不等式约束最优化问题的最优性条件
约束最优化问题的最优性条件
ci ( x ) ≥ 0
i ∈ I = {l + 1, , m}
一阶必要条件
定理6: (Kuhn-Tucker一阶必要条件)
*
I * = i ci x * = 0, i ∈ I ; 设 x 为问题(3)的局部最优解, f ( x ), ci ( x ) (1 ≤ i ≤ m ) 在 x * 点可微, 对于i ∈ E ∪ I *
*
λ f (x ) ∑ λ ci (x ) = 0
m * 0 *
λ c (x ) = 0 i = 1,2, , m
* i i *
i =1
* i
*
λ ≥ 0 i = 0,1,2, , m
* i
例2: 验证是否满足Fritz-John条件:
min f ( x1 , x2 ) = x1 s.t
*
3 c1 ( x1 , x2 ) = x1 x2 ≥ 0
* 则存在一组不全为零的实数 λ1 , λ* , λ* 使得: 2 l
f x * ∑ λ*ci x * = 0 i
i =1
( )
l
( )
二阶充分条件
定理2: 对等式约束问题,若: (1) f ( x ) 与 ci ( x )(1 ≤ i ≤ l ) 是二阶连续可微函数; (3) s ∈ R n且 s ≠ 0 , 且 s T ci (x * ) = 0 , i = 1,2, l 均有 s T 2 L (x * , λ* )s > 0 xx 则 x* 是等式约束问题的严格局部极小点. (2) x * ∈ R n 与 λ* ∈ R l 使: L(x* , λ* ) = 0 ;
{ ( ) }
的ci (x * ) 线性无关, 则存在非零向量 * λ* = (λ1 , , λ* ) 使得: m
第四章约束问题的最优化方法
当limr(k) 0 k
则(x, r(k) ) f (x) , xk * x *
例: 用内点法求
min
f
(x)
x2 1
x2 2
s.t. g( x) 1 x1 0 的约束最优解。
解:
首先构造内点惩罚函数: (
x,
r)
x2 1
x2 2
rk
ln(x1
1)
用解析法求函数的极小值,运用极值条件:
二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。
基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足
1
u1 gu (x)
② .(x, r(k) )
m
f (x) r(k)
1
u1 gu (x)
③ .(x, r (k) )
f (x)
m
r (k) u u 1
1 gu (x)
其中:gu (x) 0,u 1,2,...m
其中:gu (x) 0,u 1,2,...m
gu(x)0, u=1,2,…,p
适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件;
• 内点的收敛条件为: xk1 xk 1
和
最优性条件(非线性规划)kuhn-tucker条件
定义 2 设 S Rn, x S,d Rn,d 0 ,若存在 t 0 ,使
x td S
则称向量 d 是函数 f(x)在点 x 处关于 S 的可行方向。
定义 3. 设 f : Rn
R, x Rn , d Rn , d 0, e
u2 2u
0 2 0
得u1
1 3 ,u2
2 3
0
故x (2,1)T 是K T点。
二、不等式约束问题的Kuhn-Tucker条件: (续)
●
g1与g 3交点: x12
x22 5 x1 0
0
得x (0, 5)T
(0, 5)T S,故不是K T点;
m
ui g i ( x) 0
i
ui 0, i 1,2,, m
ui gi (x) 0
2( x1 3) u1 2x1 u2 u3 0(1)
2( x2 2) u1 2x2 2u2 u4 0(2)
u1 , u2 , u3 , u4 0
d d
,如果极限
lim f (x e) f (x) , R
0
存在,则称此极限为函数
f(x)在点
x
处的方向导数,记做
f (x d
)
定理 如果 f(x)在点 x 处可微,这 f(x)在点 x 处沿任何非
零向量
d
的方向导数存在,且
f (x ) d
f
(x )T
e, e
《最优化方法》课程复习考试
《最优化方法》复习提要 第一章 最优化问题与数学预备知识§1. 1 模型无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈.约束最优化问题(},,2,1,0)(;,,2,1,0)(,|{l j x h m i x g R x x S j i n ===≥∈=∧)min ();...f x s t x S ⎧⎨∈⎩ 即 m i n ();..()0,1,2,,,()0,1,2,,.i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域,()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥===称为约束条件.§1. 2 多元函数的梯度、Hesse 矩阵及Taylor 公式定义 设:,n n f R R x R →∈.如果n ∃维向量p ,n x R ∀∆∈,有()()()T f x x f x p x o x +∆-=∆+∆.则称()f x 在点x 处可微,并称()T df x p x =∆为()f x 在点x 处的微分.如果()f x 在点x 处对于12(,,,)T n x x x x =的各分量的偏导数(),1,2,,if x i n x ∂=∂都存在,则称()f x 在点x 处一阶可导,并称向量12()()()()(,,,)Tnf x f x f x f x x x x ∂∂∂∇=∂∂∂ 为()f x 在点x 处一阶导数或梯度.定理1 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处梯度()f x ∇ 存在,并且有()()T df x f x x =∇∆.定义 设:,n n f R R x R →∈.d 是给定的n 维非零向量,de d=.如果 0()()lim()f x e f x R λλλλ→+-∈存在,则称此极限为()f x 在点x 沿方向d 的方向导数,记作()f x d∂∂. 定理2 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处沿任何非零方向d 的方向导数存在,且()()T f x f x e d ∂=∇∂,其中de d=. 定义 设()f x 是n R 上的连续函数,n x R ∈.d 是n 维非零向量.如果0δ∃>,使得(0,)λδ∀∈,有()f x d λ+<(>)()f x .则称d 为()f x 在点x 处的下降(上升)方向.定理3 设:,n n f R R x R →∈,且()f x 在点x 处可微,如果∃非零向量n d R ∈,使得()T f x d ∇<(>)0,则d 是()f x 在点x 处的下降(上升)方向. 定义 设:,n n f R R x R →∈.如果()f x 在点x 处对于自变量12(,,,)T n x x x x =的各分量的二阶偏导数2()(,1,2,,)i j f x i j n x x ∂=∂∂都存在,则称函数()f x 在点x 处二阶可导,并称矩阵22221121222222122222212()()()()()()()()()()n n n n n f x f x f x x x x x x f x f x f x f x x x x x x f x f x f x x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂ ⎪∇=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭为()f x 在点x 处的二阶导数矩阵或Hesse 矩阵. 定义 设:,n m n h R R x R →∈,记12()((),(),,())T m h x h x h x h x =,如果 ()(1,2,,)i h x i m =在点x 处对于自变量12(,,,)T n x x x x =的各分量的偏导数()(1,2,,;1,2,,)i jh x i m j n x ∂==∂都存在,则称向量函数()h x 在点x 处是一阶可导的,并且称矩阵111122221212()()()()()()()()()()n n m n m m m n h x h x h x xx x h x h x h x x x x h x h x h x h x xx x ⨯∂∂∂⎛⎫ ⎪∂∂∂⎪⎪∂∂∂⎪∂∂∂∇= ⎪ ⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭为()h x 在点x 处的一阶导数矩阵或Jacobi 矩阵,简记为()h x ∇.例2 设,,n n a R x R b R ∈∈∈,求()T f x a x b =+在任意点x 处的梯度和Hesse 矩阵.解 设1212(,,,),(,,,)TTn n a a a a x x x x ==,则1()nk k k f x a x b ==+∑,因()(1,2,,)k kf x a k n x ∂==∂,故得()f x a ∇=.又因2()0(,1,2,,)i jf x i j n x x ∂==∂∂,则2()f x O ∇=.例3 设n n Q R ⨯∈是对称矩阵,,n b R c R ∈∈,称1()2TT f x x Qx b x c =++为二次函数,求()f x 在任意点x 处的梯度和Hesse 矩阵.解 设1212(),(,,,),(,,,)T T ij n n n n Q q x x x x b b b b ⨯===,则121111(,,,)2n nnn ij i j k k i j k f x x x q x x b x c ====++∑∑∑,从而111111111()()()nn j j j j j j n n n nj j n nj j j j n f x q x b q x x bf x Qx b f x b q x b q x x ====⎛⎫⎛⎫∂⎛⎫+ ⎪ ⎪ ⎪∂⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪∇===+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭∑∑∑∑.再对1()(1,2,,)nij j i j i f x q x b i n x =∂=+=∂∑求偏导得到2()(,1,2,,)ij i jf x q i j n x x ∂==∂∂,于是1112121222212()n n n n nn q q q q q q f x Q q q q ⎛⎫⎪ ⎪∇== ⎪⎪⎝⎭. 例 4 设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求(),()t t ϕϕ'''.解 由多元复合函数微分法知 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+. 定理4 设:,n n f R R x R →∈,且()f x 在点x 的某邻域内具有二阶连续偏导数,则()f x 在点x 处有Taylor 展式21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.证明 设()(),[0,1]t f x t x t ϕ=+∆∈,则(0)(),(1)()f x f x x ϕϕ==+∆.按一元函数Taylor 公式()t ϕ在0t =处展开,有21()(0)(0)(),(0)2t t t t ϕϕϕϕθθ'''=++<<.从例4得知2(0)(),()()()T T f x x x f x x x ϕϕθθ'''=∇∆=∆∇+∆∆.令1t =,有21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.根据定理1和定理4,我们有如下两个公式()()()()()T f x f x f x x x o x x =+∇-+-,221()()()()()()()()2T T f x f x f x x x x x f x x x o x x =+∇-+-∇-+-.§1. 3 最优化的基本术语定义 设:n f R R →为目标函数,n S R ⊆为可行域,x S ∈.(1) 若x S ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的全局(或整体)极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的全局(或整体)最优解,并称()f x为其最优值.(2) 若,x S x x ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格全局(或整体)极小点.(3) 若x ∃的δ邻域(){}(0)n N x x R x x δδδ=∈-<>使得()x N x S δ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的局部极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的局部最优解.(4) 若x ∃的δ邻域()(0)N x δδ>使得(),x N x S x x δ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格局部极小点.第二章 最优性条件§2.1 无约束最优化问题的最优性条件定理 1 设:n f R R →在点x 处可微,若x 是问题min ()f x 的局部极小点,则()0f x ∇=.定义 设:()n f S R R ⊆→在int x S ∈处可微,若()0f x ∇=,则称x 为()f x 的平稳点.定理2 设:n f R R →在点x 处具有二阶连续偏导数,若x 是问题min ()f x 的局部极小点,则()0f x ∇=,且2()f x ∇半正定.定理3 设:n f R R →在点x 处具有二阶连续偏导数,若()0f x ∇=,且2()f x ∇正定,则x 是问题min ()f x 的严格局部极小点. 注:定理2不是充分条件,定理3不是必要条件.例1 对于无约束最优化问题2312min ()f x x x =-,其中212(,)T x x x R =∈,显然 2212()(2,3),T f x x x x R ∇=-∀∈,令()0f x ∇=,得()f x 的平稳点(0,0)T x =,而且2222020(),()0600f x f x x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.易见2()f x ∇为半正定矩阵.但是,在x 的任意δ邻域x x δ-<,总可以取到(0,)2T x δ=,使()()f x f x <,即x 不是局部极小点.例2 对于无约束最优化问题42241122min ()2f x x x x x =++,其中212(,)T x x x R =∈, 易知3223112122()(44,44)Tf x x x x x x x ∇=++,从而得平稳点(0,0)T x =,并且 22221212221212001248(),()008412x x x x f x f x x x x x ⎛⎫+⎛⎫∇=∇=⎪ ⎪+⎝⎭⎝⎭. 显然2()f x ∇不是正定矩阵.但是,22212()()f x x x =+在x 处取最小值,即x 为严格局部极小点.例3 求解下面无约束最优化问题332122111min ()33f x x x x x =+--,其中212(,)T x x x R =∈, 解 因为21212222201(),()0222x x f x f x x x x ⎛⎫-⎛⎫∇=∇= ⎪ ⎪--⎝⎭⎝⎭,所以令()0f x ∇=,有2122210,20.x x x ⎧-=⎪⎨-=⎪⎩解此方程组得到()f x 的平稳点(1)(2)(3)(4)1111,,,0202x x x x --⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.从而2(1)2(2)2020(),()0202f x f x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭,2(3)2(4)2020(),()0202f x f x --⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.由于2(1)()f x ∇和2(4)()f x ∇是不定的,因此(1)x 和(4)x 不是极值点.2(3)()f x ∇是负定的,故(3)x 不是极值点,实际上它是极大点.2(2)()f x ∇是正定的,从而(2)x 是严格局部极小点.定理4 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微,若()0f x ∇=,则x 为min ()f x 的全局极小点.推论5 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微.则x 为min ()f x 的全局极小点的充分必要条件是()0f x ∇=. 例 4 试证正定二次函数1()2TT f x x Qx b x c =++有唯一的严格全局极小点1x Q b -=-,其中Q 为n 阶正定矩阵.证明 因为Q 为正定矩阵,且(),n f x Qx b x R ∇=+∀∈,所以得()f x 的唯一平稳点1x Q b -=-.又由于()f x 是严格凸函数,因此由定理4知,x 是()f x 的严格全局极小点.§2.2 等式约束最优化问题的最优性条件定理1 设:n f R R →在点x 处可微,:(1,2,,)n j h R R j l →=在点x 处具有一阶连续偏导数,向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的局部极小点,则,1,2,,j v R j l ∃∈=,使得1()()0lj j j f x v h x =∇-∇=∑.称(,)()()T L x v f x v h x =-为Lagrange 函数,其中12()((),(),,())T l h x h x h x h x =.称12(,,,)T l v v v v =为Lagrange 乘子向量.易见(,)x v L L x v L ∇⎛⎫∇= ⎪∇⎝⎭,这里1(,)()(),(,)()lx j j v j L x v f x v h x L x v h x =∇=∇-∇∇=-∑.定理 2 设:n f R R →和:(1,2,,)n j h R R j l →=在点n x R ∈处具有二阶连续偏导数,若l v R ∃∈,使得(,)0x L x v ∇=,并且,,0n z R z ∀∈≠,只要()0,1,2,,T j z h x j l ∇==,便有2(,)0T xx z L x v z ∇>,则x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的严格局部极小点.例1 试用最优性条件求解 221212min ();..()80.f x x x s t h x x x ⎧=+⎨=-=⎩解 Lagrange 函数为221212(,)(8)L x v x x v x x =+--,则1221122(,)2(8)x vx L x v x vx x x -⎛⎫⎪∇=- ⎪ ⎪--⎝⎭, 从而得(,)L x v 的平稳点(8,8,2)T 和(8,8,2)T --,对应有(8,8),2T x v ==和(8,8),2T x v =--=.由于221222(,),()222xx x v L x v h x x v--⎛⎫⎛⎫⎛⎫∇==∇= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 因此1212(){(,)|(,)()0}T M x z z z z h x =∇=121221{(,)|0}T z z z x z x =+= 1212{(,)|}T z z z z ==-.并且(),0z M x z ∀∈≠,有222211221(,)24280T xx z L x v z z z z z z ∇=-+=>.利用定理2,所得的两个可行点(8,8)T x =和(8,8)T x =--都是问题的严格局部极小点.§2.3 不等式约束最优化问题的最优性条件定义 设,,,0n n S R x clS d R d ⊆∈∈≠,若0δ∃>,使得,,(0,)x d S λλδ+∈∀∈, 则称d 为集合S 在点x 处的可行方向. 这里{|,(),0}n clS x x R SN x δδ=∈≠∅∀>.令 {|0,0,,(0,)}D d d x d S δλλδ=≠∃>+∈∀∈使,0{|()0}T F d f x d =∇<.定理 1 设n S R ⊆是非空集合,:,,()f S R x S f x →∈在点x 处可微.若x 是问题min ()x Sf x ∈的局部极小点,则 0F D =∅.对于min ();..()0,1,2,,,i f x s t g x i m ⎧⎨≥=⎩ (1)其中:,:(1,2,,)n n i f R R g R R i m →→=.令(){|()0,1,2,,}i I x i g x i m ===,其中x 是上述问题(1)的可行点.定理 2 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,如果x 是问题(1)的局部极小点,则 00F G =∅,其中0{|()0,()}T i G d g x d i I x =∇>∈.定理 3 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,若x 是问题(1)的局部极小点,则存在不全为0的非负数0,(())i u u i I x ∈,使0()()()0iii I x u f x u g x ∈∇-∇=∑. (x 称为Fritz John 点)如果()(())i g x i I x ∉在点x 处也可微,则存在不全为0的非负数01,,,m u u u ,使01()()0,()0,1,2,,.mi i i i iu f x u g x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为Fritz John 点) 例1 设1311222min ();..()(1)0,()0.f x x s t g x x x g x x =-⎧⎪=--≥⎨⎪=≥⎩试判断(1,0)T x =是否为Fritz John 点. 解 因为12100(),(),()011f x g x g x -⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,所以为使Fritz John 条件01210000110u u u -⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.取0120,0u u u α===>即可,因此x 是Fritz John 点.定理 4 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,并且()(())i g x i I x ∇∈线性无关.若x 是问题(1)的局部极小点,则存在0(())i u i I x ≥∈,使得()()()0iii I x f x u g x ∈∇-∇=∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在0(1,2,,)i u i m ≥=,使得1()()0,()0,1,2,,.mi i i i if x ug x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为K-T 点) 例2 求最优化问题21211222min ()(1);..()20,()0f x x x s t g x x x g x x ⎧=-+⎪=--+≥⎨⎪=≥⎩的K-T 点. 解 因为1122(1)10(),(),()111x f x g x g x --⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,所以K-T 条件为111211222122(1)0,10,(2)0,0,0,0.x u u u u x x u x u u -+=⎧⎪+-=⎪⎪--+=⎨⎪=⎪⎪≥≥⎩ 若20u =,则11u =-,这与10u ≥矛盾.故20u >,从而20x =;若120x -+=,则12u =-,这与10u ≥矛盾.故10u =,从而211,1u x ==; 由于120,0u u ≥≥,且(1,0)T x =为问题的可行点,因此x 是K-T 点. 定理5 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.§2.4 一般约束最优化问题的最优性条件考虑等式和不等式约束最优化问题min ();..()0,1,2,,,()0,1,2,,,i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩(1) 其中:,:(1,2,,),:(1,2,,)n n n i j f R R g R R i m h R R j l →→=→=.并把问题(1)的可行域记为S .,(){|()0,1,2,,}i x S I x i g x i m ∀∈==.定理 1 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,并且向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题(1)的局部极小点,则 00F G H =∅,这里0{|()0}T F d f x d =∇<,0{|()0,()}T i G d g x d i I x =∇>∈,0{|()0,1,2,,}T j H d h x d j l =∇==.定理 2 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续.若x 为问题(1)的局部极小点,则存在不全为0的数0,(())i u u i I x ∈和(1,2,,)j v j l =,且0,0(())i u u i I x ≥∈,使0()1()()()0liijji I x j u f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为Fritz John 点)若()(())i g x i I x ∉在点x 处也可微,则存在不全为0的数0,(1,2,,)i u u i m =和(1,2,,)j v j l =,且0,0(1,2,,)i u u i m ≥=,使011()()()0,()0,1,2,,.m li i j j i j i iu f x u g x v h x u g x i m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为Fritz John 点)例1 设2212311222212min ();..()0,()0,()(1)0.f x x x s t g x x x g x x h x x x ⎧=+⎪=-≥⎪⎨=≥⎪⎪=--+=⎩试判断(1,0)T x =是否为Fritz John 点.解 (){2}I x =,且2200(),(),()011f x g x h x ⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,因此为使Fritz John 条件022*******u u v ⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.所以取020,1,1u u v ===-,即知x 是Fritz John 点.定理 3 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,且向量组()(()),()(1,2,,)i j g x i I x h x j l ∇∈∇=线性无关.若x 是问题(1)的局部极小点,则存在数0(())i u i I x ≥∈和(1,2,,)j v j l =,使()1()()()0liijji I x j f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在数0(1,2,,)i u i m ≥=和(1,2,,)j v j l =,使11()()()0,()0,1,2,,.m li i j j i j i if x ug x vh x u g xi m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为K-T 点) 令 1212()((),(),,()),()((),(),,())T T m l g x g x g x g x h x h x h x h x ==,1212(,,,),(,,,)T T m l u u u u v v v v ==,称u 与v 为广义Lagrange 乘子向量或K-T 乘子向量.()()()0,()0,0.T T Tf xg x uh x v u g x u ⎧∇-∇-∇=⎪=⎨⎪≥⎩令(,,)()()()T T L x u v f x u g x v h x =--为广义Lagrange 函数.称(,,)L x u v 为广义Lagrange 函数.则K-T 条件为(,,)0,()0,0.x TL x u v u g x u ∇=⎧⎪=⎨⎪≥⎩定理 4 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,()(1,2,,)j h x j l =是线性函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.例2 求解最优化问题221221212min ()(3)(1);..()0,()230.f x x x s t g x x x h x x x ⎧=-+-⎪=-+≥⎨⎪=+-≥⎩ 解 广义Lagrange 函数为222121212(,,)()()()(3)(1)()(23)L x u v f x ug x vh x x x u x x v x x =--=-+---+-+-.因为111(,,)2(3)22L x u v x ux v x ∂=-+-∂,22(,,)2(1)L x u v x u v x ∂=---∂.所以K-T 条件及约束条件为112212212122(3)220,2(1)0,()0,0,230,0.x ux v x u v u x x x x x x u -+-=⎧⎪---=⎪⎪-+=⎪⎨-+≥⎪⎪+-=⎪≥⎪⎩ 下面分两种情况讨论. (1) 设0u =,则有12122(3)20,2(1)0,230.x v x v x x --=⎧⎪--=⎨⎪+-=⎩ 由此可解得12718,,555x x v ===-,但71(,)55T x =不是可行点,因而不是K-T 点.(2) 设0u >,则有112212122(3)220,2(1)0,0,230.x ux v x u v x x x x -+-=⎧⎪---=⎪⎨-+=⎪⎪+-=⎩ 由此可得211230x x --+=,解得11x =或13x =-。
约束条件下的最优化问题
在约束条件下的最优化问题是指在一定的限制条件下,寻找使目标函数达到最大或最小值的最优解。
这类问题可以通过数学建模和优化算法来解决。
常见的约束条件包括等式约束和不等式约束。
等式约束要求某些变量之间的关系满足特定的等式关系,而不等式约束则要求某些变量之间的关系满足特定的不等式关系。
数学上,约束条件可以表示为:
1. 等式约束:g(x) = 0,其中g(x)是一个关于变量x的函数。
2. 不等式约束:h(x) ≤0,其中h(x)是一个关于变量x的函数。
最优化问题的目标函数可以是线性的、非线性的,甚至是在某些特殊情况下可能是非凸的。
根据问题的具体形式,可以选择适合的优化算法进行求解,如线性规划、非线性规划、整数规划等。
常见的优化算法包括:
1. 梯度下降法:用于求解无约束或有约束的凸优化问题,在连续可导的情况下通过迭代调整参数来逐步接近最优解。
2. KKT条件法:用于求解有约束的凸优化问题,通过构建拉格朗日函数和KKT条件来确定最优解。
3. 内点法:用于求解线性规划和凸优化问题,通过在可行域内寻找目标函数的最优解。
4. 遗传算法:用于求解复杂的非线性优化问题,通过模拟自然进化过程中的选择、交叉和变异操作来搜索最优解。
5. 模拟退火算法:用于求解非线性优化问题,通过模拟固体退火的过程来逐步降低温度并接近最优解。
在实际应用中,约束条件下的最优化问题广泛应用于工程、经济、运筹学、物流等领域。
通过合理地建立数学模型,并选择合适的优化算法,可以有效地解决这类问题,并得到最优解或接近最优解的结果。
约束问题的最优化方法
m
⑤ .Φ ( x, r ) = f ( x) − r ∑ ln[− g u ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0 ) > r (1) > ....r ( k )
0< c <1
r ( k −1) ⋅ c = r ( k )
xk * → x *
当lim r ( k ) → 0
x ∈ D ⊂ Rn s.t. g u ( x ) ≥ 0, u = 1,2,..., p hv ( x ) = 0, v = 1,2,..., q min F ( x )
一. 约束优化问题解法分类: 约束优化方法按求解原理的不同可以分为直接法和间接法两类。
直接解法:随机方向搜索法、复合形法、可行方向法
其中:g u ( x) ≥ 0, u = 1,2,...m
③ .Φ ( x, r ) = f ( x) − ∑ ru ( k )
(k ) u =1
m
1 g u ( x)
④ .Φ ( x, r ) = f ( x) + r
(k )
(k )
(k )
1 ∑ 2 u =1 [ g u ( x )]
m u =1
k →∞
则Φ ( x, r ( k ) ) → f ( x) ,
) x12 + x22 例: 用内点法求 min f ( x=
s.t. g ( x ) = 1 − x1 ≤ 0
的约束最优解。
2 解: 首先构造内点惩罚函数:φ ( x , r ) = x12 + x2 − r k ln( x1 − 1)
(k ) u =1 m
lim r2 H [hv ( x ( k ) )] = 0
数学中的最优化问题
数学中的最优化问题数学中的最优化问题是一类重要的数学问题,其目标是寻找某个函数的最优解,即使得函数取得最大值或最小值的输入变量的取值。
最优化问题在数学、经济学、物理学等领域有广泛的应用,对于解决实际问题具有重要意义。
一、最优化问题的基本概念在介绍最优化问题之前,需要先了解几个基本的概念。
1. 目标函数:最优化问题中,我们定义一个目标函数,该函数是一个关于变量的函数,表示我们要优化的目标。
2. 约束条件:最优化问题中,往往存在一些限制条件,这些条件限制了变量的取值范围。
这些限制条件可以是等式约束或者不等式约束。
3. 最优解:最优解是指满足约束条件下使得目标函数取得最优值的变量取值。
最优解可能是唯一的,也可能存在多个。
二、最优化问题的求解方法在数学中,有多种方法可以求解最优化问题。
以下是几种常见的方法:1. 解析法:对于一些特殊的最优化问题,我们可以通过解析的方法求解。
这种方法通常需要对目标函数进行求导,并解方程得到极值点。
2. 迭代法:对于一些复杂的最优化问题,解析法并不适用,这时可以采用迭代法求解。
迭代法通过不断地逼近最优解,逐步优化目标函数的值。
3. 线性规划:线性规划是一种常见的最优化问题,它的约束条件和目标函数都是线性的。
线性规划可以利用线性代数的方法进行求解,有着广泛的应用。
4. 非线性规划:非线性规划是一类更一般的最优化问题,约束条件和目标函数都可以是非线性的。
非线性规划的求解比线性规划更为困难,需要采用一些数值方法进行逼近求解。
三、最优化问题的应用最优化问题在各个领域都有广泛的应用,下面以几个具体的例子来说明:1. 经济学中的最优化问题:经济学中的生产优化、消费优化等问题都可以抽象为最优化问题。
通过求解最优化问题,可以找到最有效的生产组合或最佳的消费策略。
2. 物理学中的最优化问题:在物理学中,最优化问题常常涉及到动力学、优化控制等方面。
例如,在机械设计中,可以通过最优化问题确定各部件的尺寸和形状,使得机械系统具有最佳的性能。
不等式约束的最优化问题
不等式约束的最优化问题1. 引言不等式约束的最优化问题是数学领域中一类常见且重要的问题。
在实际生活和工程应用中,很多问题都可以转化为最优化问题,其中包含了一些约束条件,这些约束条件可以用不等式的形式表示。
本文将从理论和应用两个方面综合讨论不等式约束的最优化问题。
2. 理论基础2.1 最优化问题的定义最优化问题是指在满足一定的约束条件下,寻找使得目标函数取得最大(或最小)值的变量取值。
最优化问题可以分为有约束和无约束两种情况,本文主要讨论带有不等式约束的最优化问题。
2.2 拉格朗日乘子法拉格朗日乘子法是解决带有等式约束的最优化问题的重要方法,然而对于带有不等式约束的问题,拉格朗日乘子法并不适用。
取而代之的是KKT条件,即Karush–Kuhn–Tucker条件。
2.3 KKT条件KKT条件是带有不等式约束的最优化问题的解的必要条件。
KKT条件包括了原问题的约束条件和原问题的一阶和二阶必要条件。
利用KKT条件,可以将不等式约束的最优化问题转化为无约束最优化问题,从而求解出问题的最优解。
3. 解决方法3.1 梯度下降法梯度下降法是一种常用的优化算法,可以用于求解无约束和有约束的最优化问题。
对于带有不等式约束的问题,可以通过将约束条件变形为罚函数的形式,从而将其转化为无约束的问题。
梯度下降法的基本思想是根据目标函数的梯度信息不断迭代更新变量的取值,使得目标函数逐渐趋近于最优解。
3.2 内点法内点法是求解带有不等式约束的最优化问题的一种高效算法。
内点法的基本思想是通过不断向可行域的内部靠近,逐渐找到问题的最优解。
内点法具有较好的收敛性和稳定性,在实际应用中使用较为广泛。
3.3 割平面法割平面法是一种用于求解带有不等式约束的整数优化问题的有效方法。
割平面法的主要思想是通过逐步添加割平面,将原问题分解为一系列子问题,利用线性规划算法求解。
割平面法可以有效地提高整数规划问题的求解效率。
4. 应用领域4.1 金融领域在金融领域中,不等式约束的最优化问题被广泛应用于投资组合优化、风险管理等方面。
带有不等式约束极小问题的全局最优充分性条件
摘
要: 通过抽象凸分析理论 , 给出了带有不等式约束的非线性规 划问题 的全局最优充分性条件。
并利 用( ) , 一次微 分给 出 了 目标 函数 是 连 续可微 , 束 函数 不 必 是 连 续 可微 的极 小化 问题 的全 约 局 最优 性 充分条 件 。
关 键词 : 全局 最优 ; 最优 性 条件 ; , 一 次微 分 ( X)
o
.
值得注意的是 , 如果 是所有线性函数所成的集合 是一个下半连续的凸函数 , a xf ):o( , 则 ( f ) 这 里 o( ) fx 是指 一般 凸分析 意义上 的 凸函数 的次梯度 。
.
2 最优 性条件
2 1 通过 ( , ) . 一次微 分给 出的 充分性 条件
的研究 。
l 8
长
春
大
学
学
报
第 1 卷 8
定义 2 1 ( , 一次微分) XCR : . ( £ ) 令 _ R 一R,o R ,E 称为厂在 的 ( , 一次梯度 , ∈ z £ ) 如果 ) ≥ ) lx 一 (。 , E 。 在 的所有( ) + ( ) tx) V X f , 一次梯度的集合 a x. ( ) 为 在 的 ( ) 次微 f 称 L, 一 分。
1 预备知识
本 节将 给 出几 个本 文用 到 的基本 概 念及 引理 。本 文 将 使 用如 下 记 号 : 表 示 实 数集 , 表示 /维 欧 氏 R R 7 ,
厂 一
空间, 中 范 定义为: I √互 Q为Q 最 征 Q 0 矩阵Q R 的 数 ll l = ,() 的 大特 值,≥ 表示 是半正 定的, 单 , 表示
一
ZE a x o ‘ g ( 且 )
约束优化问题的最优性条件
{
}
连续,若 x 是(NLP1)的局部最优解,则存在不全 为零的非负数 w0 , wi (i ∈ i ) ,使得
w0∇f ( x) − ∑ wi ∇gi ( x) = 0
i∈I
证明:参见陈宝林书 page 239
注:运用Fritz John 条件时,可能出现 w0 = 0 的情形。这时Fritz John 条件中实际上不包含 目标函数的任何数据,只是把起作用约束的梯 度组合成零向量。这样的条件,对于问题的解 的描述,没有多大价值。我们感兴趣的是
w0 ≠ 0 的情形,所以为了保证 w0 ≠ 0 ,还需
要对约束施加某种限制。这种限制条件通常称 为约束规格。在定理7.3中,如果增加起作用 约束的梯度线性无关的约束规格,则给出不等 式约束问题的著名的K-T条件。
定理7.8 (K-T 必要条件) 考虑约束问题(NLP) , x 为可行点,I = i gi ( x) = 0 , f (x) 和 gi (x) (i ∈ I ) 在 x 处可微, gi (x) (i ∉ I ) 在 x 处连续, hj (j=1,…,l) 在 x 处连续可微。向量集
∂f = d T ∇f ( x ) ≥ 0 ∂d
(d
= 1)
即在极小点处的可行方向一定不是下降方向
n R 定理7.1 考虑约束极值问题 (NLP) , 设 S 是 中的非空集合,x ∈ S , f (x) 在 x 处可微。如果 x
是局部最优解,则
F0 ∩ D = ∅
证明:参见陈宝林书 page236
定理7.5 设在问题(NLP1)中, f 是凸函数, gi(x)(i=1,2,…,m) 是凹函数,S为可行域,x ∈ S
I = i gi ( x) = 0 , f (x) 和 gi (x) (i ∈ I )在 x 处可微,
不等式约束条件的最优化问题
不等式约束条件的最优化问题概述在数学和经济学等领域中,最优化问题是一个常见的研究课题。
在解决最优化问题时,我们通常会面临各种约束条件,其中一种常见的约束条件是不等式约束条件。
本文将深入探讨不等式约束条件的最优化问题,包括其定义、求解方法以及应用领域等。
定义不等式约束条件的最优化问题是指在一组不等式条件下,寻找使目标函数取得最大值或最小值的变量取值。
不等式约束条件可以是单个不等式,也可以是多个不等式的组合。
一般来说,最优化问题可以分为线性最优化问题和非线性最优化问题,而不等式约束条件可以存在于两种类型的最优化问题中。
线性不等式约束条件的最优化问题求解方法线性不等式约束条件的最优化问题可以通过线性规划方法求解。
线性规划是一种数学优化方法,用于求解线性约束条件下的最优化问题。
在线性规划中,目标函数和约束条件都是线性的,可以用线性代数的方法进行求解。
线性不等式约束条件的最优化问题可以通过单纯形法、内点法等方法进行求解。
单纯形法是一种基于顶点的搜索算法,通过不断移动顶点以搜索最优解。
内点法是另一种常用的求解线性规划问题的方法,它通过将问题转化为一个等价的无约束问题来求解。
应用领域线性不等式约束条件的最优化问题在实际应用中具有广泛的应用。
例如,在生产计划中,我们常常需要在一组资源有限的条件下,最大化产出或最小化成本。
在供应链管理中,我们需要在供应商、生产能力、运输成本等多个因素的约束下,优化供应链的效率和利润。
线性不等式约束条件的最优化问题也在金融投资、交通规划等领域中得到广泛应用。
非线性不等式约束条件的最优化问题求解方法非线性不等式约束条件的最优化问题相对复杂,求解方法也更加多样化。
常见的求解方法包括梯度下降法、牛顿法、拟牛顿法等。
这些方法通常需要对目标函数进行求导或近似求导,以找到函数的极值点。
应用领域非线性不等式约束条件的最优化问题在实际应用中也非常常见。
例如,在机器学习和人工智能领域中,我们常常需要通过调整模型参数来最小化损失函数,以提高模型的准确性。
运筹学-约束最优化方法
若AT的各个行向量线性无 关.根据Kuhn-Tucker条件, 在该线性规划的最优点y* 处存在乘子向量x*≥0,使得
即Ax*=b 对偶规划约束条件 及(ATy*-c)T x*=0 线性规划互补松弛条件
29
5.1.3 一般约束问题的最优性条件
定理1.3.1 在上述问题中,若 (i)x*为局部最优解, 有效集I*={i|ci(x*)=0,i∈I}; (ii)f(x),ci(x)(1≤i≤m)在x*点可微; (iii)对于i∈E∪I*, 线性无关, 则存在向量l*=(l1*,· · · ,lm*)使得
解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
19
例题(Fritz-John条件)
min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0 c2(x)=x1≥0 c3(x)=x2≥0 即
35
惩罚函数法
惩罚是手段,不是目的
KT条件中li*ci(x*)=0 称为互补松弛条件. 它表明li*与ci(x*)不能 同时不为0.
28
线性规划情形
对于线性规划问题 min f(y)=-bTy s.t. -ATy≥-c 其中 y∈Rm,A∈Rm×n, b∈Rm,c∈Rn 问题有n个约束条件. 各个约束条件关于y 的梯度为-AT的行向 量(-pi).
借助于Farkas引理,可推出存在li*≥0(i∈I*), 使得
类似与Fritz-John条件的证明,可以证明KuhnTucker条件. 有效约束函数的梯度线性无关称为KuhnTucker约束规范. 如果该约束规范不满足,最优点不一定是KT点.
《最优化方法》课程教学大纲
最优化方法》课程教学大纲课程编号:100004英文名称:Optimizatio n Methods一、课程说明1. 课程类别理工科学位基础课程2. 适应专业及课程性质理、工、经、管类各专业,必修文、法类各专业,选修3. 课程目的(1 )使学生掌握最优化问题的建模、无约束最优化及约束最优化问题的理论和各种算法;(2)使学生了解二次规划与线性分式规划的一些特殊算法;(3)提高学生应用数学理论与方法分析、解决实际问题的能力以及计算机应用能力。
4. 学分与学时学分2,学时405. 建议先修课程微积分、线性代数、Matlab语言6. 推荐教材或参考书目推荐教材:(1)《非线性最优化》(第一版).谢政、李建平、汤泽滢主编.国防科技大学出版社.2003年.孙(第一版)参考文瑜、徐成贤、朱德通主编.高等教育出版社.2004年(2)《最优化方法》书目:(第一版).胡适耕、施保昌主编.华中理工大学出版社.2000年(1)《最优化原理》(2)《运筹学》》(修订版).《运筹学》教材编写组主编.清华大学出版社.1990年7. 教学方法与手段(1)教学方法:启发式(2)教学手段:多媒体演示、演讲与板书相结合8. 考核及成绩评定考核方式:考试成绩评定:考试课(1)平时成绩占20%形式有:考勤、课堂测验、作业完成情况(2)考试成绩占80%形式有:笔试(开卷)。
9. 课外自学要求(1)课前预习;(2)课后复习;(3)多上机实现各种常用优化算法。
二、课程教学基本内容及要求第一章最优化问题与数学预备知识基本内容:(1 )最优化的概念;(2)经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)最优化问题的模型及分类;(4)向量函数微分学的有关知识;5)最优化的基本术语。
基本要求:(1)理解最优化的概念;(2)掌握经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)了解最优化问题的模型及分类;(4)掌握向量函数微分学的有关知识;(5)了解最优化的基本术语。
第2章 最优化的基本理论和基本方法 最优性条件 2.2 有约束优化(第5次课 等式约束优化,作业问题讲解)
11
2x1 2x2
1
0
c1(x) = 2 - x12 - x2 2 = 0 解得x1=-1,x2 =-1,λ1=-1/2;
x1=1,x2 =1,λ1=1/2 。它们是可能的局部解。
图解:
c1(x)
O
c1(x*)
f(x*) x*
f(x)
f(x) = x1 + x2 = -2
先满足 一阶 必要 条件
i 1
如果对所有 z Z(x*),z 0 有 zT x2L(x*,*)z 0
则 x=x*为问题的局部解。
例 min f(x) = x1 + x2
st c1(x) = 2 - x12 - x2 2 = 0
已经求出了 可能的局部解
2 f (x) 0
2c1(x)
i,i= 1, 2, ..., l为拉格朗日乘子(或乘数)。
拉格朗日乘子法
l
xL(x, ) f (x) i ci (x) 0
i 1
ci(x) = 0, i=1, 2, ..., l 。 空格
解上述方程组,得x*即是可能的局部解。
(式一是L(x, λ)对各个xi 的偏导数为0, λ视为常数)
zTx2L(x*,*) z 0
【这里
l
2 x
L(
x*,
*)
2
f
(
x*)
i* 2ci (x*)
i 1
】
Z(x*) {z | z Rn,ci (x*)T z 0,i 1,2, ,l}
局部解的充分条件 (选学)
定理 对于等式约束最优化问题
第五章约束问题的最优化方法
g1 ( x) [ 1 , 1 ]T
g2 ( x) x1 ,
g2 ( x) [ 1 , 0 ]T 。
g3 ( x) x2 ,
g3 ( x) [ 0 , 1 ]T 。
18
由K T条件得
x1 3 1 1 0 x 3 1 1 2 0 3 1 0 2
第七讲 约束非线性规划
约束极值及最优性条件
等式约束 不等式约束 一般约束问题
约束极值问题的算法
外点法 内点法 乘子法
1
一 、约束极值问题的最优性条件
1、约束极值问题的表示 min f ( x ) hi ( x ) 0 i 1 , 2 ,, m s .t . g j ( x ) 0 j 1 , 2 , , l
8
2 g3 ( x ) 0。 2
I ( x ) { 1 , 2 }。
x2 g2 ( x ) 0
g3 ( x ) 0
O
g1 ( x ) 0
x
x1
②如何判断一个方向是可行方向?
9
定理1:
给 定 点x Q , 记 点 x 的 积 极 约 束 指 标 集 为 I ( x )。 给 定 向 量 d , 如果对任意的 i I ( x ) 有 gi ( x )T d 0 , 则 d 是 点 x 的 可 行 方 向 。
则 向 量d 是 点 x 处 的 可 行 下 降 方 向 。
证略
③极值点的必要条件: 定理3:
设 x* Q, I ( x*)是其积极约束指标集。
f ( x) 和 gi ( x) (i I ( x*)) 在点x * 处可微,
最优性条件(非线性规划)kuhn-tucker条件
ㄡ ▽h(ㄡ )
最优性条件即:
▽h(x*)
f ( x*) *h j ( x*) j
j 1
h
二、不等式约束问题的Kuhn-Tucker条件: 考虑问题 min f(x) (fg) s.t. gi(x) ≤0 i=1,2, …,m 设 x*∈S={x|gi(x) ≤0 i=1,2, …,m} 令 I={i| gi(x*) =0 i=1,2, …,m} 称I为 x*点处的起作用集(紧约束集)。 如果x*是l.opt. ,对每一个约束函数来说,只有当它是起作用约 束时,才产生影响,如:
二、不等式约束问题的Kuhn-Tucker条件: (续) 定理(最优性必要条件): (K-T条件) 问题(fg), 设S={x|gi(x) ≤0},x*∈S,I为x*点处的起作用集,设f, gi(x) ,i ∈I在x*点可微, gi(x) ,i I在x*点连续。 向量组{▽gi(x*), i ∈I}线性无关。 如果x*----l.opt. 那么, u*i≥0, i ∈I使
Байду номын сангаас
问题
min f(x) (fgh) s.t. g(x) ≤0 h(x)=0 约束集 S={x|g(x) ≤0 , h(x)=0}
一、等式约束问题的最优性条件: 考虑 min f(x) (fh) s.t. h(x)=0 回顾高等数学中所学的条件极值: 问题 求z=f(x,y)极值 min f(x,y) 即 在ф(x,y)=0的条件下。 S.t. ф(x,y)=0 引入Lagrange乘子:λ Lagrange函数 L(x,y;λ)= f(x,y)+ λ ф(x,y)
一、等式约束性问题的最优性条件: (续) 若(x*,y*)是条件极值,则存在λ* ,使 fx(x*,y*)+ λ* фx (x*,y*) =0 fy(x*,y*)+ λ* фy(x*,y*) =0 Ф (x*,y*)=0 推广到多元情况,可得到对于(fh)的情况: min f(x) 分量形式: s.t. hj(x)=0 j=1,2, …,l 若x*是(fh)的l.opt. ,则存在υ*∈ Rl使
3不等式约束最优化问题的最优性条件
定 闭包: 设S Rn , S的闭包定义为: 义 Closure clS { x | S N ( x) , 0}.
可行方向:设S Rn , x clS, d Rn , d 0, 若存在〉0,使得
x d S, (0, ),
则称d为集合S在点x处的可行方向( feasible direction).
则
F0 G0 ,
其中G0 d Rn ci x* T d 0 , i I *
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
例1:确定: min f x x1 62 x2 22
s.t x1 2 x2 4 0
3 x1 2 x2 12 0
x1 , x2 0
F0 D .
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
仅考虑在某点起作用的约束
定理3.3.2: 在问题(3.3.1)中,假设:
(1) x*为局部最优解且I * i ci x* 0,1 i m ;
(2) f x与ci xi I * 在 x* 点可微;
(3) ci x i I \ I * 在 x* 点连续;
在点 x 2,3T处的可行下降方向.
解:x 2,3T, Ix 1,2.
c1
x
1 2
,
c2
x
3 2
.
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
f
x
2 x1 12 2x2 4
,
f
x
8 2
.
设 d d1 , d2 T , 则d T c1 x 0, d1 2d2 0;
即该问题在x*处Fritz-John条件成立.
不等式约束的最优化问题
不等式约束的最优化问题在实际生产和生活中,我们常常会遇到需要确定某种目标的最优解决方案的情况,例如,最小成本、最大利润、最长飞行时间等等。
这种针对某种优化目标的问题就是最优化问题。
当我们考虑最优化问题的时候,通常需要考虑约束条件。
约束条件即限制性条件,它将问题的解空间控制在一定范围之内,使得问题更贴近实际情况。
在最优化问题中,不等式约束是最常见的一种约束条件。
本文将从不等式约束的特点、最小二乘法和KKT条件三个方面进行阐述。
不等式约束的特点在一个包含n个变量的最优化问题中,不等式约束可以表示为:G(x) ≤ 0其中,G(x)是一个n维函数向量,称为约束函数。
它是一组由不等式构成的系统,它将限制x取值范围的空间控制在G(x)≤0的区域中。
而且,不等式约束通常在解的边界上成立。
对于不等式约束的优化问题,我们通常需要利用各种算法求解。
最小二乘法最小二乘法是一种常用的数学方法,用于寻找某一函数的最佳拟合曲线。
它通常被用于估计数据中存在误差的线性回归模型中。
同时,它也被广泛地用于优化问题中。
在解决最小二乘法问题时,我们可以使用拉格朗日乘子法,显式地添加一个不等式约束。
通过这种方式,我们可以得到方程组的解,从而得到最优解。
KKT条件在解不等式约束的最优化问题时,KKT条件是一个非常关键的思想。
KKT条件是Karush-Kuhn-Tucker条件的缩写,它是用来描述一类非线性规划问题的必要条件。
这些条件是可行性、拉格朗日对偶、互补松弛和非负性约束等方面的约束。
在不等式约束的最优化问题中,KKT条件是非常重要的,因为它们可以帮助我们建立一个完整的解题框架,并确保我们能够得到正确的结果。
它可以帮助我们确定合理的约束条件,并确保我们的优化方案具有最优性。
结论在实际生产和生活中,不等式约束的最优化问题是非常常见的。
通过使用最小二乘法和KKT条件,我们可以解决这些问题,从而得到具有最优性的解决方案。
同时,了解不等式约束的特点也是非常重要的,它可以帮助我们设计出可行的优化方案,并确保我们的方案具有最优性和可行性。
第三章 (1) 约束优化问题的最优性理论
m
iai , i
0, i
1,...,
m
i 1
如果 n 维向量 g C ,则存在一个
法向量为d的超平面分离 g 和 C,
使得 gTd 0
aiT d 0,i 1,..., m
三、一阶最优性条件
Farkas 引理
给定任意 n 维向量 a1, a2,..., am 与 g,则集合
一、一般约束最优化问题
可行域 X x Rn ci x 0,i I , ci x 0,i E .
min f x xRn
s.t. ci x 0,i E 1, , me, ci x 0,i I me 1, , m.
不同时成立!
g* i*ai*
iE
二、约束规范条件
对不等式约束最优化问题
aiT ( x*)d 0,i I ( x*) (线性化可行方向)
g*Td 0
(下降方向)
不同时成立!
g* i*ai*, i* 0,i I * iI *
起作用约束问题
i* 0?
最优解为x (0,0)
F2 : d (d1, 0)T , d1 1
D : d (d1, d2 )T , d2 0 F1 D F2 D
正则性假设成立,KT约 束规范条件不成立。
二、约束规范条件
一阶必要条件(几何特征) 根据可行方向和下降方向定义, 若 x* 为约束问题的局部最优解,则
等式约束问题
不等式约束问题
记 Ax a1(x), , am (x), ai (x) ci x;
一、一般约束最优化问题 约束优化问题的求解困难:目标函数、约束函数共同作用
拉格朗日函数求不等式约束优化问题
拉格朗日函数求不等式约束优化问题在数学和物理学中,我们经常遇到需要求解最大化或最小化函数的问题。
当存在不等式约束时,我们可以利用拉格朗日函数来解决这类优化问题。
本文将深入探讨拉格朗日函数在求解不等式约束优化问题中的应用,以便读者更深入地理解这一数学工具的使用方法和重要性。
1. 拉格朗日函数简介拉格朗日函数是数学中的一个重要概念,它常用于求解约束优化问题。
对于一个有n个变量的优化问题,如果存在m个约束条件,可以使用拉格朗日函数来将原始问题转化为一个无约束的问题。
拉格朗日函数的定义如下:L(x, λ) = f(x) + λ(g(x))其中,x表示原始的n个变量,λ表示拉格朗日乘子,f(x)表示要最大化或最小化的目标函数,g(x)表示约束条件。
通过构建拉格朗日函数,我们可以将原始的带有不等式约束的优化问题转化为一个光滑的函数的无约束优化问题。
2. 求解步骤当我们面对一个不等式约束的优化问题时,可以按照以下步骤来求解:- 我们需要构建拉格朗日函数。
将目标函数和所有约束条件组合在一起,加上拉格朗日乘子,构建出拉格朗日函数。
- 接下来,我们需要求解拉格朗日函数的梯度。
对拉格朗日函数关于变量x和拉格朗日乘子λ分别求偏导数,得到梯度向量。
然后令梯度向量等于0,求解出目标函数的极值点。
- 我们通过对求解出的极值点进行二阶导数的判定,来确定是否为极小值或者极大值。
通过这一步骤,我们可以得到不等式约束条件下的最优解。
3. 个人观点和理解拉格朗日函数在求解不等式约束优化问题中发挥着重要作用,它能够简化原始问题的求解过程,使我们可以更加方便地找到最优解。
在实际应用中,我们可以通过构建拉格朗日函数,将原始带有约束条件的优化问题转化为一个无约束的问题,进而应用一般的优化方法进行求解。
这大大提高了我们对复杂问题的求解效率和准确性。
掌握拉格朗日函数的使用方法对于解决实际问题具有重要意义。
总结回顾本文深入探讨了拉格朗日函数在求解不等式约束优化问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即该问题在x*处Fritz-John条件成立.
不等式约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
注: (1)上例说明在Fritz John条件中有可能λ0=0. 此时,目
标 函数的梯度就会从Fritz John中消失, 即Fritz John 条件实际上不包含目标函数的任何信息,仅仅表明 起作用约束函数的梯度线性相关,而这对表述最优 点没有什么实际价值.
故非有效约束也称为不起作用的约束.
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
定理3.3.1: 考虑约束最优化问题
min f ( x), xS
(3.3.2)
其中S Rn是非空集合,f : S R, 且f在
x处可微.若x是问题(3.3.2)的局部极小点, 则
F0 D .
不等式约束最优化问题的最优性条件
d T c2 x 0, 3d1 2d2 0;
d T f x 0, 8d1 2d2 0.
故该问题在x处的可行下降方向集合为
FD
{d
R2
|
1 4
d2
d1
2 3
d2,d2
0}.
由于FD ,故x一定不是问题的极小点.
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
几何最优性条件直观,但难以在实际
几何最优性条件—一阶必要条件
仅考虑在某点起作用的约束
定理3.3.2: 在问题(3.3.1)中,假设:
(1) x*为局部最优解且I * i ci x* 0,1 i m ;
(2) f x与ci xi I * 在 x* 点可微;
(3) ci x i I \ I * 在 x* 点连续;
验证 x* 0, 0T 处Fritz-John条件是否成立?
解: I * 1, 2, f x* 1, 0T , c1 x* 0,1T , c2 x* 0,1T .
取*0 0 *1 *2 0, 有
*0f x* *1c1 x* *2c2 x* 0,
*1c1 x* 0, *2c2 x* 0.
ቤተ መጻሕፍቲ ባይዱ
计算中应用.
???
将几何最优性条件转化为代数
最优性条件.
(1) Fritz John 条件 (2) Kuhn-Tucker 条件
不等式约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件 (1948)
定理3.3.3: 设 x*为问题(3.3.1)的局部最优解且
f x, ci x1 i m 在 x* 点可微,则存在非零
则
F0 G0 ,
其中G0 d Rn ci x* T d 0 , i I *
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
例1:确定: min f x x1 62 x2 22
s.t x1 2 x2 4 0
3 x1 2 x2 12 0
x1 , x2 0
可行方向:设S Rn , x clS, d Rn , d 0, 若存在〉0,使得
x d S, (0, ),
则称d为集合S在点x处的可行方向( feasible direction).
可行方向锥: S在点 x处的可行方向锥
D {d | d 0, 0,使x d S, (0, )}.
则存在非零的向量* *0 , *1 , , *m , 使得:
m
*0f x* *i ci x* 0
i 1
*i ci x* 0 i 1,2, , m
*i 0 i 0,1,2, , m
不等式约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
例2: min f x1 , x2 x1 s.t c1 x1 , x2 x13 x2 0 c2 x1 , x2 x2 0
Feasible direction cone
注:当 x int S时, S在 x 处的可行方向锥是全空间Rn .
不等式约束最优化问题的最优性条件
定
义设S下降Rn方, x向 (Sd,edsceRnnt,
direction):
d 0, 且f : S
R在点x处可微,
f ( x)T d 0,则d为f在点x处的下降方向.
下降方向锥:f在点 x处的下降方向锥
F0 {d | f ( x)T d 0}.
不等式约束最优化问题的最优性条件
可行方向锥与下降方向锥的几何解释
x F0
f (x)
S
D
在极小点处,任何 下降方向都不是可 行方向,而任何可 行方向也不是下降 方向,即,不存在 可行下降方向.
不等式约束最优化问题的最优性条件
在点 x 2,3T处的可行下降方向.
解:x 2,3T, Ix 1,2.
c1
x
1 2
,
c2
x
3 2
.
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
f
x
2 x1 12 2x2 4
,
f
x
8 2
.
设 d d1 , d2 T , 则d T c1 x 0, d1 2d2 0;
不等式约束最优化问题的最优性条件
不等式约束最优化问题
min f x
3.3.1
s.t. ci x 0, i 1,2, m,
其中f : Rn R,ci:Rn R(i 1,2,...,m).
不等式约束最优化问题的最优性条件
定 闭包: 设S Rn , S的闭包定义为: 义 Closure clS { x | S N ( x) , 0}.
定义
设(3.3.1)中的一个可行点 x 满足
有效约束:c j x 0, 则称约束 c j x 0为在
x Active
Constraint
处的有效约束或紧约束.
非有效约束: 若有 ck x 0, 则 称 ck x 0 为
inactive
在 x 处的非有效约束或松约束.
x Constraint 在可行点 处的有效约束的指标集:
有效集:I I x i ci x 0
不等式约束最优化问题的最优性条件
有效约束与非有效约束---几何解释
g1(x)=0
x
g2(x)=0
S
g3(x)=0
(1) 在点 处x ,
g1(x)≥0 和 g2 (x)≥0是有效约束; g3(x)≥0是非有效约束.
x x (2) 的非有效约束g3(x)≥0对 处的可行方向没有影响,