第2章物理化学(双语)

合集下载

关于《物理化学》课程双语教学的几点体会

关于《物理化学》课程双语教学的几点体会

语 教学对 学生 和教 师都提 出 了很 大 的挑 战 。笔
者通 过几 年 的《 物理 化学 》 双语 教学 实 践 , 教 在 学 上有 了一些 体会 。


处理 好双语 教学 中语言 教学 和学科教
学 的关 系
选 择一本合 适 的教材 是进 行 双语教 学非 常 关键 的一步 。起初 , 我们 采 用 P t tis 教 e rAkn 等 e 授编著 的 P yi l hmsy这 一优 秀 的原 版英 h s a C e ir c t
化视 野 , 导学 生 了解 世 界 范 围 内的最 新科 技 引
握专业 学科 知识 和增 强专 业英 语应 用能 力 的双
重教学 目的。 由于 中西方文化背景 、 教育体制 等
的差 异 , 教学 既与 单纯 的使 用 英文 教材 、 双语 用 英文进行 教学有很大 的区别 , 是简单地 将 中 也不 文教学 的内容翻译成英文 , 而是应 用 中英文 两种 语 言进行教学 , 相互 渗 透 , 占一 定 比例 。尽 各 管 双语教学是 专业 知识 教学 和专业 外语 教 学 的
些补 充 内容 , 对 应 状 态 原 理 ( a fC r . 如 Lw o or e
用 的准 确 、 专业 内容表 达 的地 道 , 要 在原 版 教 但
材 中找 到深 浅相 当的教学 内容 是 不容 易 的 。此
外, 英文原版教 材 往往存 在 篇 幅 巨大 、 对性 不 针
够、 费用 昂贵 等 缺 点 , 上 述 P yi l hms y 如 hs a C e ir c t 全书共 分 2 9章 ,10多 页 , 于 总学 时 数为 8 10 对 O 的轻化工程专 业 的工科 学 生来 说并 不 合适 。 因 此 , 者从 实际情 况 出发 , 中文教 材 和英 文 原 笔 对 版教材 进 行反 复 对 照和 深 入分 析 , 吃 透 ” 英 “ 中 文教材 中的精华 部分 , 国内优 秀中文教材 的 内 按

物理化学第二章

物理化学第二章

卡诺热机工作原理
高低温热源 脱离高低温热源
p A
绝 热 压 缩
D
高温热源T2
等温膨胀
低温热源T1 等温压缩
B
绝 热 膨 胀
C
V
p
A (p1V1)
U=0, Q2=-W1=RT2ln(V2/V1)
Q=0 W4= U=CV(T2-T1)
D (p4V4)
B (p2V2)
Q=0 W2= U=CV(T1-T2)
• 化学变化及自然界发生的一切过 程进行的方向及其限度
• 第二定律是决定自然界发展方向 的根本规律
水的流动
• 水自发流动的方向:
• 从地势高的地方流向低的地方 • 自发从低处流向高处是不可能的
• 水从长江源头流至东海,损失了势能, 放出了热能。
• 1m3水从沱沱河(5000m)流到崇明岛(0m): • 热量=势能=5×107J=13.9度电能
• 常见的热机如: 汽车, 飞机, 轮船, 火力发电机等等.
• 卡诺设计了一种理想热机-卡诺热机, 此热机在高温 热源和等温热源间工作, 其工作介质是理想气体, 整 个循环过程均不存在摩擦力, 卡诺热机的循环由两个 绝热过程和两个等温过程组成.
• 卡诺证明了在相同两热源间工作的热机, 以卡诺热机 的效率为最大, 其它任何热机的效率不可能超过卡诺 热机.
• 欲长江黄河的水倒流,除非能将损失的 热量收集起来,使之全部转化为功,并 还给河水。实际上这是作不到的。
热的传递
• 长江三峡工程可将水的势能转化成清 洁的电能,每年可节约5000万吨煤。
• 三峡的电能归根到底来源于何处?

太阳
• 阳光普照大地,给地球送来了 光和热。
• 热:因温差而传递的能量

《物理化学》课程双语教学的尝试与体会

《物理化学》课程双语教学的尝试与体会

在应用化学专业 与环境 工程专业物理 化学双语教 学的尝试 , 对存在 的问题进行 了思 考 , 对该 过程 中的体 会进 行总 结 , 期 望为物理化学 双语 教学提供一些思路 和启发.
维来整合课程教学体 系知识 , 掌握课 程教学体 系所要求 的各
项能力. 另一方面 , 中英结合 , 更有助 于学生理解 和掌握物 理 化学知识 .
学课程 中进行 双语 教学 要求学 生首 先具 有 良好 的物理化 学
学习方法 , 能够较好的掌握物理化学 的基本理论 和理论 的基 本应用 , 其次要求学 生具有 较好 的英 语基 础 , 能够 自觉地 建
立一种 良好 的双语 教学环 境 . 在本 : 艾中, 我们 通过 近几 年
方面尊重物理化学英语课 程体系 , 强调培养学 生用英语 思
为教学过程 中的辅助语言 , 它们相互穿插 , 相互协调 , 达到传
授相关学科知识 的 目的. 运用双语进行教 学可增加 学生学 习
外语 的机会 , 培养学生运 用外 语 的能 使他 们 能用外 语进 b,
收 稿 日期 :0 2— 1 0 21 0 — 6
基金项 目: 湖南 省教育厅 教改项 目( 批准 号 :0 12 ) 长沙大学 基金( 2 140 ; 批准号 :09 0 3 资助项 目. 20Z 1)
教材是教学 内容和教学方法 的知 识载体 和具体体现 . 因 此, 选择 一 本 合 适 的 英 文 教 材 是 开 展 双 语 教 学 的 重 要 环 节l. 6 但是 , 据我院校本科 学生 物理 化学教 学 大纲与课 时 ] 根 要求 , 以及我们专业 学生 的英语 水平 , 目前很 难找 到合适 的 英文原版 教材. 为此 , 我们 的具体 做法是 : 物理 化学 简 明 用《 教程》 中文教材作为 主要教材 , 以英 国牛津 大学 Akn 英 文 t s i 原版教材 和中 国石 化 出版 社 出版 的《 物理 化 学 简明 双语 教 程》 为辅 助 , 同时在 网站上下 载兄 弟 院校 , : 如 中南 大学 的物 理化学双语建设 课程 的 P T, P 开展 物理 化学 双语 教学 . 样 这

物理化学课件 第2章 热力学第一定律 (1)

物理化学课件  第2章  热力学第一定律 (1)

热力学方法 •研究对象是大数量分子的集合体,研究 宏观性质,所得结论具有统计意义。
•只考虑变化前后的净结果,不考虑物质 的微观结构和反应机理。
•能判断变化能否发生以及进行到什么程 度,但不考虑变化所需要的时间。
局限性 不知道反应的机理、速率和微观性
质,只讲可能性,不讲现实性。
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
2020/12/21
第一定律的数学表达式
U = Q + W Q pedV Wf
机器循环 U =0, W = Q ,对外做功必
须吸热,第一类永动机不可能造成。
上一内容 下一内容 回主目录
返回
2020/12/21
§2.5 准静态过程与可逆过程
•功与过程 •准静态过程 •可逆过程
返回
2020/12/21
热力学能
热力学能(thermodynamic energy)以前 称为内能(internal energy),它是指系统内部 能量的总和,包括分子运动的平动能、分子
内的转动能、振动能、电子能、核能以及各
种粒子之间的相互作用位能等。
热力学能是状态函数,用符号U表示, 它的绝对值无法测定,只能求出它的变化值。
X1
下一内容 回主目录
返回
2020/12/21
状态方程
系统状态函数之间的定量关系式称为状态方 程(state equation )。
对于一定量的单组分均匀系统,状态函数 T,p,V 之间有一定量的联系。经验证明,只有两个 是独立的,它们的函数关系可表示为:
T=f (p, V) p=f (T, V) V=f (p, T) 例如,理想气体的状态方程可表示为:

物理化学概念与术语-双语学习

物理化学概念与术语-双语学习

物理化学概念与术语BET公式BET formulaDLVO理论DLVO theoryHLB法hydrophile-lipophile balance method pVT性质pVT propertyζ电势zeta potential阿伏加德罗常数Avogadro's number阿伏加德罗定律Avogadro law阿累尼乌斯电离理论Arrhenius ionization theory 阿累尼乌斯方程Arrhenius equation阿累尼乌斯活化能Arrhenius activation energy 阿马格定律Amagat law艾林方程Erying equation爱因斯坦光化当量定律Einstein's law of photochemical equivalence爱因斯坦-斯托克斯方程Einstein-Stokes equation安托万常数Antoine constant安托万方程Antoine equation盎萨格电导理论Onsager's theory of conductance半电池half cell半衰期half time period饱和液体saturated liquids饱和蒸气saturated vapor饱和吸附量saturated extent of adsorption饱和蒸气压saturated vapor pressure爆炸界限explosion limits比表面功specific surface work比表面吉布斯函数specific surface Gibbs function比浓粘度reduced viscosity标准电动势standard electromotive force标准电极电势standard electrode potential标准摩尔反应焓standard molar reaction enthalpy标准摩尔反应吉布斯函数standard Gibbs function of molar reaction标准摩尔反应熵standard molar reaction entropy /'entrəpi/标准摩尔焓函数standard molar enthalpy function [ˈenθælpi, enˈθælpi]标准摩尔吉布斯自由能函数standard molar Gibbs free energy function 标准摩尔燃烧焓standard molar combustion enthalpy标准摩尔熵standard molar entropy标准摩尔生成焓standard molar formation enthalpy标准摩尔生成吉布斯函数standard molar formation Gibbs function标准平衡常数standard equilibrium constant标准氢电极standard hydrogen electrode标准态standard state标准熵standard entropy标准压力standard pressure标准状况standard condition表观活化能apparent activation energy表观摩尔质量apparent molecular weight表观迁移数apparent transference number 表面surfaces表面过程控制surface process control表面活性剂surfactants表面吸附量surface excess表面张力surface tension表面质量作用定律surface mass action law波义尔定律Boyle law波义尔温度Boyle temperature波义尔点Boyle point玻尔兹曼常数Boltzmann constant玻尔兹曼分布Boltzmann distribution玻尔兹曼公式Boltzmann formula玻尔兹曼熵定理Boltzmann entropy theorem 玻色-爱因斯坦统计Bose-Einstein statistics泊Poise不可逆过程irreversible process不可逆过程热力学thermodynamics of irreversible processes不可逆相变化irreversible phase change布朗运动Brownian movement查理定律Charle's law产率yield敞开系统open system超电势over potential沉降sedimentation沉降电势sedimentation potential沉降平衡sedimentation equilibrium触变thixotropy粗分散系统thick disperse system催化剂catalyst单分子层吸附理论mono molecule layer adsorption单分子反应unimolecular reaction单链反应straight chain reactions弹式量热计bomb calorimeter道尔顿定律Dalton law道尔顿分压定律Dalton partial pressure law德拜和法尔肯哈根效应Debye and Falkenhagen effect德拜立方公式Debye cubic formula德拜-休克尔极限公式Debye-Huckel's limiting equation等焓过程isenthalpic process等焓线isenthalpic line等几率定理theorem of equal probability等温等容位Helmholtz free energy等温等压位Gibbs free energy等温方程equation at constant temperature低共熔点eutectic point低共熔混合物eutectic mixture低会溶点lower consolute point低熔冰盐合晶cryohydric第二类永动机perpetual machine of the second kind第三定律熵third-law entropy第一类永动机perpetual machine of the first kind缔合化学吸附association chemical adsorption 电池常数cell constant电池电动势electromotive force of cells电池反应cell reaction电导conductance电导率conductivity电动势的温度系数temperature coefficient of electromotive force电动电势zeta potential电动现象electrokinetic phenomena电功electric work电化学electrochemistry电化学极化electrochemical polarization电极电势electrode potential电极反应reactions on the electrode 电极种类type of electrodes电解池electrolytic cell电量计coulometer电流效率current efficiency电迁移electro migration电迁移率electromobility电渗electroosmosis电渗析electrodialysis电泳electrophoresis丁达尔效应Dyndall effect定容摩尔热容molar heat capacity under constant volume定容温度计Constant volume thermometer定压摩尔热容molar heat capacity under constant pressure定压温度计constant pressure thermometer定域子系统localized particle system动力学方程kinetic equations动力学控制kinetics control独立子系统independent particle system对比摩尔体积reduced mole volume对比体积reduced volume对比温度reduced temperature对比压力reduced pressure对称数symmetry number对行反应reversible reactions对应状态原理principle of corresponding state 多方过程polytropic process多分子层吸附理论adsorption theory of multi-molecular layers二级反应second order reaction二级相变second order phase change法拉第常数faraday constant法拉第定律Faraday's law法扬思-帕尼思规则Fajans- Pancth's rule反电动势back E.M.F.反渗透reverse osmosis反应分子数molecularity反应级数reaction orders反应进度extent of reaction反应热heat of reaction反应速率rate of reaction反应速率常数constant of reaction rate范德华常数van der Waals constant范德华方程van der Waals equation范德华力van der Waals force范德华气体van der Waals gases范特霍夫方程van't Hoff equation范特霍夫规则van't Hoff rule范特霍夫渗透压公式van't Hoff equation of osmotic pressure非基元反应non-elementary reactions非体积功non-volume work非依时计量学反应time independent stoichiometric reactions菲克扩散第一定律Fick's first law of diffusion 沸点boiling point沸点升高elevation of boiling point费米-狄拉克统计Fermi-Dirac statistics分布distribution分布数distribution numbers分解电压decomposition voltage分配定律distribution law分散系统disperse system分散相dispersion phase分体积partial volume分体积定律partial volume law分压partial pressure分压定律partial pressure law分子反应力学mechanics of molecular reactions分子间力intermolecular force分子蒸馏molecular distillation封闭系统closed system附加压力excess pressure弗罗因德利希吸附经验式Freundlich empirical formula of adsorption负极negative pole负吸附negative adsorption复合反应composite reaction盖·吕萨克定律Gay-Lussac law盖斯定律Hess law甘汞电极calomel electrode感胶离子序lyotropic series杠杆规则lever rule高分子溶液macromolecular solution高会溶点upper consolute point隔离法the isolation method 格罗塞斯-德雷珀定律Grotthus-Draoer's law 隔离系统isolated system根均方速率root-mean-square speed功work功函work content共轭溶液conjugate solution共沸温度azeotropic temperature构型熵configurational entropy孤立系统isolated system固溶胶solid sol固态混合物solid solution固相线solid phase line光反应photoreaction光化学第二定律the second law of actinochemistry光化学第一定律the first law of actinochemistry光敏反应photosensitized reactions光谱熵spectrum entropy广度性质extensive property广延量extensive quantity广延性质extensive property规定熵stipulated entropy过饱和溶液oversaturated solution过饱和蒸气oversaturated vapor过程process过渡状态理论transition state theory过冷水super-cooled water过冷液体overcooled liquid过热液体overheated liquid亥姆霍兹函数Helmholtz function亥姆霍兹函数判据Helmholtz function criterion 亥姆霍兹自由能Helmholtz free energy亥氏函数Helmholtz function焓enthalpy亨利常数Henry constant亨利定律Henry law恒沸混合物constant boiling mixture恒容摩尔热容molar heat capacity at constant volume恒容热heat at constant volume恒外压constant external pressure恒压摩尔热容molar heat capacity at constant pressure恒压热heat at constant pressure化学动力学chemical kinetics化学反应计量式stoichiometric equation of chemical reaction化学反应计量系数stoichiometric coefficient of chemical reaction化学反应进度extent of chemical reaction化学亲合势chemical affinity化学热力学chemical thermodynamics化学势chemical potential化学势判据chemical potential criterion化学吸附chemisorptions环境environment环境熵变entropy change in environment挥发度volatility混合熵entropy of mixing混合物mixture活度activity活化控制activation control活化络合物理论activated complex theory活化能activation energy霍根-华森图Hougen-Watson Chart基态能级energy level at ground state基希霍夫公式Kirchhoff formula基元反应elementary reactions积分溶解热integration heat of dissolution吉布斯-杜亥姆方程Gibbs-Duhem equation吉布斯-亥姆霍兹方程Gibbs-Helmhotz equation吉布斯函数Gibbs function吉布斯函数判据Gibbs function criterion吉布斯吸附公式Gibbs adsorption formula吉布斯自由能Gibbs free energy吉氏函数Gibbs function极化电极电势polarization potential of electrode极化曲线polarization curves极化作用polarization极限摩尔电导率limiting molar conductivity几率因子steric factor(空间位阻因数,空间因子) 计量式stoichiometric equation计量系数stoichiometric coefficient价数规则rule of valence简并度degeneracy 键焓bond enthalpy胶冻broth jelly胶核colloidal nucleus胶凝作用demulsification胶束micelle胶体colloid胶体分散系统dispersion system of colloid胶体化学collochemistry胶体粒子colloidal particles胶团micelle焦耳Joule焦耳-汤姆生实验Joule-Thomson experiment焦耳-汤姆生系数Joule-Thomson coefficient焦耳-汤姆生效应Joule-Thomson effect焦耳定律Joule's law接触电势contact potential接触角contact angle节流过程throttling process节流膨胀throttling expansion节流膨胀系数coefficient of throttling expansion结线tie line结晶热heat of crystallization解离化学吸附dissociation chemical adsorption 界面interfaces界面张力surface tension浸湿immersion wetting浸湿功immersion wetting work精馏rectify聚(合)电解质polyelectrolyte聚沉coagulation聚沉值coagulation value绝对反应速率理论absolute reaction rate theory绝对熵absolute entropy绝对温标absolute temperature scale绝热过程adiabatic process绝热量热计adiabatic calorimeter绝热指数adiabatic index卡诺定理Carnot theorem卡诺循环Carnot cycle开尔文公式Kelvin formula柯诺瓦洛夫-吉布斯定律Konovalov-Gibbs law 科尔劳施离子独立运动定律Kohlrausch's Lawof Independent Migration of Ions可能的电解质potential electrolyte可逆电池reversible cell可逆过程reversible process可逆过程方程reversible process equation可逆体积功reversible volume work可逆相变reversible phase change克拉佩龙方程Clapeyron equation克劳修斯不等式Clausius inequality克劳修斯-克拉佩龙方程Clausius-Clapeyron equation控制步骤control step库仑计coulometer扩散控制diffusion controlled拉普拉斯方程Laplace's equation拉乌尔定律Raoult law兰格缪尔-欣谢尔伍德机理Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式Langmuir adsorption isotherm formula雷利公式Rayleigh equation冷冻系数coefficient of refrigeration冷却曲线cooling curve离解热heat of dissociation离解压力dissociation pressure离域子系统non-localized particle systems离子的标准摩尔生成焓standard molar formation of ion离子的电迁移率mobility of ions离子的迁移数transport number of ions离子独立运动定律law of the independent migration of ions离子氛ionic atmosphere离子强度ionic strength理想混合物perfect mixture理想气体ideal gas理想气体的绝热指数adiabatic index of ideal gases理想气体的微观模型micro-model of ideal gas 理想气体反应的等温方程isothermal equation of ideal gaseous reactions理想气体绝热可逆过程方程adiabatic reversible process equation of ideal gases理想气体状态方程state equation of ideal gas 理想溶液ideal solutions理想稀溶液ideal dilute solution理想液态混合物perfect liquid mixture粒子particles粒子的配分函数partition function of particles 连串反应consecutive reactions链的传递物chain carrier链反应chain reactions量热熵calorimetric entropy量子统计quantum statistics量子效率quantum yield临界参数critical parameter临界常数critical constant临界点critical point临界胶束浓度critical micelle concentration临界摩尔体积critical molar volume临界温度critical temperature临界压力critical pressure临界状态critical state零级反应zero order reaction流动电势streaming potential流动功flow work笼罩效应cage effect路易斯-兰德尔逸度规则Lewis-Randall rule of fugacity露点dew point露点线dew point line麦克斯韦关系式Maxwell relations麦克斯韦速率分布Maxwell distribution of speeds麦克斯韦能量分布Maxwell distribution of energy 毛细管凝结condensation in capillary毛细现象capillary phenomena米凯利斯常数Michaelis constant摩尔电导率molar conductivity摩尔反应焓molar reaction enthalpy摩尔混合熵mole entropy of mixing摩尔气体常数molar gas constant摩尔热容molar heat capacity摩尔溶解焓mole dissolution enthalpy摩尔稀释焓mole dilution enthalpy内扩散控制internal diffusions control内能internal energy内压力internal pressure能级energy levels能级分布energy level distribution能量均分原理principle of the equipartition of energy能斯特方程Nernst equation能斯特热定理Nernst heat theorem凝固点freezing point凝固点降低lowering of freezing point凝固点曲线freezing point curve凝胶gelatin凝聚态condensed state凝聚相condensed phase浓差超电势concentration over-potential浓差极化concentration polarization浓差电池concentration cells帕斯卡pascal泡点bubble point泡点线bubble point line配分函数partition function配分函数的析因子性质property that partition function to be expressed as a product of the separate partition functions for each kind of state 碰撞截面collision cross section碰撞数the number of collisions偏摩尔量partial mole quantities平衡常数(理想气体反应)equilibrium constants for reactions of ideal gases平动配分函数partition function of translation 平衡分布equilibrium distribution平衡态equilibrium state平衡态近似法equilibrium state approximation 平衡状态图equilibrium state diagram平均活度mean activity平均活度系统mean activity coefficient平均摩尔热容mean molar heat capacity平均质量摩尔浓度mean mass molarity平均自由程mean free path平行反应parallel reactions破乳demulsification铺展spreading普遍化范德华方程universal van der Waals equation其它功the other work气化热heat of vaporization 气溶胶aerosol气体常数gas constant气体分子运动论kinetic theory of gases气体分子运动论的基本方程foundamental equation of kinetic theory of gases气溶胶aerosol气相线vapor line迁移数transport number潜热latent heat强度量intensive quantity强度性质intensive property亲液溶胶hydrophilic sol氢电极hydrogen electrodes区域熔化zone melting热heat热爆炸heat explosion热泵heat pump热功当量mechanical equivalent of heat热函heat content热化学thermochemistry热化学方程thermochemical equation热机heat engine热机效率efficiency of heat engine热力学thermodynamics热力学第二定律the second law of thermodynamics热力学第三定律the third law of thermodynamics热力学第一定律the first law of thermodynamics热力学基本方程fundamental equation of thermodynamics热力学几率thermodynamic probability热力学能thermodynamic energy热力学特性函数characteristic thermodynamic function热力学温标thermodynamic scale of temperature热力学温度thermodynamic temperature热熵thermal entropy热效应heat effect熔点曲线melting point curve熔化热heat of fusion溶胶colloidal sol溶解焓dissolution enthalpy溶液solution溶胀swelling乳化剂emulsifier乳状液emulsion润湿wetting润湿角wetting angle萨克尔-泰特洛德方程Sackur-Tetrode equation三相点triple point三相平衡线triple-phase line熵entropy熵判据entropy criterion熵增原理principle of entropy increase渗透压osmotic pressure渗析法dialytic process生成反应formation reaction升华热heat of sublimation实际气体real gas舒尔采-哈迪规则Schulze-Hardy rule松驰力relaxation force松驰时间time of relaxation速度常数reaction rate constant速率方程rate equations速率控制步骤rate determining step塔费尔公式Tafel equation态-态反应state-state reactions唐南平衡Donnan equilibrium淌度mobility特鲁顿规则Trouton rule特性粘度intrinsic viscosity体积功volume work统计权重statistical weight统计热力学statistic thermodynamics统计熵statistic entropy途径path途径函数path function外扩散控制external diffusion control完美晶体perfect crystalline完全气体perfect gas微观状态microstate微态microstate韦斯顿标准电池Weston standard battery维恩效应Wien effect 维里方程virial equation维里系数virial coefficient稳流过程steady flow process稳态近似法stationary state approximation无热溶液athermal solution无限稀溶液solutions in the limit of extreme dilution物理化学Physical Chemistry物理吸附physisorptions吸附adsorption吸附等量线adsorption isostere吸附等温线adsorption isotherm吸附等压线adsorption isobar吸附剂adsorbent吸附量extent of adsorption吸附热heat of adsorption吸附质adsorbate析出电势evolution or deposition potential析因子性质property that partition function to be expressed as a product of the separate partition functions for each kind of state稀溶液的依数性colligative properties of dilute solutions稀释焓dilution enthalpy系统system系统点system point系统的环境environment of system相phase相变phase change相变焓enthalpy of phase change相变化phase change相变热heat of phase change相点phase point相对挥发度relative volatility相对粘度relative viscosity相律phase rule相平衡热容heat capacity in phase equilibrium 相图phase diagram相倚子系统system of dependent particles悬浮液suspension循环过程cyclic process压力商pressure quotient压缩因子compressibility factor压缩因子图diagram of compressibility factor亚稳状态metastable state盐桥salt bridge盐析salting out阳极anode杨氏方程Young's equation液体接界电势liquid junction potential液相线liquid phase lines一级反应first order reaction一级相变first order phase change依时计量学反应time dependent stoichiometric reactions逸度fugacity逸度系数coefficient of fugacity阴极cathode荧光fluorescence永动机perpetual motion machine永久气体Permanent gas有效能available energy原电池primary cell原盐效应salt effect增比粘度specific viscosity憎液溶胶lyophobic sol沾湿adhesional wetting沾湿功the work of adhesional wetting折射率index of refraction真溶液true solution真实电解质real electrolyte真实气体real gas真实迁移数true transference number振动配分函数partition function of vibration振动特征温度characteristic temperature of vibration蒸气压下降depression of vapor pressure正常沸点normal point正吸附positive adsorption支链反应branched chain reactions直链反应straight chain reactions指前因子pre-exponential factor质量作用定律mass action law制冷系数coefficient of refrigeration中和热heat of neutralization轴功shaft work转动配分函数partition function of rotation转动特征温度characteristic temperature of vibration转化率convert ratio转化温度conversion temperature状态state状态方程state equation状态分布state distribution状态函数state function准静态过程quasi-static process准一级反应pseudo first order reaction自动催化作用auto-catalysis自发过程spontaneous process自由度degree of freedom自由度数number of degree of freedom自由焓free enthalpy自由能free energy自由膨胀free expansion组分数component number最低恒沸点lower azeotropic point最高恒沸点upper azeotropic point最佳反应温度optimal reaction temperature 最可几分布most probable distribution最可几速率most propable speed。

物理化学英文2The First Law

物理化学英文2The First Law

d H nCpdT
T2
H n (a bT c / T 2 )dT
T1
T2
T2
T2
H na dT nb TdT nc dT / T 2
T1
T1
T1
H
naT
1 2
nb(T22
T12 )
ncT12
1 T1
BC
Hess’s Law
products C
• The enthalpy change for an overall reaction is the sum of the enthalpy changes of the individual reactions into which a reaction may be divided.
pex
pgas
pex
pgas
Indicator Diagram: compression
10
T = 273 K
8
6
pex
4
2
reversible work
0
0
Vf5
10
additional irreversible work
Vi 15
20
Isothermal Reversible Work
V2
w pexdV
Hess’ Law and Hf0
• For the reaction 2A + B 3C + D,
H0 3Hf0(C) + Hf0(D) - 2Hf0(A) - Hf0(B)
• For the general reaction SnJJ = 0, H0SnJHf0(J)
• Given Hf0 values for all the reactants and products, H0 may be calculated for any reaction.

山东大学化学与化工学院

山东大学化学与化工学院

山东大学化学与化工学院《物理化学(2)》理论课程教学大纲编写人:张树永审定人:编制时间:2017年4月审定时间:一、课程基本信息:二、课程描述(不超过200字,须提供中、英文对照描述)物理化学是化学专业的主干基础课程。

以数学、物理学和物理化学(1)为基础,为后续化学课程的学习以及学生未来从事化学研究和开发工作奠定基础。

物理化学(2)主要包括化学动力学、电化学、表面化学、胶体化学、催化化学、光化学、溶液化学等内容。

其蕴含的方法论知识主要包括:变化过程的表示、相关参数的表征、科学研究的特殊方法、一般方法和化学学科思维等。

物理化学(2)具有完善的知识框架和系统的学科思维体系,对学生理解、思考和判断化学现象,提出、分析和解决化学相关问题具有重要的意义。

通过学习物理化学(2),学生可以发展思维能力、批判精神和创新意识。

Physical chemistry is one of the most important foundation courses for chemistry major. This course sets its base on the advanced mathematics and college physics, provides solid supports for the subsequent courses for chemical major, and strongly backs up the future development of students in chemistry and other related careers. Physical chemistry course covers many chemistry branches such as kinetics, electrochemistry, surface chemistry, colloidal chemistry, catalysis chemistry, photochemistry and solution chemistry etc. Physical chemistry is an accumulation of the important weltanschauung and methodologies of chemistry discipline, including the way to describe change processes, determination of some important physo-chemical parameters, the special method to solve definite problems and the general way of thinking. It has perfect knowledge network and systematic patterns of thinking. It is helpful for students to understand, reflect on and comment on the chemicalphenomena, to find, analyze and solve chemistry and related problems. Physical chemistry (2) pays much more attention to cultivate the thinking ability, critical spirit and innovation consciousness of the students.三、课程教学目标和教学要求【教学目标】通过学习学生可以形成系统的化学理论框架,掌握化学学科的思维方式和解决问题的思路和方法,增强发现和提出问题,对问题进行综合分析,提出解决问题的方案并对方案的可行性和局限性进行评价的能力,养成批判精神、创新意识,发展应用能力,树立正确的世界观、人生观、价值观,能够从化学哲学的角度观察和思考化学学科的发展。

《物理化学》课程双语教学的实践与探讨

《物理化学》课程双语教学的实践与探讨
团教 育 学 院 学 报 ,09 () 7 一7 . 2 0 ,5 :O 2
( 责任编辑 : 舒
文)
《 理 化 学 》 程 双 语 教 学 的 实 践 与 探 讨 物 课
石河 子大学化学 化工学 院 李 洪玲 杜志坚 乔 秀文 曾宪 佳
[ 摘 要] 物理化学是化学类专业学生学习的一 门重要基础课 . 是后 续专业课的基础 , 通常在大二开设 , 学生有一定
交流, 开课前公布任课教师的各种联系方式, 方便学生随时进

合 理 的 教 学模 式 是 教 学效 果 的 核 心
行沟通; 为更好了解学生学习过程中遇到的困难及时调整教学
环节做好各种准备。
《 物理化学》 四大” 是“ 基础化学课程之一, 学科自身的系统
性、 规律性和逻辑性较强。 虑到内容的难易程度以及学生已

点, 采用中文提示, 并用汉语作必要的讲解和补充说明, 同时建 议学生参看教材的相关内容。在课后辅导过程中, 针对课堂教
学和看书、 做练习中所反映出的问题, 与学生进行多种方式的 沟通。如充分利用课间 1 分钟, O 在课间, 根据学生学习中出现 的问题集中讲解; 利用网络, 通过大学教育在线《 物理化学》 网 络课程, 开展专题讨论和讲座; 通过 Q Q或 E a 进行面对面 mi l
展动态, 培养学生参与世界先进文化交流。2 世纪初, 1 我国就
上说出来, 以提高学生学习的兴趣。
另外, 我们在实施《 物理化学》 课程部分章节双语教学过程 中, 在确保教学效果的前提下, 从课堂教学到课外作业、 专题讨 论、 测试等教学环节都以英语的形式体现, 并且在英语讲授中
注意引导学生用英 语理 解所讨 论 的问题 ; 于教学重 点 和难 对

大学物理化学课件第二章

大学物理化学课件第二章

Joule (1818~1889)
Mayer (1814~1878)
Helmholtz (1821~1894)
是热力学第一定律的奠基人
Development of Physical Chemistry
Thomson 即 Kelvin (1824~1907)
Clausius (1822~1888)
是热力学第二定律的创始人



What is Green Chemistry? Green Chemistry is the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. The principles of Green Chemistry
Interface Structural Chemistry, Molecular Reaction Kinetics, Laser Chemistry etc
The
Байду номын сангаас
most important development for Physical Chemistry is its multidisciplinary and interdisciplinary collaborations.
物理化学课程的内容
基本定律 热力学 应用 统计热力学 动力学 宏观动力学 微观动力学 电极过程动力学 第一定律 相平衡 化学平衡 可逆电池 表面化学 胶体 第二定律

物理化学双语教学课程建设探讨

物理化学双语教学课程建设探讨

1物理化学双语教学课程建设的重要性
住 我 国 , 语 教 学 是 指 敦 学 过 程 使 用 两 种 语 言 作 为 媒 介 , 积 以僻 语 作为第 ‘ 言 , 主要 以为 英语作 为第二 语 言进 行相 瓦结 合 语 ‘ 的课 堂教 学方法 。 “ 语教 学 “ 足一 门语 言课 ,不是 以掌握语 双 不 言 为 ¨的,双语 教学 中语言 只足 工具 ,根本 目的是 为 了更 好地提 高 学生 学科知 识和 能力 的掌握 ,但 绝不 是语 言教学 与专业 知识 的 简 单相 加 , 而是 两首相融 合 的过程 , 既 能 替代 正 规的外语 教 学, 也不能 为了追求 时髦 而降低 课程或 整个 学科 的教育 质量 。叔语 敦 学 阿临 多项挑 战 ,包 括教学 观念 、课 设 置、师 资力最 、语 占环 境 等方 面 ,所 以对 丁物理化 学双 语敦 学课程 的建设 和教 学模式 要 符合 实事 求是 的规律 ,也要 有计划 有步 骤 的进 行 。这也 为物理 化 学教 育 ] 作者提 出了新 的课 题要 求 ,教 材 的选 取 、教学 大纲 的 设 _ 定 、教 学 法 的选取 、师 资要求 等等 郜是值 得探 讨的课题 。
c riu u o sr ci n o i n u l d c t ni v l e a y a p c s a c r i gt h h r ce it so h sc l h m ia o se u rc lm c n t t f l g a e u ai ov di m n s e t , c o d n te c aa trsi f y ia e c l u r u o b i o n n o c p c c Ke w o d : i n u l d c to y r s b l g a u a in; p y i a h m it i e h s l e sr c c y; c ri uac n t c in u c l o s u r to

物理化学课件第2章热力学第二定律

物理化学课件第2章热力学第二定律

热不是系统的状态函数,所以要分别计算三 个过程的热: 理想气体定温过程,U=0,Q=W
卡诺定理 熵 熵变计算 自由能 热力学关系 G计算 习题课
24
S= 191 JK-1
实际过程的热温商: (a) Q/T= nR ln (p1 / p2) = 191 JK-1 S= Q/T 可逆 (b) Q/T=0; S>Q/T 不可逆过程
卡诺定理 熵 熵变计算 自由能 热力学关系 G计算 习题课
三、热传导过程
19
求算S的依据:
1.熵是系统的状态性质, S只取决于始终态,而
与变化途径无关;
2.无论是否是可逆过程,在数值上
dS =Qr/T; (Qr=TdS)
因此需设计可逆过程,求Qr
3.熵是容量性质,具有加和性。
S=SA +SB
Qr Qr Qr T T A T A B
B A B


B
其积分值与途径无关
A

V
S S B S A
A
def B
Qr
T

dS
def
Q r
T
单位:JK-1 , 容量性质
G计算
反证法
T2
Q2 Q2
R
W'
I
W
Q1
Q1 '
T1
卡诺定理告诉人们:提高热机效率的有效途径是加 大两个热源之间的温差。
卡诺定理

熵变计算 自由能 热力学关系
G计算
习题课
11
卡诺定理热温商:( Clausius
1850年)
W Q2 + Q1 T2 T1 R Q2 Q2 T2

《物理化学》的中英文翻译

《物理化学》的中英文翻译

《物理化学》的中英文翻译第一篇:《物理化学》的中英文翻译复习《物理化学》过程中,顺便整理了专业名词的翻译,大家凑合着,依我看,简单的会考汉译英,复杂的会考英译汉。

不管怎么样,中文英文背过最好。

如果有错误,赶紧的,说。

1多相系统 heterogeneous system2自由度degree of freedom3相律 phase rule4独立组分数 number of independent component5凝聚系统 condensed system6三相点 triple point7超临界流体 supercritical fluid8超临界流体萃取supercritical fluid extraction9超临界流体色谱supercritical fluid chromatography10泡点 bubbling point11露点dew point12杠杆规则 level rule13连结线 tie line14部分蒸馏(分馏)fractional distillation15缔合分子 associated molecule16最低恒沸点 minimum azeotropic point17最低恒沸混合物low-boiling azeotrope18无水乙醇(绝对乙醇)absolute ethyl alcohol19最高恒沸点maximum azeotropic point20会溶点 consolute point21共轭层 conjugate layer22烟碱 nicotine23蒸汽蒸馏 steam distillation24步冷曲线 cooling curve25热分析法 thermal analysis26低共熔点 eutectic point27低共熔混合物eutectic mixture28异成分熔点 incongruent melting point29转熔温度 peritectic tempreture30固溶体 solid solution31退火 annealing32淬火 quenching33区域熔炼 zone melting34分凝系数 fractional coagulation coefficient35褶点 plait point36等温会溶点 isothermal consolute point37双节点溶解度曲线 binodal solubility cueve38一(二)级相变first(second)order phase transition39超流体 super fluid40顺磁体 paramagnetic substance41铁磁体 ferromagnetic substance第二篇:中英文翻译蓄电池 battery 充电 converter 转换器 charger开关电器Switch electric 按钮开关Button to switch 电源电器Power electric 插头插座 Plug sockets第三篇:中英文翻译Fundamentals This chapter describes the fundamentals of today’s wireless communications.First a detailed description of the radio channel and its modeling are presented, followed by the introduction of the principle of OFDM multi-carrier transmission.In addition, a general overview of the spread spectrum technique, especially DS-CDMA, is given and examples of potential applications for OFDM and DS-CDMA areanalyzed.This introduction is essential for a better understanding of the idea behind the combination of OFDM with the spread spectrum technique, which is briefly introduced in the last part of this chapter.1.1 Radio Channel Characteristics Understanding the characteristics of the communications medium is crucial for the appropriate selection of transmission system architecture, dimensioning of its components, and optimizing system parameters, especially since mobile radio channels are considered to be the most difficult channels, since they suffer from many imperfections like multipath fading, interference, Doppler shift, and shadowing.The choice of system components is totally different if, for instance, multipath propagation with long echoes dominates the radio propagation.Therefore, an accurate channel model describing the behavior of radio wave propagation in different environments such as mobile/fixed and indoor/outdoor is needed.This may allow one, through simulations, to estimate and validate the performance of a given transmission scheme in its several design phases.1.1.1 Understanding Radio Channels In mobile radio channels(see Figure 1-1), the transmitted signal suffers from different effects, which are characterized as follows: Multipath propagation occurs as a consequence of reflections, scattering, and diffraction of the transmitted electromagnetic wave at natural and man-made objects.Thus, at the receiver antenna, a multitude of waves arrives from many different directions with different delays, attenuations, and phases.The superposition of these waves results in amplitude and phase variations of the composite received signal.Doppler spread is caused by moving objects in the mobile radio channel.Changes in the phases and amplitudes of the arriving waves occur which lead to time-variant multipathpropagation.Even small movements on the order of the wavelength may result in a totally different wave superposition.The varying signal strength due to time-variant multipath propagation is referred to as fast fading.Shadowing is caused by obstruction of the transmitted waves by, e.g., hills, buildings, walls, and trees, which results in more or less strong attenuation of the signal pared to fast fading, longer distances have to be covered to significantly change the shadowing constellation.The varying signal strength due to shadowing is called slow fading and can be described by a log-normal distribution [36].Path loss indicates how the mean signal power decays with distance between transmitter and receiver.In free space, the mean signal power decreases with the square of the distance between base station(BS)and terminal station(TS).In a mobile radio channel, where often no line of sight(LOS)path exists, signal power decreases with a power higher than two and is typically in the order of three to five.Variations of the received power due to shadowing and path loss can be efficiently counteracted by power control.In the following, the mobile radio channel is described with respect to its fast fading characteristic.1.1.2 Channel Modeling The mobile radio channel can be characterized by the time-variant channel impulse response h(τ , t)or by the time-variant channel transfer function H(f, t), which is the Fourier transform of h(τ, t).The channel impulse response represents the response of the channel at time t due to an impulse applied at time t −τ.The mobile radio channel is assumed to be a wide-sense stationary random process, i.e., the channel has a fading statistic that remains constant over short periods of time or small spatial distances.In environments with multipath propagation, the channel impulseresponse is composed of a large number of scattered impulses received over Np different paths,Whereand ap, fD,p, ϕp, and τp are the amplitude, the Doppler frequency, the phase, and the propagation delay, respectively, associated with path p, p = 0,..., Np −1.The assigned channel transfer function isThe delays are measured relative to the first detectable path at the receiver.The Doppler Frequencydepends on the velocity v of the terminal station, the speed of light c, the carrier frequency fc, and the angle of incidence αp of a wave assigned to path p.A channel impulse response with corresponding channel transfer function is illustrated in Figure 1-2.The delay power density spectrum ρ(τ)that characterizes the frequency selectivity of the mobile radio channel gives the average power of the channel output as a function of the delay τ.The mean delay τ , the root mean square(RMS)de lay spread τRMS and the maximum delay τmax are characteristic parameters of the delay power density spectrum.The mean delay isWhereFigure 1-2 Time-variant channel impulse response and channel transfer function with frequency-selective fading is the power of path p.The RMS delay spread is defined as Similarly, the Doppler power density spectrum S(fD)can be defined that characterizes the time variance of the mobile radio channel and gives the average power of the channel output as a function of the Doppler frequency fD.The frequency dispersive properties of multipath channels are most commonly quantified by the maximum occurring Doppler frequency fDmax and the Doppler spread fDspread.The Doppler spread is the bandwidth of theDoppler power density spectrum and can take on values up to two times |fDmax|, i.e.,1.1.3Channel Fade Statistics The statistics of the fading process characterize the channel and are of importance for channel model parameter specifications.A simple and often used approach is obtained from the assumption that there is a large number of scatterers in the channel that contribute to the signal at the receiver side.The application of the central limit theorem leads to a complex-valued Gaussian process for the channel impulse response.In the absence of line of sight(LOS)or a dominant component, the process is zero-mean.The magnitude of the corresponding channel transfer functionis a random variable, for brevity denoted by a, with a Rayleigh distribution given byWhereis the average power.The phase is uniformly distributed in the interval [0, 2π].In the case that the multipath channel contains a LOS or dominant component in addition to the randomly moving scatterers, the channel impulse response can no longer be modeled as zero-mean.Under the assumption of a complex-valued Gaussian process for the channel impulse response, the magnitude a of the channel transfer function has a Rice distribution given byThe Rice factor KRice is determined by the ratio of the power of the dominant path to thepower of the scattered paths.I0 is the zero-order modified Bessel function of first kind.The phase is uniformly distributed in the interval [0, 2π].1.1.4Inter-Symbol(ISI)and Inter-Channel Interference(ICI)The delay spread can cause inter-symbol interference(ISI)when adjacent data symbols overlap and interfere with each other due to differentdelays on different propagation paths.The number of interfering symbols in a single-carrier modulated system is given by For high data rate applications with very short symbol duration Td < τmax, the effect of ISI and, with that, the receiver complexity can increase significantly.The effect of ISI can be counteracted by different measures such as time or frequency domain equalization.In spread spectrum systems, rake receivers with several arms are used to reduce the effect of ISI by exploiting the multipath diversity such that individual arms are adapted to different propagation paths.If the duration of the transmitted symbol is significantly larger than the maximum delay Td τmax, the channel produces a negligible amount of ISI.This effect is exploited with multi-carrier transmission where the duration per transmitted symbol increases with the number of sub-carriers Nc and, hence, the amount of ISI decreases.The number of interfering symbols in a multi-carrier modulated system is given byResidual ISI can be eliminated by the use of a guard interval(see Section 1.2).The maximum Doppler spread in mobile radio applications using single-carrier modulation is typically much less than the distance between adjacent channels, such that the effect of interference on adjacent channels due to Doppler spread is not a problem for single-carrier modulated systems.For multi-carrier modulated systems, the sub-channel spacing Fs can become quite small, such that Doppler effects can cause significant ICI.As long as all sub-carriers are affected by a common Doppler shift fD, this Doppler shift can be compensated for in the receiver and ICI can be avoided.However, if Doppler spread in the order of several percent of the sub-carrier spacing occurs, ICI may degrade the system performance significantly.T oavoid performance degradations due to ICI or more complex receivers with ICI equalization, the sub-carrier spacing Fs should be chosen assuch that the effects due to Doppler spread can be neglected(see Chapter 4).This approach corresponds with the philosophy of OFDM described in Section 1.2 and is followed in current OFDM-based wireless standards.Nevertheless, if a multi-carrier system design is chosen such that the Doppler spread is in the order of the sub-carrier spacing or higher, a rake receiver in the frequency domain can be used [22].With the frequency domain rake receiver each branch of the rake resolves a different Doppler frequency.1.1.5Examples of Discrete Multipath Channel Models Various discrete multipath channel models for indoor and outdoor cellular systems with different cell sizes have been specified.These channel models define the statistics of the 5 discrete propagation paths.An overview of widely used discrete multipath channel models is given in the following.COST 207 [8]: The COST 207 channel models specify four outdoor macro cell propagation scenarios by continuous, exponentially decreasing delay power density spectra.Implementations of these power density spectra by discrete taps are given by using up to 12 taps.Examples for settings with 6 taps are listed in Table 1-1.In this table for several propagation environments the corresponding path delay and power profiles are given.Hilly terrain causes the longest echoes.The classical Doppler spectrum with uniformly distributed angles of arrival of the paths can be used for all taps for simplicity.Optionally, different Doppler spectra are defined for the individual taps in [8].The COST 207 channel models are based on channel measurements with a bandwidth of 8–10 MHz in the 900-MHz band used for 2Gsystems such as GSM.COST 231 [9] and COST 259 [10]: These COST actions which are the continuation of COST 207 extend the channel characterization to DCS 1800, DECT, HIPERLAN and UMTS channels, taking into account macro, micro, and pico cell scenarios.Channel models with spatial resolution have been defined in COST 259.The spatial component is introduced by the definition of several clusters with local scatterers, which are located in a circle around the base station.Three types of channel models are defined.The macro cell type has cell sizes from 500 m up to 5000 m and a carrier frequency of 900 MHz or 1.8 GHz.The micro cell type is defined for cell sizes of about 300 m and a carrier frequency of 1.2 GHz or 5 GHz.The pico cell type represents an indoor channel model with cell sizes smaller than 100 m in industrial buildings and in the order of 10 m in an office.The carrier frequency is 2.5 GHz or 24 GHz.COST 273: The COST 273 action additionally takes multi-antenna channel models into account, which are not covered by the previous COST actions.CODIT [7]: These channel models define typical outdoor and indoor propagation scenarios for macro, micro, and pico cells.The fading characteristics of the various propagation environments are specified by the parameters of the Nakagami-m distribution.Every environment is defined in terms of a number of scatterers which can take on values up to 20.Some channel models consider also the angular distribution of the scatterers.They have been developed for the investigation of 3G system proposals.Macro cell channel type models have been developed for carrier frequencies around 900 MHz with 7 MHz bandwidth.The micro and pico cell channel type models have been developed for carrier frequencies between 1.8 GHz and 2 GHz.The bandwidths of the measurements are in the range of 10–100 MHz for macro cells and around 100 MHz for pico cells.JTC [28]: The JTC channel models define indoor and outdoor scenarios by specifying 3 to 10 discrete taps per scenario.The channel models are designed to be applicable for wideband digital mobile radio systems anticipated as candidates for the PCS(Personal Communications Systems)common air interface at carrier frequencies of about 2 GHz.UMTS/UTRA [18][44]: Test propagation scenarios have been defined for UMTS and UTRA system proposals which are developed for frequencies around 2 GHz.The modeling of the multipath propagation corresponds to that used by the COST 207 channel models.HIPERLAN/2 [33]: Five typical indoor propagation scenarios for wireless LANs in the 5 GHz frequency band have been defined.Each scenario is described by 18discrete taps of the delay power density spectrum.The time variance of the channel(Doppler spread)is modeled by a classical Jake’s spectrum with a maximum terminal speed of 3 m/h.Further channel models exist which are, for instance, given in [16].1.1.6Multi-Carrier Channel Modeling Multi-carrier systems can either be simulated in the time domain or, more computationally efficient, in the frequency domain.Preconditions for the frequency domain implementation are the absence of ISI and ICI, the frequency nonselective fading per sub-carrier, and the time-invariance during one OFDM symbol.A proper system design approximately fulfills these preconditions.The discrete channel transfer function adapted to multi-carrier signals results inwhere the continuous channel transfer function H(f, t)is sampled in time at OFDM symbol rate s and in frequency at sub-carrier spacing Fs.The durations is the total OFDM symbol duration including the guardinterval.Finally, a symbol transmitted onsub-channel n of the OFDM symbol i is multiplied by the resulting fading amplitude an,i and rotated by a random phase ϕn,i.The advantage of the frequency domain channel model is that the IFFT and FFT operation for OFDM and inverse OFDM can be avoided and the fading operation results in one complex-valued multiplication per sub-carrier.The discrete multipath channel models introduced in Section 1.1.5 can directly be applied to(1.16).A further simplification of the channel modeling for multi-carrier systems is given by using the so-called uncorrelated fading channel models.1.1.6.1Uncorrelated Fading Channel Models for Multi-Carrier Systems These channel models are based on the assumption that the fading on adjacent data symbols after inverse OFDM and de-interleaving can be considered as uncorrelated [29].This assumption holds when, e.g., a frequency and time interleaver with sufficient interleaving depth is applied.The fading amplitude an,i is chosen from a distribution p(a)according to the considered cell type and the random phase ϕn,I is uniformly distributed in the interval [0,2π].The resulting complex-valued channel fading coefficient is thus generated independently for each sub-carrier and OFDM symbol.For a propagation scenario in a macro cell without LOS, the fading amplitude an,i is generated by a Rayleigh distribution and the channel model is referred to as an uncorrelated Rayleigh fading channel.For smaller cells where often a dominant propagation component occurs, the fading amplitude is chosen from a Rice distribution.The advantages of the uncorrelated fading channel models for multi-carrier systems are their simple implementation in the frequency domain and the simple reproducibility of the simulation results.1.1.7Diversity The coherence bandwidth of amobile radio channel is the bandwidth over which the signal propagation characteristics are correlated and it can be approximated byThe channel is frequency-selective if the signal bandwidth B is larger than the coherence bandwidth.On the other hand, if B is smaller than , the channel is frequency nonselective or flat.The coherence bandwidth of the channel is of importance for evaluating the performance of spreading and frequency interleaving techniques that try to exploit the inherent frequency diversity Df of the mobile radio channel.In the case of multi-carrier transmission, frequency diversity is exploited if the separation of sub-carriers transmitting the same information exceeds the coherence bandwidth.The maximum achievable frequency diversity Df is given by the ratio between the signal bandwidth B and the coherence bandwidth,The coherence time of the channel is the duration over which the channel characteristics can be considered as time-invariant and can be approximated byIf the duration of the transmitted symbol is larger than the coherence time, the channel is time-selective.On the other hand, if the symbol duration is smaller than , the channel is time nonselective during one symbol duration.The coherence time of the channel is of importance for evaluating the performance of coding and interleaving techniques that try to exploit the inherent time diversity DO of the mobile radio channel.Time diversity can be exploited if the separation between time slots carrying the same information exceeds the coherence time.A number of Ns successive time slots create a time frame of duration Tfr.The maximum time diversity Dt achievable in one time frame is given by the ratio between the duration of a timeframe and the coherence time, A system exploiting frequency and time diversity can achieve the overall diversityThe system design should allow one to optimally exploit the available diversity DO.For instance, in systems with multi-carrier transmission the same information should be transmitted on different sub-carriers and in different time slots, achieving uncorrelated faded replicas of the information in both dimensions.Uncoded multi-carrier systems with flat fading per sub-channel and time-invariance during one symbol cannot exploit diversity and have a poor performance in time and frequency selective fading channels.Additional methods have to be applied to exploit diversity.One approach is the use of data spreading where each data symbol is spread by a spreading code of length L.This, in combination with interleaving, can achieve performance results which are given forby the closed-form solution for the BER for diversity reception in Rayleigh fading channels according to [40] Whererepresents the combinatory function,and σ2 is the variance of the noise.As soon as the interleaving is not perfect or the diversity offered by the channel is smaller than the spreading code length L, or MCCDMA with multiple access interference is applied,(1.22)is a lower bound.For L = 1, the performance of an OFDM system without forward error correction(FEC)is obtained, 9which cannot exploit any diversity.The BER according to(1.22)of an OFDM(OFDMA, MC-TDMA)system and a multi-carrier spread spectrum(MC-SS)system with different spreading code lengths L is shown in Figure 1-3.No other diversity techniques are applied.QPSK modulation is used for symbol mapping.The mobile radio channel is modeled as uncorrelatedRayleigh fading channel(see Section 1.1.6).As these curves show, for large values of L, the performance of MC-SS systems approaches that of an AWGN channel.Another form of achieving diversity in OFDM systems is channel coding by FEC, where the information of each data bit is spread over several code bits.Additional to the diversity gain in fading channels, a coding gain can be obtained due to the selection of appropriate coding and decoding algorithms.中文翻译 1基本原理这章描述今日的基本面的无线通信。

第一课物理化学 第二章finished

第一课物理化学 第二章finished

U3 0
W3

nRTc
ln V4 V3
Qc W3
环境对体系所作功如DC曲线下的面积所示
卡诺循环(Carnot cycle)
卡诺循环(Carnot cycle)
过程4:绝热可逆压缩由 p4V4Tc 到 p1V1Th (D A)
Q4 0
环W境4 对 体U系4 所TTc作h CV的,md功T 如DA曲线下的面积所示。
可分成两项的加和
B Q
A Q
(
AT
)R1
( BT
)R2
0
熵的引出
移项得:
B A
(
Q T
)R1

B A
(
Q T
)R2
说明任意可逆过程的热温 商的值决定于始终状态,而 与可逆途径无关,这个热温 商具有状态函数的性质。
任意可逆过程
熵的定义
Clausius根据可逆过程的热温商值决定于始终态而
卡诺循环(Carnot cycle)
卡诺循环(Carnot cycle)
整个循环:
U 0 Q Qh Qc
Qh 是体系所吸的热,为正值, Qc 是体系放出的热,为负值。
W W1 W3 (W2和W4对消)
即ABCD曲线所围面积为 热机所作的功。
卡诺循环(Carnot cycle)
开尔文(Kelvin)的说法:“不可能从单一热源取出 热使之完全变为功,而不发生其它的变化。” 后来 被奥斯特瓦德(Ostward)表述为:“第二类永动机是 不可能造成的”。
第二类永动机:从单一热源吸热使之完全变为功而不 留下任何影响。
卡诺循环(Carnot cycle)
1824 年,法国工程师 N.L.S.Carnot (1796~1832)设计 了一个循环,以理想气体为 工作物质,从高温 (Th )热源吸 收 Qh的热量,一部分通过理 想热机用来对外做功W,另一 部分 Qc的热量放给低温 (Tc )热 源。这种循环称为卡诺循环。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The zeroth law of thermadynamics
Two systems that are each found to be in thermal equilibrium with a third system will be found to be in thermal equilibrium with each other.
12
Physical Chemistry
Chapter 2
Internal Energy内能
Internal energy内能: Total amount of energy in a
system. The sum total of all kinetic and potential energy within the system.
Physical Chemistry
Chapte 2
Chapter 2 THERMODYNAMICS热力学
extensive intensive Thermodynamic Properties composition volume pressure
Pressure(压力): mechanical equilibrium Temperature(温度): thermal equilibrium
Bilingual Course of Yunnan Open University
Physical chemistry
Chemical Engineering faculty of Yunnan Open University
Li Qin (associate professor)
1
Chapter 2
chemical change, not the rate of chemical change.
3
Physical Chemistry
Thermodynamic Systems 热力学系统
Considers the relationship between the system and the surroundings.系统和环境之间关系 System: The reaction, process or organism under study Surroundings环境: The
Energy transfer Closed system
6
Physical Chemistry
System and Surroundings
1. Open system
2. Closed system
3. Isolated system
No matter transfer
No matter transfer
dw Fx dx
Reversible P-V Work dwrev = -PdV
1
closed system, reversible process
wrev 2 PdV
closed system, reversible process
15
Physical Chemistry
Chapter 2
13
Physical Chemistry
Chapter 2
Thermodynamic Properties热力学性质
Extensive property(广度性质): The value of the property changes according to the amount of material which is present Intensive property(强度性质):independent of the amount of material which is present State functions(状态函数): the value of a particular property for a system depends solely on the state of the system at time Path functions(过程函数): A property depends upon the path by which a system in one state is changed into another state.
Heat(热): the transfer of energy as disorderly motion as the result of a temperature difference between the system and its surroundings.
exothermic(吸热): a process that releases energy as heat (all combustion reactions)
11
Physical Chemistry
Chapter 2
2.2 The First Law of Thermodynamics 热力学第一定律
Isothermal: 等温
Basic Concepts 基本概念
A system which is held at constant temperature Adiabatic绝热: A system in which energy may be transferred as work, but not as heat.
14
Physical Chemistry
Chapter 2
Work功
Work: the transfer of energy as orderly motion
due to energy being expanded against an opposing force (in mechanical terms)
Internal energy changes内能变化: The sign of U
Negative values(负值): a system loses energy to the surroundings Positive values(正值): a system gains energy from the surroundings
8
Physical Chemistry
THERMODYNAMICS 热力学
Walls: rigid or nonrigid (movable)边界 Walls: permeable or impermeable A
W
B
Walls: adiabatic or nonadiabatic (thermally conducting)
(b)
17
Physical Chemistry
Chapter 2
Heat: the transfer of energy as disorderly motion as the result of a temperature difference between the system and its surroundings. endothermic吸热: energy enters as heat from the surroundings, the system remains at the same T (c) exothermic放热: energy leaves as heat from the system, the system remains at the same T (d) a diathermic container绝热 An isothermal process
endothermic(放热): processes that adsorb energy as heat(the vaporization of water) an adiabatic system绝热系统
(a) an endothermic process
(a)
(b) an exotsible P-V Work可逆体积功
dx V Piston moving (a) Expansion (dV > 0) V Piston moving (b) Compression (dV < 0)
16
Fx=F=PA
dx
Fx=F=PA
Physical Chemistry
Chapter 2
mechanical equilibrium Equilibrium material equilibrium thermal equilibrium phase equilibrium
9
Physical Chemistry
Thermodynamic Properties
Equilibrium 平衡 Mechanical Equilibrium 力平衡 No unbalanced forces act on or within the system No acceleration, no turbulence within the system Material Equilibrium 物质平衡 No net chemical reactions are occurring in the system No net transfer of matter, the concentrations of the chemical species are constant in time Thermal Equilibrium 热平衡 No change in the properties of the system or surroundings when they are separated by a thermally 10 conducting wall.
No energy transfer
No energy 7 transfer
Physical Chemistry
相关文档
最新文档