388.9ns ,TPP -Mg *在440nm 处的峰衰减时长为1328.6ns ,TPP -Zn *在452nm 处的峰瞬态衰减时长2687.7ns ,邻近Soret 带418,426和428nm 负峰衰减动力学时长分别为1233.0,1916.0和2256.2ns (图4).正峰和负峰的动力学时长均在同一数量级,具有极为相似的动力学性质,表明分子被光激发产生的新激发中间态、基态卟啉浓度减小,致使原Soret 带ΔOD 值呈现Table 1τ1,χ2values of TPP -2H,TPP -FeCl,TPP -Ni,TPP -Mg and TPP -Zn Compound TPP⁃2H TPP⁃FeCl TPP⁃Ni λ/nm 396418446650718396396416532654716τ1/ns 5.001233.01388.915.1013.805.701.1010.705.2013.409.60χ21.8380.8071.2111.0530.8510.9835.6691.7812.9041.3981.004Compound TPP⁃Zn TPP⁃Mg λ/nm 396428452608664396426440524664τ1/ns 3.202256.22687.75.506.701.501916.01328.610.008.30χ22.6800.8012.6021.8591.332.9671.5212.4861.5431.286Fig.4Long⁃life time Soret bands decay kinetic curves of excited porphyrin compounds after 355nmlaser⁃excitation(A )TPP -2H ,418nm ;(B )TPP -Mg ,426nm ;(C )TPP -Zn ,428nm ;(D )TPP -2H ,466nm ;(E )TPP -Mg ,440nm ;(F )TPP -Zn ,452nm.771Vol.42高等学校化学学报负峰;而在较长波长的正峰则表明此激发中间态有弱允许电子跃迁,有较低的摩尔吸光系数εt ,产生正ΔOD 峰.正峰和负峰同时出现及相同数量级的激发态动力学时长表明同一卟啉激发态共轭或配位结构状态改变时,其能级轨道和电子跃迁的改变情况.TPP -2H *,TPP -Mg *和TPP -Zn *较长时间的能量弛豫过程有利于能量累积,若在此时间间隔内进行二次激发,分子更有利于进入更高能级激发态,因而TPP -Zn 可提供较好的光电转换效率.在可见光照射下,锌酞菁/氮化碳即可被激发用于光电催化CO 2还原反应[19],原因可能为电子-空穴对的寿命长,它们参与反应的机会增大,这可能也是其在太阳能敏化剂等领域发挥着重要的作用原因之一[20,21].TPP -Ni 在416nm 处的动力学时长非常短,仅为10.7ns ,且在较长波长位置并未出现正峰,显示了在Ni 配位四苯基卟啉中,Ni 提供的轨道和电子阻碍了类似于上述3种卟啉中间态结构的产生.分析分子结构及光谱规律,可以发现由于TPP -2H ,TPP -Mg 和TPP -Zn 的内部氢和镁、锌离子最外层电子饱和,易于产生长时激发态中间体;铁离子提供空轨道和单电子,卟啉电子激发后易离域到铁离子中,难以形成激发态;镍离子最外层只提供一个空轨道,镍上电子与卟啉N 配位,空轨道不与卟啉共平面,因而兼具二者性质.TPP -2H *,TPP -Ni *,TPP -Mg *和TPP -Zn *瞬态光谱中的基态漂白峰650nm/718nm ,654nm/716nm ,624nm/664nm 和608nm/664nm 处的强负峰寿命较短,动力学寿命在5~15ns 之间,与396nm 波长处的负峰相似,归属为激光激发后产生的整个卟啉分子的强荧光谱峰[21~23],为Q 带(0-0)跃迁产生.Q 带(0-0)跃迁极易受卟啉内配位金属和氢原子影响,TPP -2H 分子激发态通过系间窜越至三重态,在650和718nm 处产生较强荧光;Mg ,Ni 和Zn 闭壳层金属配位的分子激发态通过系间窜越至T 1态减弱,荧光峰强度降低;开壳层金属Fe 配位激发态S 1易于恢复至基态,Q 带(0-0)跃迁的分子数过低,荧光峰难以检测到.2.4密度泛函理论和含时密度泛函理论计算TPP -2H 符合Gouterman 四轨道理论[24],HOMO 和LUMO 之间的能级差为2.63eV ,4个前线轨道HOMO−1,HOMO ,LUMO 和LUMO+1轨道均位于与卟啉的4个吡咯环和N 原子上,LUMO 和LUMO+1轨道能级简并,HOMO−2及以下占据轨道能级均较低,远离前线轨道(图5).中心镁、锌和镍配位后卟啉分子HOMO 和LUMO 之间的能极差增大,LUMO和LUMO+1能级轨道简并.TPP -Mg 和TPP -Zn 的前线轨道基本分布在卟啉内部的4个吡咯环和meso位的C 上,不脱离卟啉共轭结构,其稳态紫外-可见光吸收与TPP -2H 有较大相似之处,Mg 2+和Zn 2+离子结构为满电子结构,金属离子与4个N 原子相连,影响卟啉大共轭体系的n -π*跃迁,在卟啉分子内电子传递过程中起着重要作用,因而瞬态吸收峰二者差异较大.TPP -2H ,TPP -Mg 和TPP -Zn 3种卟啉分子的单重激发态的S 0→S 1和S 0→S 2跃迁,均为4个前线轨道,如TPP -Mg 的S 0→S 1跃迁组成为HOMO−1→LUMO+1(36%)和HOMO→LUMO (64%),S 0→S 2跃迁组成为HOMO−1→LUMO (36%)和HOMO→LUMO+1(63%),电子由HOMO 和HOMO−1轨道跃迁到LUMO 和LUMO+1轨道.Ni 和Fe 离子由于有单电子存在,其激发电子跃迁较为复杂.在TPP -Ni 中,Ni 2+对分子的HOMO 轨道有主要贡献,卟啉共轭结构和Ni 2+均对LUMO 轨道有贡献,TPP -Ni 的S 0→S 1跃迁组成为HOMO−4→LUMO+2(100%),意味着处于较低能量HOMO−4轨道的电子也易被激发跃迁.激发后,电子传递方向是电子从金属向配体的转移,卟啉配体吸收电子后分子结构和光学性质发生变化,能量累积后其稳态吸收光谱增加.TPP -FeCl 的HOMO 轨道位于Fe 和卟啉内部的4个吡咯环上,LUMO 则基本位于Fe 上,表明Fe 在分子中既可以提供空轨道,又可提供电子.TPP -FeCl 的电子跃迁更为复杂,其S 0→S 1跃迁组成主要为HOMO−2(A )→LUMO (A )(19%),HOMO−19(B )→LUMO+2(B )(11%)和HOMO−2(B )→LUMO+2(B )(53%)等;S 0→S 2跃迁组成主要为HOMO−6(B )→LUMO+2(B )(31%),Fig.5Frontier orbital energy levels diagram of TPP⁃2H772No.3马子辉等:光激发金属配位四苯基卟啉瞬态吸收和衰减动力学性质研究HOMO−2(B )→LUMO (B )(22%)和HOMO−2(B )→LUMO+3(B )(32%)等,表明铁配位卟啉有更多能级较低的占据轨道电子易被激发,同时Fe 也提供更多能级较高的空轨道参与,分子内部电子跃迁途径更为复杂,光激发后,位于铁和吡咯环HOMO 轨道上的电子以及更低能级占据轨道电子迅速自由离域至Fe 提供的最低空轨道上,电子传递方向是电子从配体向金属的转移,激发态对整体有机分子结构影响很小,因而稳态吸收光谱变化不大,以上分析结果与实验结果相吻合.结合稳态吸收光谱、荧光光谱、瞬态吸收光谱、动力学数据及理论计算结果,可以推测出激光激发各卟啉光谱变化的可能机理(图6).TPP -2H 的卟啉环中心无金属配体,在稳态下是一个平面结构.TPP -2H 受激光激发之后的稳态吸收谱图并未出现新的峰,表明分子结构较稳定;瞬态吸收谱图中出现新峰表明卟啉被激发至激发态.TPP -2H 环中心未配位的金属提供空轨道,分子被激发至激发态后电子能量不能快速释放,产生长时中间体,然后再逐渐恢复至稳态.TPP -FeCl *呈现出的特殊性是因为铁离子的复杂电子排布方式以及与卟啉环复杂的配位,中心三价铁最外层电子轨道为3d 5半满结构,基态光谱项为6S ,d 轨道有5个自旋平行未成对电子,配体不仅具有σ轨道(sp 2杂化轨道)而且还有含孤对电子的π轨道(P z 轨道)[25,26].计算结果表明,LUMO 轨道位于Fe 上,Fe 离子由于缺乏电子,配位后可以为分子提供空轨道,易于产生电子π⁃d 跃迁.光激发分子后,TPP *-FeCl 中位于卟啉配体的HOMO 或更低能级的占据轨道电子迅速自由离域至Fe 提供的空轨道上,激发态电子在铁离子中发生辐射或非辐射衰减,使得TPP -FeCl 在光激发后相对于另外3种金属卟啉化合物具有良好的受光激发后的稳定性,激发后瞬态恢复到稳态时间极短.激光激发实验表明,在300次连续激光激发下铁卟啉的紫外-可见吸收光谱未发生明显变化,表明铁卟啉在光照条件下稳定性高,不易受光照损坏,对铁卟啉作为肌红蛋白和细胞色素p450等蛋白活性中心的选择有着非常重要的作用.二价镍离子的最外层电子排布为3d 8,与4个氮配位后达到16电子配位稳定结构,镍卟啉的Q 带有明显吸收,镍离子基态光谱项为3F ,d 轨道有2个自旋平行未成对电子.Ni 2+对分子的HOMO 轨道有主要贡献,卟啉共轭结构和Ni 2+均对LUMO 轨道有贡献,电子的π⁃π*跃迁和π⁃d 跃迁均易产生,金属电子也可激发到金属空d 轨道上,能量得以从金属离子中发生辐射或非辐射衰减,同时配位结合能力加强.经激光激发,卟啉吸收能量到激发态TPP *-Ni ,能量转移后整个激发态分子TPP -Ni *可较迅速衰减至基态.二价锌离子的最外层电子排布为3d 10,电子全满,配位后能形成18电子配位稳定结构,锌离子无未成对电子和d 空轨道;镁离子同样外层电子全满,二者均属于闭合壳层,电子占据轨道成为卟啉中心电子传递的缓冲区域.经激光激发,卟啉吸收能量到激发态TPP *-Mg 或TPP *-Zn ,HOMO 和LUMO 轨道未分布在金属离子上,电子只能通过π⁃π*跃迁至卟啉的更高能级轨道,卟啉结构会有所形变,产生长时中间态,能量转移后,整个分子呈激发态的TPP -Mg *或TPP -Zn *再进一步衰减至基态.经过多次激光激发,长时中间态不能及时衰减,有一部分不能恢复至基态,持续吸收光子,金属离子缓冲区域能量过高,超出其能量阈值后则导致分子结构无法保持原构型.以上TPP -Mg 或TPP -Zn 激发态特性表明,在金属离子缓冲区域存在下两者可产生长时激发中间体,设定特定激发脉冲时间可使得二者在光电转换效率方面发挥独特优势.这一特性可进一步用于阐释自然界光合作用中叶绿素选择镁离子配位的原因,同时本文研究可用以阐明锌卟啉在光电转换方面具有极大优势的原因[27,28].Fig.6Proposed energy transfer schemes of five porphyrin compounds after the photoexcitation773774Vol.42高等学校化学学报3结论以四苯基卟啉为实验模板,结合稳态吸收光谱、荧光光谱、瞬态吸收光谱、动力学数据及理论计算结果,发现TPP-FeCl在Soret带和Q带谱峰强度降低均不明显,TPP-FeCl*的瞬态吸收光谱中Soret带的ΔOD值为0,即无明显谱峰,显示Fe与卟啉环的配位较为稳定,且不易受到激光激发影响,相对于其它卟啉化合物具有良好的受光激发后的稳定性,对铁卟啉作为生物蛋白活性中心有着非常重要的作用. TPP-Ni经光激发之后,Soret带和Q带吸收强度均出现大幅上升,显示了其独特光激发性质,原因可能在于Ni能同时提供空d轨道和电子,能量转移后整个激发态分子TPP-Ni*可较迅速衰减至基态.TPP-2H,TPP-Mg和TPP-Zn内部结合的离子外层电子呈饱和状态,产生长时激发态中间体,有利于光电转换或者光化学反应过程,良好的电子转移特性可能是镁卟啉被选择作为叶绿素的活性中心,锌卟啉在太阳能敏化剂等领域发挥着重要作用的原因之一.参考文献[1]Zhang X.,Wasinger E.C.,Muresan A.Z.,Attenkofer K.,Jennings G.,Lindsey J.S.,Chen L.X.,J.Phys.Chem.A,2007,111(46),11736—11742[2]Janich S.,Fröhlich R.,Wakamiya A.,Yamaguchi S.,Würthwein E.,Chem.,2010,15(40),10457—10463[3]Sakai H.,Onuma H.,Umeyama M.,Takeoka S.,Tsuchida E.,Biochem.,2000,39(47),14595—14602[4]Gu Y.,Li P.,Sage J.T.,Champion P.M.,J.Am.Chem.Soc.,1993,115(12),4993—5004[5]Qi Q.G.,Yang C.F.,Xia Y.,Liu K.H.,Su H.M.,Acta Chim.Sinica,2019,77(6),515—519(琪其格,杨春帆,夏烨,刘坤辉,苏红梅.化学学报,2019,77(6),515—519)[6]Cao H.Y.,Shi F.,Tang Q.,Zheng X.F.,Chin.J.Inorg.Chem.,2017,33(8),1339—1348(曹洪玉,史飞,唐乾,郑学仿.无机化学学报,2017,33(8),1339—1348)[7]Wang S.Z.,Li W.J.,Yu Y.,Liu J.,Zhang C.,Acta Phys.Chim.Sin.,2019,35(11),1276—1281(王士昭,李维军,俞越,刘进,张诚.物理化学学报,2019,35(11),1276—1281)[8]Xie X.Y.,Zhao Y.X.,Zhao L.Z.,Li R.S.,Wu D.H.,Ye H.,Xin Q.P.,Li H.,Zhang Y.Z.,Chem.J.Chinese Universities,2020,41(8),1776—1784(谢兴钰,赵雅香,赵莉芝,李日舜,吴迪昊,叶卉,辛清萍,李泓,张玉忠.高等学校化学学报,2020,41(8),1776—1784)[9]Steven E.J.B.,Al⁃Obaidi A.H.R.,Hegarty M.J.N.,McGarvey J.J.,Hester R.E.,J.Phys.Chem.,1995,99(12),3959—3964[10]Seiji A.,Tomoko Y.,Iwao Y.,Atsuhiro O.,Chem.Phys.Lett.,1999.309(3/4),177—182[11]He T.,Yang X.F.,Chen Y.Z.,Tong Z.H.,Wu L.Z.,Acta Chim.Sinica,2019,77(1),41—46(何通,杨晓峰,陈玉哲,佟振合,吴骊珠.化学学报,2019,77(1),41—46)[12]Bessho T.,Zakeeruddin S.M.,Yeh C.Y.,Diau E.W.G.,Grätzel M.,Angew.Chem.Int.Ed.,2010,49(37),6646—6649[13]Frisch M.J.,Trucks G.W.,Schlegel H.B.,Scuseria G.E.,Robb M.A.,Cheeseman J.R.,Scalmani G.,Barone V.,Petersson G.A.,Nakatsuji H.,Li X.,Caricato M.,Marenich A.V.,Bloino J.,Janesko B.G.,Gomperts R.,Mennucci B.,Hratchian H.P.,Ortiz J.V.,Izmaylov A.F.,Sonnenberg J.L.,Williams⁃Young D.,Ding F.,Lipparini F.,Egidi F.,Goings J.,Peng B.,Petrone A.,Henderson T.,Ranasinghe D.,Zakrzewski V.G.,Gao J.,Rega N.,Zheng G.,Liang W.,Hada M.,Ehara M.,Toyota K.,Fukuda R.,Hasegawa J.,Ishida M.,Nakajima T.,Honda Y.,Kitao O.,Nakai H.,Vreven T.,Throssell K.,Montgomery J.A.Jr.,Peralta J.E.,Ogliaro F.,Bear⁃park M.J.,Heyd J.J.,Brothers E.N.,Kudin K.N.,Staroverov V.N.,Keith T.A.,Kobayashi R.,Normand J.,Raghavachari K.,Ren⁃dell A.P.,Burant J.C.,Iyengar S.S.,Tomasi J.,Cossi M.,Millam J.M.,Klene M.,Adamo C.,Cammi R.,Ochterski J.W.,Martin R.L.,Morokuma K.,Farkas O.,Foresman J.B.,Fox D.J.,Gaussian09,Revision D.01,Gaussian Inc.,Wallingford CT,2009[14]Cao H.Y.,Si D.H.,Tang Q.,Zheng X.F.,Hao C.,Chin.J.Struct.Chem.,2016,37(8),1223—1232[15]Cao H.Y.,Ma Z.H.,Zhang W.Q.,Tang Q.,Li R.Y.,Zheng X.F.,Chem.J.Chinese Universities,2020,41(2),341—348(曹洪玉,马子辉,张文琼,唐乾,李如玉,郑学仿.高等学校化学学报,2020,41(2),341—348)[16]O’Boyle N.M.,Tenderholt A.L.,Langner K.M.,p.Chem.,2008,29,839—845[17]Wu J.I.,Fernández I.,Schleyer P.V.R.,J.Am.Chem.Soc.,2013,135(1),315—321[18]Wang C.,Liu Y.,Feng X.,Zhou C.,Zhao G.,Angew.Chem.Int.Ed.,2019,131(34),11642—11646[19]Zhou W.,Guo J.K.,Shen S.,Pan J.B.,Tang J.,Chen L.,Qu Z.T.,Yin S.F.,Acta Phys.Chim.Sin.,2020,36(3),71—81(周威,郭君康,申升,潘金波,唐杰,陈浪,区泽堂,尹双凤.物理化学学报,2020,36(3),71—81)[20]Jiang H.W.,Kim T.,Tanaka T.,Kim D.,Osuka A.,Chem.Eur.J.,2016,22(1),83—87[21]Wang Y.,Chen B.,Wu W.,Liu X.,Zhu W.,Tian H.,Xie Y.,Angew.Chem.Int.Ed.,2014,53(40),10779—10783[22]Cao J.,Hu D.C.,Liu J.C.,Li R.Z.,Jin N.Z.,Inorg.Chim.Acta,2014,410,126—130[23]Temizel E.,Sagir T.,Ayan E.,Isik S.,Ozturk R.,Photodiagn Photodyn,2014,11(4),537—545[24]Schaffer A.M.,Gouterman M.,Davidson E.R.,Theor.Chim.Acta,1973,30(1),9—30[25]Asghari⁃Khiavi M.,Safinejad F.,J.Mol.Model.,2010,16(3),499—503。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第46卷第2期吉林大学学报(理学版)V o.l46N o.2 2008年3月J OURNAL O F JIL I N UN I V ERSITY(SC IE N CE ED I T ION)M ar2008研究简报卟啉及金属卟啉的瞬态表面光伏特性郑文琦1,2,单凝1,3,魏霄1,张萍1,王杏乔1(1.吉林大学化学学院,长春130021;2.吉林建筑工程学院基础科学部,长春130021;3.吉林大学学报编缉部,长春130021)摘要:通过对比研究卟啉单体、二聚体及金属卟啉单体的瞬态光电压性质,发现其光生电子-空穴对完全分离的时间:单体小于二聚体,卟啉配体小于金属卟啉.卟啉配体电荷载流子缓慢衰减,而金属卟啉在短时间内,电子在接近半导体表面空间电荷区域里实现了载流子的快速分离.Cu卟啉的光生电荷载流子瞬态光电压信号与卟啉配体有相似之处,且与其他金属卟啉也有相似之处.在金属离子Co2+,N i2+,Cu2+,Zn2+的影响下,电子-空穴对开始分离的时间大约在2@10-7s,负信号是由接近半导体表面空间电荷区域内快速载流子分离所致,金属卟啉中心离子d电子数不同,光生电荷载流子快速分离时间也略有不同.关键词:卟啉;金属卟啉;瞬态表面光伏特性中图分类号:O646文献标识码:A文章编号:1671-5489(2008)02-0355-03Transient Surface Photovoltage Properties ofPorphyri ns andM etalloporphyri nsZ HENG W en-q i1,2,S HAN N i n g1,3,WE I X iao1,Z HANG P i n g1,WANG X i n g-q i a o1(1.Co llege of Che m istry,J ilin Universit y,Changchun130021,China;2.B asic S cience D epart m ent,J ilin A rchitectural and C i v il Eng i neering Instit ute,Changchun130021,Chi na;3.Ed itorial D epart ment of Journal of J ilin Un i ver sit y,Changchun130021,China)Abstrac:t T ransient surface photovoltage pr opertie of po r phyri n s and m etallopor phyri n s w ere studied.The photogenera ted electr on-ho le fu ll separati o n ti m e o f porphyr i n m ono m er w as shorter than that o f t h e di m er,and t h e photogenerated electron-hole fu ll separation ti m e of porphyr i n m ono m er w as shorter than those o f m etallopo r phyri n s.The transi e nt surface pho tovolta ic si g na l of porphyrin-Cu is an especia l one a m ong those o f m etallopo r phyri n s.It had si m ilarities to t h ose o f m etal free por phyri n s,and a lso si m ilarities to those o f m etallopo r phyri n s.The different centra l ions had d ifferent i n fl u ences on t h e separation ra te of charge carriers. Key wor ds:po r phyri n;m etalloporphy ri n;transien t surface pho tovo ltage property通过对无机多孔氧化物Si O2和T i O2的研究发现[1,2],它们具有瞬态光电压性质,而具有这种性质的材料在光电器件中有潜在的应用前景,如光敏剂、太阳能电池、催化等[3,4].卟啉是一种有机半导体材料,具有表面光电压性质.为了解卟啉及金属卟啉的瞬态表面光电压及其变化因素,本文利用单羟基苯基卟啉(1)及其配合物(2~6)和二聚体卟啉自由碱(7,8),初步探讨其瞬态表面光电压性质.结果表明,卟啉单体与二聚体、卟啉配体与金属卟啉之间的瞬态光电压性质不同,形成这种差异的原因收稿日期:2007-03-19.作者简介:郑文琦(1979~),男,汉族,博士,讲师,从事功能卟啉配合物的研究,E-m ai:l zhengw enqi123402@eyou.co m.联系人:王杏乔(1942~),女,汉族,教授,博士生导师,从事功能卟啉配合物的研究,E-m ai:l w angx i ngq iao@m ai.l jl .基金项目:国家自然科学基金(批准号:20071014;20473033;20673049).可能与卟啉配体的结构及金属离子的存在有关.卟啉聚合后,使卟啉环共轭体系加大,P 电子数增多,导致光电信号产生变化.金属卟啉中的金属离子对卟啉环上共轭P 电子的活性有一定影响.金属卟啉在较长的时间内出现光电压信号,中心离子3d 轨道电子数不同对时间瞬变光电压的影响不同.卟啉和金属卟啉的化学结构式见图1.Fig .1 S tructu res of porphyri n s 1~81 实 验1.1 试剂与仪器 溴化钾(光谱纯);Nd B YAG 激光器(Polaris Ò,Ne w W ave R esearch ,Inc),TDS 5054数字荧光示波器(TEKTRON I X I nc).测试样品是质量分数为1%的卟啉样品与质量分数为99%的KBr 混合物,研磨后取25m g 混合物在10M Pa 压力下制备成薄片待测,瞬态光电压的具体测试方法见文献[5],所有实验结果均在(20?1)e 条件下测得.卟啉化合物的瞬态光电压光谱如图2所示.Fig .2 Tran sient photovoltage s p ectra of porphyr i n s1.2 卟啉的合成 卟啉1的合成见文献[6],2~6的合成见文献[7],7,8的合成见文献[8,9].2 结果与讨论2.1 卟啉配体的瞬态光电压 卟啉1光照后显示其具有较强的瞬态光电压信号以及较快的电子-空穴对分离时间.在1.0@10-8s 左右开始电子-空穴对分离,3.5@10-5s 时达到完全分离,之后电子-空穴对复合.在电子-空穴对漂移过程中,部分光生载流子以激子形式存在[10],激子为电中性,对光电压无贡献,自由光生载流子对光电压有贡献.电子和空穴向Au -卟啉表面漂移速度不同,逐渐显示出光电压信号,当光电压信号达到最大负值时,电子-空穴对完全分离,而后空穴(正电荷)向半导体表面漂移,一段时间后电子-空穴对完全复合.卟啉1的m eso 位苯环对位连接着给电子的羟基基团,羟基氧原子可以很好的与苯环形成p-P 共轭,增加了卟啉环的平均电子云密度,使得卟啉1显示出较强的光伏响应.卟啉7光照后光生电荷载流子衰减缓慢,由1.9@10-6s 到2.5@10-3s 后电子-空穴对完全分离.卟啉7中的桥连部分为酸酐键,其强吸电子性降低了卟啉大环上的平均电子云密度,但由于两个卟啉环之间存在着S 1-S 1能量传递[11],因此卟啉7显示了较弱的瞬态光电压信号.由于酸酐键吸引电子能力较强,使得电子由一个卟啉环转移到另一个卟啉环的速度减慢,而且由于形成二聚体后卟啉环共轭体系的延展以及电子转移的距离较长,因此其电子-空穴对完全分离时间相对较长.卟啉8在光照后光生电荷载流子的衰减略快于卟啉7,由3.8@10-7s 到6.7@10-4s 后电子-空穴356 吉林大学学报(理学版) 第46卷对完全分离.卟啉8中的各组成部分之间存在着良好的共轭效应,尽管在桥连基团中连接带有吸电子性质的硝基和氯原子,但由于它们距离卟啉大环较远,其吸电子的共轭效应和诱导效应对卟啉大环的影响很小,因此在这几种卟啉化合物中,卟啉8显示了最强的光伏响应.由于受桥连剂的影响,卟啉8显示了较长的电荷分离时间.与卟啉单体相比,卟啉二聚体光生电荷载流子衰减均慢于卟啉单体,光伏响应强度也不同,其瞬态光电压性质的差异可能是由于卟啉配体聚合后卟啉环共轭体系的扩大及桥连基团性质不同所致.2.2 金属卟啉的瞬态光电压 在相同实验测试条件下,未检测到卟啉2的瞬态光电压信号.金属卟啉3~6在光照2@10-7s 左右出现电子-空穴对分离,负电荷过剩载流子向Au -卟啉间的内表面转移,且存在Schottky 势垒和重组前再积累;正过剩载流子向卟啉区域铟锡氧化物(I T O )基质转移,至0.03s 左右电子-空穴对完全复合.除卟啉5外,其他几种金属卟啉的光伏响应均很微弱.金属卟啉电子-空穴对开始分离时间和完全分离时间都明显慢于卟啉单体,而且金属卟啉的光伏响应强度均小于卟啉单体,这主要是由于不同的中心金属离子影响所致.卟啉4表现出较特殊的瞬态表面光伏特性,在光照3.7@10-8s 左右,卟啉4出现电子-空穴对复合,在3.0@10-7s 左右重新开始电子-空穴对分离,当达到光伏响应最大负值时完全分离,之后又经历了一次复合.卟啉5表现出一个相对缓慢的光生电荷载流子衰减过程,电子-空穴对分离时间从6.4@10-8s 到3.1@10-4s ,持续最长,并且卟啉5的光伏响应强度远高于其他金属卟啉.卟啉3和6的瞬态光伏响应类似,均较弱,受不同中心离子的影响,电子-空穴对分离和复合的时间稍有差异.综上可见,卟啉和金属卟啉的瞬态光电压性质不仅与卟啉周边连接的取代基以及卟啉的共轭体系大小有关,而且还与中心金属离子有关.参考文献[1] T i m oshenko V Y,Duzhko V,D i ttr i ch T.D iffusi on Photovoltage i n Porous Se m iconduc t o rs and D i e l ec trics [J].P hys StatSo ,l 2000,A 182:227-232.[2] D uz hko V,T i m o shenko V Y,K och F,et a.l Photovoltage i n N ano crysta lli ne Porous T i O 2[J].Phys R ev B ,2001,64(7):075204.[3] Sail or M J .P rope rti es o f P orous S ili con [M ].London :[s .n .],1997:364.[4] Serpone N,K hairut d i nov R F.A pp licati on of N anoparticles i n the P ho t o ca talytic D egradati on o fW ater Po llutans [M ].Am sterdam :E lsev i e r ,1996:417.[5] Z HANG Q i ng -li n ,W ANG D e -j un ,W EI X i ao ,et a.l A S t udy of the Interface and t he R e lated E lectron ic P roperties i nn -A l 0.35G a 0.65N /G a N H ete rostructure [J].T h i n So lid F il m s ,2005,491(1/2):242-248.[6] S H I Y i ng -y an ,Z H ENG W en -q,i L I X iang -qi ng ,et a.l F l uorescence Property of a Series of H ydroxy l pheny l P orphy ri ns[J].Chem J o f Ch i nese U n i v ,2005,26(1):9-12.(石莹岩,郑文琦,李向清,等.系列羟基苯基卟啉化合物荧光性质的研究[J].高等学校化学学报,2005,26(1):9-12.)[7] S HAN N ing ,ZHENG W en -q,i FA H uan -bao ,et a.l M eta llizati on and Cha racte rization of M eso -5-(p -hydroxypheny l)-10,15,20-tr i pheny l porphyr i n [J].Journa l of Jili n U n i v ers it y :Sc ience Editi on ,2007,45(2):283-287.(单 凝,郑文琦,法焕宝,等.5-(对羟基苯基)-10,15,20-三苯基卟啉的金属化及性质表征[J].吉林大学学报:理学版,2007,45(2):283-287.)[8] FA Huan -bao ,ZHAO Lang ,W ANG X i ng -q i ao .Synthes i s o f a M esoporphyrin D i m er by D irect Condensati on bet w een TwoM eso -carboxy G roup of Porphyrin R i ng [J].Chem J o f Chinese U n i v ,2006,27(1):17-19.(法焕宝,赵 朗,王杏乔.利用卟啉中位羧基基团直接缩合卟啉二聚体[J].高等学校化学学报,2006,27(1):17-19.)[9] L I D ,i S H I Y i ng -yan ,FA H uan -bao ,et a.l Synthes i s and P roperties of D i m er i c P orphy ri n Based on t he H ydroxypheny-lpo rphyr i n Scaffold [J].J P orphyr i ns Phthalocyan i nes ,2006,10(12):1392-1397.[10] Z HAO Sh-i you ,LU X i ng -ze ,ZHANG Fu -l ong,et a.l T ransi ent Photovo lta i c Inv esti g ati ons of a Scho ttky -type P orousSilicon D i ode [J].J P hys D:A pp l Phy s ,1996,29:1326-1328.[11] FA H uan -bao ,Y I N W e,i ZHENG W en -q,i et a.l F l uo rescence P roperties o f P orphy ri n D i m ers Incorporati ng an A nhydr i de L inker [J].Chem R es Chinese U n i v ,2006,22(6):684-687.(责任编辑:单 凝)357 第2期 郑文琦,等:卟啉及金属卟啉的瞬态表面光伏特性。