第7章 磁介质
大学物理第7章恒定磁场(总结)
磁场对物质的影响实验
总结词
磁场对物质的影响实验是研究磁场对物质性 质和行为影响的实验,通过观察物质在磁场 中的变化,可以深入了解物质的磁学性质和 磁场的作用机制。
详细描述
在磁场对物质的影响实验中,常见的实验对 象包括铁磁性材料、抗磁性材料和顺磁性材 料等。通过观察这些材料在磁场中的磁化、 磁致伸缩等现象,可以研究磁场对物质内部 微观结构和宏观性质的影响。此外,还可以 通过测量物质的磁化曲线和磁滞回线等参数 ,进一步探究物质的磁学性质和磁畴结构。
毕奥-萨伐尔定律
02
描述了电流在空间中产生的磁场分布,即电流元在其周围空间
产生的磁场与电流元、距离有关。
磁场的高斯定理
03
表明磁场是无源场,即穿过任意闭合曲面的磁通量恒等于零。
磁场中的电流和磁动势
安培环路定律
描述了电流在磁场中所受的力与 电流、磁动势之间的关系,即磁 场中的电流所受的力与电流、磁 动势沿闭合回路的线积分成正比。
磁流体动力学
研究磁场对流体运动的影响,如磁场对流体流动的导向、加速和 减速作用。
磁力
磁场可以产生磁力,对物体进行吸引或排斥,可以用于物体的悬 浮、分离和搬运等。
磁电阻
某些材料的电阻会受到磁场的影响,这种现象称为磁电阻效应, 可以用于电子器件的设计。
磁场的工程应用
1 2
磁悬浮技术
利用磁场对物体的排斥力,实现物体的无接触悬 浮,广泛应用于高速交通、悬浮列车等领域。
磁动势
描述了产生磁场的电流的量,即 磁动势等于产生磁场的电流与线 圈匝数的乘积。
磁阻
描述了磁通通过不同材料的难易 程度,即磁阻等于材料磁导率与 材料厚度的乘积。
磁场中的力
安培力
第七章磁力分选的基本原理(principle of
7 磁力分选的基本原理(principle of magnetic separation) ③磁场强度(magnetic field intensity ):是指在任何介 质中磁场中某点的磁感应强度B与同一点上磁介质的磁导率μ 的比值。 the magnetizing force which induces the lines of force through a material H=B/μ 在 国 际 单 位 制 中 真 空 中 的 磁 导 率 μ ( permeability ) 为 4π×10-7H/m(亨利/米),在电磁单位制中μ=1为一纯数。 在国际单位制中 H的单位为A/m(安培/米), 电磁单位制中 H 的单位为Oe(Oersted奥斯特)。这两种单位制的换算关系为 1Oe=80A/m 1T=80×104A/m=10000 Oe
• 磁流体选矿也是磁选新工艺。它 ( 包括磁流体静力分选和 磁流体动力分选)是以特殊的流体(如顺磁性溶液、铁磁性 胶粒悬浮液和电解质溶液 ) 作为分选介质,利用流体在磁 场或磁场和电场的联合作用下产生的“加重”作用,按矿 物之间的磁性和密度的差异或磁性、导电性和密度的差异, 而使不同矿物实现分离的一种新的选矿方法。当矿物之间 磁性差异小而密度或导电性差异较大时,采用磁流体选矿 可以有效地分选。磁流体静力分选应用于金刚石的选矿在 国内外已进行了一些试验研究工作。结果表明,它可以作 为金刚石选矿中的精选方法之一。
20 世纪初,磁铁矿石的磁选在瑞典得到较 大的发展,出现了湿式筒式磁选机,它是现代化 磁选机的原形,可以成功和经济地湿选细粒的磁 铁矿石。
19 世纪末,为了磁选弱磁性矿石,美国制造出
闭合型电磁系的强磁场带式磁选机。以后为了同一 目的,前苏联和其他一些国家又制造出强磁场盘式、 辊式和鼓式磁选机。上述几种磁选机共同的缺点是 选别空间方法才能获得合格精矿。
第07章 恒定磁场磁场强度
电流
磁场
电流
磁场是一种物质, 其物质性体现在:
1)磁场对磁铁、对电流、对运动电荷均有磁作用力; 2)载流导体在磁场中移动时,磁场的作用力对它作功。
磁场是一种客观存在,是物质存在的一种形式。
恒定磁场—在空间的分布不随时间变化的磁场。 注意:无论电荷是运动还是静止,它们之间都存在着库 仑相互作用,但只有运动着的电荷才存在着磁相互作用。
B1
0
2
NI R
B2
0 NI R2
2( R 2
x2
3
)2
R
O1
O2
(1)电流方向相同:
x
B
B1
B2
0 NI
2R
[1
(R2
R3 x2)32
]
8.51105
T
(2)电流方向相反:
B
B1
B2
0 NI
2R
[1
(R2
R3 x
2
)
3 2
]
4.06
105
T
18
例7:一根无限长导线通有电流I,中部弯成圆弧形, 如图所示。求圆心o点的磁感应强度B。
整个物体的磁效应就是所有分子电流对外界磁效应 的总和。磁性物质的本质在于其分子电流的有序排列 。
总结:一切磁现象都可以归结为运动电荷(即电流)之
间的相互作用。磁场力是电荷之间的另一种力。
4
二、磁场
磁铁和运动电荷(电流)会在周围空间激发场---磁场 磁铁与磁铁,磁铁与电流,电流与电流之间都是
通过磁场相互作用的。 磁场的基本性质:对运动电荷(电流)有力的作用。
r
dB 的方向垂直于Idl和r 所形
成的平面。
第七章 磁介质习题与答案
答:将一个铁壳放在外磁场中,则铁壳的壁与空腔中的空气可以看成是并联的磁路。由于空气的磁导率 接近于1,而铁壳的磁导率至少有几千,所以空气的磁阻比铁壳壁的磁阻大得多,这样一来,外磁场的磁感应通量的绝大部分将沿着空腔两侧的铁壳壁内“通过”,“进入”空腔内部的磁通量是很小的。这就可以达到磁屏蔽的目的。
磁化球内外B线和H线的分布如图所示。
7、相对磁导率为 和 的两种均匀磁介质,分别充满x>0和x<0的两个半空间,其交界面上为oyz平面,一细导线位于y轴上,其中通以电流为 ,求空间各点B和H。
√
二、选择题
1、在一无限长螺线管中,充满某种各向同性的均匀线性介质,介质的磁化率为 设螺线管单位长度上绕有N匝导线,导线中通以传导电流I,则螺线管内的磁场为:
(A)
(B)
(C)
(D)
C
2、在均匀介质内部,有传导电流处,一定有磁化电流,二者关系如下:
(A)
(B)
(C)
(D)
A
3、图是一根沿轴向均匀磁化的细长永久磁棒,磁化强度为M图中标出的1点的B是:
2×10-2T32A/m 497.6 1.6×104A/m
15、一铁芯螺环由表面绝缘的导线在铁环上密绕而成,环的中心线是500mm,横截面积是1×10-3m2,现在要在环内产生B=1.0T的磁场,由铁的B—H曲线得到这时的 =796,则所需的安匝数是()。如果铁环上有一个2.0mm宽的空气隙所需的安匝数是()。
3、在工厂里,搬运烧红的钢锭,为什么不能用电磁铁的起重机。
答:钢是一种铁磁质,在外场作用下,内部的磁畴定向排列,本身为强磁体,能被电磁铁吸引。但是钢锭烧红,温度超过居里点( ),内部的磁畴结构被破坏,丧失其铁磁质的特性,在外场作用下,磁化程度极微弱,与外场的相互作用力很小,电磁铁不能被它吸引起来,因此搬移它时不能采用电磁铁的起重机。
医用物理学07章磁场与电磁感应
1.对于定点P,存在着一 个特殊的方向(小磁针置 于该点处,其N极的指 向 ), 当 q 沿 此 特 定 方 向 (或其反方向)运动时, 所受磁场力为零.
z y F=0
v
v
+
v
v
o
x
2.在定点 P,当电荷q 以不同于上述特定方向 的速度 v 通过该点时,它所受的磁场力方向总是 垂直于 v 与该特定方向所组成的平面. 3.当电荷速度 v 的方向与上述特定方向垂直 时,作用于电荷q的磁场力 F 的值最大,且与乘 积qv成正比.
0 I B1 dl1 - B2 dl 2 d 2π B1 dl1 B2 dl 2 0
0 I 0 I B1 , B2 2π r1 2π r2
B1
B2
Bd l 0
L
I
d r1
dl1
dl 2
0 IR 2
2r
2R x
2
0 IR 2
2 32
B
1)若线圈有 N 匝,
2R x
2
0 IR 2
2 32
B
2)当 x = 0 时,
2R x
2
N0 IR 2
2 32
μ0 I B 2R
四. 磁感线
磁通量
磁感线的定义: (1)曲线上每一点的切线方向表示该点磁感应强 度 B 的方向. (2)通过磁场中某点垂直于 B 矢量的单位面积上 的磁感线数目(磁感线密度)等于该点 B 的大小. 性质 (1)磁感线不会相交. (2)磁感线都是围绕电流的闭合曲线(或两头伸 向无穷远). (3)曲线的疏密程度表示该点的磁感强度 B 的大 小.
磁介质中的磁场
B 0 r H 0 r 方向沿圆的切线方向 2r B M s H M
I s ( r 1) 方向与轴平行 2R
磁介质内表面的总束缚电流 I '
0
r
R
H B
铜、铋、锑及惰性气体等一类物质均属抗磁质。
一般情况,这两类物质的相对磁导率 r 1,与真空的相 对磁导率 1 是接近的。
铁磁质: r 1, B0 , 与B同向。 B B
铁磁质的相对磁导率很大,且磁性起源与前两种完全不同, 4 铁、镍、钴及其合金均属铁磁质。
1. 磁介质有三种,用相对磁导率 r表征它们各自的 特性时,
S
19
S
H dl I
例题 1 在均匀密绕的螺绕环内充满均匀的顺磁质, 已知螺绕环中的传导电流为 I , 单位长度内的匝数为
n ,环的横截面半径比环的平均半径小得多,磁介质
的相对磁导率和磁导率分别为 r 和 。求环内的磁 场强度和磁感应强度。
解 以螺绕环中心 O 为圆心,半 径为 r 在螺绕环的内部作一圆形 环路, 由有介质时的安培环路定 理有
10
2)磁化强度矢量与分子电流关系
B'
设充满均匀磁介质的无限长螺线管通电流,磁介质被均匀地 磁化,存在有规则的分子电流,每个分子电流皆与该点处的
B
磁化强度矢量成右手螺旋关系,如图所示。
圆柱体内部电流互相抵消;沿圆柱体边缘流动的分子电流未 抵消,圆柱体内分子电流的效果,等于沿圆柱表面上分布的 电流的效果,电流的磁场与螺线管电流磁场相似。
充满磁介质的长直螺线管中磁感应强度为
B nI
3
3、顺磁质、抗磁质、铁磁质
第7章磁场中的磁介质.ppt
§7.1 磁介质对磁场的影响
§7.2 原子的磁矩
§7.3 磁介质的磁化
§7.4 H的环路定理
§7.5 铁磁质 §7.6 简单的磁路
1
一、磁介质 二、 磁介质磁化的微观机理
三、磁化电流与磁化强度
四、H的环路定理 五、铁磁质 六、简单的磁路
2
一、磁介质
1.磁介质的定义 在磁场中会受磁场影响而发生 变化,反过来又对磁场产生影响 的物质就叫磁介质. 2.磁介质对磁场的影响 均匀介质充满磁 场的情况下
得:
H dr I 0内
L
•H 的单位: A/m ( SI );
•真空: M 0 ,H B
0
18
2. B, M , H 的关系
各向同性磁介质 r 1 将 M B 代入 0 r 各向同性电介质 P 0 r 1E D 0E P
3. 磁化规律
各向同性磁介质 (顺磁质或抗磁质)
各向同性电介质
r 1 1 1 M B (1 ) B 0 r 0 r
P 0 r 1E
0 r
介质的 磁导率
0 r
介质的介 电常数
15
四、H的环路定理 1. H的环路定理
L
NI H nI 2πr 细螺绕环
R1 R2 r
O R1 r R2
22
NI H nI 2πr
B H nI
M ( r 1) H ( r 1)nI
j M 表
代入数据
M 7.94 10 A/m
5
7.94 10 5 A/m j
23
j 7.94 10 A/m
电磁学第七章习题答案
r r M = χmH
r r B = µ0 (1+ χm)H
令 r =1+ χm µ
潍坊学院
r r r B = µ0µr H = µH
7.1.4 磁介质存在时静磁场的基本规律
v v ∫ H ⋅ dl = I
L
S
v v ∫∫ B ⋅ dS = 0
v H= v B v −M
µ0
v v B = µH
潍坊学院
r L
进动
e r ∆pm
r B0
可以证明: r 可以证明:不论电子原来的磁矩与磁场方向之间的夹角 r 是何值, 是何值,在外磁场 B 中,电子角动量 L 进动的转向总是和 磁 0 r 的方向构成右手螺旋关系。 力矩 M的方向构成右手螺旋关系。这种等效圆电流的磁矩的 r 的方向相反。 方向永远与 B 的方向相反。 0 附加磁矩:因进动而产生的等效磁矩称为附加磁矩, 附加磁矩:因进动而产生的等效磁矩称为附加磁矩,用 r 表示。 符号 ∆pm 表示。 潍坊学院
∫(µ
r 定义 H =
潍坊学院
r B
0
r B
r r − M) ⋅ d = ∑I l
r r 则 ∫ H ⋅ dl = ∑I
µ0
r − M 为磁场强度
有磁介质时的 安培环路定理
磁介质中的安培环路定理: 磁介质中的安培环路定理 : 磁场强度沿任意闭合路径的 线积分等于穿过该路径的所有传导电流的代数和。 线积分等于穿过该路径的所有传导电流的代数和。
v 2、磁化强度 M 与磁化电流 I ′ 的关系
l
磁介质体内
n
之外不套链
v dl
一进一出 穿过曲面的总磁化电流为
面矢(分子电流所围) 面矢(分子电流所围)
第七章 磁场中的磁介质
在圆柱外 取一同心回路
r r ∫ H ⋅ dl = I
l
H 2πr = I
(r > R)
I R
µ
0 r
I 得: H = 2πr
方向与I成右手螺旋关系 方向与 成右手螺旋关系
B
µ0 I B = µ0 H = 2πr
(r > R)
o
R
r
方向与I成右手螺旋关系 方向与 成右手螺旋关系 磁场分布如图
7 -3 一
(2)ω与B反向时 ) 反向时 此时洛伦兹力离心, 此时洛伦兹力离心,设轨 道半径不变, 道半径不变,由洛伦兹力 ∆ω方向与 引起的∆ω方向与ω 反向, 引起的∆ω方向与ω0反向 ∆ω, 有ω= ω0- ∆ω,同样分析 可得有同样的∆ω ∆ω值 可得有同样的∆ω值,且 ∆ω的方向仍与外磁场 的方向仍与外磁场B同 ∆ω的方向仍与外磁场 同 原有的磁矩m 向,原有的磁矩 0的改 变量为∆ , 附加磁矩∆ 变量为∆m, 附加磁矩∆m 方向还是与外磁场B反向 方向还是与外磁场 反向 。 附加磁矩∆ 与 -附加磁矩∆m与B反向
r r r B = B0 + B′
对顺磁质B 对顺磁质 /与B0同向
则磁介质中的磁场为: 则磁介质中的磁场为:B=B0+B/ 顺磁场在外磁场中的磁化过程称为取向磁化。 顺磁场在外磁场中的磁化过程称为取向磁化。 取向磁化
对抗磁质, 对抗磁质,以电子轨道磁矩为例 加上外磁场后, 加上外磁场后,电子将受到洛 伦兹力。简单起见, 伦兹力。简单起见,设电子轨 道平面与磁场垂直。 道平面与磁场垂直。 (1)ω与B同向时 ) 同向时
解:在圆柱内取一同心回路
r r I Ir 2 H ⋅ dl = πr 2 = 2 ∫ πR2 R l
第七章磁介质
1 M
m B 0 1 m
1 m r
M m H (r 1)H
式中
m 称为介质的磁化率,它是一个与磁场无关的常量,仅取
第七章 —— 磁介质
1
学习重点
1、介质中磁场的安培环路定理 2、介质中的电磁场的能量密度与能流密度
学习难点
1、磁化电流的面密度与体密度 2、铁磁性
第七章 —— 磁介质 2
本章的基本内容及思路
本章主要讲两个问题,一是介绍磁介质的性质,二是讨论磁
介质与磁场的相互作用规律。磁介质指的是放入磁场后会受到磁场 的影响,反过来又会影响磁场分布的物质。从这个意义上说,所有 实物质都可以说是磁介质,只不过不同物质受磁场影响和对磁场影 响有所不同。本章首先从实验事实出发,对磁介质进行分类,定性
磁介质的磁化程度M取决于组成磁介质的每个分子磁矩Pm的大小
以及它们排列整齐的程度,用磁化强度来描写介质磁化程度,磁化强
度定义为单位体积内各分子磁矩的矢量和,即 : Pmi M V 上式中,分子为V内所有各分子的磁矩的矢量和,V为物理无限小 体积元。
2、磁化电流
磁介质在外磁场的作用下,介质被磁化,在介质内或介质表面出 现磁化电流,它是由束缚在原子内的电荷形成的,也称为束缚电流。
第七章 磁介质
学习目标
1、了解顺磁质,抗磁质及铁磁质的特点及其微观解释。
2、领会磁化强度,磁化电流的概念,明确M 、B、H三个
矢量的联系。 3、熟练运用有介质存在时的安培环路定理计算一些特殊 电流分布所产生的磁场。 4、了解磁路定理,会运用它对简单磁路进行计算。
5、掌握介质中电磁场的能量密度与能流密度表达式。
第七章 磁性物理与性能
至少有24次诺贝尔奖得主在磁学领域作出了杰出 的贡献;
我国的磁学前辈当数叶企孙(1924年从美国哈佛 大学获博士学位回国)、施汝为先生(1931年在 国内发表了第一篇磁学研究论文),现我国已有 十余所高校、十几个研究所及几百个生产企业从 事磁学研究、教学和生产。
磁学基础
i
Байду номын сангаас(a)在一个通有电流的导线周围铁屑的分布情况 (b)对于一根直导线,通过的电流与其产生的磁场的关系图
磁学基本量
磁化强度M
单位体积内具有磁偶极矩矢量和称为磁极化强度;单位体 积内具有的磁矩矢量和称为磁化强度,分别表示如下:
J
j
V
m
V
m
和
M
二者之间存在以下关系
J 0 M
3、磁场强度
磁场强度和磁感应强度均为表征磁场性质(即磁场强弱和方向)的两 个物理量。在充满均匀磁介质的情况下,若包括介质因磁化而产生的 磁场在内时,用磁感应强度B表示,其单位为特斯拉T,是一个基本物 理量; 单独由电流或者运动电荷所引起的磁场(不包括介质磁化而产生的磁 场时)则用磁场强度H表示,其单位为A/m2,是一个辅助物理量。
M H
磁性的微观解释
磁介质的基本单元:分子 分子内原子中电子的运动:
轨道运动——电子轨道磁矩
自旋运动——电子自旋磁矩
本征磁矩是物质磁性的主要来源
产生磁矩的原因
轨道磁矩
电子围绕原子核的轨道 运动,产生一个非常小 的磁场,形成一个沿旋 转轴方向的磁矩,即轨 道磁矩。 自旋磁矩 每个电子本身有自旋运 动产生一个沿自旋轴方 向的磁矩,即自旋磁矩。
涡旋电场使电子 的轨道角速度和 轨道磁矩都减小, 与外磁场方向相 反
第七章恒定磁场-习题解答
7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的
形状。求使o点的磁感应强度为零的半径a和b的比值。
解 该载流系统由三部分组成,o点的磁感
应强度为载有相同电流的无限长直导线
及两个半径分别为a和b的圆环分别在该
处激发的磁感应强度的矢量和。设磁场 方向以垂直纸面向内为正,向外为负。
方向垂直纸面向里。 (2)由磁矩定义
方向垂直纸面向里。
第七章、稳恒磁场
7-20 质谱仪的构造原理如图所示。离子源S提供质量为M、
电荷为q的离子。离子初速很小,可以看作是静止的,然后经
过电压U的加速,进入磁感应强度为B的均匀磁场,沿着半圆
周运动,最后到达记录底片P上。测得离子在P上的位置到入
口处A的距离为x。试证明该离子的质量为:M ? qB 2 x 2 。
或由磁感应线是闭合曲线,也可推知
??
Φaefd
?
? Φabcd
?
0.24Wb
? Φ ? ?B?dS ? 0
第七章、稳恒磁场
7-9 一个非均匀磁场磁感应强度的变化规律为B=ky(k为常 量),方向垂直纸面向外。磁场中有一边长为a的正方形线 框,其位置如图所示。求通过线框的磁通量。
解 在线框内坐标为y处取一长为a宽为 dy的矩形面积元dS,在dS中磁场可认 为是均匀的,则通过dS的磁通量
? I2l
? 0 I1
2πx1
I2l
? ?7.2?
F2 10?4
? B2I2l N
?
? 0 I1
2πx2
I2l
负号表示合力方向水平向左。
第七章、稳恒磁场
习题7-16 一长直导线通有电流I =20A,另一导线ab通 有电流I?=10A,两者互相垂直且共面,如图所示。求导 线ab所受的作用力和对o点的力矩。
电磁学题库分析
一、判断题(请分别在正确或错误的命题前面括号中打“√”或“×”)第一章静电场的基本规律()1、等势面上任意两点之间移动电荷,电场力所做的功为零.()2、等势面上场强处处为零.()3、等势面上任意两点的电势是相等()4、电场线方向即为场强方向()5、若高斯面内没有自由电荷,则高斯面上各点的电场强度为零.()6、在静电场中,沿电场线方向,电势一定下降.()6、在静电场中,沿电场线方向,电势越来越低.()7、《电磁学》教材在静电场部分讲述了的二个叠加原理()8、《电磁学》教材在静电场部分只讲述了场强叠加原理和电势叠加原理.()9、在静电场中,电场线是实际存在的曲线.()10、任何电荷的相互作用都是通过电场来传递的.()11、只有静电场具有某种对称性时,才能用静电场的环路定理求解.()12、只有静电场具有某种对称性时,才能用静电场的高斯定理求解..()13、任何两条电场线都不可能相交.()14、静止电荷之间的的相互作用不需要任何媒介.()15、电场强度大的地方电势高,电势高的地方电场强度也一定大.第二章有导体时的静电场()1、处于外电场中的中性导体或带电导体,达静电平衡时,导体处处无电荷分布.()2、处于外电场中的带电导体,达静电平衡时,导体处处无电荷分布.()3、处于外电场中的带电导体,达静电平衡时,导体内部无电荷分布。
()4、凡接地导体其表面必处处无电荷.()5、空腔导体内的带电体在腔外产生的场强一定为零.()6、由于静电感应,在导体表面的不同区域出现异号电荷时,导体不再是等势体,导体表面也不是等势面.()7、空腔导体内的带电体在腔外产生的场强为零.()8、导体达到静电平衡时,导体内部场强处处为零,导体是等势体,导体表面是等势面.()9、处于外电场中的导体,达到静电平衡时,导体内部的场强和电势都处处为零.()10、孤立导体球接地后,表面电荷密度处处为零.第三章静电场中的电介质()1、极化电荷与自由电荷按同样规律激发电场.()2、极化电荷与自由电荷各以不同规律激发电场.( )3、由0S d q ⋅=⎰⎰D S 可知,电位移矢量D 仅与自由电荷有关.( )4、描述电介质极化程度的物理量有位移极化、取向极化、极化强度.( )5、极化强度是描述电介质极化程度的物理量.( )6、极化电荷体密度和极化电荷面密度均与极化强度有关.( )7、自由电荷可以迁移,而极化电荷不能迁移.第四章 恒定电流和电路( )1、不含源支路的电流必从高电势流向低电势.( )2、若一复杂电路共有n 个节点,则只有 (1-n )个节点方程是独立的.( )3、在任何电路中,电功等于焦耳热.( )4、电源内部非静电力起主导作用;在外电路中,没有非静电力.( )5、在恒定电流电路中,电源内部非静电力起主导作用,在外电路中电场力起主导作用. ( )6、在恒定电流电路中,电荷守恒定律不成立.( )7、在恒定电流电路中,非静电力总是存在于整个回路之中,即整个回路中的非静电力大小均不为零.( )8、电流连续性方程是电荷守恒定律的数学表述.( )9、电源的作用是将其他形式的能量转化为电能.( )10、在闭合电路中,外电路的电阻越大,电源输出的功率越大.( )11、支路电流为零时,该支路两端电压烽为零.第五章 恒定电流的磁场( )1、任意形状通电导线的磁场,磁感应线都是闭合曲线.( )2、电场线与磁感应线一样,都不是电场或磁场中实际存在的曲线.( )3、电场和磁场都是抽象的东西,不是客观存在的物质.( )4、电场和磁场都不是客观存在的物质.( )5、电场和磁场虽然看不见摸不着的,但是客观存在的物质.( )6、运动电荷在电磁场中所受的作用力称为洛伦兹力.载流导线在磁场中所受的作用力称为安培力.安培力是洛伦兹力的一种宏观表现.( )7、只有磁场具有某种对称性时,才能用安培环路定理来求解.( )8、磁场对置于其中的电荷都有磁力的作用.( )9、B 的高斯定理0S d ⋅=⎰⎰B S ,H 的环路定理0L d I ⋅=⎰H l ,B 与H 的关系μ=B H ,对非铁磁质和铁磁质均成立.第六章 电磁感应与暂态过程( )1、感应电动势包括动生电动势、感生电动势、自感电动势、互感电动势等.( )2、动生电动势与感生电动势有相同的非静电力.( )4、感应电流的磁通总是阻碍引起感应电流的磁通变化.( )5、感应电流的磁通总是与引起感应电流的磁通相同.( )6、感生电场与库仑电场一样,也是由电荷激发的.( )7、感生电场与库仑电场都是由电荷激发的.( )8、感生电场的电场线与库仑电场的电场线一样,都是从正电荷出发,终止于负电荷. ( )9、动生电动势的非静电力是洛伦兹力.( )10、当电流减小时,自感电动势方向与电流方向相反.( )11、自感电动势所反抗的是电流的变化,而不是电流本身.( )12、楞次定律不符合能量守恒定律.( )13、变压器和电机的铁心用互相绝缘的很薄的矽钢片叠压而成,是为了减小涡流、降低损耗. ( )12、日光灯的镇流器、变压器都是应用自感的例子.( )13、日光灯的镇流器、变压器都是互感器件.第七章 磁介质( )1、B 的高斯定理0S d ⋅=⎰⎰B S ,H 的环路定理0Ld I ⋅=⎰H l ,B 与H 的关系μ=B H ,对非铁磁质和铁磁质均成立.( )2、所有磁介质都具有抗磁性.( )3、所有磁介质都具有顺磁性.( )4、顺磁性存在于分子固有磁矩不为零的媒质.( )5、磁介质分为顺磁质、抗磁质和铁磁质.( )6、磁化强度是描述磁介质磁化程度的物理量.( )7、电介质中有极化电荷与自由电荷之分,磁介质中有磁化电流与传导电流之分. ( )8、铁磁质具有高μ值、非线性、磁滞的特点.第九章 时变电磁场和电磁波( )1、位移电流和传导电流都按相同的规律激发磁场,并都产生焦耳热.( )2、偶极振子辐射的电磁场,其近区场和远区场均具有波的性质.( )3、位移电流和传导电流激发的磁场的磁感应线都是闭合曲线.( )4、麦克斯韦由麦克斯韦方程组预言了电磁波的存在,并指出光波也是电磁波. ( )5、电磁波是麦克斯韦提出,赫兹通过实验证实的.( )6、位移电流实质就是变化的电场.综合( )1、电场线与磁感应线一样,都是用来形象地描述电场或磁场的曲线.( )1、电场线与磁感应线一样,都是电场或磁场中实际存在的曲线.( )2、任何磁的相互作用都是通过磁场来传递的;任何电的相互作用都是通过电场来传递的.二、填空题第一章 静电场的基本规律1、在一对等量异种电荷Q ±相距为r ,连线中点的电势为 (取无限远为参考点).把单位正点电荷从该中点沿任意路径移至无限远处,则电场力对该点电荷所做的功为 .2、在边长为a 的正方体中心放置一点电荷q ,则通过该正方体一个侧面的E 通量为 .3、《电磁学》在第一章中讲述了 个叠加原理,它们分别是 .4、在静电场中,电场力作功与路径 关,静电场是 场(填保守力或非保守力),故 引入势的概念.4、静电场是保守力场,电场力做功只取决于运动的 位置,与路径 关.5、半径为0.3m 的球面,带有正电C 6105.4-⨯,距球心0.5m 处的电场强度的大小为 ,电势为 .(计算结果保留π和0ε)6、静电场是由 激发的.静电场的三个叠加原理分别是 、 、 .7、在均匀电场中,有一半径为R 的半球面,电场强度E 与半球面的轴线平行(如图1所示),那么通过半球面的E 通量是 (取球面外法线为正).8、如图2所示,在封闭球面S 内A 点和B 点分别放置+ q 和- q 电荷,O 为球心,且A O = O B =a ,则O 点的场强0E = ,封闭球面S 的电通量d S ⋅⎰⎰E S = . 9、在静电场的基本规律中,库仑定律在MKSA 制中的表达式为 ,电场强度的定义式为 .10、电量分别为q 与q -的两个点电荷相距为d ,两点电荷连线中点处的电势为 (取图1 图 2无限远处电势为零),电场强度的大小 和方向 .第二章 有导体时的静电场1、真空中有一半径为R 、所带电荷量为Q 的导体球,则空间任一点的能量密度为2、一平行板电容器的电容为C ,将它接在电压为U 的电源上充电后断开电源,然后将两极板距离d 从拉到2d ,这时极板间场强的大小为 ,电势差等于 .3、带正电的导体A 右边放一个中性导体B ,则在B 的两端出现感应电荷.若将B 左端接地,流入地面的是 电荷;若将B 右端接地,流入地面的是 电荷.3、带负电的导体A 右边放一个中性导体B ,则在B 的两端出现感应电荷.若将B 左端接地,流入地面的是 电荷;若将B 右端接地,流入地面的是 电荷.4、一个孤立导体,当它带有电荷q 而电势为U 时,则定义该导体的电容为C = 。
磁介质
B~H r ~ H
16:58
H 23
3、磁滞回线
饱和磁感应强度 剩 磁
B
BS . Br . b
f . HC
a
初始磁 化曲线
矫顽力
HS
.
HC . c O
.
HS
磁滞回线
H
e . Br
d
16:58
BS
24
①磁化过程不可逆 磁滞回线--不可逆过程 H c B的变化落后于H,从而具有 剩磁,即磁滞效应。
Hc
B
Hc
H ②
r 大,易磁化,也易退磁
用途:适用于交变磁场中 电子设备中的各种电感元件、变压器、 镇流器,电动机和发电机中的铁芯等。 继电器、电磁铁的铁芯也用软磁材料。
16:58
纯铁,硅钢坡莫合金(Fe,Ni),铁氧体等。
30
2、硬磁材料——作永久磁铁
B
Hc
矫顽力(Hc)大(>102A/m),剩磁Br大 H c 磁滞回线的面积大,损耗大。
例1 一环形螺线管,管内充满磁导率为μ,相对磁导 率为μr的顺磁质。环的横截面半径远小于环的半径。 单位长度上的导线匝数为n。
求:环内的磁场强度和磁感应强度
解: H dl H 2r NI L
NI H nI 2r
r
O
B H 0 r H
16:58 13
SB dS 0 LH dl I 0 B H
21
12-3 铁磁质
一、铁磁质的磁化规律 1、铁磁质的特性 (1)能产生特别强的附加磁场 B ,使磁介质中的 B (2)铁磁质的磁导率 不是常量,B 与 H 不是线 性关系 (3) 磁化强度随外磁场而变,其变化落后于外磁 场的变化,而且在外磁场停止作用后,仍保 留部分磁性 (4)一定的铁磁材料存在一特定的临界温度—居 里点,当温度超过居里点时,铁磁质转变为 16:58 22 顺磁质。 远大于 B0 ,其 r B 值可达几百、甚至几千以上 0
CH7 磁介质解读
CH7 磁介质前面讨论载流线圈产生磁场和变化的磁场产生感应电动势都是假定导体以外是真空,或者不存在磁性物质。
但在实际中大多数情况下电感器件的线圈中都有铁芯。
为了弄清铁芯在这里的作用,就要对磁介质有基本的认识。
本章主要内容本章讲解磁介质的磁化现象,磁化规律和磁化的微观解释;有介质存在时静磁场的基本规律;详细介绍了铁磁质的磁化特点;简介磁荷观点和磁路计算;最后给出磁场的能量。
§1 有介质存在时静磁场的基本规律有关磁介质的理论,有两种不同的观点:分子电流观点和磁荷观点。
两种观点假设的微观模型不同,从而赋予了磁感应强度和磁场强度不同的物理意义,但是最后得到的宏观规律和表达式完全一样,所以计算结果也完全一样。
在这种意义上两种观点是等价的。
因为人们对磁现象的认识是源于对天然磁体的观察,所以磁荷观点在历史上出现较早。
但由安培以假说的形式提出的分子电流理论揭示了磁现象和电流的关系,所以比较流行。
一、磁介质的磁化在磁场作用下能发生变化并能反过来影响磁场的媒质叫做磁介质。
1、磁化:磁介质在磁场的作用下内部结构发生变化(并反过来影响磁场)的过程。
2、磁介质的磁化的解释——分子磁矩说安培认为,由于电子的运动,每个磁介质分子或原子都相当于一个环形电流,叫分子电流或束缚电流(区别于传导电流)。
分子电流的磁矩叫分子磁矩。
无外磁场时,磁介质中各个分子磁矩取向杂乱无章,宏观上磁介质不显磁性;磁介质放入外磁场中,介质中每个分子磁矩都要受到外电场的作用力矩T= P m ×B ,使得每个磁矩都要尽量转向外场0B的方向,这时在磁介质内任取一小体积ΔV ,在ΔV 所有分子磁矩的矢量和不为零,形成宏观磁化电流或束缚电流,这些电流又要激发附加电场B ΄,使得总电场 B= B 0+ B ΄ 。
例如,考虑一段插在线圈内的软铁棒,如图所示。
按照安培的分子环流观点,棒内每个磁分子相当于一个环形电流。
在没有外磁场的作用时,各分子环流的取向是杂乱无章的,如右图(a )所示,它们的磁矩相互抵消,宏观看来,软铁棒不显示磁性,称它处于未磁化状态。
第七章磁力分选的基本原理(principleof案例
Lecturer:Yuan Zhitao
主讲:袁致涛 副教授
Associate Professor
自我介绍:
袁致涛,湖北大冶人. 主要研究方向为磁力分选,尤其在磁力分选方面做出了一定的成
绩。
1995年研制成功数字脉冲脱磁器,在南芬选矿厂成功地进行了 工业试验,其脱磁效果明显好于传统塔形脱磁器,现在国内绝大多数 选厂所用脱磁器皆为这种类型。2001年研制成功脉冲振动磁场磁选 柱,在铁精矿提质降杂方面效果突出,优于同种类型的产品,现正进 行工业化。 2007年与沈阳矿山机器厂合作开发干式永磁强磁辊,负 责磁辊磁系设计工作,于调军台的初步试验表明磁系设计达到国际选 进水平。现正与沈阳矿山机器厂合作开发永磁高梯度磁选机、磁过滤 机。
格精矿,需要结合磁选和其他方法才能获得合格精矿。
例如,钨矿重选所得黑钨粗精矿中,一般含有锡和其他 一些有用成分。锡在钨的冶炼过程中是有害杂质。利用
黑钨矿具有弱磁性和锡石无磁性这一特点采用磁选法进
行处理后,可除去含锡杂质,获得合格的钨精矿。
非金属原料中一般含有有害的铁杂质(一般为氧化铁及钛铁
矿),加工过程中还可能混入少量机械铁,磁选和高梯度磁选可
•
• •
Magnetite(磁铁矿Fe3O4)
Hematite(赤铁矿Fe2O3)
limonite(褐铁矿2Fe2O3· 3H2O)
Ilmenite(钛铁矿FeTiO3)
Specularite(镜铁矿Fe2O3)
Siderite(菱铁矿FeCO3)
7 磁力分选的基本原理(principle of magnetic separation)
第7章磁学性能习题解答
第7章 磁学性能 习题解答一、名词解释:磁场强度 答:磁场强度是线圈安匝数的一个表征量,反映磁场源的强弱。
磁感应强度 答:磁感应强度(magnetic flux density ),描述磁场强弱和方向的基本物理量。
是矢量,常用符号B 表示。
磁感应强度也被称为磁通量密度或磁通密度。
磁导率 答:B =Hμ,单位强度的外磁场下材料内部的磁通量密度。
磁化率 答:物质本身的磁化特性,即材料在磁场中被磁化的难易程度。
磁矩 答:磁矩是表征材料磁性大小的物理量。
其值为,m I S =⨯自旋磁矩 答:电子自旋产生的磁矩。
轨道磁矩 答:电子沿一定轨道运动产生的磁矩。
抗磁性 答: 抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。
但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。
这样表示物质磁性的磁化率便成为很小的负数(量)。
顺磁性 答:(paramagnetism )在磁场作用下,物质中相邻原子或离子的热无序磁矩在一定程度上与磁场强度方向一致的定向排列的现象。
反铁磁性铁磁性答:具有自发磁化,且这些自发磁化会随着外磁场的改变而改变方向。
亚铁磁性答:在无外加磁场的情况下,磁畴内由于相邻原子间电子的交换作用或其他相互作用。
使它们的磁矩在克服热运动的影响后,处于部分抵消的有序排列状态,以致还有一个合磁矩的现象。
磁畴 答:在磁性物质内,其自发磁化强度的大小和方向基本上一致的区域。
铁磁体 答:铁磁体指特指一种自发磁化方式,即晶胞里面的每一个磁子的方向都是相同的,都对磁性起增强作用。
如铁、钴、镍等。
铁氧体 答:铁氧体是一种具有铁磁性的金属氧化物。
由以三价铁离子作为主要正离子成分的若干种氧化物组成,并呈现亚铁磁性或反铁磁性的材料。
二、简答题1.何为磁化强度、磁感应强度?磁化强度与磁感应强度间存在何种关系?答:磁化强度,即单位体积的磁矩。
公式为,公式为,M = ∑m /V 。
磁感应强度也被称为磁通量密度或磁通密度。
大学物理习题集答案解析-第七章-磁力
载流导线受力为
Fa bIldB
Ia bdl B
IabB 方向:竖直向上
7-5. 一个平面圆形载流线圈,半径为R ,通电流I , 把它放到一均匀磁场 B中,使线圈平面与磁场平行,
用电流元所受力矩的积分求出此线圈受的磁力矩,并
验证它也等于线圈的磁矩与磁场
dfdfcos左半圆受力与之相同故整个圆电流受力9192939495969791把两种不同的磁介质放在磁铁ns极之间磁化后也成为磁体但两种磁介质的两极的位置不同如图ab所示试指出a图为b图为顺磁介质试指出92如图示的三条线分别表示三种不同的磁介质的bh曲线93以下说法是否正确
第七章 磁力
7-1 7-5 7-9 7-2 7-6 7-3 7-7 7-4 7-8
6.3140m/s2
B f
(3)电子的轨道半径:
RB m e v1 9 ..6 1 1 1 1 0 3 0 9 15 6 ..5 5 1 1 7 5 0 06.7m
d表示电子从南到北的飞行路程,则电子向东偏转为x
1
xR R2d2RR1d22 R
d R
xRR1d2.1 R 2
d2
0.2203.01 03m
8-7 如图示,在纸面内有一宽度a的无限长的薄载流平面,电
流I 均匀分布在面上(或线电流密度i=I/a ),试求与载流平面
共面的点P处的磁场(设P点到中心线距离为x0 ).
解:建立如图示坐标系在x处取宽dx的窄带 a x a
其电流为 dIidx
2
2
dB 0 dI 2r
0 idx 2(x0 x)
(b)
I I aP
BP040aI 40aI
BP2B直B弧 心
工学第七章无机材料的磁学性能材料物理
1
第七章 无机材料的磁学性能
§7.1 物质的磁性 §7.2 磁畴与磁滞回线 §7.3 铁氧体的磁性与结构 §7.4 铁氧体磁性材料
2
§7.1 物质的磁性
一、物理参数 二、磁性的本质 三、磁性的分类
3
4
金属和合金
电阻率低,损耗大,不能满足应用之需要,
磁
尤其在高频范围内。
性 材
磁性无机材料: 含铁及其它元素的复合氧化物。
C
C居里常数
T T0
19
4. 反铁磁性(弱磁性)
交换能J为负值,使相邻原子间的自旋趋于反向平行排列,
原子磁矩相互抵消,不能形成自发磁化区域。
特点:
➢ 任何温度下,都观察不到反铁磁性物质的任何自发磁
化现象,因此其宏观特性是顺磁性的;
➢ M与H呈线性关系;
➢ 与温度的关系:
Tn反铁磁居里点
Tn
T
36
37
二、铁氧体的结构
尖晶石型铁氧体 * 石榴石型铁氧体 磁铅石型铁氧体 钙钛矿型铁氧体 钛铁矿型铁氧体 钨青铜型铁氧体
38
§7.4 铁氧体磁性材料
一、软磁材料 二、硬磁材料 三、矩磁材料
39
一、软磁材料
1. 特点
高磁导率,饱和磁感应强度大; 电阻高,损耗低;
矫顽力Hc小;
稳定性好。
2. 应用
30
二、磁滞回线 1. 磁化曲线
铁磁体在外磁场中的磁化(使材料具有磁性的过程)过 程主要为畴壁的移动和磁畴内磁矩的转向。
磁导率为磁化曲线上各点的斜率
31
磁化过程:
oa:微弱磁场中,磁感应强度B随外磁场强度H的 增大缓慢上升,磁化强度M与外磁场强度H之
第7章-稳定磁场-2(3)
M 的作用。
这一力矩使分子磁矩转向外磁场的方向
B0
pm M
B0
M = pm B
as
. . . . . .
磁化面电流 as
I
l
B0
分子电流
M
这些分子磁矩对应的分子电流在磁介质内部流向相反 ,它们的磁作用相互抵消;而在表面流向相同,形成一 层磁化(束缚)电流,该磁化电流产生的磁场就是介质 磁化后所产生的附加磁场,其方向与原磁场方向相同。
B dS 0
S
2. 有介质存在时的安培环路定理
B dl o I I s
L
o I M dl
L
B L o M dl I
定义“磁场强度”
H
B
o
硬磁材料:
磁滞回线较宽,剩余 磁感应强度和矫顽力 都比较大。 B
H
适合于制造永磁体
矩磁材料:
磁滞回线接近于矩 形,剩余磁感应强度 Br接近于饱和磁感应 强度Bs。 B
H
适合于制作记录磁 带及计算机的记忆 元件。
2. 磁畴
铁磁质内部相邻原子的 磁矩会在一个微小的区域内 形成方向一致、排列非常整 齐的 “自发磁化区”,称 为磁畴。 磁畴大小:
( N : 匝数 )
NI 得: H = 2π r =nI B = H = 0 r nI
r
[例题2]一无限长载流圆柱体,通有电流I ,设电流 I 均匀分布在整个横截面上。柱体的磁导率为μ,柱外真 空。求:柱内外各区域的磁场强度和磁感应强度。 解:
1. r < R
H .dl = H 2π r = I ´ μ l r2 = R2 I
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钴
29
用磁畴理论可以解释铁磁质的磁化过程、 磁滞现象、磁滞损耗以及居里点。 临界温度(铁磁质的居里点)
每种磁介质当温度升高到一定程度时,由 高磁导率、磁滞、磁致伸缩等一系列特殊状态全部 消失,而变为顺磁性。 不同铁磁质具有不同的转变温度 如:铁为 1040K,钴为 1390K, 镍为 630K
30
第7章 磁 介 质
1
第 7章 磁 介 质
§1 磁介质存在时静磁场的基本规律 §2 顺磁性与抗磁性
§3 铁磁性与铁磁质
§4 磁路及其计算 §5 磁场的能量
2
§1 磁介质存在时静磁场的基本规律
一、 磁介质的分类 磁介质——能与磁场产生相互作用的物质
磁性是物质的基本属性,就像物质具有
质量和电性一样。 换句更简单的话说
31
四、铁磁质的分类及其应用
(1)软磁材料
Hc Hc
软磁材料作变压器的。 纯铁,硅钢坡莫合金(Fe,Ni),铁氧体等。
r大,易磁化、易退磁(起始磁化率大)。饱和磁感 应强度大,矫顽力(Hc)小,磁滞回线的面积窄而长, 损耗小(HdB面积小)。主要用于电磁能的转换。
还用于继电器、电机、以及各种高频电磁元件 的磁芯、磁棒。
三、铁磁性的起因——磁 畴
根据现代理论,铁磁质相邻原子的电子之间 存在很强的“交换耦合作用”,使得在无外磁场作 用时,电子自旋磁矩能在小区域内自发地平行排列 ,形成自发磁化达到饱和状态的微小区域。 这些区域称为“磁畴”
多晶磁畴结构 示意图
27
显示磁畴结构的铁粉图形
28
三种铁磁性物质的磁畴
纯铁
硅铁
求:环内的磁场强度和磁感应强度
解: H dl H 2r NI L
NI H nI 2r
r
O
B H 0 r H
20
§2 顺磁性与抗磁性
一、顺磁质及其磁化
分子的固有磁矩不为零 pm 0
分 子 磁 矩
无外磁场作用时,由 于分子的热运动,分 子磁矩取向各不相同, 整个介质不显磁性。
(
L
B
0
L
M ) dl I 0内
定义
H
B M
B
磁 介 质
0
M
I
L I0
H
(
L
B
0
0
磁场强度
M ) dl I 0内
13
得:
H dl I0内
L
H 的环路定理
在稳恒磁场中,磁场强度矢量沿任一闭合路径的
对比 电介质
g
0 (1 m )
m
e 极化率
m
介质的磁化率
8
五. 磁化强度与磁化电流的关系
M en I M dl
L
对比电介质
——磁化电流面密度
ˆ Pn q P ds
S
磁化强度对闭合回路L的线积分, 等于穿过以L为周界的任意曲面的磁 化电流的代数和。
B H
r
(各向同性非铁磁质)
九、静磁场与静电场方程的对比
15
B dl 0 I 0 I
L
磁介质中的 安培环路定理
电介质中的 高斯定理
L
B dl 0 I 0 M dl
L ( B
L L
pm 0
21
有外磁场时,分子磁矩 要受到一个力矩的作用,使分 子磁矩转向外磁场的方向。
pm B0 M M pm B0
分子磁矩产生的磁场方向和外磁场方向一致 ,顺磁质磁化结果,使介质内部磁场增强。
B
B B0 B0
22
二、抗磁质及其磁化
分子的固有磁矩为零 pm 0
i
i
0
第二定律:
(R
m
) m
38
磁路定律不外是磁场的“高斯定理”和“安培环
路定理”的具体应用。 磁路与电路类似纯粹是形式上的类似,在物理本 质上没有任何共同点。(载流子、断路等) 例题见书310页 例题1、例题2 三、铁磁屏蔽 (见书313页)
f . HC
饱和磁感应强度
剩 磁
a
初始磁 化曲线
矫顽力
HS
.
HC . c O
.
HS
磁滞回线
H
e . Br
d
BS
25
磁滞回线--不可逆过程
B的变化落后于H,从而具有剩磁, 即磁滞效应。每个H对应不同的B H c
与磁化的历史有关。
Br
B
BS Hc H
在交变电流的励磁下反复磁化使其温度升高的 磁滞损耗与磁滞回线所包围的面积成正比。 铁磁体于铁电体类似;在交变场的作用下,它的形状 会随之变化,称为磁致伸缩(10-5数量级)它可用做 26 换能器,在超声及检测技术中大有作为。
11
七、磁场强度,磁介质中的安培环路定理
B dl 0 I内 ( ) 1 L 真空 (2) B dS 0 S
考虑到磁化电流(1)式则需加以修正 设:I0─ 传导电流 I ─ 磁化电流
12
L
B dl 0 ( I 0内 I内) 0 I 0内 0 M dl
L H dl I
L
S
D dS e dV
V
16
B , H , M 之间的关系
M m H
B
P、D、E 之间的关系
H
B 0 ( 1 m )H
0
M
D 0E P
铁磁质的特性 1. 非线性: 磁导率μ不是一个常量,它的值不仅决定于原线 圈中的电流,还决定于铁磁质样品磁化的历史。 B 和H 不是线性关系。 2.高μ值: 有很大的磁导率,放入线圈中时可以使磁场增 强102 ~ 104倍。 3. 有磁滞现象。 4.有居里点: 温度超过居里点时,铁磁质转变为顺磁质。
就是:一切物质都具有磁性 磁化——磁介质在磁场作用下所发生的变化
3
磁导率——描述不同磁介质磁化后对原外磁场的影响
传导电流产生
B Bo B
附加磁场 在介质均匀充满 磁场的情况下
B r B0
介质的相对磁导率
r 1 r 1 r >>1
顺磁质 抗磁质
铁磁质
4
或根据 B 的大小和方向可将磁介质分为四大类
H
B
H
C
§4 磁路及其计算
一、磁路 由于存在导体、绝缘体 由于存在铁磁质、非铁磁质
电路
磁路
磁路:B
线的主要通路。
s
电路: I 磁路: s
j ds
s
s
j Bds B 0 ds
推导:见教材285页
9
推导: 设分子浓度为 n, 则套住 dl 的分子电流: 磁介质 S
dl dl
放大
S分
M
dI n i分 (S分 cos dl )
M dl
i分
M dl cos
I M dl
L
穿过L所围曲面S 的磁化电流
I
I
NI 原理: 励磁电流 I; H 用安培定理得H 2R
实验测量B,如用感应电动势测量 或用小线圈在缝口处测量; B 由 r 得出 r ~ H 曲线 o H
R
B, r
B~H r ~ H
铁磁质的 r 不一定是个常数, 它是 H 的函数
H 24
二、磁滞回线
B
BS . Br . b
17
十、环路定理的应用举例
例1 一无限长载流圆柱体,通有电流I ,设电流 I 均匀分布在整个横截面上。柱体的磁导率为μ, I 柱外为真空。 求:柱内外各区域的磁场强度 和磁感应强度。 解: r R
R
0
2
I
H
r LH dl H 2r I R 2 I
Ir H 2 2R
H NI , dl
36
Rm NI
磁动势: m
对比
IR
(也称安匝数)
NI
Rm m
——无分支闭合磁路的欧姆定律 单位:磁阻——1/亨 磁动势——安匝
37
2、磁阻的串并联
串联:
并联:
Rm Rmi
i
1 1 Rm i Rmi
3、磁路基尔霍夫定律 第一定律:
——无分支磁路各截面 相等
34
二、磁路定律及其计算
1、磁路的欧姆定律
电路—— 磁路——
I、、R
、m、Rm
——电路定律
——磁路定律
I
m
I
等效
Rm
35
I
m
I 等效
Rm
通电线圈
——电源
B dl NI 1 S dl NI , S dl NI 1 dl 对比一段导体电阻公式: R S 1 dl 磁阻: Rm S
L
L
S
1 ' S E dS 0 (q qi ) S 1 1 E dS q P dS
0 B H M
M ) dl I
L
0
S
0
S
0
S ( 0 E P) dS q S D 0E P