TEM透射电子显微镜-PPT课件

合集下载

透射电镜TEM讲义课件PPT

透射电镜TEM讲义课件PPT
微镜分辨率的理论极限。若用波长最短的可见光(λ= 390nm )作 照明源,则
r0≈200nm 200nm是光学显微镜分辨本领的极限
如何提高显微镜的分辨率
• 根据透镜分辨率的公式,要想提高显微镜的分辨率,关键 是降低照明光源的波长。
• 顺着电磁波谱朝短波长方向寻找,紫外光的波长在13390nm之间,比可见光短多了。但是大多数物质都强烈地 吸收紫外光,因此紫外光难以作为照明光源。
电子波长
• 根据德布罗意(de Broglie)的观点,运动的
电子除了具有粒子性外,还具有波动性。这一点
上和可见光相似。电子波的波长取决于电子运动
的速度和质量,即
h
式中,h为普郎克常数:h=6.626m×v10-34J.s;
m为电子质量;v为电子运动速度,它和加速电
压U之间存在如下关系:
1 mv2 eU 即 2
图为日立公司H800透射电子显微镜(镜筒)
高压系统
真空系统
一般是在物镜的背焦平面上放一称为物镜光阑的小孔径的光阑来达到这个目的。
当试样厚度t恒定时,强度
200~500nm厚的薄膜
如果g · R ≠整数 ,则e-iα≠1, (α ≠ 2π的整数倍。
不同加速电压下的电子波波长
ξg是衍衬理论中一个重要的参数,表示在精确符合布拉格条件时透射波与衍射波之间能量交换或强度振荡的深度周期。
供观察形貌结构的复型样品和非晶态物质样品的衬度是质厚衬度
1.原子核和核外电子对入射电子的散射
经典理论认为散射是入射电
子在靶物质粒子场中受力而发
生偏转。可采用散射截面的模
型处理散射问题,即设想在靶
物质中每一个散射元(一个电子
eZ
或原子核)周围有一个面积为σ

透射电子显微镜-TEM-医学课件

透射电子显微镜-TEM-医学课件
透射电子显微镜-TEM
Transmission electron microscope
1
内容
简介 结构原理 样品制备 透射电子显微像 选区电子衍射分析
2
TEM 简介
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的 证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年, 透射电镜实现了工厂化生产。 上世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和 Howie等人建立电子衍射衬度理论并用于直接观察薄晶体缺陷和 结构。 1965年,扫描电子显微镜实现商品化。 70年代初,美国阿利桑那州立大学J.M. Cowley提出相位衬度理 论的多层次方法模型,发展了高分辨电子显微象的理论与技术。 饭岛获得原子尺度高分辨像(1970) 。 80年代,晶体缺陷理论和成像模拟得到进一步发展,透射电镜和 扫描电镜开始相互融合,并开始对小于5埃的尺度范围进行研究。 90年代至今,设备的改进和周边技术的应用。
21
成像系统
照明系统
成像系统
观察记录系统
22
(1)物镜 物镜是将试样形成一次放大像和衍射谱。 决定透射电镜的分辨本领,要求它有尽可 能高的分辨本领、足够高的放大倍数和尽 可能小的像差。通常采用强激磁,短焦距 的物镜。 放大倍数较高,一般为100~300倍。 目前高质量物镜分辨率可达0.1nm左右。
3
透射电子显微镜-TEM
TEM用聚焦电子束作照明源,使 用于对电子束透明的薄膜试样, 以透过试样的透射电子束或衍射 电子束所形成的图像来分析试样 内部的显微组织结构。

第8讲_透射电子显微镜(TEM)_20111104

第8讲_透射电子显微镜(TEM)_20111104

(2)样品室
样品室中有样品杆、样品杯及样品台
(3)成像系统
一般由物镜、中间镜和投影镜组成。物镜的 分辨本领决定了电镜的分辨本领,中间镜和 投影镜的作用是将来自物镜的图像进一步放 大
(4)图像观察与记录系统
该系统由荧光屏、照相机、数据显示等组成
2)真空系统
真空系统由机械泵、油扩散泵、换向阀门、 真空测量仪奉及真空管道组成。它的作用是 排除镜筒内气体,使镜筒真空度至少要在 托 以上 如果真空度低的话,电子与气体分子之间的 碰撞引起散射而影响衬度,还会使电子栅极 与阳极间高压电离导致极间放电,残余的气 体还会腐蚀灯丝,污染样品
第8讲 透射电子显微分析 2011年11月4日 Transmission Electron Microscope TEM
透射电子显微镜是以波长很短的电子束做 照明源,用电磁透镜聚焦成像的一种具有高 分辨本领,高放大倍数的电子光学仪器。测 试的样品要求厚度极薄(几十纳米),以便 使电子束透过样品。
发展历史
金相复型的制备方法
1.对金相试样的要求 试样要细心磨制,仔细抛光, 力求避免产生 微小的磨痕及变形层,浸蚀剂与做金相试验 时所用的浸蚀剂相同,浸蚀应浅些,这样可 保留组织细节。 2.塑料一碳二级复型 塑料一碳二级复型由于其制备过程不损 坏金相试样表面,重复性好,供观察的第二 级复型一碳膜导电导热性好,在电子束照射 下较为稳定,因而得到广泛的应用。具体制 备方法如下:
在孔洞边缘获得厚度小于500nm的薄膜。
生物磁铁矿晶体的完好晶形 (TEM照片)
沙尘暴的矿物颗粒
海盐气溶胶颗粒;匈牙利上空大陆大气层中收集到的煤灰/硫化 物混合颗粒的TEI
煤灰/硫化物混合颗粒的TEM图象
Sol-gel法合成羟磷灰石, 可分辨出毛发状、长柱状的晶 体轮廓, 但晶面发育不明显 (TEI)

透射电子显微镜TEM(PPT121页)

透射电子显微镜TEM(PPT121页)

透射电子显微镜 (Transmission Electron Microscope, TEM)
TEM是以波长极短的电子束作为照明源,用电磁透 镜聚焦成像的一种高分辨率、高放大倍数的电子光学 仪器。可同时实现微观形貌观察、晶体结构分析和成 分分析(配以能谱或波谱或能量损失 谱)。
为什么采用电子束而不用自然光?
β=±25度
EM420透射电子显微镜
(日本电子) 加速电压20KV、40KV、60KV、 80KV、100KV、120KV 晶格分辨率 2.04Å 点分辨率 3.4Å 最小电子束直径约2nm 倾转角度α=±60度
β=±30度
FEI Titan 80-300 kV S/TEM 世界上功能最强大的商用透射电子显 微镜 (TEM)。已迅速成为全球顶级研 究人员的首选 S/TEM,从而实现了 TEM 及 S/TEM 模式下的亚埃级分辨 率研究及探索。
➢ 电子显微镜发展史
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年,透射电
镜实现了工厂化生产。 20世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和Howie等人
主要技术参数: 1.TEM分辨率 <1 2.STEM分辨率 <1 3.能量分辨率 <0.15eV 或 <0.25eV 4.加速电压 80-300kV
内容
8.1 简介 8.2 结构原理 8.3 样品制备 8.4 透射电子显微镜的电子衍射 8.5 透射电子显微镜图像分析
8.2 透射电子显微镜结构原理
电磁透镜的分辨本领比光学玻璃透镜提高一千 倍左右,可以达到2Å 的水平,使观察物质纳米 级微观结构成为可能。

高分辨透射电子显微术优秀课件.ppt

高分辨透射电子显微术优秀课件.ppt
高分辨透射电子显微术优秀课件
波的干涉
Yi
底片
高分辨透射电子显微术优秀课件
高分辨透射电子显微术:是材料原子级别显微组织结构的相 位衬度显微术。它能使大多数晶体材料中的原子成串成像。
高分辨透射电子显微术优秀课件
)首次用电子显微镜拍摄了 Ti2Nb10O29 的二维像,并指出高分辨像中一个亮点对应于 晶体结构中电子束入射方向的一个通道。这是由于通道与周 围相比对电子的散射较弱,因此在像中呈现为亮点。在弱相 位体近似成立的条件下,高分辨电子显微像就是晶体结构在 电子束方向的投影,因此将晶体结构与电子显微像结合起来。 这种直观地显示晶体结构的高分辨像就称为结构像。
高分辨透射电子显微术优秀课件
阿贝成像原理
成像系统光路图如图所示。 当来自照明系统的平行电子束投射
到晶体样品上后,除产生透射束外 还会产生各级衍射束,经物镜聚焦 后在物镜背焦面上产生各级衍射振 幅的极大值。 每一振幅极大值都可看作是次级相 干波源,由它们发出的波在像平面 上相干成像,这就是阿贝光栅成像 原理。
在此期间,人们还致力于发展超高压电镜、扫描 透射电镜、环境电镜以及电镜的部件和附件等, 以扩大电子显微分析的应用范围和提高其综合分 析能力。
高分辨透射电子显微术优秀课件
高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高 分辨像。这种高分辨像直接给出晶体结构在电子束方向上的 投影,因此又称为结构像(图4-86)。
高分辨TEM
用物镜光阑选择透射波,观察到的象为明场象; 用物镜光阑选择一个衍射波,观察到的是暗场像; 在后焦平面上插上大的物镜光阑可以获得合成象,即高分辨
电子显微像
高分辨透射电子显微术优秀课件
高分辨显微像
高分辨显微像的衬度是由合成的透射波与衍射波的相位差所 形成的。

第九章透射电子显微镜 PPT

第九章透射电子显微镜 PPT
大透镜,形成第一幅高分辨率电 子显微图像与电子衍射花样。 物镜特点:强激磁、短焦距(13mm),高放大倍数,高分辨率。
物镜决定透射电子显微镜分辨 本领
物镜就是一个强激磁短焦距得透镜,它得放 大倍数较高,一般为100-300倍。目前,高质 量得物镜其分辨率可达0、1nm左右。
(一)物镜
提高物镜分辨率得措施:
各国代表人物
美国伯克莱加州大学G、Thomas将TEM第 一个用到材料研究上。
日本岗山大学H、 Hashimoto日本电镜研 究得代表人。
中国:钱临照、郭可信、李方华、叶恒强、 朱静。
国内电镜做得好得有:北京电镜室(物理所)、 沈阳金属所、清华大学。
为什么要用TEM?
1)可以实现微区物相分析。
如果中间镜得像平面出现一定得位移,这个位 移距离仍处于投影镜得景深范围之内,因此,在 荧光屏上得图像仍旧就是清晰得。
§ 9-1 透射电子显微镜得结构与成像机理
(四)成像与衍射操作:背焦面
背焦面:样品得电子衍射斑点。
§ 9-1 透射电子显微镜得结构与成像机理
(四)成像与衍射操作:像平面
像平面
像平面
分析透射电子显微镜 JEM200CX
分析透射电子显微镜JEM2010
分析型透射电子显微镜
超高压电 镜
TEM发展简史
1924年de Broglie提出波粒二象性假说 1926 Busch指出“具有轴对称性得磁场对电子束
起着透镜得作用,有可能使电子束聚焦成像”。 1927 Davisson & Germer, Thompson and Reid 进行
物镜光阑得另一个主要作用就是在后焦面上 套取衍射束得斑点(即副焦点)成像,这就就是 所谓暗场像。利用明暗场显微照片得对照分 析,可以方便地进行物相鉴定与缺陷分析。

第二章透射电子显微镜ppt课件

第二章透射电子显微镜ppt课件
b.成像/衍射模式选择。 •投影镜:进一步放大中间镜的 像。
透 射 电 镜 主 体 剖 面 图
三级放大成像示意图
2.1.3 观察记录系统
❖ 观察和记录系统包括荧光屏和照相机构。
❖ 荧光屏涂有在暗室操作条件下,人眼较敏感、发绿 光的荧光物质,有利于高放大倍数、低亮度图像的 聚集和观察。
❖ 照相机构是一个装在荧光屏下面,可以自动换片的 照相暗盒。胶片是一种对电子束曝光敏感、颗粒度 很小的溴化物乳胶底片,为红色盲片,曝光时间很 短,一般只需几秒钟。
的导磁体来吸引部分磁场。
❖电磁式:通过电磁极间 的吸引和排斥来校正磁场。 通过改变两组电磁体的励 磁强度和磁场的方向实现 校正磁场。
消像散器一般安装在透镜的上、 下极靴之间
电磁式消像散示意图
聚光镜消像散调整
2.2.4 光阑(Diaphragm holders and choice of diaphragms)
❖ 新型电镜均采用电磁快门,与荧光屏联动。有的装 有自动曝光装置。现代电镜已开始装有电子数码照 相装置,即CCD相机。
真空系统
❖ 在电子显微镜中,凡是电子运行的 区域都要求有尽可能高的真空度。
电源与控制系统
❖ 电子显微镜需要两个独立的电源,即使电 子加速的小电流高压电源和使电子束聚焦 与成像的大电流低压磁透镜电源。
1. 电子枪
❖ 电子枪是透射电子显微镜的电子源。
❖ 常用的是热阴极三极电子枪,由发夹形钨丝阴极、栅
源电子极帽枪和的阳极组成。
,形阴成极自:阴偏 极灯丝通常用0.03和阴0.极1毫之米栅间的极钨:栅丝极作是成控V制形电。子束 电位差形。状电和发射强度的(也称
为控制极、韦氏圆筒)。
阳极间会阳聚极:阳极使从阴极发射 交叉点的形,电成通子 定获 向得 高较 速高电的子动流能,,也
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TEM的样品制备

直接制膜法 1、真空蒸发法:在真空蒸发设备中使被研究 的材料蒸发后在凝结成薄膜。 2、溶液凝固法:选用适当浓度的溶液滴在某 种平滑表面,等溶剂蒸发后,溶质凝固成膜。 3、离子轰击减薄法:用离子束将试样逐层剥 离,最后得到适于透射电镜观察的薄膜,这种 方法很适用于高聚物材料。 4、超薄切片法:对于研究高聚物大块试样的 内部结构,可以用超薄切片机将大试样切成 50nm左右的薄试样。
观察记录部分


荧光屏:在电子束照射下,电子图像反映在荧 光屏上,可呈现终像。研究者通过观察窗在荧 光屏上进行像的观察、选择和聚焦。除了荧光 屏外,还配有用于单独聚焦的小荧光屏,在主 观察窗外有5~10倍的双目镜光学显微镜,以对 图像精确聚焦和观察,可以把终像放大3~10倍。 照相底片:最常用的透射电镜的照相底片是片 状的胶片。胶片的一面有厚度约为25μm的明胶 层,明胶层含有均匀分散的10%的卤化银颗粒。 照相底片在电子束的照射下能感光。它对电子 的感光特性基本上与可见光的感光特性一样 (只是灵敏度和噪声不同)。
透射电镜(TEM)
王海波 2019.11.6
主要内容

TEM发展概述
TEM的结构和成像原理 TEM的样品制备 TEM的应用



光学显微镜的极限


德国理论光学家E Abbe于1918年指出限制光镜 分辨率的原理是光的衍射行为,并提出显微镜 h 分辨率与照明波长的关系式: N sin 。δ为恰能 分辨两个物点的距离;λ为照明波长。 光学显微镜的极限分辨率为200nm 电磁波长要比可见光波长小105,采用短的电磁 波波长是提高显微镜分辨率的极为有效的途径。
TEM的样品制备

在透射电镜中,试样是放在载网上观察 的,载网类似于光学显微镜中的载玻片。 通常用直径约3mm的铜载网,常规的透 射电镜中所用的加速电压为100kV,为保 证电子束的透过,试样必须很薄,最厚 不超过100~200nm
TEM的样品制备

粉末试样的制备 当将这样薄而小的试样放在一个多孔的载网上 时很容易变形,特别是试样的横向尺寸为微米 级时,比网眼的尺寸还小,因此必须在载网上 再覆盖一层散射能力很弱的支持膜,使试样不 至于从网眼中漏掉。 现在常用的支持膜有塑料支持膜、碳支持膜、 塑料-碳支持膜和微栅膜。支持膜表面再利用悬 浮液法、喷雾法、超声波震荡法将试样均匀分 散。通常还需蒸涂上一层重金属以提高其散射 能力。
TEM发展概述



1924年,法国科学家德布 罗意(De Brogli)提出物 h 质波理论: mv 如果高速运动运动的粒子 1 2 是电子: mv eV 2 由上述两式可得 1 1 . 225 6 2 1 ( 1 0 . 978 10 V ) ( nm )
2 V
TEM的结构和成像原理
电子光学系统
真空系统
(主体)
(辅助) (辅助) (辅助)
TEM电源与控制系统 循来自冷却系统电子光学系统组成
电 子 光 学 系 统 电子枪 照明部分 聚光镜 样品台 样品装置部分 物镜 中间镜 成像部分 投影镜 荧光屏 观察记录部分 照相底片
照明部分


电子枪:发射电子的场所, 也是电镜的照明源。由阴极 (灯丝)、栅极、阳极组成。 阴极管发射的电子通过栅极 上的小孔形成电子束,电子 束有一定发射角,经阳极电 压加速后射向聚光镜,起到 对电子束加速加压的作用, 形成很小的平行电子束。 聚光镜:将电子枪所发出的 电子束汇聚到样品平面上。 并调节电子的孔径角、电子 束的电流密度和照明光斑的 大小。
样品装置部分

样品台的作用是承载 样品,并使样品能作 平移、倾斜、旋转, 以选择感兴趣的样品 区域或位向进行观察 分析。透射电镜的样 品是放置在物镜的上 下极靴之间,由于这 里的空间很小,所以 透射电镜的样品也很 小,通常是直径3mm 的薄片。
成像部分



物镜:为放大率很高的短距透镜,对样品成像 和放大。它是决定TEM分辨本领和成像质量的 关键。因为它将样品中的微细结构成像、放大, 物镜中的任何缺陷都将被成像系统中的其他透 镜进一步放大。 中间镜:是一个可变倍率的弱透镜,可以对电 子像进行二次放大。通过调节中间镜的电流, 可选择物体的像或电子衍射图来进行放大。 投影镜:为高级强透镜,最后一级放大镜,用 来放大中间像后在荧光屏上成像。
TEM的应用

此外,电镜还广泛用于研究聚合物乳液 颗粒形态、纤维和织物的结构、聚合物 材料的降解性能。生物相容性等。同时, TEM在细胞学、微生物学、临床病例诊 断等领域也有广泛应用。
TEM的应用

研究聚合物的聚集态结构
不同反应温度下Mn3O4纳米晶透射 电镜及高分辨透射电镜照片,(a b c)120度 (d e f)150度 (g h i)180度
TEM的应用

研究聚合物的多相复合体系
TEM的应用

研究聚合物相对分子质量及相对分子质量分布 用电镜可测定处于玻璃态的聚合物的相对分子 质量。选择适当比例的良溶剂、沉淀剂为混合 溶剂,配制聚合物的极稀溶液,用喷雾的方法, 将其分散为微笑的雾珠,使每个雾珠中包含一 个或不包含大分子,从而得到单分子分散的球 粒。应用电镜直接测量球粒尺寸,即可计算相 对分子质量及其分布。相对分子质量越大,越 容易观察,测量误差也越小。 电镜法测定的相对分子质量与黏均相对分子质 量一致。
透射电镜的成像原理

TEM是利用透过样品 的透射电子成像的。 电子枪发射出电子射 线(不带信息),经 透射系统照射在样品 上,电子束与样品相 互作用后,当电子射 线在样品另一方重新 出现时,以带有样品 内的信息,然后进行 放大处理而成像,最 终在荧光屏上形成带 有样品信息的图像, 使人眼能够识别。
TEM发展概述
1926年德国科学家Garbor 和Busch发现用铁壳封闭 的铜线圈对电子流能折射 聚焦,既可作为电子束的 透镜。 1932年德国科学家Ruska和 Knoll在前面两个发现的基 础上研制出第一台TEM
TEM发展概述
我国电镜研制起步较 迟,1958年在长春中 国科学院光学精密机 械研究所生产了第一 台中型电镜,到1977 年生产的TEM分辨率 为0.3nm,放大倍率 为80万倍。
相关文档
最新文档