30m预应力混凝土简支箱型梁桥设计
关于预应力混凝土简支箱梁桥设计分析
关于预应力混凝土简支箱梁桥设计分析【摘要】桥梁作为公路的重要组成部分之一,在工程项目中,设计方案的合理性与规划指标的正确性是衡量整个道路工程施工质量、成本控制和使用功能的关键。
本文就预应力混凝土简支箱梁桥设计要点分析,结合工程实例进行了全面的探讨和阐述。
【关键词】桥梁;预应力混凝土;简支箱梁桥伴随着时间的不断推移,国民经济发展不断加快,各类交通荷载也在逐年增加。
我国现有运营的早期设计修建的预应力混凝土桥梁和钢筋混凝土桥梁,受到过去国情、经济水平和人类认识水平的限制,在投入使用之后经常出现无法满足使用要求,出现了较为严重的裂缝、耐久性不足等重要问题,同时桥梁老化、陈旧和荷载能力不足的现象也日益凸显。
结合现有工程中存在的这些问题,我们在工作中应当注重对混凝土简支箱梁桥设计的相关重点探讨,结合先进科学技术水平合理提高设计方法和观念,进而确保工程项目的质量和耐久性,提高工程效益。
1、工程概况本工程项目位于某高速公路中段,桥梁在建设中总体长度为35m,桥面宽9.5m。
在设计的过程中是对桥梁采用c40的混凝土进行施工的,而桥栏杆和桥面在铺设中是通过采用c20的混凝土。
预应力在控制和设计中分别采用的是astm270级1524的底松弛钢绞线,在这设计过程中钢绞线的选择为12mm和r235的热轧光圈钢筋。
在桥梁桥面施工的过程中是采用5cm厚的c20钢筋混凝土进行铺设和施工的,而最后又铺设了5cm厚的沥青混凝土。
在设计的过程中,对桥梁的等级和应力化进行计算和分配,桥梁等级设置为1级,而汽车等相关荷载要求为3.535kn/m2,梯度温度引起的效按照t1=20℃,t2=6.7℃进行考虑。
这种设计方法和手段的应用有效的确保了桥梁的使用寿命和耐久性。
2、桥梁总体设计在桥梁设计的过程中,应当以安全、经济、实用、美观和环保为基础原则进行总体规划,以可持续发展和功能的良好发挥为最终目标进行全面设计。
在桥梁设计的过程中,其设计方案的选择要具备相应的合理性,并且对其中存在的相关环节要严肃处理,要做到在设计中毫厘不差的设计要求。
30m预应力混凝土简支T梁
一、计算依据与基础资料(一)、设计标准及采用规范1、标准跨径:桥梁标准跨径30m;计算跨径(正交、简支);预知T梁长。
设计荷载:公路——Ⅱ级桥面宽度:分离式路基宽(高速公路),半幅桥全宽桥梁安全等级为一级,环境条件为Ⅱ类2、采用规范:交通部颁布的预应力混凝土简支T梁设计通用图;《公路桥涵设计通用规范》JTG D60-2004;《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004;刘效尧等编著,《公路桥涵设计手册-梁桥》,人民交通出版社,2011;强士中,《桥梁工程(上)》,高等教育出版社,2004。
(二)、主要材料1、混凝土:预制T梁,湿接缝为C50、现浇铺装层为C50、护栏为C30.2、预应力钢绞线:采用钢绞线s ㎜,ƒpk=1860MPa,E p=×105MPa3、普通钢筋:采用HRB335,ƒsk =335MPa,Es=×105MPa(三)、设计要点1、简支T梁按全预应力构件进行设计,现浇层80mm厚的C40的混凝土不参与截面组合作用。
2、结构重要性系数取;3、预应力钢束张拉控制应力值σcon =ƒpk;4、计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为7d;5、环境平均相对湿度RH=55%;6、存梁时间为90d;7、湿度梯度效应计算的温度基数,T1=14℃,T2=℃。
二、结构尺寸及结构特征(一)、构造图构造图如图1~图3所示。
(二)、截面几何特征边梁、中梁毛截面几何特性见表1边梁、中梁毛截面几何特性(全截面)边梁中梁(2号梁)毛截面面积A(㎡)抗弯惯矩I(m4)截面重心到梁顶距离yx(m)毛截面面积A(㎡)抗弯惯矩I(m4)截面重心到梁顶距离yx(m)支点几何特性跨中几何特性(预制截面)边梁中梁(2号梁)毛截面面积A(㎡)抗弯惯矩I(m4)截面重心到梁顶距毛截面面积A(㎡)抗弯惯矩I(m4)截面重心到梁顶距(三)、T梁翼缘有效宽度计算根据《桥规》条规定,T梁翼缘有效宽度计算如下:中梁:B f1=min故按全部翼缘参与受力考虑。
预应力混凝土简支箱形桥梁毕业设计
预应⼒混凝⼟简⽀箱形桥梁毕业设计(此⽂档为word格式,下载后您可任意编辑修改!)⽬录第⼀部分:设计报告 (4)1前⾔ (5)1.1设计任务 (5)1.2设计标准 (5)1.3任务要求 (5)2设计资料: (5)2.1⼯程地质⽔⽂情况 (5)2.2 地质情况 (5)3.⽅案⽐选 (6)4设计⽅法 (7)4.1设计思路 (7)4.1.1横断⾯设计 (7)4.1.2纵断⾯设计 (7)4.1.3粱肋设计 (8)4.1.4设计资料和横截⾯布置 (8)4.1.5其他 (9)4.2设计感受 (9)5设计评估 (9)6设计成果 (10)6.1总的成果 (10)7总结 (10)7.1设计中的难点与重点 (10)7.2改进的地⽅ (10)8结束语 (10)第⼆部分:河溪梁桥设计计算书 (12)1.⾏车道板计算 (12)1.1悬臂板荷载效应计算 (12)1.1.1 恒载效应: (12)1.1.2 活载效应 (13)1.2 连续板荷载效应计算 (13)1.2.1 永久作⽤ (13)1.2.2 活载效应 (15)1.3 内⼒组合计算 (16)1.3.1 承载能⼒极限状态内⼒组合计算(基本组合): (16)1.3.2 正常使⽤极限状态内⼒组合计算(短期效应组合): (16)1.4 ⾏车道板配筋 (17)2 主梁内⼒计算与配筋 (18)2.1 主梁截⾯⼏何特性的计算 (18)2.1.1预制中主梁的截⾯⼏何特性 (18)2.1.2 检验截⾯效率指标以中跨截⾯为例 (19)2.2 主梁恒载内⼒计算 (20)2.2.1 ⼀期恒载(预制梁⾃重) (20)(20)2.2.2 ⼆期恒载(桥⾯板接头)g2(20)2.2.3 三期恒载(栏杆、⼈⾏道、桥⾯铺装)g32.2.4 主梁恒载汇总 (20)2.2.5 恒载内⼒计算 (21)2.3 主梁活载内⼒计算 (22)2.3.1 冲击系数的计算 (22)2.3.2 横向分布系数 (23)2.3.3 计算活载内⼒ (27)3 截⾯设计 (33)3.1 预应⼒钢束(筋)数量的确定及布置 (33)3.1.1 ⾸先根据跨中截⾯正截⾯抗裂要求,确定预应⼒钢筋数量。
30m预应力混凝土简支箱型梁桥设计
30m预应力混凝土简支箱型梁桥设计1.1上部结构计算设计资料及构造布置1.1.1 设计资料1.桥梁跨径及桥宽标准跨径:30m;主梁全长:29.96m;计算跨径:28.66m;桥面净宽:净—9+2×1.5m。
2.设计荷载车道荷载:公路—I级;人群荷载:3kN/㎡;每侧人行道栏杆的作用力:1.52kN/㎡;每侧人行道重:3.75kN/㎡。
3.桥梁处河道防洪标准为20年一遇设计,50年一遇校核,桥下通过流量1000/s时,落差不超过0.1m。
4.桥下净空取50年一遇洪水位以上0.3m。
5.材料及工艺混凝土:主梁采用C50混凝土;钢绞线:预应力钢束采用Φ15.2钢绞线,每束6根,全梁配5束;钢筋:直径大于等于12mm的采用HRB335钢筋,直径小于12mm的采用R235钢筋。
采用后张法施工工艺制作主梁。
预制时,预留孔道采用内径70mm、外径77mm的预埋金属波纹管成型,钢绞线采用T双作用千斤顶两端同时张拉,锚具采用夹片式群锚。
主梁安装就位后现浇600mm宽的湿接缝,最后施工混凝土桥面铺装层。
6.基本计算数据基本计算数据见表5-1〖注〗本例考虑混凝土强度达到C45时开始张拉预应力钢束。
f'ck和f'tk分别表示钢束张拉时混凝土的抗压、抗拉标准强度,则:f'ck = 29.6MPa,f'tk = 2.51MPa。
1.1.2 方案拟定及桥型选择1.桥型选取的基本原则(1) 在符合线路基本走向的同时,力求接线顺畅、路线短捷、桥梁较短、尽量降低工程造价(2)在满足使用功能的前提下,力求桥型结构安全、适用、经济、美观。
同时要根据桥位区的地形、地貌、气象、水文、地质、地震等条件,结合当地施工条件,选用技术先进可靠、施工工艺成熟、便于后期养护的桥型方案。
(3)尽量降低主桥梁体高度,缩短桥长。
2.桥型方案比选根据桥位的通航要求,结合桥位处的地形地貌、地质等条件,我们对简支梁桥、悬臂梁桥、T型刚构桥三种方案进行比选(1)简支梁桥方案采用预应力混凝土箱形截面形式,此结构为静定结构,结构内力不受地基变形及温度变化等的影响,因此对基础的适应性好。
预制箱梁施工方案(30m)
预制箱梁施工技术方案一、工程概况1.1工程简介本标段23.075公里共有大、中、小桥梁26座,其中上部结构采用预制箱梁的桥梁5座,共有预制箱梁272片。
预制箱梁分为22m、25m和30m共三种跨径,部署在两个预制场进行预制,箱梁类型、分布、主要工程量及所属梁场分配如下:1#梁场位于K4+100右侧50m,预制25m箱梁104片,其中-40°箱梁80片,40°箱梁24片,设置预制台座5个;2#梁场位于K22+734郎川河大桥小桩号桥头主线路基上(K22+070—390段),预制箱梁168片,其中22m箱梁8片,25m箱梁48片,30m箱梁112片,设置通用台座18个。
1.2编制依据1、溧广高速公路LG—01合同段招标文件、合同文件、两阶段施工图设计文件;2、溧广高速公路LG-01合同段实施性施工组织设计;3、《公路工程施工安全技术规范》(JTJ076-95);4、《公路工程质量检验评定标准》(JTG F80/1-2004);5、《公路桥涵施工技术规范》(JTG/T F50—2011);6、《高速公路施工标准化技术指南第四分册桥梁工程》(2012年11月)7、《安徽省高速公路工地标准化建设指南》(DB 34/T1663-2012);8、项目办、总监办质量管理办法相关条款要求。
1。
3适用范围本方案适用于指导溧广高速公路LG—01合同段预制箱梁施工。
二、预制箱梁首件概况、目的、计划进度、人员、设备投入情况2.1首件概况结合现场条件及施工准备情况,预制箱梁首件选择在K22+734郎川河大桥,该桥梁长682m共分4联,左幅为8x30m+22m+6x40m+6x30m,右幅为6x30m+22+2x30m+6x40m+6x30m,横坡为双向2%,设计交角0°,与老郎川河水流方向交角为15°,跨径分为22m、30m及40m,桥面宽2×12。
5m,上部结构跨老郎川河主河道采用6跨40m先简支后连续预应力混凝土T梁,引桥采用30m预应力混凝土先简支后连续箱梁,小桩号跨河堤处设22m调节跨,调节跨采用22m预应力混凝土先简支后连续箱梁。
预应力混凝土梁桥施工组织设计
预应力混凝土梁桥施工组织设计一、我国预应力混凝土梁桥的现状与发展1、预应力混凝土梁式桥的结构特点各种形式的预应力混凝土梁式桥在桥梁建设中占有主导地位,而且有着广阔的发展前景。
按结构体系划分一般有:简支梁、连续梁、T形刚构、连续刚构、刚构连续组合梁以及V型墩刚构等。
按截面形式划分有:I形梁、T形梁、形梁、槽形梁、箱形梁等,大跨度超静定梁桥绝大多数采用箱形截面。
预应力混凝土简支梁桥由于结构简单、受力明确、施工方便,仍将是我国量大面广的中小跨径桥梁的首选结构。
一般认为,简支梁桥的合理跨径在50m 以下,超出这一范围,梁高会急剧加大,失去其经济合理性.与简支梁相比,其它超静定梁则具有较大的跨越能力,那就是预应力混凝土连续梁与连续刚构.预应力混凝土连续刚构桥对地形、地质和通航要求适应性强、施工方便、较经济,已成为国内大跨径桥梁的首选桥型。
预应力混凝土连续梁与连续刚构同为大跨度梁式桥,但受力上存在着一定的差异。
与连续梁相比,连续刚构由于在墩顶处的墩梁固结,对梁跨形成附加约束,因而能够增加顺桥向的抗弯刚度和横桥向的抗扭刚度,从而提高桥梁的跨越能力;同时由于墩柱的约束,温度变化、收缩徐变等对连续刚构造成的内力影响,也比连续梁大得多;尽管在高墩桥位,经常采用柔性墩结构,但桥墩的材料用量、设计难度要比连续梁大得多。
与连续刚构相比,连续梁桥在支座处仅提供竖向约束。
所以,在正常“恒载+活载"作用下的跨中截面弯矩要比连续刚构大,但由温度变化所产生的各种内力要比连续刚构小很多;大跨度连续梁对支座的承载能力要求很高,甚至需要特别设计(如南京长江大桥二桥北汊桥连续梁的支座吨位达到65000KN)。
但它要求桥墩只承受竖向反力,在深水基础的情况下允许采用高桩承台,能够大大简化基础及桥墩的设计与施工。
刚构、连续组合梁桥的受力特点则介于连续梁桥和连续刚构之间;V型墩刚构则具有增加桥梁刚度的特点。
总之,在大跨度桥梁的桥式方案中,应当结合具体的技术经济条件,权衡选择。
部颁图30米小箱梁计算手册
目录1 计算依据与基础资料 (1)1.1 标准及规范 (1)1.1.1 标准 (1)1.1.2 规范 (1)3.1.5 荷载横向分布系数汇总 (17)3.2 剪力横向分布系数 (18)3.3 汽车荷载冲击系数μ值计算 (18)3.3.1汽车荷载纵向整体冲击系数μ (18)3.3.2 汽车荷载的局部加载的冲击系数 (18)4 主梁纵桥向结构计算 (18)4.1箱梁施工流程 (18)4.2 有关计算参数的选取 (19)4.3 计算程序 (20)4.4 持久状况承载能力极限状态计算 (20)4.4.1 正截面抗弯承载能力计算 (20)5.1 荷载标准值计算(弯矩) (30)5.1.1 预制箱内桥面板弯矩计算 (31)5.1.2 现浇段桥面板弯矩计算 (33)5.1.3 悬臂段桥面板弯矩计算 (35)5.2 荷载标准值计算(支点剪力) (37)5.2.1 预制箱内桥面板支点剪力计算 (37)5.2.2 现浇段桥面板支点剪力计算 (37)5.3 持久状况承载能力极限状态计算 (38)5.3.1 预制箱内桥面板承载能力极限状态计算 (38)5.3.2 现浇段桥面板承载能力极限状态计算 (40)5.3.3 悬臂段桥面板承载能力极限状态计算 (41)预应力混凝土公路桥梁通用设计图成套技术通用图计算书(30m 装配式预应力混凝土连续箱梁)1 计算依据与基础资料1.1.3 参考资料∙《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2 主要材料1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40;2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa =⨯3)普通钢筋:采用HRB335,335sk f MPa =,52.010S E Mpa =⨯1.3 设计要点1)本计算示例按后张法部分预应力混凝土A 类构件设计,桥面铺装层80mmC40混凝土不参与截面组合作用;2)根据组合箱梁横断面,采用荷载横向分布系数的方法将组合箱梁3.1.1 刚性横梁法1)抗扭惯矩计算宽跨比B/L=13.5/30=0.45≤0.5,可以采用刚性横梁法。
4车道高速公路30米预应力混凝土简支T梁桥上部结构设计本科生毕业设计论文
4车道⾼速公路30⽶预应⼒混凝⼟简⽀T梁桥上部结构设计本科⽣毕业设计论⽂4车道⾼速公路30⽶预应⼒混凝⼟简⽀T梁桥上部结构设计本科⽣毕业设计论⽂1⽂献综述1.1预应⼒混凝⼟简⽀T梁桥国外研究进展18世纪中叶⼯业⾰命后,钢、⽔泥、钢筋混凝⼟及预应⼒混凝⼟等⼈⼯材料的发展和应⽤,推动了近代桥梁科学技术的⾰命。
⼈⼯材料在桥梁⼯程上的应⽤是近代桥梁的标志。
19世纪中期,钢材的出现,开始了⼟⽊⼯程的第⼀次飞跃。
随后⼜产⽣了⾼强钢材,于是钢结构得到蓬勃发展。
结构跨度从砖、⽯、⽊结构的⼏⽶、⼏⼗⽶跃到百⽶、⼏百⽶⾄千⽶以上,开创了在⼤江、海峡上修建桥梁的奇迹[1]。
1867年钢筋混凝⼟诞⽣,实现了⼟⽊⼯程的第⼆次飞跃。
有了钢筋混凝⼟才有可能建造跨越能⼒很⼤的桥梁,并使形式多样化。
1905年,⽐利时出现了单跨55m的钢筋混凝⼟桥;1930年,法国的弗莱西奈建造了跨度178m的钢筋混凝⼟拱桥。
1928年⾼强钢丝⽤于预应⼒混凝⼟,使在混凝⼟中建⽴永存的预压应⼒成为可能,奠定了现代预应⼒混凝⼟的实⽤基础,⼤⼤提⾼了混凝⼟结构的抗裂性能、刚度和承载能⼒,使其⽤途更为⼴泛,使⼟⽊⼯程发⽣了⼜⼀次飞跃[2,3]。
20世纪中叶,第⼆次世界⼤战以后,全球的持续稳定和科学技术与经济的⾼速发展,使桥梁科学技术获得了⽐历史上任何时期都快的发展。
主要表现为:⾼强轻质材料的发展和应⽤;跨度的不断增⼤,形式的多样化与结构的整体化;设计与计算的计算机化(如CAD技术的发展);制造的⼯业化、⾃动化与程序化,施⼯⼯艺的提⾼。
由于设计⽅法与计算理论、材料科学、制造⼯艺、安装⽅法、基础施⼯技术等⽅⾯的不断改进,当今桥梁⼯程规模之巨⼤、技术之复杂已今⾮昔⽐。
已建桥梁跨度接近2000m(明⽯海峡悬索桥跨度为1990m),⽔下深度超100m的基础⼯程,⾼出地⾯接近200m的桥墩。
桥梁⼯程还将向更⾼的记录攀登[4]。
预应⼒混凝⼟桥梁⼀跃上桥梁建设的历史舞台,就显⽰出它强⼤的竞争能⼒。
30米预应力简支箱形梁桥结构设计(迈达斯计算)
本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。
预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。
简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。
本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。
设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。
梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。
设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。
利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。
关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。
装配式预应力混凝土简支箱梁桥设计和施工
科技与创新┃Science and Technology&Innovation ·126·2022年第16期文章编号:2095-6835(2022)16-0126-03装配式预应力混凝土简支箱梁桥设计和施工杨迎1,王裕滔2(1.四川铁道职业学院,四川成都610072;2.中国市政工程西南设计研究总院有限公司,四川成都610084)摘要:装配式预应力混凝土简支箱梁桥具有受力明确、构造简单、施工方便、经济合理等优点,得到广泛应用。
选取了3×35m装配式预应力混凝土连续小箱梁桥为研究对象,分别从结构设计和施工方面进行介绍,希望为设计和施工人员提供一些参考。
关键词:装配式;预应力混凝土简支箱梁桥;设计;施工中图分类号:TU7文献标志码:A DOI:10.15913/ki.kjycx.2022.16.0391工程概述道路红线宽30~40m,30m宽红线采用双向四车道,40m宽红线采用双向六车道,两侧人行道各宽4m。
道路在上跨毗河处设置一座3×35m的装配式预应力混凝土连续小箱梁桥,桥梁全长110.92m,宽30m。
2水文地质条件2.1地表水及地下水上游水源起于柏条河,为排灌两用河流。
据现场观察,河水呈无色、较为透明。
勘察时在河道内发现有流水,测得水面宽约60.0m,水深1.0~1.5m,流速0.20m/s,流量约15m3/s。
夏季洪水期河水对河床及两岸具有较强的冲刷作用,河流水体与地下含水层已相通。
经调查走访当地村民得知,数十年间桥位处河水最高洪水位高程可达494.2m(出现在1981年)。
桥位处准确最高洪水位以水利主管部门权威数据为准。
该处河床地形起伏较小,该段河道较直,流水大小主要受上游控制,夏季洪水期间流速较快,下切作用与侧蚀作用较强。
百年一遇洪水的一般冲刷深度为1.5m,局部冲刷深度为2.5m,最大冲刷深度为4.0m。
该场地内所见地下水为赋存于砂卵石层中的孔隙潜水,该地下水由大气降水及地表水补给,经地下径流和地面蒸发排泄,具有埋藏浅、含水层较厚、分布广、补给源近、富水性和透水性好的特征。
装配式预应力混凝土简支梁桥的构造与设计
3.3 装配式预应力混凝土简支梁桥的构造与设计装配式钢筋混凝土简支梁桥,常用的经济合理跨径在20m 以下。
跨径增大时,不但钢材耗量大,而且混凝土开裂现象也往往比较严重,影响结构的耐久性。
为了提高简支梁的跨越能力,可采用预应力混凝土结构。
目前,世界上预应力混凝土简支梁的最大跨径已达76m。
但是,根据建桥实践,当跨径超过50m 后,不但结构笨重,施工困难,经济性也较差。
因此,我国桥规明确指出:预应力混凝土简支梁桥的标准跨径不宜大于50m。
3.3.1 横截面设计1.横截面形式装配式预应力混凝土简支梁桥的横截面类型基本上与钢筋混凝土梁桥类似,通常也做成T 形、I 形,但为了方便布置预应力束筋和满足锚头布置的需要,下部一般都设有马蹄或加宽的下缘(见图3.15b、c)。
有时为了提高单梁的抗扭刚度并减小截面尺寸,也采用箱形(见图3.15d)。
图3.26 横向分段装配式梁 由于采用预应力筋施加预压力,可以提供方便的接头形式,为了使装配式梁的预制块件进一步减小尺寸和重量,还可做成横向也分段预制的串联梁(如图3.26)。
但由于串联梁施工麻烦,构件预制精度要求高,在国内使用较少。
2.主梁布置经济分析表明,对于跨径较大的预应力混凝土简支梁桥,当吊装重量不受限制时,采用较大的主梁间距比较合理,一般可采用1.8~2.5m。
3.截面尺寸(1)截面效率指标为了合理设计预应力混凝土梁的截面尺寸,首先分析其截面的受力特点。
截面特征如图3.27所示: 在预加力阶段和运营阶段,预应力混凝土梁截面承受双向弯矩。
在预加力阶段,施加了偏心预加力,在预加力和自重弯矩的共同作用下,合力相当作用于截面的下核点(截面上缘应力为零)(如图3.28a);在运营阶段,若计及预应力损失△,截面内合力为y N 1g M y N y N y y y N N N ∆−=′,则在结构附 加重力(桥面铺装、人行道、栏杆)弯矩和汽车与人群荷 图3.27 界面特征 2g M 图3.27截面特征载弯矩作用下,合力将从下核点移至上核点(截面下缘应力为零),即移动了p M y N ′x s k k K +=的距离(如图3.28b),则有:1'g y M e N = (3.1)()()p g x s y y M M k k N N +=+∆−2 (3.2)图3.28预应力混凝土简支梁的应力状态式中:——预应力筋距截面下核心的偏心矩;'e x s k k 、——截面上、下核心距。
浅谈预应力混凝土连续箱梁桥设计
常重要的, 应该说加密钢筋网间距, 提高钢筋 直径, 能起到抗裂作用。增加腹板斜向抗裂钢 筋, 要限定最大最小配筋量, 不要无限制加强。 纵向分布钢筋或受力钢筋, 特别是箍筋对 构件的抗剪、斜截面强度和主拉应力的贡献 很大。尤其是在采用高强度混凝土情况下, 艳 筋的套箍作用十分明显。
4 温度应力
温度应力可能会造成支点附近和跨中断 面的裂缝。虽然这些细微裂缝不会影响结构 的正常使用, 但设计时要重视。除了对这些截 面进行必要的应力验算满足规范要求外, 有必 要采取一些构造措施, 如在验算截面附近布置 一定数量的非预应力钢筋, 控制温度裂缝的产 生或发展。另外还得考虑在支点和梁端处布 置足够的纵向钢筋和箍筋, 因为对干箱梁横截 面, 腹板和底板在温度作用下混凝土容易开
S o lE NC E & T EO 奋 兀OG Y IM 二 MA T ll》日 汇 口刁
工 程 技 术
浅谈预应 力混凝土连续箱梁桥设计
龚宇
(湖南省交通规划勘察设计院
湖南长沙
1 4 0008 )
摘 要: 本文 针对广东省广州东沙至新联高速公路中五 沙互 通主线桥的设计, 结合预应力 混凝土连续箱梁的 特点, 介绍其设计思路、 设 计过程中及构造处理上应考虑或注意的事项, 以及抗剪设计的三个误区。 关键词:预应力混凝土连续箱梁 设计 构造 裂缝 抗剪
而出现斜裂缝。而抗剪钢筋的配筋率达到一 定程度后, 若再增加钢筋, 梁的抗剪能力不会 再继续增加, 破坏时箍筋的应力也达不到屈服 强度。有时采用增加普通钢筋来提高梁的抗
45+28+3 、20.4 +2 x 20。跨顺番公路部分 6 采用2 +2 x 4 +2 跨径的变截面 8 5 8 现浇连续箱 梁, 在顺番公路中央分隔带上布设独柱实体墩 配桩基础。 其它跨径下部构造为柱式墩、 钻孔
07-1-1预应力钢筋混凝土简支梁构造(精选图文)
(a)简支梁图示
(b)简支梁力学简图
京沪高铁简支梁箱桥(俯视)
2016/4/12
京沪高铁简支梁箱桥(仰视)
北营特大桥简支T梁架设
1、预应力钢筋混凝土简支板梁
简支板梁特点: (1)构造简单,施工方便; (2)建筑高度小; (3)跨越能力小。
常见板梁截面形式
(a)
整体式:矩形截面 整体式:矮肋式 装配式:实心板 装配式:空心板 装配-整体组合式
整体式预应力混凝土双箱简支梁
分离式预应力混凝土简支梁
直腹板与斜腹板 直腹板箱梁构造简单,施工方便,主要用于箱宽不 大时,铁路桥一般均采用直腹板。 将腹板形式改为斜腹板形式,主梁显得更纤细,美 观,斜腹板还应能有效地减小迎阳面,改善风的攻击 角,改善温度应力和抗风性能,同时还可减小底板的 横向跨度,避免底板又宽又厚,节省下部结构的圬工 量,但模板制造较复杂。
预应力混凝土空心板梁钢筋图
空心板运送
2、预应力钢筋混凝土简支T梁
单片T型梁由于横向稳定性能不够,一般都制作成为装配式T梁。 装配式T梁是指在预制场内预制的截面形式为T型的梁,运送至施 工现场并架设到桥墩上后,经现场连接而成的混凝土结构。
T梁两侧挑出的部分称为翼缘,中间部分称为梁肋。
T型截面相当于是将矩形梁中对抗弯强度不起作用的受拉区混凝 土挖去后形成的,与原有矩形截面相比,抗弯强度相同却可以节约 混凝土,又减轻构件的自重,提高跨越能力。
跨度
钢筋砼T型梁桥 适用于公路 l=10~ 16m (通用图 10m 、 13m 、16m); 预应力砼T型梁桥 适用于公路l=20~50m,铁路l=16~32m(通 用图16m、20m、24m、32m)。
预应力混凝土T梁桥构造举例
公路简支箱梁桥抗倾覆设计分析
[1]别为2-16m/2-16m/3-16m 简支小箱梁桥,三座桥梁目近年来,我国桥梁倾覆倒塌事故时有发生,前运营状况良好,本次改建进行拼宽设计,拼宽宽严重危及人民群众的生命财产安全。
经调查分析,该类倾覆事故桥梁上部一般为多跨连续梁结构,下度4.73~5.0m 。
三座桥梁平面半径分别为180m 、部为单支撑或单支撑与双支撑的组合体系。
相对而500m 、∞(直线)。
言,简支箱梁比连续梁跨径更大,支撑更少,弯桥目前,色曲河已规划为珍稀鱼类保护区,根据[2]《珍稀鱼类水产种质资源保护区影响专题论证》结扭转作用更加明显,抗倾覆稳定性更差,特别是论,本次改建不允许加宽桥梁在水中设置桥墩。
综桥梁宽度窄、支座间距小的简支曲线箱梁桥在偶然合考虑环保、投资、施工等因素,最终确定该三座偏心荷载作用下发生倾覆的可能性极大。
桥梁分别采用1-32m/1-32m/1-48m 简支箱梁拼宽设为了研究简支箱梁桥抗倾覆稳定性,本文以四川省色达县某国道加宽改建项目为依托,以其中计,一跨跨越水域。
本文以二号桥1-32m 简支箱梁作为抗倾覆设计研究对象,桥梁平面布置示意图如1~32m 预应力混凝土箱梁桥作为研究对象。
建立各种平面半径、支座间距、支座预偏心的空间有限元图1所示;二号桥拼宽箱梁采用直腹板式单箱单室[3]截面,梁高2.0m ,底板宽3.0m ,悬臂长1.0m ,顶模型,模拟支座最小反力随平面半径、支座间[4]板宽5.0m ,箱梁右侧护栏带宽0.5m ,在梁端各设置距、支座预偏心的变化规律。
通过箱梁曲线内外2个支座,如图2所示。
侧支座受力状态、反力大小及变动趋势,反应桥梁的抗倾覆稳定性,总结简支箱梁桥抗倾覆设计要点及改善措施。
1 分析项目1.1 项目概况四川省色达县某国道加宽改建项目路线全长27.7km ,采用二级公路技术标准,设计速度60km/h ,路基宽度12m (既有老路宽8.5m )。
该项目老路共有3座桥梁跨越色曲河,老桥孔跨布置分公路简支箱梁桥抗倾覆设计分析【摘 要】本文以某加宽改建项目中1~32m 预应力混凝土简支箱梁桥作为分析对象,建立各种平面半径、支座间距、支座预偏心的空间有限元模型,模拟支座最小反力相应的变化规律。
30m预应力混凝土箱梁单梁静载试验研究彭学先
30m预应力混凝土箱梁单梁静载试验研究彭学先发布时间:2023-05-13T03:01:18.276Z 来源:《中国建设信息化》2023年5期作者:彭学先[导读] 预应力混凝土箱梁静载试验可有效保证桥梁工程的施工质量,而静载试验的关键是确定加载控制弯矩和选择反力系统。
本文以实际工程为例,通过对两种不同类型的裸梁采用不同的加载方式验证其挠度和变形,并对试验数据进行详细分析,深入研究试验梁的刚度、强度及抗裂性是否满足设计要求。
研究成果表明两类型裸梁在静载试验下,挠度理论值均比实际值大,应力也存在相同规律,且腹板测量点应力分布与理论值一致,顺着高度方向表现为线性关系,试验过程中为出现开裂现象。
本文的研究成果为同类箱梁静载试验提供借鉴意义。
湖南湘建智科工程技术有限公司湖南长沙 410205摘要:预应力混凝土箱梁静载试验可有效保证桥梁工程的施工质量,而静载试验的关键是确定加载控制弯矩和选择反力系统。
本文以实际工程为例,通过对两种不同类型的裸梁采用不同的加载方式验证其挠度和变形,并对试验数据进行详细分析,深入研究试验梁的刚度、强度及抗裂性是否满足设计要求。
研究成果表明两类型裸梁在静载试验下,挠度理论值均比实际值大,应力也存在相同规律,且腹板测量点应力分布与理论值一致,顺着高度方向表现为线性关系,试验过程中为出现开裂现象。
本文的研究成果为同类箱梁静载试验提供借鉴意义。
关键词:预应力混凝土;箱梁;控制弯矩;反力系统;挠度;应力桥梁施工过程中为了评估裸梁的设计承载能力,需要进行最不利条件下荷载下的裸梁静载试验,静载试验可用来观测桥梁结构在静力影响下的变形情况与应力变化,从而全面、直接了解桥梁结构的实际工作能力,如强度、刚度及开裂等特性。
李强等[1]研究在荷载作用下,应力逐渐增大,槽形梁体开裂的情况。
关良勇等[2]从试验方法、试验数据等方面论述单梁静载试验过程。
郭生根[3]简介各种静载试验的反力装置,并通过有限元模型验证设置静载试验主梁截面抗弯系数的合理性。
30米预应力简支箱形梁桥结构设计(迈达斯计算)
本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。
预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。
简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。
本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。
设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。
梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。
设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。
利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。
关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。
装配式预应力混凝土简支小箱梁设计说明
设计说明一、设计标准、技术规范及技术指标(一)设计标准1.设计荷载:公路—Ⅰ级。
2.路基宽度:整体式路基宽度34.50m,分离式路基宽度17.00m。
3.桥面宽度:整体式路基:0.60m(防撞护栏)+15.8m(桥面净宽)+ 0.60m(防撞护栏)+0.5m( 中央分隔带) +0.60m(防撞护栏)+15.8m(桥面净宽)+ 0.60m(防撞护栏)=34.50m;分离式路基:0.60m(防撞护栏)+15.8m(桥面净宽)+0.60m(防撞护栏)=17.00m。
4.设计安全等级:一级。
5.环境类别:II类6.环境的年平均相对湿度分别:80%。
(二)技术规范1.《公路工程技术标准》JTG B01-2014;2.《公路桥涵设计通用规范》JTG D60-2015;3.《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004。
4.《公路桥梁抗震设计细则》JTG B02-01-20085.《公路工程抗震规范》JTG B02-20136.《公路交通安全设施设计技术规范》JTG D81-20067.《公路桥涵施工技术规范》JTG/T F50-20118.《钢筋混凝土用钢第1部分:热扎光圆钢筋》GB1499.1—20089.《钢筋混凝土用钢第2部分:热扎带肋钢筋》GB1499.2—200710.《钢筋混凝土用钢第3部分:钢筋焊接网》GB1499.3—201011.《预应力混凝土用钢绞线》GB/T5224-201412.《预应力筋用锚具、夹具和连接器》GB/T 14370-201013.《预应力混凝土用金属波纹管》JG 225-2007(三)技术指标详细见表-1主要技术指标表表-1注:1、本通用图按本表所列跨径、湿接缝宽度和边梁翼板悬臂长度的标准值进行制图,适用范围内的其它尺寸详图应在本图基础上绘制。
2、X为一般悬臂长度标准值,f为曲线段横向弓高值,边梁翼板按曲线预制以适应曲线段桥梁横向弓高影响。
二、适用范围本图适用于正交及斜交桥梁上的简支体系桥面连续的预应力砼带翼小箱梁。
简支T型梁桥设计(标准跨径30m)
标准跨径: 16.00 (墩中心距离);
计算跨径: 15.50 (支座中心距离);
主梁全长: 15.96 (主梁预制长度)。
(四)材料
钢筋:主钢筋采用HRB335,其它用钢筋采用R235
混凝土:(双学号)C30
(五)缝宽度限值:Ⅱ类环境(允许裂缝宽度0.02mm)。
(六)设计依据
(3)主梁内力计算。
选取控制截面分别进行主梁恒载内力计算、活载内力计算,以及作用效应的组合计算(含承载能力极限状态和正常使用极限状态两种极限状态的作用效应组合)。其中进行主梁活载内力计算时,荷载横向分布系数的计算,要求根据主梁空间位置及主梁间连接刚度的不同,分别对各片主梁采用杠杆原理法、偏心压力法、修正的偏心压力法、铰接板法、G-M法等来计算荷载横向分布系数,并对荷载横向分布系数的计算结果进行汇总;随后选取其中一种跨中荷载横向分布系数的计算结果与杠杆原理法的计算结果进行主梁内力作用效应的组合计算(含跨中最大弯矩值、跨中最大剪力值和支座截面的最大剪力值),形成各片主梁的内力计算汇总表。根据内力计算汇总表,确定主梁各截面的最不利内力值作为设计值。
单位抗弯及抗扭惯矩:
(3)计算抗弯参数 和抗扭参数 :
式中: ——桥宽的一半; ——计算跨径。
按规定第2.1.3条,取G=0.43E,则:
(4)计算荷载弯矩横向分布影响线坐标
已知 ,查G—M图表,可查得下表数值:
梁位
荷载位置
b
0
K1
0
0.92
0.95
1.00
1.05
1.08
1.05
1.00
0.95
0.92
4.《桥梁混凝土结构设计原理计算示例》黄侨,王永平编著,人民交通出版社,2006
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30m预应力混凝土简支箱型梁桥设计1.1上部结构计算设计资料及构造布置1.1.1 设计资料1.桥梁跨径及桥宽标准跨径:30m;主梁全长:29.96m;计算跨径:28.66m;桥面净宽:净—9+2×1.5m。
2.设计荷载车道荷载:公路—I级;人群荷载:3kN/㎡;每侧人行道栏杆的作用力:1.52kN/㎡;每侧人行道重:3.75kN/㎡。
3.桥梁处河道防洪标准为20年一遇设计,50年一遇校核,桥下通过流量1000/s时,落差不超过0.1m。
4.桥下净空取50年一遇洪水位以上0.3m。
5.材料及工艺混凝土:主梁采用C50混凝土;钢绞线:预应力钢束采用Φ15.2钢绞线,每束6根,全梁配5束;钢筋:直径大于等于12mm的采用HRB335钢筋,直径小于12mm的采用R235钢筋。
采用后张法施工工艺制作主梁。
预制时,预留孔道采用内径70mm、外径77mm的预埋金属波纹管成型,钢绞线采用T双作用千斤顶两端同时张拉,锚具采用夹片式群锚。
主梁安装就位后现浇600mm宽的湿接缝,最后施工混凝土桥面铺装层。
6.基本计算数据基本计算数据见表5-1〖注〗本例考虑混凝土强度达到C45时开始张拉预应力钢束。
f'ck和f'tk分别表示钢束张拉时混凝土的抗压、抗拉标准强度,则:f'ck = 29.6MPa,f'tk = 2.51MPa。
1.1.2 方案拟定及桥型选择1.桥型选取的基本原则(1) 在符合线路基本走向的同时,力求接线顺畅、路线短捷、桥梁较短、尽量降低工程造价(2)在满足使用功能的前提下,力求桥型结构安全、适用、经济、美观。
同时要根据桥位区的地形、地貌、气象、水文、地质、地震等条件,结合当地施工条件,选用技术先进可靠、施工工艺成熟、便于后期养护的桥型方案。
(3)尽量降低主桥梁体高度,缩短桥长。
2.桥型方案比选根据桥位的通航要求,结合桥位处的地形地貌、地质等条件,我们对简支梁桥、悬臂梁桥、T型刚构桥三种方案进行比选(1)简支梁桥方案采用预应力混凝土箱形截面形式,此结构为静定结构,结构内力不受地基变形及温度变化等的影响,因此对基础的适应性好。
此桥标准跨径为30m,在预应力混凝土简支梁桥的经济跨径之内,且其结构简单、施工方便、受力明确、易采用标准设计,从而可简化施工、降低建设成本。
(2)悬臂梁桥方案悬臂梁利用悬臂根部的负弯矩对主跨跨中正弯矩产生卸载作用,可节约材料用量、降低建筑高度。
其结构为静定体系,和简支梁一样对基础的适应性较好。
但主要缺点是施工不便,尤其是挂梁部变形挠曲线不连续,使行车不平顺,桥面易损坏。
(3)T型刚构桥方案此种桥型结构属静定结构,结构分析较为简单,且不会因为支座位移、温度变化、混凝土收缩徐变及施加预应力而产生附加内力;施工适合于悬臂节段施工,且不需要体系转换,施工阶段内力分布与成桥状态一致。
但其缺点有二:一是T型刚构桥腿处的梁缝无法做成桥面连续构造,必须设置小位移伸缩缝,影响行车平顺;二是悬臂根部负弯矩很大,用普通钢筋混凝土修建时不仅钢材用量大,而且控制混凝土裂缝的开展成为关键,因此经济和技术上的要求比较高。
经以上比较,简支梁在经济、功能上都优于其他两种方案,因此本项目推荐采用简支梁桥方案。
1.1.3横截面布置1.6主梁截面承载能力与应力验算预应力混凝土梁从预加力开始受到荷载破坏,需经受预加应力、使用荷载作用、裂缝出现和破坏等四个受力阶段,为保证主梁受力可靠并予以控制,应对控制截面进行各个阶段的验算。
下面先进行持久状态下截面承载能力极限状态的验算,再分别进行持久状态下的抗裂验算和应力验算,最后进行短暂状态下的构件截面应力验算。
对于抗裂验算,《公预规》根据简支梁标准设计的经验,对于全全预应力梁在使用阶段短期效应组合下,只要截面不出现拉应力就可满足。
1.6.1持久状况下截面承载能力极限状态的验算在承载能力极限状态下,预应力混凝土梁沿正截面和斜截面都有可能破坏。
1.正截面承载能力的验算一般取弯矩最大的跨中截面进行正截面承载力验算。
(1)将箱型截面按面积不变,惯性矩不变的原则转换为I 形截面梁,转化图见图1-12(2)确定混凝土受压区高度x(2)根据《公预规》5.2.3条规定,对于I 形截面:当''f f cd p pd h b f A f ≤成立时,中性轴在翼缘板内,否则在腹板内。
)(4.63501.04.501260KN A f p pd =⨯⨯=)(8.54201.0112204.22''KN h b f f f cd =⨯⨯⨯=即,受压区全部位于翼板内,说明是第一类I 形截面梁。
设中性轴到截面上缘的距离为x ,则)(2.63)12170(4.0)(89.122204.224.501260cm h cm b f A f x o b f cd p pd =-⨯=<=⨯⨯==ξ式中:b ξ——预应力受压区高度界限系数,对于C50混凝土和钢绞线,查表5-2得b ξ=0.40;p a h h -=0——梁的有效高度,对于跨中截面,p a 为钢束群重心至梁底距离为17cm 。
说明该截面破坏时属于塑性破坏状态。
(3)验算正截面承载能力根据《公预规》5.2.2条规定,正截面承载能力按下式计算:)2('xh x b f M o f cd d o -≤γ式中:0γ——桥梁结构的重要性系数,取1.0。
).(41.7801).(88.8751)21289.012.07.1(1289.02104.223m KN M m KN d o =>=--⨯⨯⨯⨯=γ右边 跨中截面正截面承载力满足要求。
(4)验算最小配筋率根据《公预规》9.1.12条规定,预应力混凝土受弯构件最小配筋率应满足下列条件:udcrM 1.0M ≥ 式中:ud M ——受弯构件正截面抗弯承载能力设计值,由以上计算可知m kN 19.7539•=ud M ;cr M ——受弯构件正截面开裂弯矩值,按下式计算: 0()cr pc tk M f W σγ=+ 02o S W γ=PCp P n nxN MA W σ=+式中:S 0——全截面换算截面重心轴以上(或以下)部分截面对重心轴的面积矩,见表1-20(2);W 0——换算截面抗裂边缘的弹性抵抗矩,见表1-20(2);pc σ——扣除全部预应力损失预应力筋在构件抗裂边缘产生的混凝土预压应力。
43671.5460737925.62()6415.35244888PCp P nnx N M MPa A W σ=+=+= 0222526291.6317309654o S W γ⨯=== 0()cr pc tk M f W σγ=+=(23.05+1.57×2.65)×314497.33×10-3=8557.63 kN ·m由此可见,ud cr M 7539.190.88 1.0M 8557.63==<,尚需配置普通钢筋来满足最小配筋率的要求。
①计算受压区高度x'000()2cd f x M f b x h γ≤-38557.6322.410 3.0(1.600.17)2xx =⨯⨯⨯⨯--解得x =0.09m<00.4(1.600.17)0.57b h m ξ=⨯-= ②计算普通钢筋s A422.4 2.30.1035126041.710280cd pd Ps sdf bx f A A f --⨯⨯-⨯⨯==即在梁底部配置8 25的HRB335钢筋,s A =20.36cm 2,以满足最小配筋率的要求。
2.斜截面承载力验算验算受弯构件斜截面抗剪承载力时,其计算位置有:距支座中心h /2处截面;受拉区弯起钢筋弯起点出截面;箍筋数量或间距改变处的截面;构件腹板宽度变化处得截面和支点截面。
本设计验算支点截面。
(1)斜截面抗剪承载力验算 ①复核主梁截面尺寸I 形截面梁当进行斜截面抗剪承载力计算时,其截面尺寸应符合《公预规》5.2.9条规定,按下式计算:000.5110d V γ-≤⨯式中:d V ——为经内力组合后支点截面上的最大剪力; b ——为支点截面的腹板厚度;0h ——为支点截面的有效高度,m m 1404196-16000==h 。
则:300.51100.51105331404--⨯=⨯⨯02698.671303.97d kN V kN γ=≥=所以本设计主梁的截面尺寸符合要求。
②截面抗剪承载力验算根据《公预规》5.2.10条规定,若满足下式要求,则不需进行斜截面抗剪承载力计算。
即:o td d o bh f a V 23105.0-⨯≤γ式中:td f ——混凝土抗拉设计强度;2a ——预应力提高系数,取1.25。
则:140453383.125.1105.0105.03-23⨯⨯⨯⨯⨯=⨯-o td bh f akN V kN d o 97.130390.855=≤=γ因此需要进行斜截面抗剪承载力验算。
a.箍筋计算根据《公预规》9.4.1条规定,腹板内箍筋直径不小于10mm ,且应采用带肋钢筋,间距不应大于250mm 。
本设计选用φ10@20cm 的双肢箍筋,则箍筋总截面积为:21575.782mm A sv =⨯=箍筋间距cm S v 20=,箍筋抗拉设计强度sv f =280MPa ,箍筋配筋率sv ρ为:002.0200400157=⨯==v sv sv bS A ρ=0.20% 满足《公预规》9.3.13条“箍筋配筋率sv ρ,HRB335钢筋不应小于0.12%”的要求。
同时,根据《公预规》9.4.1条规定,在距支点一倍粱高范围内,箍筋间距缩小至10cm 。
b.抗剪承载力计算根据《公预规》5.2.7条规定,主梁斜截面抗剪承载力按下式计算。
即:pb cs d o V V V +≤γ31230.4510cs V bh ααα-=⨯⨯p pd pd pd A f V θsin 1075.03∑⨯=-式中:1.1;25.1;0.1;97.1303321====αααkN V dp θsin 采用全部6束预应力钢筋的平均值,即p θsin =0.099,所以:31230.4510cs V bh ααα-=⨯⨯kN26.1408280002.050)56.06.02(14045331045.01.125.10.1=⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯=-p pd pd pd A f V θsin 1075.03∑⨯=-=kN 93.392099.0670012601075.03=⨯⨯⨯⨯⨯-kN V V V d o pb cs 97.130371.176580.41526.1408=>=+=+γ(2)斜截面抗弯承载力的计算由于钢束均锚固于梁端,钢束数量沿跨长方向没有变化,且弯起角缓和,其斜截面抗弯强度一般不控制设计,不必验算,可通过构造加以保证。