初二数学下册证明题
初二下册数学证明题及答案
D
A ( 1)求证: BG FG;
(2)若 AD DC 2,求 AB 的长.
B
G
C
E
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 1 / 48
精品文档
二:如图,已知矩形 ABCD,延长 CB 到 E,使 CE=CA,连结 AE 并取中点 F,连结 AE 并取中点 F,连结 BF、DF,求证 BF ⊥ DF。
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 4 / 48
精品文档 k 的图象过点 D,则其 x
于点 F, 一:解:( 1
, DE⊥ AC ABC 90°
ABC AFE.
A AC AE EAF
CAB,
ABC≌△ AFE AB AF. 连接 AG,
AG= AG,AB= AF, B D F
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 10 / 48
G
E 篇二 : 《初二数学下册证明题 ( 中等难题 _含答案 ) 》
一.计算题
21
66 ( 6)6
(6x
40 39(简便计算)
4)(3x
2)
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 7 / 48
精品文档 33
( a b)( a b)
(a
(a b c)2
b c)(a b c)
六、 (6 分 ) 、如图, P 是正方形 ABCD对角线 BD上一点, PE ⊥DC,PF⊥ BC,E、F 分别为垂足, 若 CF=3,CE=4,求 AP的长 .
七、 (8 分 ) 如图,等腰梯形 ABCD中, AD∥ BC,M、 N 分别是 AD、 BC的中点, E、 F 分别是 BM、
(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)
一、选择题1.如图,P 为ABC 的边BC 上一点,且2PC PB =,已知45ABC ∠=︒,60APC ∠=︒,则ACB ∠的度数为( )A .75︒B .80︒C .85︒D .88︒2.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒3.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+4.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .643 5.等腰三角形的底边长为6,腰长为5,则此三角形的面积为( )A .18B .20C .12D .15 6.如图,在平面直角坐标系中,点A 1在x 轴的正半轴上,B 1在第一象限,且△OA 1B 1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.如图,D 在BC 边上,ABC ADE △△≌,50EAC ∠=︒,则ADE ∠的度数为( )A .50°B .55°C .60°D .65°8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .7 9.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .105° C .55°或105° D .65°或115° 11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上D .:DAC ABC S S =1:2 12.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,在等边ABC 中,点D 在AC 边上,点E 在ABC 外部,若ACE ABD ∠=∠,CE BD =,连接AE ,DE ,则ADE 的形状是______.15.如图,在三角形ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,且AD =2CD ,AC =6,点E 是AB 上一点,连接DE ,则DE 的最小值为____.16.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10,点O 是AB 边的中点,点P 是射线AC 上的一个动点,BQ ∥CA 交PO 的延长线于点Q ,OM ⊥PQ 交BC 边于点M .当CP =1时,BM 的长为_____.17.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.18.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .19.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,等腰直角ACB △中,90ACB ∠=︒,E 为线段BC 上一动点(不含B 、C 端点),连接AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FG AC 交AC 于G 点,求证:≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 的中点. 22.在平面直角坐标系中,已知()30A -,,()0,3B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为()2,0,试求点E 的坐标;(2)如图②,若点C 在x 正半轴上运动,且3OC <,其它条件不变,连接OD ,求证:OD 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当AD CD OC -=时,求OCD ∠的度数.23.已知,如图在等边ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,连接DE 并延长DE 交AC 延长线于点,F DE FE =,过点E 作EG BC ⊥交AC 于点G .(1)求证:BD CF =;(2)当DF AB ⊥时,试判断以D E G 、、为顶点的三角形的形状,并说明理由; (3)当点D 在线段AB 上运动时,试探究AD 与CG 的数量关系,并证明你的结论. 24.如图1,将三角形纸片ABC ,沿AE 折叠,使点B 落在BC 上的F 点处;展开后,再沿BD 折叠,使点A 恰好仍落在BC 上的F 点处(如图2),连接DF .(1)求∠ABC的度数;(2)若△CDF为直角三角形,且∠CFD=90°,求∠C的度数;(3)若△CDF为等腰三角形,求∠C的度数.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(3)若Q以(2)中的速度从C点出发,同时P以原来的速度从B点出发,在△ABC的三边上逆时针运动,问:经过多少时间P、Q两点第一次相遇?在何处相遇?26.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数.【详解】解:过C作AP的垂线CD,垂足为点D.连接BD;∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°-15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°,故选A.【点睛】此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质等知识点,综合性较强,有一定的拔高难度,属于难题.2.C解析:C【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【详解】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.3.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.4.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,∴B 2B 3=23, ∵A 4B 4=8B 1A 2=8,∴B 3B 4=43,以此类推,B n B n+1的长为2n-13,∴B 6B 7的长为323,故选:C .【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.5.C解析:C【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【详解】解:如图,作底边BC 上的高AD ,则AB=5,BD=12×6=3, ∴AD=22AB BD -=2253-=4,∴三角形的面积为:12×6×4=12. 故选C .【点睛】本题考查了勾股定理和等腰三角形的性质,利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.6.B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,3-,设直线A 1A 2的解析式为y kx =-∴0k =,∴k =∴直线A 1A 2的解析式为y x =, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,2),∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,2),∴A 2x = 解得:52x =,∴点A 2的坐标为(52,2),同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律.7.D解析:D【分析】由全等可得,AB=AD ,∠BAC=∠DAE ,可得∠BAD=EAC=50°,再根据等腰三角形性质求∠B 即可.【详解】解:∵ABC ADE △△≌,∴AB=AD ,∠BAC=∠DAE ,∠B=∠ADE ,∠BAD=∠BAC-∠DAC ,∠EAC=∠DAE-∠DAC ,∠BAD=∠EAC=50°,∵AB=AD ,∴∠B=180652BAD ︒-∠=︒, ∴∠ADE=∠B=65º,【点睛】本题考查了全等三角形的性质和等腰三角形的性质,解题关键是根据全等三角形得出等腰三角形和角的度数,依据等腰三角形的性质进行计算.8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.B解析:B【分析】 由△ABC 为等边三角形,可求出∠BOA =90°,由△ADO 是等腰三角形求出∠ADO =∠AOD =30°,即可求出∠BOD 的度数.【详解】解:∵△ABC 为等边三角形,BO 为中线,∴∠BOA =90°,∠BAC =60°∴∠CAD =180°﹣∠BAC =180°﹣60°=120°,∵AD =AO ,∴∠ADO =∠AOD =30°,∴∠BOD =∠BOA +∠AOD =90°+30°=120°,故选:B .【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D .【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用 ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴= 11,,22ACD ABD S AC CDS AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC 是等腰直角三角形,从而得到∠ABC 的度数 .【详解】解:如图,连结AC ,由题意可得:2222221310,125,125,AB AC BC +==+==+=∴AC=BC ,222AB AC BC =+,∴△ABC 是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.2【分析】根据题意当时DE 的值最小根据已知条件求解即可;【详解】如图所示当时DE 的值最小如图所示∵BD 平分∠ABC ∠C =90°∴∵∴∴∴∵∴即整理得:∴又∵∴即整理得:解得:∴故答案是2【点睛】本题解析:2【分析】根据题意,当DE AB ⊥时,DE 的值最小,根据已知条件求解即可;【详解】如图所示,当DE AB ⊥时,DE 的值最小,如图所示,∵BD 平分∠ABC ,DE AB ⊥,∠C =90°,∴CD DE =,∵2AD CD =,∴2AD DE =,∴30A ∠=︒,∴30CBD ABD ∠=∠=︒,2AB CB =,∵6AC =,∴222AB AC BC =+,即22246CB CB =+,整理得:2336CB =, ∴23CB =,又∵2BD CD =,∴222BD CD BC =+,即22412CD CD =+,整理得:2312CD =,解得:2CD =,∴2DE =.故答案是2.【点睛】本题主要考查了角平分线的性质、直角三角形的性质和勾股定理,准确分析计算是解题的关键.16.5或1【分析】如图设BM=x 首先证明BQ=AP 分两种情形利用勾股定理构建方程求解即可【详解】解:如图设BM =x 在Rt △ABC 中AB =10AC =6∴BC ===8∵QB ∥AP ∴∠A =∠OBQ ∵O 是AB 的解析:5或1【分析】如图,设BM=x ,首先证明BQ=AP ,分两种情形,利用勾股定理,构建方程求解即可.【详解】解:如图,设BM =x ,在Rt △ABC 中,AB =10,AC =6,∴BC 22AB AC -22106-8,∵QB ∥AP ,∴∠A =∠OBQ ,∵O 是AB 的中点,∴OA =OB ,在△OAP 和△OBQ 中,A OBQ OA OBAOP BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAP ≌△OBQ (ASA ),∴PA=BQ=6﹣1=5,OQ=OP,∵OM⊥PQ,∴MQ=MP,∴52+x2=12+(8﹣x)2,解得x=2.5.当点P在AC的延长线上时,同法可得72+x2=12+(8﹣x)2,解得x=1,综上所述,满足条件的BM的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.17.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B 、D′、D 共线是解题关键.18.【分析】已知AB=AC 根据等腰三角形的性质可得∠B 的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD 的长再根据等角对等边可得到CD 的长即可求得BC 的长【详解】∵AB=AC ∠C=30°解析:12【分析】已知AB=AC ,根据等腰三角形的性质可得∠B 的度数,再求出∠DAC 的度数,然后根据30°角直角三角形的性质求得BD 的长,再根据等角对等边可得到CD 的长,即可求得BC 的长.【详解】∵AB=AC ,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB ⊥AD ,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.19.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析【分析】(1)由余角的性质可得F EAC ∠=∠,从而运用“角角边”证明即可;(2)作FM AC ⊥,同(1)证明过程可得FM AC BC ==,AM CE =,从而证明CD MD =,则可得M 为AC 的中点,最终可得E 点为BC 的中点.【详解】(1)∵AF AE ⊥,∴90FAG EAC ∠+∠=︒,∵FG AC ,∴90AGF ∠=︒,90FAG F ∠+∠=︒,∴F EAC ∠=∠,在AGF 与ECA △中,AGF C F EAC AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AGF ECA AAS ≌;(2)如图所示,作FM AC ⊥,由(1)可知AMF ECA △≌△,则FM AC BC ==,AM CE =,在DFM 和DBC △中,MDF CDB DMF DCB FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DFM DBC AAS △≌△, ∴CD MD =,∵3AD CD =,∴AM CM =,∴CM CE =,∵AC BC =,∴BE CE =,即:E 点为BC 的中点.【点睛】本题考查全等三角形的判定与性质,以及等腰直角三角形的性质,掌握等腰直角三角形中常考的证明模型是解题关键.22.(1)点E 的坐标为(0,2);(2)见解析;(3)60OCD ∠=︒【分析】(1)先根据ASA 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(2,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°.【详解】解:(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE=90︒,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-3,0),B (0,3),∴OA=OB=3,在△AOE 和△BOC 中,90AOE BOC OA OB OAE OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOC(ASA),∴OE=OC ,又∵点C 的坐标为(2,0),∴OC=2=OE ,∴点E 的坐标为(0,2);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如图所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,在△OPD 和△OCD 中,DP DC PDO CDO OD OD =⎧⎪∠=∠⎨⎪=⎩,∴△OPD ≌△OCD(SAS),∴OC=OP ,∠OPD=∠OCD ,∵AD-CD=OC ,∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∴∠OCB=60°.【点睛】本题主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.23.(1)证明见详解;(2)以D E G 、、为顶点的三角形的形状是等边三角形,证明见详解(3)AD =CG .证明见详解.【分析】(1)过点D 作DH ∥AC 交BC 于H ,则∠DHB=∠ACB ,由ABC 是等边三角形,可得AB=AC ,∠B=∠ACB=60°,可证△DEH ≌△FEC (AAS ),DH=FC 即可;(2)以D E G 、、为顶点的三角形的形状是等边三角形,连结DG ,由ED ⊥AB 于D ,可求∠DEB=90°-∠B=30°,由EG BC ⊥,∠ACB=60°,可得∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°可证△BHD 为等边三角形,∠BDH=60°,再证∠F=∠EGC=30°,GE=EF=DE ,结合∠GED=60°即可;(3)AD =CG 由ABC ,△BHD 为等边三角形,可得AD=HC ,可证△DEH ≌△FEC (AAS ),可得HE=CE ,由EG BC ⊥,∠ACB=60°,可得∠EGC=90°-∠GCE=30°利用含30°直角三角形性质GC=2EC=CH=AD 即可.【详解】证明:(1)过点D作DH∥AC交BC于H,则∠DHB=∠ACB,∵ABC是等边三角形,所以AB=AC,∠B=∠ACB=60°,∴∠B=∠DHB=60°,∴DB=DH,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴DH=FC,∴BD=CF;、、为顶点的三角形的形状是等边三角形,(2)以D E G连结DG,∵ED⊥AB于D,∴∠B+∠DEB=90°,∠B=60°,∴∠DEB=90°-∠B=30°,⊥,∠ACB=60°,又∵EG BC∴∠DEB+∠GED=90°,∠EGC+∠GCE=90°,∴∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°,由(1)知DH=BD,∠B=60°,∴△BHD为等边三角形,∴∠BDH=60°,∴∠HDE=90°-∠BDH=30°,∠F=∠HDE=30°,∴∠F=∠EGC=30°,∴GE=EF=DE,∴△DEG为等边三角形;(3)AD=CG.∵ABC,△BHD为等边三角形,∴AB=BC,DB=BH,∴AB-BD=BC-BH,∴AD=HC,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴HE=CE,⊥,∠ACB=60°,∵EG BC∴∠EGC+∠GCE=90°,∴∠EGC=90°-∠GCE=30°,∴GC=2EC=CH=AD,∴GC=AD.【点睛】本题考查等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定,掌握等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定是解题关键.24.(1)60°;(2)30°;(3)20°或40°.【分析】(1)由折叠的性质可知△ABF是等边三角形,即可得出结论;(2)根据折叠的性质及三角形内角和定理即可得出结论;(3)根据折叠的性质、三角形外角的性质及等腰三角形的性质表示出∠AFD,根据平角的定义表示出∠DFC,然后分三种情况讨论即可得出结论.【详解】解:(1)由折叠的性质可知:AB=AF,BA=BF,∴AB=BF=AF,∴△ABF是等边三角形,∴∠ABC=∠AFB=60°;(2)∵∠CFD=90°,∴∠BFD =90°.由折叠的性质可知:∠BAD =∠BFD ,∴∠BAC =∠BAD =90°,∴∠C =180°-∠BAC -∠ABC =180°-90°-60°=30°;(3)设∠C =x °.由折叠的性质可知,AD =DF ,∴∠FAD =∠AFD .∵∠AFB =∠FAD +∠C ,∴∠FAD =∠AFB -∠C =60°-x ,∴∠AFD =60°-x ,∴∠DFC =180°-∠AFB -∠AFD =180°-60°-(60°-x )=60°+x .∵△CDF 为等腰三角形,∴分三种情况讨论:①若CF =CD ,则∠CFD =∠CDF ,∴60°+x +60°+x +x =180°,解得:x =20°;②若DF =DC ,则∠DFC =∠C ,∴60°+x =x ,无解,∴此种情况不成立;③若DF =FC ,则∠FDC =∠C =x ,∴60°+x +x +x =180°,解得:x =40°.综上所述:∠C 的度数为20°或40°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的判定与性质,折叠的性质.分三种情况讨论是解答本题的关键.25.(1)全等,见解析;(2)Q 的运动速度为154cm /s ;(3)803s 在AB 边上,距离A 点6cm 处【分析】(1)由SAS 证明即可;(2)根据全等三角形的性质得出4BP PC cm ==,5CQ BD cm ==,则可得出答案; (3)由题意列出方程1532104x x =+⨯,解方程即可得解; 【详解】(1)∵1t s =,点Q 的运动速度与点P 的运动速度相等,∴313BP CQ cm ==⨯=,∵10AB cm =,点D 为AB 的中点,∴5BD cm =,又∵PC BC BP =-,8BC cm =,∴835PC cm =-=,∴PC BD =,又∵AB AC =,∴B C ∠=∠,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()△△BPD CQP SAS ≅;(2)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ≅,且B C ∠=∠,则4BP PC cm ==,5CQ BD cm ==,∴点P 、点Q 的运动时间4()33BPt s ==, ∴515443Q CQ t υ=== cm /s ;(3)设经过x 秒后点P 与点Q 第一次相遇, 由题意可得:1532104x x =+⨯, 解得:803x =, 803803⨯=cm , △ABC 的周长为1010828cm ++=,运动三圈:28384cm ⨯=>80cm ,84804cm -=,1046cm -=,∴经过803后点P 与点Q 第一次相遇,在AB 边上,距离A 点6cm 处. 【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,特别是利用方程的思想解决几何问题,培养学生综合解题的能力.26.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.。
初二数学证明题(精选多篇)
初二数学证明题(精选多篇)第一篇:初二数学证明题初二数学证明题1、如图,ab=ac,∠bac=90°,bd⊥ae于d,ce⊥ae于e.且bd>ce,证明bd=ec+ed.解答:证明:∵∠bac=90°,ce⊥ae,bd⊥ae,∴∠abd+∠bad=90°,∠bad+∠dac=90°,∠adb=∠aec=90°.∴∠abd=∠dac.又∵ab=ac,∴△abd≌△cae(aas).∴bd=ae,ec=ad.∵ae=ad+de,∴bd=ec+ed.2、△abc是等要直角三角形。
∠acb=90°,ad是bc边上的中线,过c 做ad的垂线,交ab于点e,交ad于点f,求证∠adc=∠bde解:作ch⊥ab于h交ad于p,∵在rt△abc中ac=cb,∠acb=90°,∴∠cab=∠cba=45°.∴∠hcb=90°-∠cba=45°=∠cba.又∵中点d,∴cd=bd.又∵ch⊥ab,∴ch=ah=bh.又∵∠pah+∠aph=90°,∠pcf+∠cpf=90°,∠aph=∠cpf,∴∠pah=∠pcf.又∵∠aph=∠ceh,在△aph与△ceh中∠pah=∠ech,ah=ch,∠pha=∠ehc,∴△aph≌△ceh(asa).∴ph=eh,又∵pc=ch-ph,be=bh-he,∴cp=eb.在△pdc与△edb中pc=eb,∠pcd=∠ebd,dc=db,∴△pdc≌△edb(sas).∴∠adc=∠bde.2证明:作oe⊥ab于e,of⊥ac于f,∵∠3=∠4,∴oe=of.(问题在这里。
理由是什么埃我有点不懂)∵∠1=∠2,∴ob=oc.∴rt△obe≌rt△ocf(hl).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠abc=∠acb.∴ab=ac.∴△abc是等腰三角形过点o作od⊥ab于d过点o作oe⊥ac于e再证rt△aod≌rt△aoe(aas)得出od=oe就可以再证rt△dob≌rt△eoc(hl)得出∠abo=∠aco再因为∠obc=∠ocb得出∠abc=∠abc得出等腰△abc41.e是射线ab的一点,正方形abcd、正方形defg有公共顶点d,问当e在移动时,∠fbh的大小是一个定值吗?并验证(过f作fm⊥ah于m,△ade全等于△mef证好了)2.三角形abc,以ab、ac为边作正方形abmn、正方形acpq1)若de⊥bc,求证:e是nq的中点2)若d是bc的中点,∠bac=90°,求证:ae⊥nq3)若f是mp的中点,fg⊥bc于g,求证:2fg=bc3.已知ad是bc边上的高,be是∠abc的平分线,ef⊥bc于f,ad与be交于g求证:1)ae=ag(这个证好了)2)四边形aefg是菱形第二篇:初二数学证明题测试例1、如图,ab∥cd,且∠abe=120°,∠cde=110°,求∠bed的度数。
初二证明题考试题及答案
初二证明题考试题及答案一、选择题1. 已知在△ABC中,AB=AC,点D在BC上,且BD=DC,那么下列说法正确的是:A. AD是△ABC的中线B. AD是△ABC的角平分线C. AD是△ABC的高线D. AD是△ABC的中线、角平分线和高线答案:D2. 在等腰三角形中,如果顶角的角平分线也是底边的高线,那么这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 不能确定答案:A二、填空题1. 在平行四边形ABCD中,若∠A=60°,则∠B的度数为______。
答案:120°2. 已知等腰三角形的底边长为6cm,腰长为5cm,那么它的高线长度为______。
答案:4cm三、解答题1. 已知在△ABC中,AB=AC,点D在BC上,且BD=DC,求证:AD是△ABC的中线、角平分线和高线。
证明:因为AB=AC,所以△ABC是等腰三角形。
又因为BD=DC,所以D是BC的中点,故AD是△ABC的中线。
在△ABD和△ACD中,有AB=AC,BD=DC,AD=AD,根据SSS(边边边)全等条件,可得△ABD≌△ACD。
因此,∠BAD=∠CAD,所以AD是△ABC的角平分线。
又因为△ABD≌△ACD,所以∠ADB=∠ADC,即AD是△ABC的高线。
综上所述,AD是△ABC的中线、角平分线和高线。
2. 在等腰三角形ABC中,AB=AC,点D是底边BC上的一点,使得AD 是底边BC的高线,求证:BD=DC。
证明:因为AB=AC,所以△ABC是等腰三角形。
又因为AD是底边BC的高线,根据等腰三角形的性质,底边的高线也是底边的中线,所以BD=DC。
因此,BD=DC得证。
2019年八下《三角形的证明》难题30题_(解析版)
八下《三角形的证明》难题30题 (解析版)1.如图,已知在△ABC 中,CD 是AB 边上的高线, BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4【答案】C.作EF BC ⊥于F ,BE 平分,,,ABC DE AB EF BC ∠⊥⊥2,EF DE ∴==1152 5.22ABCSBC EF ∴=⋅=⨯⨯=故选C. 2.已知:如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 的度数是( ) A .30° B .40° C .50° D .60° 【答案】A.试题解析:∵CM 是斜边AB 上的中线,∴CM=AM=12AB ,∴∠A=∠MCA (设为α);由翻折变换的性质得:∠DCM=∠MCA=α;∵CD ⊥AB ,∴∠DCA+∠A=90°,即3α=90°,∴∠A=α=30°.故选A. 3.如图,OP 平分∠AOB ,PA ⊥OA 于A ,PB ⊥OB 于B ,下列结论不一定成立的是( ) A .PA=PB B .PO 平分∠APB C .OA=OB D .AB 垂直平分OP【答案】D.试题解析:∵点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,∴DE=CE ,∠DOE=∠COE ,∠EDO=∠ECO=90°,在△DOE 和△COE 中DOE COEEDO ECO OE OE ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△DOE ≌△COE ,∴∠DEO=∠CEO ,OD=OC ,∴OE 平分∠DEC ,OE 垂直平分DC , ∴只有选项D 错误;选项A 、B 、C 都正确;故选D .4.如图,已知OP 平分∠AOB ,∠AOB=︒60, PC⊥OA 于点C , PD ⊥OB 于点D , EP ∥OA,交OB 于点E ,且EP=6.若点F 是OP 的中点,则CF 的长是( )A .6 B .23 C .32 D .33 【答案】D 分析:根据PE=6,根据Rt △PDE 可得PD=33,根据角平分线的性质可得PC=PD=33,根据Rt △OPC 可得OP=63,根据直角三角形斜边上的中线的性质可得CF=33.5.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB ,垂足为E .若PE=3,则两平行线AD 与BC 间的距离为 ( )A .3 B .5 C .6 D .不能确定 【答案】C .试题解析:作PF ⊥AD 于F ,PG ⊥BC 于G ,∵AP 是∠BAD 的角平分线,PF ⊥AD ,PE ⊥AB , ∴PF=PE=3, ∵BP 是∠ABC 的角平分线,PE ⊥AB ,PG ⊥BC , ∴PG=PE=3, ∵AD ∥BC , ∴两平行线AD 与BC 间的距离为PF+PG=6, 故选C .6.如图,分别以△ABC 的三边为边在BC 的同侧作正△BCE 、正△ABF 和正△ACD ,已知BC=3,高AH=1,则五边形BCDEF 的面积是( )A .3493+B .3293+C .6D .3398+ 【答案】A .∵正△ABF 和正△BCE ,∴AB=BF ,BC=BE ,∠ABC=∠FBE=60°-∠EBA ,∴△ABC ≌△FBE ,同理,∵正△ACD 和正△BCE ,∴AC=DC ,BC=EC ,∠ACB=∠DCE=60°-∠ECA ,∴△ABC ≌△DEC ,∴△ABC ≌△FBE ≌△DEC ,∴S △ABC =S △FBE =S △DEC =12×3×1=32,又∵S △BCE =12×3×3×sin60°=943,∴五边形BCDEF 的面积=S △BCE +S △FBE +S △DEC =943+32+32=3+943.故选A .7.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B=AB ,B 1C=BC ,C 1A=CA ,顺次连接A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,…按此规律,要使得到的三角形的面积超过2015,最少经过( )次操作.A .6 B .5 C .4 D .3 【答案】C 试题分析:先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可. 解:△ABC 与△A 1BB 1底相等(AB=A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A1B1B =2.同理可得,S △C1B1C =2,S △AA1C =2,∴S △A1B1C1=S △C1B1C +S △AA1C +S △A1B1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401. 故按此规律,要使得到的三角形的面积超过2015,最少经过4次操作.故选C .8.如图,△ABC 中,∠BAC=60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE=DF;②DE+DF=AD;③DM 平分∠ADF ;④AB+AC=2AE;其中正确的有( )A .1个 B .2个 C .3个 D .4个【答案】C 试题分析:①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=,DF=,从而可证明②正确;③若DM 平分∠ADF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD 、DC ,然后证明△EBD ≌△DFC ,从而得到BE=FC ,从而可证明④. 解:如图所示:连接BD 、DC .①∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴ED=DF .∴①正确. ②∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°, ∴ED=AD .同理:DF=.∴DE+DF=AD .∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠ADF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠ADF .故③错误. ④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中,∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE ﹣BE+AF+FC 又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故选:C .9.如图,∠A=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A .90° B.75° C.70° D.60° 【答案】D 解:∵AB=BC=CD=DE=EF ,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°, ∴∠BCD=180°﹣(∠CBD+∠BDC )=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD ﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED )=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE ﹣∠BDC=180°﹣90°﹣30°=60°,∴∠DEF=180°﹣(∠EDF+∠EFC )=180°﹣120°=60°.故选D .10.在△ABC 中,∠ABC=120°,若DE 、FG 分别垂直平分AB 、BC ,那么∠EBF 为( ) A .75° B .60° C .45° D .30°【答案】B 解:∵DE 、FG 分别垂直平分AB 、BC ,∴AE=BE ,BF=CF ,∴∠A=∠ABE ,∠C=∠CBF ,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选B . 11.如图:△ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD ,CE ⊥CD ,且CE=CD ,连接BD ,DE ,BE ,则下列结论:①∠ECA=165°,②BE=BC ;③AD ⊥BE ;④=1.其中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】D 解:①∵∠CAD=30°,AC=BC=AD ,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE ⊥CD ,∴∠DCE=90°, ∴∠ECA=165°∴①正确;②∵CE ⊥CD ,∠ECA=165°(已证),∴∠BCE=∠ECA ﹣∠ACB=165﹣90=75°,∴△ACD ≌△BCE (SAS ),∴BE=BC ,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC ,∴∠CAB=∠ABC=45°∴∠BAD=∠BAC ﹣∠CAD=45﹣30=15°,∵△ACD ≌△BCE ,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD ⊥BE . ④证明:如图,过D 作DM ⊥AC 于M ,过D 作DN ⊥BC 于N .∵∠CAD=30°,且DM=AC ,∵AC=AD ,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC ﹣∠ACD=15°,在△CMD 和△CND 中,,∴△CMD ≌△CND ,∴CN=DM=AC=BC ,∴CN=BN .∵DN ⊥BC ,∴BD=CD .∴④正确.所以4个结论都正确.故选D .12.如图,在△ABC 中,AB=AC ,∠BAC=50°,点D 在AC 上,作直线BD ,过C 作CE ∥BD ,若∠BCE=40°,则∠ABD 的度数是( )A .10° B .15° C .25° D .65°【答案】C 解:∵在△ABC 中,AB=AC ,∠BAC=50°,∴∠ABC=∠ACB=(180°﹣∠A )=65°,∵CE ∥BD ,∠BCE=40°,∴∠DBC=∠BCE=40°,∴∠ABD=∠ABC ﹣∠DBC=25°.故选C .13.如图,Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,下列结论:①∠ACD=∠B ;②CH=CE=EF ;③AC=AF ;④CH=HD .其中正确的结论为( ) A .①②④ B .①②③ C .②③ D .①③【答案】B 解:∵∠B 和∠ACD 都是∠CAB 的余角,∴∠ACD=∠B ,故①正确;∵CD ⊥AB ,EF ⊥AB ,∴EF ∥CD ,∴∠AEF=∠CHE ,∴∠CEH=∠CHE ,∴CH=CE=EF ,故②正确;∵角平分线AE 交CD 于H , ∴∠CAE=∠BAE , 在△ACE 和△AEF 中,,∴△ACE ≌△AFE (AAS ),∴AC=AF ,故③正确;CH=CE=EF >HD ,故④错误.故正确的结论为①②③.故选B .14.如图,△ABC 为等边三角形,D 、E 分别是AC 、BC 上的点,且AD=CE ,AE 与BD 相交于点P ,BF ⊥AE 于点F .若BP=4,则PF 的长( )A .2 B .3 C . 1 D .8【答案】A .解:∵△ABC 是等边三角形,∴AB=AC .∴∠BAC=∠C .在△ABD 和△CAE 中,,∴△ABD ≌△CAE (SAS ).∴∠ABD=∠CAE .∴∠APD=∠ABP+∠PAB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴PF=.故选;A .15.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6 B .12 C .32 D .64【答案】C .解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°, ∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°, ∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4, A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:A 6B 6=32B 1A 2=32.故选:C .16.如图,已知△ABC 中AB =AC ,BD 、CD 分别平分∠EBA 、∠ECA ,BD 交AC 于F ,连接AD. (1)当∠BAC =50°时,求∠BDC 的度数;(2)请直接写出∠BAC 与∠BDC 的数量关系; (3)求证:AD ∥BE.【答案】(1)25;BDC ∠=(2)12BDC BAC ∠=∠;(3)证明见解析. 解:(1),50,AB AC BAC =∠=65,ABC ACB ∴∠=∠=125.ACE ∴∠=,BD CD 分别平分,,ABE ACE ∠∠1122BDC DCE DBC ACE ABC ∴∠=∠-∠=∠-∠111256525.22=⨯-⨯=(2)1.2BDC BAC ∠=∠(3)过点D 作,,DN AB DK AC DM BC ⊥⊥⊥,垂足分别为点N 、K 、M.∵BD 、CD 分别平分,EBA ECA ∠∠, ,,DN AB DK AC DM BC ⊥⊥⊥,∴,DK DM DN ==∴AD 平分GAC ∠, ABD DBC ∠=∠, GAD DAC ∴∠=∠,GAC ABC ACB ∠=∠+∠,,GAD ABC ∴∠=∠//.AD BE ∴17.在△ABC 中,MP ,NO 分别垂直平分AB ,AC .(1)若BC=1Ocm ,试求出△PAO 的周长.(不用写过程,直接写出答案)(2)若AB=AC ,∠BAC=110°,试求∠PAO 的度数.(不用写过程,直接写出答案)(3)在(2)中,若无AB=AC 的条件,你运能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.【答案】(1)10cm ;(2)40°;(3)能,理由见解析.解:(1)∵MP ,NO 分别垂直平分AB ,AC ,∴AP=BP ,AO=CO ,∴△PAO 的周长=AP+PO+AO=BO+PO+OC=BC , ∵BC=1Ocm ,∴△PAO 的周长10cm ;(2)∵AB=AC ,∠BAC=110°,∴∠B=∠C=12(180°-110°)=35°, ∵MP ,NO 分别垂直平分AB ,AC ,∴AP=BP ,AO=CO ,∴∠BAP=∠B=35°,∠CAO=∠C=35°,∴∠PAO=∠BAC-∠BAP-∠CAO=110°-35°-35°=40°;(3)能.理由如下:∵∠BAC=110°,∴∠B+∠C=180°-110°=70°,∵MP ,NO 分别垂直平分AB ,AC , ∴AP=BP ,AO=CO ,∴∠BAP=∠B ,∠CAO=∠C ,∴∠PAO=∠BAC-∠BAP-∠CAO=∠BAC-(∠B+∠C )=110°-70°=40°.18.如图,在△ABC 中,CD ⊥AB 于点D,AC=4,BC=3,DB=59,(1)、求CD 、AD 的长(2)、判断△ABC 的形状,并说明理由。
八年级数学下册期末几何题证明题专题
1.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP 的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.2.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.3.(9分)如图,在梯形ABCD中,M、N分别为AD、BC的中点,E、F分别为BM、CM的中点.(1)求证:四边形MENF是平行四边形;(2)若四边形MENF的面积是梯形ABCD面积的,问AD、BC满足什么关系?4.如图,在四边形 ABCD 中,AD=12,DO=OB=5,AC=26,∠ADB=90°.(1)求证:四边形 ABCD 为平行四边形;(2)求四边形 ABCD 的面积.5、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.6、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.7、如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.8、如图,在菱形ABCD中,AB=2,∠DAB=60°。
点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD、AN。
(1)求证:四边形AMDN是平行四边形。
(2)当AM为何值时,四边形AMDN是矩形?请说明理由。
9.(6 分)如图,菱形ABCD 的对角线AC、BD 相交于点O,且DE∥AC,AE∥B D.求证:四边形AODE 是矩形.10(9 分)如图,在△ABC 中,D 是BC 边上的中点,E 是AD 边上的中点,过A 点作BC的平行线交CE 的延长线于点F,连结BF.(1)求证:四边形AFBD 是平行四边形.(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.10.(7 分)如图,在△ABC 中,AB=AC,AD 平分∠BAC 交BC 于点D,分别过点A、D作AE∥BC、DE∥AB,AE 与DE 相交于点E,连结CE.(1)求证:BD =CD.(2)求证:四边形ADCE 是矩形.11.(9 分)如图,E、F 分别是矩形ABCD 的边BC、AD 上的点,且BE =DF.(1)求证:四边形AECF 是平行四边形.(2)若四边形AECF 是菱形,且CE = 10,AB = 8,求线段BE 的长.12.(7 分)如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AB 于点E,交AC 于点F,连结DE、DF.(1)求证:∠ADE=∠DAF.(2)求证:四边形AEDF 是菱形.13.【感知】如图①,四边形ABCD、AEFG 都是正方形,可知BE =DG .【探究】当正方形AEFG 绕点A 旋转到图②的位置时,连结BE、DG.求证:BE =DG .【应用】当正方形AEFG 绕点A 旋转到图③的位置时,点F 在边AB 上,连结BE、D G.若DG =13 ,AF = 10 ,则AB 的长为.14. (10 分)如图,以△ABC 的三边为边分别作等边△ACD、△BCE、△ABF.(1)求证:四边形ADEF 是平行四边形(2)△ABC 满足什么条件时,四边形ADEF 是矩形?(3)△ABC 满足什么条件时,四边形ADEF 是菱形?20.如图,将▱ABCD 的边 DC 延长到点 E ,使 CE=DC ,连接 AE ,交 BC 于点 F . (1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠D ,连接 AC 、BE ,求证:四边形 ABEC 是矩形.18.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,且DE =21AC ,连接CE 、OE(1) 求证:四边形OCED 是平行四边形; (2) 若AD =DC =3,求OE 的长.21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB =3,BC =5,连接BD ,∠BAD 的平分线分别交BD 、BC 于点E 、F ,且AE ∥CD (1) 求AD 的长;(2) 若∠C =30°,求CD 的长.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.18. (本题满分12分)如图,DB∥AC,且DB=12AC,E是AC的中点。
人教版八年级下册数学平行四边形证明题专题训(带答案)
人教版八年级下册数学平行四边形证明题专题训练1.ABCD 中,点E 、F 是AC 上的两点,并且AE CF =.求证:四边形BFDE 是平行四边形.2.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且//,//DE AC CE BD .求证:四边形OCED 是菱形.3.如图,在ABC 中,90CAB ∠=︒,DE ,DF 是ABC 的中位线,连接EF ,AD .求证:EF AD =.4.如图,将▱AECF 的对角线EF 向两端延长,分别至点B 和点D ,且使EB =FD .求证:四边形ABCD 为平行四边形.5.如图,在四边形ABCD 中,AB CD =,BE DF =;AE BD ⊥,CF BD ⊥,垂足分别为E ,F .(1)求证:ABE △≌CDF ;(2)若AC 与BD 交于点O ,求证:AO CO =.6.如图,在ABCD中,点E,F分别在AD、BC上,且AE CF=,连接EF,AC交于点O.求证:OE OF=.7.已知:如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.8.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF =BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.AC,连接CE、OE,连接AE交9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.10.如图,在矩形ABCD中,AB=6,BC=10,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得'',且B C''恰好经过点D.到多边形AB C E(1)线段DC′的长度;(2)求ADE的面积.11.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.12.如图将矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,且CE与AD相交于点F,求证:EF=DF.13.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.14.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF,(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.15.如图,在ABCD中,过点D作DE AB=,连接AF,BF.⊥于点E,点F在边CD上,CF AE(1)求证:四边形BFDE是矩形;AD=,求DC的长度.(2)已知60∠=︒,AF是DABDAB∠的平分线,若316.如图,在▱ABCD中,对角线AC、BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形.(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.17.如图,DE是△ABC的中位线,延长DE至F,使EF=DE,连接BF.(1)求证:四边形ABFD是平行四边形;(2)求证:BF=DC.18.如图,在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF 是平行四边形.19.如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论20.如图,在矩形ABCD 中,8AB cm =,16BC cm =,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1/cm s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.参考答案:1.证明:如图,连接,BD 交AC 于,OABCD ,,,OA OC OB OD ∴==,AE CF =,OA AE OC CF ∴-=-,OE OF ∴=∴四边形BFDE 是平行四边形.2.∵////DE AC CE BD ,,∴四边形OCED 是平行四边形.∵矩形ABCD 的对角线AC ,BD 相交于点O ,∴OC=OD ,∴四边形OCED 是菱形.3.证明:∵DE 、DF 是△ABC 的中位线,∴DE ∥AB ,DF ∥AC ,∴四边形DEAF 是平行四边形,∵∠CAB =90°,∴四边形DEAF 是矩形,∴EF =AD .4.解:连接AC 交EF 于点O∵四边形AECF 为平行四边形∴OF OE =,OA OC =∵EB FD =∴OF FD OE EB +=+∴OD OB =∴四边形ABCD 为平行四边形5.【详解】(1)证明:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,∵AB CD =,BE DF =,∴ABE △≌CDF .(2)由(1)ABE △≌CDF ,∴AE CF =,∵AE BD ⊥,CF BD ⊥,∴90AEO CFO ∠=∠=︒,∵AOE COF ∠=∠,∴()AEO CFO AAS ≌∴AO CO =.6. 证明:四边形ABCD 是平行四边形,//AD BC ∴,AEO CFO在AOE △和COF 中AOE COF AEO CFO AE CF ∠=∠⎧⎪∴∠=∠⎨⎪=⎩AOE COF ∴≅OE OF ∴=.7.(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形.证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.8.证明: (1)∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点,∴AE =DE ,∵∠AFE =∠DCE , ∠AEF =∠DEC ,AE =DE ,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD,∴D是BC的中点;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AF=BD,过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.9.(1)∵四边形ABCD是菱形,∴OC=1AC,AC⊥BD,2AC,∵DE=12∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)∵在菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2,AC=1,AC⊥BD,AD=2,∵OA=12∴OD=∴在矩形OCED 中,CE =OD∴在Rt △ACE 中,AE10.解:(1)∵四边形ABCD 是矩形∴AD=BC=10,AB=CD=6,∠B=∠C=90°∵将四边形ABCE 沿直线AE 折叠,得到多边形AB′C′E , ∴AB=AB'=6,CE=C'E ,B'C'=BC=10,∠B'=∠B=90°,∠C=∠C'=90°∵8∴C'D=B'C'-B'D=2,(2)设DE=x ,则EC′=6-x ,由(1)可知∠C'=90°,C'D=2∴在Rt △C′DE 中,222(6)2x x -+=,解得:103x =∴ADE 的面积为111050102233AD DE ⋅=⨯⨯= 11.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CD BE DF=⎧⎨=⎩, ∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.12.∵四边形ABCD 是矩形,∴∠D =∠E ,AE =CD ,又∵∠AFE =∠CFD ,在△AEF 和△CDF 中,E D AFE CFD AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CDF (AAS ),∴EF =DF .13.(1)证明:在△ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC ,在△ABF 和△ADF 中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADF(SAS),∴∠AFB=∠AFD ,∵∠CFE=∠AFB ,∴∠AFD=∠CFE ,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.14.(1)在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC ,∴∠ACD=∠CAD ,∴AD=CD ,∵AB=AD ,CB=CD ,∴AB=CB=CD=AD ,∴四边形ABCD 是菱形.15.解:(1)证明:四边形ABCD 是平行四边形, //DC AB ∴,DC AB =,CF AE =,DF BE ∴=且//DC AB ,∴四边形DFBE 是平行四边形,又DE AB ⊥,∴四边形DFBE 是矩形;(2)60DAB ∠=︒,3AD =,DE AB ⊥,32AE ∴=,DE =四边形DFBE 是矩形,BF DE ∴==AF 平分DAB ∠,1302FAB DAB ∴∠=∠=︒,且BF AB ⊥, 92AB ∴==, 92CD ∴=. 16.证明:(1)∵▱ABCD ,∴AO =OC ,∵△ACE 是等边三角形,∴EO ⊥AC (三线合一)即 BD ⊥AC ,∴▱ABCD是菱形;(2)∵△ACE是等边三角形,∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形∴∠EAO=60°,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形.17.(1)∵DE是△ABC的中位线,∴DE∥AB,AB=2DE,AD=CD,∵EF=DE,∴DF=2DE,∴AB=DF,且AB∥DF,∴四边形ABFD是平行四边形;(2)∵四边形ABFD是平行四边形,∴AD=BF,且AD=CD,∴BF=DC.18.证明:∵四边形ABCD是平行四边形,∴CD=AB,AD=CB,∠DAB=∠BCD,又∵△ADE和△CBF都是等边三角形,∴DE=BF,AE=CF,∠DAE=∠BCF=60°,∴∠BCD-∠BCF=∠DAB-∠DAE,即∠DCF=∠BAE,∴△DCF≌△BAE(SAS),∴DF=BE,∴四边形BEDF是平行四边形.19.(1)证明:延长CE 交AB 于点G∵AE ⊥CE∴90AEG AEC ︒∠=∠=在AEG ∆和AEC ∆GAE CAE AE AEAEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEG ∆≅AEC ∆∴GE=EC∵BD=CD∴DE 为CGB ∆的中位线∴DE //AB∵DE=BF∴四边形BDEF 是平行四边形(2)1()2BF AB AC =- 理由如下:∵四边形BDEF 是平行四边形∴BF=DE∵D ,E 分别是BC ,GC 的中点∴BF=DE=12BG∵AEG ∆≅AEC ∆∴AG=AC BF=12(AB-AG )=12(AB-AC ).20.解:(1)在矩形ABCD 中,8AB cm =,16BC cm =, 16BC AD cm ∴==,8AB CD cm ==,由已知可得,BQ DP tcm ==,(16)AP CQ t cm ==-, 在矩形ABCD 中,90B ∠=︒,//AD BC ,当BQ AP =时,四边形ABQP 为矩形,16t t ∴=-,得8t =,故当8t s =时,四边形ABQP 为矩形;(2)AP CQ =,//AP CQ ,∴四边形AQCP 为平行四边形,∴当AQ CQ =时,四边形AQCP 为菱形16t -时,四边形AQCP 为菱形,解得6t =, 故当6t s =时,四边形AQCP 为菱形;(3)当6t s =时,16610AQ CQ CP AP cm ====-=, 则周长为41040cm cm ⨯=;面积为210880cm cm cm ⨯=.。
初中数学证明题练习5套(含答案)
初中数学证明题练习5套(含答案)(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG∴GN ∥AD ,GN=21AD∴∠DEN=∠GNM ∵AM=BM ,AG=CG∴GM ∥BC ,GM=21BC∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM=21∠BOC=60°∴∠OBM=30°∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC∴DF BG FD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC 求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
八年级三角形的证明题
八年级三角形的证明题一、等腰三角形性质相关证明题(8题)1. 已知:在△ABC中,AB = AC,AD是BC边上的中线。
求证:AD⊥BC。
- 证明:- 因为AB = AC,AD是BC边上的中线,所以BD = DC(中线的定义)。
- 在△ABD和△ACD中,AB = AC(已知),BD = CD(已证),AD = AD(公共边)。
- 所以△ABD≌△ACD(SSS)。
- 则∠ADB=∠ADC(全等三角形对应角相等)。
- 又因为∠ADB + ∠ADC = 180°(平角的定义),所以∠ADB = ∠ADC = 90°,即AD⊥BC。
2. 已知:在等腰△ABC中,AB = AC,∠A = 36°,求证:∠B = 72°。
- 证明:- 因为AB = AC,所以∠B = ∠C(等腰三角形两底角相等)。
- 又因为∠A+∠B + ∠C = 180°(三角形内角和定理),∠A = 36°。
- 设∠B = x,则∠C = x,可得方程36°+x + x = 180°。
- 2x=180° - 36°,2x = 144°,解得x = 72°,即∠B = 72°。
3. 已知:在△ABC中,AB = AC,D是AC上一点,且AD = BD = BC。
求∠A的度数。
- 证明:- 设∠A=x,因为AD = BD,所以∠ABD = ∠A=x(等边对等角)。
- 则∠BDC=∠A + ∠ABD = 2x(三角形外角性质)。
- 因为BD = BC,所以∠C = ∠BDC = 2x。
- 又因为AB = AC,所以∠ABC = ∠C = 2x。
- 根据三角形内角和定理,∠A+∠ABC+∠C = 180°,即x + 2x+2x = 180°。
- 5x = 180°,解得x = 36°,所以∠A = 36°。
北师大版八年级数学下册第一章(证明)练习题
北师大版八年级数学下册第一章(证明)练习题1.下列图形中,可以由其中一个图形通过平移得到的是 ( )A. B. C. D. 2.列命题中,其逆命题不成立的是( )A .同旁内角互补,两直线平行B .如果三角形的三边长 a ,b ,c 满足 a 2+b 2=c 2,那么这个三角形是直角三角形C .如果两个实数相等,那么它们的平方相等D .角平分线上的点到角两边的距离相等3. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.如图,在△ABC 中,BC =5,∠A =80°,∠B =70°,把△ABC 沿RS 的方向平移到△DEF 的位置,若CF =4,则下列结论中错误的是( )A. BE =4B. ∠F =30°C. AB ∥DED. DF =55.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°第4题 第5题 第6题 第7题 第8题6.如图,在△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则下列选项中AP 长不可 能是( )A .3.5B .4.2C .5.8D .77.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为( )A .48°B .36°C .30°D .24°8.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D , 则下列说法中正确的个数是( )①AD 是∠BAC 的平分线②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △ABC =1∶3.A. 1 B .2 C .3 D .49.要判定两个直角三角形全等,下列说法正确的有( )①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.①③④⑤B.①③⑤C.①③④⑤⑥D.①③④10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.6411.一个等腰三角形有一角是70°,则其余两角分别为.12.在用反证法证明命题“三角形中必有一个内角小于或等于60° ”时,首先应该假设这个三角形中_ _.13.有下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有.(填序号)14. “垂直于同一条直线的两条直线互相平行”的逆命题是,这是一个(填“真”或“假”)命题.15.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为.16.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,CD=3,AB=12,则△ABD的面积为.第16题第17题第18题第19题第20题17.如图,∠A=15°,AB=BC=CD=DE=EF,则∠MEF=________.18.如图,将一长方形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF 的面积为___ __.19.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=________.20.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(4,0),点C在第一象限内,且∠CAB=90°,BC=6.将△ABC沿x轴向右平移,当点C落在直线y=√3x-2√3上时,线段BC扫过的面积为.21. 如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC先向右平移4个单位,再向下平移2个单位,得到△A′B′C′.(1)在坐标系中画出△A′B′C′,并写出△A′B′C′各顶点的坐标.(2)求出△A′B′C′的面积.22.如图,OA⊥OB,OA=45海里,OB=15海里,我国某岛位于O点,我国渔政船在点B处发现有一艘不明国籍的渔船,自A点出发沿着AO方向匀速驶向该岛所在地O点,我国渔政船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC的长.23.如图,在△ABC中,AD平分∠BAC,交BC于点D,EF∥AD,交AC于点E,交BA的延长线于点F. 求证:△AEF为等腰三角形.24.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A,C之间选择一点B(A,B,C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40 m.(1)求点B到AD的距离;(2)求塔高CD.(结果用根号表示)25. 如图,已知E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C,D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线;(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.26.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.27. 如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.28.如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.29. 已知:如图所示,△ABC是边长为6 cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC 边上匀速移动,它们的速度分别为v P=2 cm/s,v Q=1 cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P 的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?。
初中八年级数学下册几何证明题练习
八年级数学下册几何证明题练习1.已知:△ABC 的两条高BD ,CE 交于点F ,点M ,N ,分别是AF ,BC 的中点,连接ED ,MN ; (1)证明:MN 垂直平分ED ; (2))若∠EBD=∠DCE=45°,判断以M ,E ,N ,D 为顶点的四边形的形状,并证明你的结论;2.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF=90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC ;(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及GCEC的值; (2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE=1,AB=2,当E ,F ,D 三点共线时,求DF 的长;3.已知,正方形ABCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的关系为-----------------------------------------------; (2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由; (3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.4.如图正方形ABCD ,点G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F ;(1)如图l ,写出线段AF 、BF 、EF 之间的数量关系:------------------------------;(不要求写证明过程)(2)如图2,若点G 是BC 的中点,求GFEF的比值; (3)如图3,若点O 是BD 的中点,连OE ,求EFOF的比值;5.在△ABC中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).(1)如图1,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四边形;(2)如图2,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:∠EMD=∠FND.6.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC 为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).7.菱形ABCD中,点E、F分别在BC、CD边上,且∠EAF=∠B;⑴如果∠B=60°,求证:AE=AF;⑵如果∠B=α(0°<α<90°),(1)中的结论:AE=AF是否依然成立,请说明理由;⑶如果AB长为5,菱形ABCD面积为20,BE=a,求AF的长;(用含a的式子表示)F EDC B A8.在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A ⇒B ⇒C 向终点C 运动,连接DM 交AC 于点N . (1)如图1,当点M 在AB 边上时,连接BN : ①求证:△ABN ≌△ADN ; ②若∠ABC=60°,AM=4,求点M 到AD 的距离; (2)如图2,若∠ABC=90°,记点M 运动所经过的路程为x (6≤x≤12).试问:x 为何值时,△ADN 为等腰三角形.9. 如图,矩形ABCD 中,AB=4cm ,BC=8cm ,动点M 从点D 出发,按折线DCBAD 方向以2cm/s 的速度运动,动点N 从点D 出发,按折线DABCD 方向以1cm/s 的速度运动. (1)若动点M 、N 同时出发,经过几秒钟两点相遇?(2)若点E 在线段BC 上,且BE=2cm ,若动点M 、N 同时出发,相遇时停止运动,经过几秒钟,点A 、E 、M 、N 组成平行四边形?10. 如图,矩形ABCD 中,AB=6 ,∠ABD=30°,动点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上运动,设点P 运动的时间是t 秒,以AP 为边作等边△APQ (使△APQ 和矩形ABCD 在射线AB 的同侧).(1)当t 为何值时,Q 点在线段BD 上?当t 为何值时,Q 点在线段DC 上?当t 为何值时,C 点在线段PQ 上?(2)设AB 的中点为N ,PQ 与线段BD 相交于点M ,是否存在△BMN 为等腰三角形?若存在,求出t 的值;若不存在,说明理由; ⑶(选做)设△APQ 与矩形ABCD 重叠部分的面积为s ,求s 与t 的函数关系式.。
初二数学几何证明题(5篇可选)
初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。
如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。
求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。
M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。
初二数学下册证明题(中等难题 含答案)
一:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.(1)求证:BG FG =;(2)若2AD DC ==,求AB 的长.二:如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。
DCEBGAF三:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.求证:AE 平分∠BAD.四、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D ,AB=12,AC=18,求DM 的长。
(第23题)ECDBAF五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD交于点O ,且AC ⊥BD ,DH ⊥BC 。
⑴求证:DH=21(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。
六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形?(3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明).选择题:15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为。
……第一个图 第二个图 第三个图 16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为(―1,―3),若一反比例函数xky 的图象过点D ,则其 解析式为。
初二数学-全等三角形证明经典50题
初二数学几何证明1.已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD2.已知:D 是AB 中点,/ ACB=90。
,求证:CD -AB2A3.已知:BC=DE,/ B= / E,Z C= / D, F 是CD 中点,求证:4.已知:/ 仁/2, CD=DE , EF//AB,求证:EF=AC已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C7.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD5. AE=AD+BE,求证: O6.8.已知:D 是AB 中点,/ ACB=90 °,求证:CD 1 AB29.已知:BC=DE,/ B= / E,/ C= / D, F 是CD 中点,求证:12.已知:AC 平分/ BAD , CE丄AB , / B+ / D=180 °,求证:AE=AD+BECD=DE , EF//AB,求证:EF=AC10.已知:/ 1 = / 2,c12.如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD,且点E在AD 上。
求证:BC=AB+DC。
D14.已知:AB=CD,/ A= / D,求证:/ B= / CB15. P 是/ BAC 平分线 AD 上一点,AC>AB ,求证:PC-PB<AC-AB17.已知,E 是 AB 中点,AF=BD , BD=5 , AC=7,求 DC18. ( 5 分)如图,在△ ABC 中,BD=DC ,/ 仁/2,求证:AD 丄 BC .19. ( 5分)如图,0M 平分/ POQ , MA 丄OP,MB 丄OQ , A 、B 为垂足,AB 交0M 于点N . 求证:/ OAB= /OBA16.已知/ ABC=3 / C ,Z 1 = / 2, BE 丄 AE ,求证:AC-AB=2BE20. ( 5分)如图,已知 AD // BC ,/ PAB 的平分线与/ CBA 的平分线相交于 E , CE 的连线 交 AP 于D .求证:AD+BC=AB .(6分)如图,△ ABC 中,AD 是/ CAB 的平分线,且 AB=AC+CD ,求证:/ C=2/ B22. (6分)如图①,E 、F 分别为线段 AC 上的两个动点,且 DE 丄AC 于E , BF 丄AC 于F , 若AB=CD , AF=CE , BD 交 AC 于点 M .(1) 求证:MB = MD , ME=MF(2) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立 请给予证明;若不成立请说明理由.23. ( 7分)已知:如图, DC // AB ,且DC =AE , E 为AB 的中点,(1)求证:△ AEDEBC.21.(2)观看图前,在不添辅助线的情况下,除△EBC夕卜,请再写出两个与△ AED的面积相等的三角形.(直接写出结果,不要求证明):24. (7分)如图,△ ABC中,/ BAC=90度,AB=AC, BD是/ ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F .求证:BD=2CE.25、(10分)如图: DF=CE AD=BC/ D=Z G 求证:△26、(10分)如图:AE、BC交于点M F点在AM上,求证:AM>^ ABC的中线。
初二数学证明试题
初二数学证明试题1.如图,电路中有4个电阻和一个电流表A,若没有电流通过电流表A,问电阻器断路的可能情况共有种.【答案】8+3=11种【解析】要使没有电流通过电流表A,则若总路上的电阻是断开的,其它的三个电阻无论是断开,还是通的都可以,共有23=8种情况;若总路上的电阻是通的,则每一个支路都不能是通的,所以下面的电阻一定是断开的,上面的两个电阻只要有一个是断开的即可,有3种情况.故共有11种情况.解:本题分两种情况:①若主路的电阻不通,那么这个电路必为断路.因此共有2×2×2=8种可能;②若主路的电阻通电,那么两条支路必须同时为断路,因此共有3种可能.故电阻器断路的可能情况共有8+3=11种.点评:此题的学科综合性较强,能够结合物理中的知识进行分析求解是解答本题的关键.2.有一地球同步卫星A与地面四个科研机构B、C、D、E,它们两两之间可以互相接发信息,由于功率有限,卫星及每个科研机构都不能同时向两处发送信息(如A不能同时给B、C发信息,它可先发给B,再发给C),它们彼此之间一次接发信息的所需时间如右图所示.则一个信息由卫星发出到四个科研机构都接到该信息时所需的最短时间为.【答案】4【解析】首先卫星A传递信息给B用时1(秒),然后B传给C(3秒);同时卫星传给E(1秒),信息传给D和C的时候同时进行,所有动作在4秒钟内结束.解:开始的时候,时间0秒,卫星传给B(1秒)第1秒钟时候,B传给C(3秒);同时卫星传给E(1秒),第2秒钟的时候,E传给D,所有动作在4秒钟内结束,故接到该信息时所需的最短时间为4秒,故答案为4.点评:本题主要考查推理与论证的知识点,解答本题的关键是注意卫星传递信息的同时性,此题难度不大.3.暑假期间,小丽、小杰决定定期到敬老院打扫卫生,小丽每4天去一次,小杰每6天去一次,如果8月1日他们俩都在敬老院打扫卫生,那么,他们下一次同时在敬老院打扫卫生的时间是几月几日?【答案】8月13日【解析】根据4、6的最小公倍数是12,则他们每隔12天相遇一次,所以他们应在12天以后,即第13日再相遇.解:4、6的最小公倍数是12,所以他们应在12天以后,即第13日再相遇.答:他们下一次同时在敬老院打扫卫生的时间是8月13日.点评:本题主要是利用最小公倍数进行求解.4.有人认为数学没有多少使用价值,我们只要能数得清钞票,到菜场算得出价钱这点数学知识就够了.根据你学习数学的体会,谈谈你对数学这门学科的看法.【答案】见解析【解析】可以从数学的基础性,应用的广泛性,培养严密的逻辑思维能力,人文素养,科学精神等各方面价值作简单说明.解:答案不唯一,如:数学是思维的体操,可以培养自己的逻辑思维能力、发散思维能力等. 点评:此题为开放性试题,主要是考查学生对数学的认识.5. 推理能力都很强的甲、乙、丙站成一列,丙可以看见甲、乙,乙可以看见甲但看不见丙,甲看不见乙、丙.现有5顶帽子,3顶白色,2顶黑色.老师分别给每人戴上一顶帽子(在各自不知道的情况下).老师先问丙是否知道头上的帽子颜色,丙回答说不知道;老师再问乙是否知道头上的帽子颜色,乙也回答说不知道;老师最后问甲是否知道头上的帽子颜色,甲回答说知道.请你说出甲戴了什么颜色的帽子,并写出推理过程. 【答案】见解析【解析】如果甲、乙都戴黑帽子,丙马上知道自己戴的是白帽子,如果甲戴黑帽子,甲、乙中至少有一个人戴白帽子,则乙马上知道自己戴的是白帽子. 解:甲戴的是白帽子.理由如下:因为丙说不知道,说明甲、乙中至少有一个人戴白帽子(如果甲、乙都戴黑帽子,丙马上知道自己戴的是白帽子).因为乙也说不知道,说明甲戴的是白帽子(如果甲戴黑帽子,甲、乙中至少有一个人戴白帽子,则乙马上知道自己戴的是白帽子).点评:本题主要考查了论证与推理的一些基础知识,能够找出题中的内在联系,从而求解.6. 10名棋手参加比赛,规定:每两名棋手间都要比赛一次,胜者得2分,下和各得1分,输者得0分.比赛结果表明:棋手们所得分数各不相同,前两名棋手没输过,前两名的总分之和比第三名多20分,第四名得分与后四名得分总和相等,那么前六名得分分别是多少? 【答案】17,16,13,12,11,9【解析】先设第k 名选手的得分为a k (1≤k≤10),得出a 1、a 2的值,再根据得出a 4≥12,求出a 3,再根据a 1≤a 3﹣1=12,求出a 4,最后根据a 1+a 2+a 3+…a 8+a 9+a 10=90分别求出a 5、a 6的值.解:设第k 名选手的得分为a k (1≤k≤10),依题意得:a 1>a 2>a 3>…a 9>a 10a 1≤1+2×(9﹣1)=17,a 2≤a 1﹣1=16,a 3+20=a 1+a 2,∴a 3≤13 ①,又后四名棋手相互之间要比赛=6场,每场比赛双方的得分总和为2分,∴a 7+a 8+a 9+a 10≥12,∴a 4≥12而a 3≥a 4+1≥13,②∴由①②得:a 3=13,∴a 1+a 2=33,∴a 1=17,a 2=16,又∵a 1≤a 3﹣1=12,∴a 4=12, ∵a 1+a 2+a 3+…a 8+a 9+a 10=×2=90,∴17+16+13+12+a 5+a 6+12=90,而a 5+a 6≤a 5+a 5﹣1,即:a 5≥10\frac{1}{2},又a5<a 4=12, ∴a 5=11,a 6=9,故前六名得分分别是:17,16,13,12,11,9.点评:本题考查了推理与论证;解决问题的关键是读懂题意,找到所求的量的等量关系是解题的关键.7. 图中小圆圈表示网络的结点,结点之间的连接表示它们有网线相连,相连标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,若信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为( )A .11B .10C .8D .7【答案】C【解析】先找出从结点A 向结点B 传递信息可沿A ﹣C ﹣B 和A ﹣D ﹣B 路线同时传递,再找出每条路线通过的最大信息量,然后相加即可得到答案.解:由于信息可以分开沿不同路线同时传递,所以从结点A 向结点B 传递信息可经过结点D 和结点B ;又因为从结点A 到结点D 的最大信息量为5,从结点C 到结点B 的最大信息量为3,所以从结点A 向结点B 传递信息,若信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为5+3=8. 故选C .点评:本题考查了推理与论证的方法:先分析题目所给的条件或要求,然后通过推理得到相关的结论.8. 如果甲的身高或体重数至少有一项比乙大,则称甲不亚于乙.在100个小伙子中,若某人不亚于其他99人,我们就称他为棒小伙子,那么100个小伙子中,棒小伙子最多可能有( ) A .1个 B .2个 C .50个 D .100个【答案】D【解析】因为求得最多是多少人,且如果甲的身高或体重数至少有一项比乙大,我们可把这一百个小伙子用A 1~A 100来表示,然后根据体重和身高两个条件找出答案. 解:先退到两个小伙子的情形,如果 甲的身高数>乙的身高数,且 乙的体重数>甲的体重数 可知棒小伙子最多有2人. 再考虑三个小伙子的情形,如果甲的身高数>乙的身高数>丙的身高数,且 丙的体重数>乙的体重数>甲的体重数 可知棒小伙子最多有3人.这时就会体会出小伙子中的豆芽菜与胖墩现象.由此可以设想,当有100个小伙子时,设每个小伙子为A i ,(i=1,2,…,100),其身高数为x i ,体重数为y i ,当y 100>y 99>…>y i >y i ﹣1>…>y 1且 x 1>x 2>…>x i >x i+1>…>x 100时,由身高看,A i 不亚于A i+1,A i+2,…,A 100; 由体重看,A i 不亚于A i ﹣1,A i ﹣2,…,A 1所以,A i 不亚于其他99人(i=1,2,...,100) 所以,A i 为棒小伙子(i=1,2, (100)因此,100个小伙子中的棒小伙子最多可能有 100个. 故选D .点评:本题考查推理和论证,关键注意本题有身高和体重两种情况,少有一项大,就称作不亚于,从而可求出解.9. 用1,2,3,4共可以写成不同的四位数( ) A .4个 B .12个 C .18个 D .24个【答案】D【解析】当1作千位时,可得1234,1243,1324,1342,1423,1432,6个不同的四位数.同理可得其余3个数字当千位上的数字也会有6个不同的四位数,那么可以写成24个不同的四位数.解:当1作千位上的数字时,四位数可写成1234,1243,1324,1342,1423,1432共6个; 同理,当2、3、4作千位上的数字时,也分别可写成6个不同的四位数. 因此用1、2、3、4共可写成的不同四位数的个数为4×6=24.故选D . 点评:解决本题应先找到确定一个数位上数的四位数的情况,进而得解.10.用锯锯木,锯会发热;用锉锉物,锉会发热;在石头上磨刀,刀会发热,所以物体摩擦会发热.此结论的得出运用的方法是()A.观察B.实验C.归纳D.类比【答案】C【解析】由多种现象得到一个规律属于归纳.解:由多种现象得到一个规律属于归纳.故选C.点评:本题考查归纳的形成.所谓归纳,是指通过对特例的分析来引出普遍结论的一种推理形式.它由推理的前提和结论两部分构成:前提是若干已知的个别事实,是个别或特殊的判断、陈述,结论是从前提中通过推理而获得的猜想,是普遍性的陈述、判断.。
初二数学证明试题
初二数学证明试题1.老李到办公室后,他总要完成以下事情:烧开水10分钟,洗茶杯1分钟,准备茶叶和冲茶1分钟,打扫办公室9分钟,收听新闻10分钟,问老李做好以上事情至少需要分钟时间.【答案】11分钟【解析】可以同时进行的项目为:烧开水10分钟,洗茶杯1分钟,打扫办公室9分钟,收听新闻10分钟,用时10分;再加上准备茶叶和冲茶1分钟,至少需要11分钟.解:在烧水的过程种,可以同时收听新闻,洗茶杯,打扫办公室,这个过程需要10分钟;然后再准备茶叶和冲茶需1分钟;因此至少需要10+1=11分钟.点评:解决本题的关键是找到可以同时进行的项目及所用时间.2. A、B、C、D四人参加某一期的体育彩票兑奖活动,现已知:如果A中奖,那么B也中奖;如果B中奖,那么C中奖或A不中奖;如果D不中奖,那么A中奖,C不中奖;如果D中奖,那么A也中奖,则这四个人中,中奖的人数是人.【答案】4【解析】从最后一句话出发:如果D中奖,那么A也中奖;返回到第一句,如果A中奖,那么B 也中奖;继续判断,A已经中奖,那么“如果B中奖,那么C中奖或A不中奖”的条件中,应只考虑C中将的情况.可得到如果B中奖,那么C中奖.所以一共有4个人中奖.解:根据题意,可将已知条件大致分为三类:(为叙述方便,将中奖简写为“中”)①如果A中,则B中;②如果B中,则C中或A不中;③如果D不中,则A中且C不中;已知了A中且D中,当A中时,由①知:B也中;当B中时,由②知C也中(由于A已中奖,因此A不中的条件可以舍去);因此A、B、C、D四人都中奖了,由此可得出中奖的人数为4人.故答案为:4.点评:此题主要考查了推理论证,解决本题应从所给的假设入手,然后依据题目所给的条件逐步分析判断.3.甲、乙、丙、丁和小强五位同学单循环比赛象棋,到现在为止甲已经赛了四盘,乙赛了三盘,丙赛了二盘,丁赛了一盘,则小强赛了盘.【答案】2【解析】根据甲赛的盘数,可知甲与乙、丙、丁和小强4人各赛了一盘.然后探究乙、丙、丁和小强4人之间赛的盘数(设小强赛的盘数为x),进而得到小强赛的总盘数.解:乙、丙、丁和小强除去与甲赛的一盘后,在他们之间赛的盘数分别是:2、1、0、x.即丁只和甲赛了一盘,没与乙、丙、小强比赛,则乙、丙、小强之间赛的盘数分别为2、1、x,假设丙与小强赛了一盘,那么乙赛的两盘都是与小强赛的,这与单循环比赛相矛盾,是不可能的,所以丙与乙赛了一场,乙又与小强赛了一盘,小强与甲也赛了一盘,故小强共赛了2盘.故填2.点评:解决问题的关键是读懂题意,将实际问题转化为数学问题,利用数学知识进行探讨、解答实际问题.4.有12名游客要赶往离住地40千米的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时6千米,靠走路是来不及了,唯一可以利用的交通工具只有一辆小汽车,但这辆小汽车连司机在内最多能乘5人,汽车的速度为每小时60千米.(1)甲游客说:我们肯定赶不上火车;(2)乙游客说:只要我们肯吃苦,一定能赶上火车;(3)丙游客说:赶上或赶不上火车,关键取决于我们自己.亲爱的同学,当你身处其境,一定也有自己的想法,请你就某位游客的说法,用数学知识以理其人,由于难度不同,请你慎重选择.选择(1)答对只能给3分,选择(2)答对可以给4分,选择(3)答对我们奖赏你满分6分.【答案】见解析【解析】(1)因为共有12人,这辆小汽车连司机在内最多能乘5人.所以当汽车首先载4位乘客时,其余乘客在原地不动,12位乘客分3批,计算所需要的时间和3小时进行比较即可;(2)在汽车每接送一批顾客的时候,剩下的顾客也要同时往前赶,计算所需的时间和3小时进行比较即可.解:选择(1)当汽车首先载4位乘客时,其余乘客在原地不动,12位乘客分3批,汽车共需时间:40×5=200千米,200÷60=>3,故肯定赶不上火车;选择(2)当汽车首先载4位乘客时,其余乘客以每小时6千米的速度前进,当汽车接第二批4位乘客,共需时:(40+40)÷(60+6)=,此时,乘客已走6×==≈7.7千米,当司机接走第二批4位乘客时,余下4位乘客在原地不动,汽车共走4×(40﹣7.7)+40=169.2千米<3小时×60千米/小时=180千米,说明能赶上火车.当司机接走第二批4位乘客时,余下4位乘客以每小时6千米的速度前进,由上可知,汽车走更少的路,说明更能赶上火车;选择(3):将选择(1)和选择(2)综合即可.点评:此题的难点在于计算第二种选择,注意在汽车所走的时间内,剩下的顾客一直在走,从而得到每一次汽车接送顾客时所走的路程.5.甲,乙,丙,丁,戊与小强六位同学参加乒乓球比赛,每两人都要比赛一场,到现在为止,甲已经赛了5场,乙已经赛了4场,丙已经赛了3场,丁已经赛了2场,戊已经赛了1场,小强已经赛了()A.1场B.2场C.3场D.4场【答案】C【解析】根据甲参赛了5场,则甲和每人参赛了一场,所以根据戊已经赛了1场,戊只和甲比赛了一场;再根据乙已经赛了4场,则乙和甲、丙、丁、小强各参赛了一场.根据丁已经赛了2场,则丁只和甲、乙进行了比赛;再根据丙已经赛了3场,则丙和甲、乙、小强各比赛了一场.所以小强比赛了3场.解:由于每两人比赛一场,因此每个人最多比5场.甲已经赛了5场,则说明甲和其他5人都比了一场;由此可知:甲与小强比了一场,戊只和甲赛了一场;乙赛了4场,除去和甲赛的一场外,还和其他三人各赛一场,因此这三人必为:丙、丁和小强;丁赛了2场,由上面两个人的比赛情况可知:丁只与甲、乙进行了比赛;丙赛了3场,除去和甲、丁的两场比赛,还剩下一场,而丁和戊都没有和丙比赛,因此丙剩下的一场比赛必为和小强的比赛.因此小强赛了三场,且对手为甲、乙、丙.故选C.点评:本题要首尾结合进行逐步推理.6.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A.甲B.乙C.丙D.丁【答案】B【解析】假设甲说的前半句话是正确的,即丙第一,则乙的后半句是正确的,即丁第四,则丙说的后半句应是正确的,出现矛盾,所以必须是甲说的后半句是正确的,即甲第三,所以丙说的前半句是正确的,即丁第二,所以乙说的前半句是正确的,即乙第一.解:根据分析,知第一名应是乙.故选B.点评:此类题应从假设出发,经过推理,如果得到矛盾,则假设错误,再进一步推理即可.7.已知4个矿泉水空瓶可以换矿泉水一瓶,现有12个矿泉水空瓶,若不交钱,最多可以喝矿泉水瓶()A.2瓶B.3瓶C.4瓶D.5瓶【答案】C【解析】4个矿泉水空瓶可以换矿泉水一瓶,12个矿泉水空瓶可换3瓶矿泉水,喝完后借1个空矿泉水瓶又得4个空矿泉水瓶,又可换一瓶,喝完后得一空瓶归还.所以最多可以喝矿泉水4瓶.解:12个空瓶可换12÷4=3瓶矿泉水;3瓶矿泉水喝完后借1个空矿泉水瓶又可得到4个空瓶子,可换4÷4=1瓶矿泉水,喝完后得一空瓶归还;因此最多可以喝矿泉水3+1=4瓶.故选C.点评:考查了推理与论证,本题需注意喝完3瓶矿泉水后,借1个空矿泉水瓶又可得到4个空瓶即1瓶矿泉水.8.甲、乙、丙3人从图书馆各借了一本书,他们相约在每个星期天相互交换读完的书.经过数次交换后,他们都读完了这3本书.若乙读的第三本书是丙读的第二本书,则乙读的第一本书是甲读的()A.第一本书B.第二本书C.第三本书D.不能确定【答案】B【解析】根据甲、乙、丙3人从图书馆各借了一本书,在每个星期天相互交换读完的书,得出3人交换书的所有情况,进而得出乙读的第一本书是甲读的第二本书.解:设3人分别读了a,b,c三本书,则甲:a b c乙:b c a丙:c a b,∵乙读的第三本书是丙读的第二本书,∴乙读的第一本书是甲读的第二本书.故选:B.点评:此题主要考查了推理与论证,根据已知得出交换书的所有情况是解题关键.9.你们曾经玩过“两人‘抢30’游戏”(游戏规则中规定每次每人只能说一个或两个数,谁先抢到30,谁得胜),若将“抢30”换成“抢20”.下列说法正确的个数是()(1)“抢20”游戏不公平;(2)第一个报数人一开始报“1”,就掌握获胜的主动权;(3)第一个报数人,一定能抢到20;(4)第二个报数人,一定能抢到20.A.1B.2C.3D.4【答案】A【解析】因为两人都可以说1个数或2个数,所以,甲只要保证从第二次开始所说的数与乙的数的个数的和是3,第一次所说的数的个数是20除以3的余数,即可一定抢到20.解:∵20÷3=6…2,∴只要是第一个人先说2个数,然后保证下一次所说的数的个数与第二个人所说的数的个数的和是3,就一定能抢到20;所以,游戏不公平,偏向第一个人;故选:A.点评:本题考查了游戏的公平性,读懂题意,确定出甲从第二次开始保证与乙所说的数的个数的和是3是确定出第一次所说的数的关键.10.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了.甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是()A.甲B.乙C.丙D.丁【答案】C【解析】运用反证法的方法先分别假设甲说的是实话、乙说的是实话、丁说的是实话,然后推理都得出与题设相矛盾的结论,则只有丙只有一个人说了实话.解:假设甲说的是实话,“是乙不小心闯的祸.”,则丁说的也应该是实说,这与四个小朋友中只有一个人说了实话相矛盾;假设乙说的是实话,则丁说的也应该是实说,这与四个小朋友中只有一个人说了实话相矛盾;假设丁说的是实话,乙说的是假话,则丙说:“乙说的不是实话.”应该是实话,这与四个小朋友中只有一个人说了实话相矛盾;所以四个小朋友中只有一个人说了实话,这个小朋友是丙.故选C.点评:本题考查了运用反证法的方法进行推理与论证.。
初二数学证明(含答案_证明题有过程)
18-9AB E FC D23.(本题8分).如图,已知:△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AD 于E,交BC 的延长线于F.求证:FD 2=FB.FC.24.(本题8分)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC的值; (2)若AB a FB EC ==,,求AC 的长.25.(本题8分)如图:已知△ABC 中,AB=5,BC=3,AC=4,PQ ∥AB ,P 点在AC 上(与A 、C 不重合),Q 在BC 上.(1) 当△PQC 的面积等于四边形PABQ 面积的31,求CP 的长. (2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长.(3)试问:在AB 上是否存在一点M ,使得△PQM 为等腰直角三角形,若不存在,请简要说明理由:若存在,请求出PQ 的长.23、连接FA,证明FAC Δ∽FBA Δ,由于FD FA ,命题获证。
24、法一:连接AD FC ,;法二:过F E 或者 做平行线,命题获证,在命题获证的基础上第二问求出。
25、(1)用相似CPQ Δ∽CAB Δ(2)设出x PC 表示出CQ ,利用周长列出方程,求出PC(3)当∠PQM=90°时(画图)过P 作PN ⊥AB 于N设PQ=QM=PN=MN=a∠QMB=∠ANP=90°∠B=90°-∠A=∠APN∴△MQB ∽△NAP ∽△CAB∴AN:PN=AC:BC ,BM:QM=BC:BC∴MB=3/4a ,AN=4/3a∵AB=AN+NM+MB∴3/4a+4/3a+a=5∴PQ=a=60/37当∠QPM=90°时同理有PQ=60/37当∠PMQ=90°时过P 作PN ⊥AB 于N,过Q 作QR ⊥AB 于R,过M 作MS ⊥PQ 于S设PN=QR=a则PQ=MN=2a类似前两种情况可得△RQB ∽△NAP ∽△CAB∴RB=3/4a,AN=4/3a∵AB=AN+NM+MB∴3/4a+4/3a+2a=5∴a=60/49 ∴PQ=2a=120/4926、(1)1 ::0.8=X :4.08 求出甲树高X=5.1米(2)先求墙壁上的影长展开在地上的距离 1 :0.8=1.2:X 求出X=0.96米得出落在地面上的影长一共为0.96+2.4=3.36米则 1:0.8=X:3.36 求出乙树高X=4.2米(3)台阶高0.3米投影到地面则影长为1:0.8=0.3:X 求出X=0.24 则在水平面上的总影长为0.24+0.2+4.4=4.84米则1:0.8=X:4.84求出丙树高X=6.05米(4)1.6:2=X:3.2求出X=2.56米则1:0.8=2.56:X 求出斜面上的影子落在水平面上的影长X=2.048米则丁树在水平面上的总影长为2.048+2.4=4.448 则1:0.8=X:4.448 求出丁树高X=5.56米。
八年级全等三角形简单证明题及解答(5道)
汇报人:XX
目 录
• 题目一:基本的全等三角形证明 • 题目二:利用角平分线性质证明 • 题目三:通过边边边条件证明 • 题目四:结合中线性质进行证明 • 题目五:综合应用多种性质证明 • 总结与拓展
01
题目一:基本的全等三角形证明
题目描述
• 已知三角形$ABC$和三角形$DEF$,其中$AB = DE$,$AC = DF$,$\angle BAC = \angle EDF$。求证:$\triangle ABC \cong \triangle DEF$。
由第二步可知,△BDE∽△CFD。
详细解答
4. 第四步,根据相似三角形的性质,对应边成比例,所以BD/CF=DE/DF。
5. 第五步,因为BD=AD(已知),所以AD/CF=DE/DF。又因为AE/EC=DE/EF(已知), 所以AD/CF=AE/EC。
6. 第六步,交叉相乘得AD*EC=AE*CF,即AE/AD=EC/CF。又因为∠A=∠ACF(对顶角相 等),所以△ADE∽△ACF。
第三步,根据相似三 角形的性质,有 AB/AC = BD/DC。
综上,我们证明了 AB/AC = BD/DC。
03
题目三:通过边边边条件证明
题目描述
已知
△ABC和△DEF中,AB = DE,BC = EF,AC = DF。
求证
△ABC ≌ △DEF。
题目描述
【分析】
本题主要考察全等三角形的判定方法——边边边条件。根据已知条件,我们可以 直接应用边边边定理来证明两个三角形全等。
题目描述
01
【解答】
02
证明
03
04
∵ 在△ABC和△DEF中,AB = DE,BC = EF,AC = DF(已
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证:BG FG
=;
(2)若2
==,求AB的长.
AD DC
二:如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF⊥DF。
三:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.
求证:AE平分∠BAD.
四、(本题7分)如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12,
AC=18,求DM的长。
五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交于点O ,
且AC ⊥BD ,DH ⊥BC 。
⑴求证:DH=2
1(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。
六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.
七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.
(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论;
(2)判断并证明四边形MENF 是何种特殊的四边形?
(3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明).
选择题:
15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如
图,依此规律第10个图形的周长为 。
……
第一个图 第二个图 第三个图
16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为
(―1,―3),若一反比例函数x
k y
的图象过点D ,则其 解析式为 。
M F E N D C A B
一:解:(1)证明:90ABC DE AC ∠=Q °,⊥于点F ,
ABC AFE ∴∠=∠. AC AE EAF CAB =∠=∠Q ,,
ABC AFE ∴△≌△
AB AF ∴=.
连接AG ,
AG =AG,AB =AF , Rt Rt ABG AFG ∴△≌△.
BG FG ∴=.
(2)解:∵AD =DC,DF ⊥AC ,
1
1
22AF AC AE ∴==.
30E ∴∠=°.
30FAD E ∴∠=∠=°,
AF ∴=
AB AF ∴==
二:证明:∵CE=CA AF=EF
∴CF⊥AE ∠AFC=∠EFC=90
在直角三角形AEB 中,BF 是斜边上中线
∴BF=AF
又: AD=BC CF=CF
∴△BCF≌△ADF
∠BFC=∠AFD
而∠AFD+∠DFC=AFC=90
∴∠BFC+∠DFC=∠BFD=90
∵BF⊥DF
三:证明:∵四边形ABCD 是矩形
∴∠B=∠C=∠BAD=90° AB=CD
∴∠BEF+∠BFE=90°
∵EF ⊥ED ∴∠BEF+∠CED=90°
∴∠BEF=∠CED ∴∠BEF=∠CDE
又∵EF=ED ∴△EBF ≌△CDE
∴BE=CD
∴BE=AB ∴∠BAE=∠BEA=45°
∴∠EAD=45°
∴∠BAE=∠EAD
∴AE 平分∠BAD
D C E
B G A F
四、解:延长BD 交AC 于E
∵BD⊥AD …………………1分
∴∠ADB=ADE=900
∵AD 是∠A 的平分线
∴∠BAD=EAD …………………2分
在△ABD 与△AED 中
⎪⎩
⎪⎨⎧∠=∠=∠=∠ADE ADB AD AD EAD BAD
∴△ABD ≌△AED …………………3分
∴BD=ED AE= AB=12 …………………4分
∴EC=AC -AE=18-12=6 …………………5分
∵M 是BC 的中点
∴DM=2
1EC=3 …………………7分
五:⑴证明:过D 作DE∥AC 交BC 延长线于E ……1分
∵AD ∥BC
∴四边形ACED 为平行四边形……………2分
∴CE=AD DE=AC
∵ABCD 为等腰梯形
∴BD = AC=CE
∵AC ⊥BD
∴DE ⊥BD
∴△DBE 为等腰直角三角形………………4分
∵DH ⊥BC
∴DH=21BE=21(CE+BC )=2
1(AD+BC )…………………5分 ⑵∵AD=CE ∴DBE ABCD S DH BC CE DH BC AD S ∆=⋅+=⋅+=)(2
1)(21…………7分 ∵△DBE 为等腰直角三角形 BD=DE=6 ∴186621=⨯⨯=
∆DBE S ∴梯形ABCD 的面积为18……………………………………8分
注:此题解题方法并不唯一。
六:20、(5分)
解:连结PC 。
∵四边形ABCD 是正方形,
∴AD=DC ,∠ADP=∠CDP ,
∵PD=PD ,
∴△APD ≌△CPD ,
∴AP=CP
∵四边形ABCD 是正方形,∴∠DCB=90°,
∵PE ⊥DC ,PF ⊥BC ,∴四边形PFCE 是矩形
∴PC=EF 。
∵∠DCB=90°,
∴CEF ∆Rt 在中,25432
2222=+=+=CF CE EF ,
∴5=EF ,
∴AP=CP=EF=5。
(其它方法证明也一样得分)
七、(8分) 解:(1)△AMB ≌△DMC ;△BEN ≌△CFN 2分
(2)判断四边形MENF 为菱形; 3分
证明:∵ABCD 为等腰梯形,
∴AB =CD ,∠A =∠D , 又∵M 为AD 的中点, ∴MA =MD
∴△AMB ≌△DMC ,∴BM =CM ; 4分 又∵E 、F 、N 分别为BM 、CM 、BC 中点,
∴MF =NE =12MC ,ME =NF =12
BM ,(或MF ∥NE , ME ∥NF ;) 5分 ∴EM =NF =MF =NE ;
∴四边形MENF 为菱形. 6分
(说明:第(2)问判断四边形MENF 仅为平行四边形,并正确证明的只给3分.)
(3)当h =12
BC (或BC =2h 或BC =2MN )时,MENF 为正方形. 8分
选择题:
15、32 16、x
y 3=。