回归分析(1)

合集下载

现代统计方法--回归分析1

现代统计方法--回归分析1

现代统计方法的种类
三、相关分析方法 1、定性资料分析 2、回归分析 3、典型相关分析 4、主成分分析 5、因子分析 6、对应分析
现代统计方法的种类
四、预测决策方法: 1、回归分析 2、判别分析 3、定性资料分析 4、聚类分析
统计分析方法应用流程
现实经济问题
提炼具体问题 确定欲达目标
分类研究
结构简化 研究
ˆ 1 、 1
1回归分析2判别分析3定性资料分析4聚类分析统计分析方法应用流程现实经济问题提炼具体问题确定欲达目标根据定性理论设计指标变量搜集整理统计数据选择统计方法构造理论模型进行统计计算估计模型参数修改yes应用分类研究结构简化研究相关分析研究预测决策研究教材统计软件简介eview关于spssspssstatisticalpackagesocialscience即社会科学统计软件包是世界著名的统计分析软件
一元线性回归分析
1、一元线性回归模型 2、回归模型的参数估计 3、OLSE估计的性质 4、回归方程的显著性检验 5、回归方程的拟合优度 6、残差分析 7、回归系数的区间估计
一元线性回归分析模型
1、回归模型建模的实践背景 2、一元线性回归模型的数学形式: 1)、理论模型: y 0 1 x
ξ♐♣☯♧
现代统计方法
前言
统计学的几个问题
1、自1969年设立诺贝尔经济学奖以来,已有 42名学者获奖,而其中有2/3的人是统计学家、 计量经济学家、数学家。 2、目前的研究趋势是:从一般的逻辑推理发展 到重视实证研究;从理论论述发展到数量研 究。 3、硕士和博士的学位论文,如果没有数量模型 和分析,其文章的水平会有问题。
关于S-PLUS

另外Auckland大学的Robert Gentleman 和 Ross Ihaka 及其他志愿人员开发了一个R系 统,其语法形式与S语言基本相同,但实现 不同,两种语言的程序有一定的兼容性。R 是一个GPL自由软件,现在的版本是1.00版, 它比S-PLUS 还少许多功能,但已经具有了 很强的实用性

回归分析03:回归参数的估计(1)

回归分析03:回归参数的估计(1)

回归分析03:回归参数的估计(1)⽬录Chapter 3:回归参数的估计(1)3.1 最⼩⼆乘估计⽤y表⽰因变量,x_1,x_2,\cdots,x_p表⽰对y有影响的p个⾃变量。

总体回归模型:假设y和x_1,x_2,\cdots,x_p之间满⾜如下线性关系式y=\beta_0+\beta_1 x_1+\beta_2x_2+\cdots+\beta_px_p+e \ ,其中e是随机误差,将\beta_0称为回归常数,将\beta_1,\beta_1,\cdots,\beta_p称为回归系数。

总体回归函数:定量地刻画因变量的条件均值与⾃变量之间的相依关系,即{\rm E}(y|x)=\beta_0+\beta_1 x_1+\beta_2x_2+\cdots+\beta_px_p \ ,回归分析的⾸要⽬标就是估计回归函数。

假定已有因变量y和⾃变量x_1,x_2,\cdots,x_p的n组观测样本\left(x_{i1},x_{i2},\cdots,x_{ip}\right),\,i=1,2,\cdots,n。

样本回归模型:样本观测值满⾜如下线性⽅程组y_i=\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\cdots+\beta_px_{ip}+e_i \ , \quad i=1,2,\cdots,n \ .Gauss-Markov 假设:随机误差项e_i,\,i=1,2,\cdots,n满⾜如下假设:1. 零均值:{\rm E}(e_i)=0;2. 同⽅差:{\rm Var}(e_i)=\sigma^2;3. 不相关:{\rm Cov}(e_i,e_j)=0 \ , \ \ i\neq j。

如果将样本回归模型中的线性⽅程组,⽤矩阵形式表⽰为Y\xlongequal{def}\left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array}\right)=\left(\begin{array}{c} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \ \\ 1 & x_{n1} & \cdots & x_{np} \\ \end{array}\right)\left(\begin{array}{c} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{array}\right)+\left(\begin{array}{c} e_1 \\ e_2 \\ \vdots \\ e_n \end{array}\right)\xlongequal{def}X\beta+e \ ,其中X称为设计矩阵。

3.2回归分析(1)

3.2回归分析(1)

1035 1107
1177 1246
解:作出11个点(x,y)构成的散点图, 由图可知,这些 点在一条直线附 近,可以用线性 回归模型
y a bx
来表示它们之间的关系. 根据公式(1)可得
y 因此线性回归方程为 527.591 14.453x
b 14.453, 这里 a, b 分别为a,b的估计值, a 527.591.
(i 1, 2,3,, n) ,
根据线性回归模型,对于每一个 对应的随机误差项
xi ,
i2
i 1 n
i yi (a bxi ) ,
Q( , ) ( yi xi ) 2
i 1 n
我们希望总误差越小越好,即要使 越小越好.故只要求出使
b 取得最小值时的 , 的值作为 a ,
例1.下表给出我国从1949至1999年人口数 据资料,试根据表中数据估计我国2004年 的人口数。
年份 人口 数/ 百万 49 542 54 603 59 672 64 705 69 807 74 909 79 975 84 89 94 99 1035 1107 1177 1246
分析:先画图
年份 人口 数/ 百万 0 542 5 603 10 672 15 705 20 807 25 909 30 975 35 40 45 50
解决这个问题的方法是:先作散点图,如下图所示: 从散点图中可以看出,样 本点呈直线趋势,时间x与 位置观测值y之间有着较好 的线性关系.因此可以用 线性回归方程来刻画它们 之间的关系.
根据线性回归的 系数公式:
n xi yi nx y ˆ n b i 1 b xi2 n( x ) 2 i 1 a y bx ˆ a

第九章 回归分析(一元线性回归)(1)

第九章 回归分析(一元线性回归)(1)
我们先看一个实例 为研究温度对某个化学过程的生产量的影响, 收集到如下数据(规范化形式):
将表中各对数据描在坐标平面上得图
数 据 和 拟 合 直 线
这样的图称为观测数据的散点图。 从图上可以看出,随着温度x的升高, 某化学过程的生产量y的平均值也在增加, 它们大致成一直线关系,但各点不完全在一 条直线上,这是由于y还受到其它一些随机 因素的影响。
温度 xi

为了研究某一化学反应过程中温度 x 对产
品得率 Y 的影响. 测得数据如下:
C 100 110 120 130 140 150 160 170 180 190
45 51 54 61 66 70 74 78 85 89
得率 yi %
为了研究这些数据所蕴藏的规律性, 将温度 x i 作 为横坐标,得率 y i 作为纵坐标, 在 xoy 坐标系中作 散点图 从图易见, 虽然这些点是散乱的, 但大体上散布在 某条直线附近, 即该化学反应过程中温度与产品
回归分析正是研究预报变量之变动对响 应变量之变动的影响程度,其目的在于根据 已知预报变量的变化来估计或预测响应变量 的变化情况。
“回归(regression)”名称的由
来:
回归名称的由来要归功于英国统计学F.高尔顿 (F.Galton:1822~1911),他把这种统计分析方法 应用于研究生物学的遗传问题,指出生物后代有回 复或回归到其上代原有特性的倾向。高尔顿和他的 学生、现代统计学的奠基者之一K.皮尔逊 (K.Pearson:1856~1936)在研究父母身高与其 子女身高的遗传问题时,在观察了1078对夫妇后, 以每对夫妇的平均身高作为x,取他们的一个成年儿 子的身高为y,将结果绘成散点图后发现成一条直线。 计算出回归方程为

Logistic回归分析(1)

Logistic回归分析(1)
5
53例接受手术的前列腺癌患者情况
6
26例冠心病病人和28例对照者进行 病例对照研究
7
26例冠心病病人和28例对照者进行 病例对照研究
8
根据研究设计不同
• Logistic回归的分类
Logistic回归 二分类 多分类
非条件 :成组资料 1:1配对资料
条件Logistic回归 1:m配对资料 m:n配对资料
24
• 分析因素xi为多分类变量时,为方便起 见,常用1,2,…,k分别表示k个不同 的类别。进行Logistic回归分析前需将 该变量转换成k-1个指示变量或哑变量 (design/dummy variable),这样指示变 量都是一个二分变量,每一个指示变 量均有一个估计系数,即回归系数, 其解释同前。
由于 OR j 值与模型中的常数项 0 无关,
0 在危险因素分析中通常视其为无效参数。
18
回归系数的解释
• 建立Logistic回归方程就是求和i • 意义:常数项是当各种暴露因素为0时,个体发
病与不发病概率之比的自然对数值。
• i意义 • 偏回归系数,表示在其它自变量固定的 • 条件下,第i个自变量每改变一个单位时logit的改
雌激素
使用过
未使用过
病例 对照
55(a) 19(c)
128(b) 164(d)
OR P1 (1 P1 ) ad 55164 3.7089 P0 (1 P0 ) bc 19128
95%CI :
3.7089 exp 1.96
1 1 1 1 55 128 19 164
2.0964 ~ 6.5616
31
四格表资料的logistic回归
• X=1 表示使用过雌激素 • X=0 表示未使用过雌激素

第1章 1.1 回归分析

第1章 1.1 回归分析

§1 回归分析 1.1 回归分析学习目标 1.会建立线性回归模型分析两个变量间的相关关系.2.掌握建立线性回归模型的步骤.知识点 线性回归方程 思考 (1)什么叫回归分析?(2)回归分析中,利用线性回归方程求出的函数值一定是真实值吗? 答案 (1)回归分析是对具有相关关系的两个变量进行统计分析的一种方法.(2)不一定是真实值,利用线性回归方程求的值,在很多时候是个预报值,例如,人的体重与身高存在一定的线性关系,但体重除了受身高的影响外,还受其他因素的影响,如饮食、是否喜欢运动等.梳理 (1)平均值的符号表示假设样本点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),在统计上,用x 表示一组数据x 1,x 2,…,x n 的平均值,即x =x 1+x 2+…+x n n =1n∑i =1nx i ;用y 表示一组数据y 1,y 2,…,y n 的平均值,即y =y 1+y 2+…+y n n =1n∑i =1ny i .(2)参数a ,b 的求法b =l xy l xx=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a =y -b x .(3)样本点的中心(x ,y ),回归直线过样本点的中心.1.现实生活中的两个变量要么是函数关系,要么是相关关系.( × ) 2.散点图能准确判定两个变量是否具有线性相关关系.( × ) 3.回归直线不一定过样本中的点,但一定过样本点的中心.( √)类型一 概念的理解和判断 例1 有下列说法:①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示; ③通过回归方程y =bx +a 可以估计观测变量的取值和变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验. 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 考点 回归分析题点 回归分析的概念和意义 答案 C解析 ①反映的正是最小二乘法思想,正确;②反映的是画散点图的作用,正确;③反映的是回归方程y =bx +a 的作用,正确;④不正确,在求回归方程之前必须进行相关性检验,以体现两变量的关系.跟踪训练1 下列变量关系是相关关系的是( ) ①学生的学习时间与学习成绩之间的关系; ②某家庭的收入与支出之间的关系; ③学生的身高与视力之间的关系; ④球的体积与半径之间的关系. A .①② B .①③ C .②③ D .②④考点 回归分析题点 回归分析的概念和意义 答案 A解析 对①,学习时间影响学生的学习成绩,但是学生学习的刻苦程度、学生的学习方法、教师的授课水平等其他因素也影响学生的成绩,因此学生的学习时间与学习成绩之间具有相关关系;对②,家庭收入影响支出,但支出除受收入影响外,还受其他因素影响,故它们是相关关系;对③,身高与视力之间互不影响,没有任何关系;对④,球的体积由半径决定,是一种确定性关系,故它们是函数关系. 类型二 回归分析命题角度1 求线性回归方程例2 某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,得下表数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =bx +a ; (3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.⎝⎛⎭⎪⎪⎫相关公式:b =∑i =1nx i y i -n x y ∑i =1nx 2i -n x2,a =y -b x考点 线性回归方程 题点 求线性回归方程解 (1)如图:(2)∑i =14x i y i =6×2+8×3+10×5+12×6=158,x =6+8+10+124=9,y =2+3+5+64=4,∑i =14x 2i =62+82+102+122=344,b =158-4×9×4344-4×92=1420=0.7,a =y -b x =4-0.7×9=-2.3, 故线性回归方程为y =0.7x -2.3.(3)由(2)中线性回归方程可知,当x =9时,y =0.7×9-2.3=4,预测记忆力为9的同学的判断力约为4.反思与感悟 (1)求线性回归方程的基本步骤①列出散点图,从直观上分析数据间是否存在线性相关关系. ②计算:x ,y,∑i =1nx 2i ,∑i =1n y 2i ,∑i =1nx i y i . ③代入公式求出y =bx +a 中参数b ,a 的值. ④写出线性回归方程并对实际问题作出估计.(2)需特别注意的是,只有在散点图大致呈线性时,求出的回归方程才有实际意义,否则求出的回归方程毫无意义.跟踪训练2 已知某地区4~10岁女孩各自的平均身高数据如下:求y 对x 的线性回归方程.(保留两位小数) 考点 线性回归方程 题点 求线性回归方程 解 制表b =∑i =17x i y i -7x y∑i =17x 2i -7x2=5 798-7×7×8097371-7×72≈4.82, a =y -b x =8097-4.82×7≈81.83.所以线性回归方程为y =81.83+4.82x . 命题角度2 线性回归分析与回归模型构建例3 某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x (x 取整数)(元)与日销售量y (台)之间有如下关系:(1)画出散点图,并判断y 与x 是否具有线性相关关系; (2)求日销售量y 对销售单价x 的线性回归方程;(3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润. 考点 线性回归分析 题点 回归直线方程的应用解 (1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量线性相关.(2)因为x =14×(35+40+45+50)=42.5,y =14×(56+41+28+11)=34.∑i =14x i y i =35×56+40×41+45×28+50×11=5 410.∑i =14x 2i =352+402+452+502=7 350.所以b =∑i =14x i y i -4x y∑i =14x 2i -4x2=5 410-4×42.5×347 350-4×42.52=-370125≈-3.a =y -b x =34-(-3)×42.5=161.5. 所以线性回归方程为y =161.5-3x .(3)依题意,有P =(161.5-3x )(x -30)=-3x 2+251.5x -4 845=-3⎝⎛⎭⎫x -251.562+251.5212-4 845. 所以当x =251.56≈42时,P 有最大值,约为426元.即预测当销售单价为42元时,能获得最大日销售利润.反思与感悟 解答线性回归题目的关键是首先通过散点图来分析两变量间的关系是否线性相关,然后再利用求线性回归方程的公式求解线性回归方程,在此基础上,借助线性回归方程对实际问题进行分析.跟踪训练3 一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:(1)作出散点图;(2)如果y 与x 线性相关,求出线性回归方程;(3)若在实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围? 考点 线性回归分析 题点 回归直线方程的应用解 (1)根据表中的数据画出散点图如图.(2)设线性回归方程为:y =bx +a ,并列表如下:x =12.5,y =8.25,∑i =14x 2i =660,∑i =14x i y i =438,所以b =438-4×12.5×8.25660-4×12.52≈0.73,a =8.25-0.73×12.5=-0.875, 所以y =0.73x -0.875.(3)令0.73x -0.875≤10,解得x <14.9≈15, 故机器的运转速度应控制在15转/秒内.1.某商品销售量y (件)与销售价格x (元/件)负相关,则其线性回归方程可能是( ) A .y =-10x +200 B .y =10x +200 C .y =-10x -200 D .y =10x -200考点 线性回归分析 题点 线性回归方程的应用 答案 A解析 因为y 与x 负相关,所以排除B ,D , 又因为C 项中x >0时,y <0不合题意,所以C 错.2.如图四个散点图中,适合用线性回归模型拟合其中两个变量的是()A .①②B .①③C .②③D .③④ 考点 回归分析题点 回归分析的概念和意义 答案 B解析 由图易知①③两个图中样本点在一条直线附近,因此适合用线性回归模型. 3.下表是x 和y 之间的一组数据,则y 关于x 的回归直线必过点( )A.(2,3) B .(1.5,4) C .(2.5,4) D .(2.5,5)考点 线性回归方程 题点 样本点中心的应用 答案 C解析 回归直线必过样本点中心(x ,y ),即(2.5,4).4.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量x (单位:千箱)与单位成本y (单位:元)的资料进行线性回归分析,结果如下:x =72,y =71,∑i =16x 2i=79,∑i =16x i y i =1 481,则销量每增加1 000箱,单位成本下降________元. 考点 线性回归分析 题点 线性回归方程的应用 答案 1.818 2解析 由题意知,b =1 481-6×72×7179-6×⎝⎛⎭⎫722≈-1.818 2,a =71-(-1.818 2)×72≈77.36,∴y 关与x 的线性回归方程为 y =-1.818 2x +77.36,即销量每增加1千箱,单位成本下降1.818 2元. 5.已知x ,y 之间的一组数据如下表:(1)分别计算:x ,y ,x 1y 1+x 2y 2+x 3y 3+x 4y 4,x 21+x 22+x 23+x 24;(2)已知变量x 与y 线性相关,求出线性回归方程. 考点 线性回归方程 题点 求线性回归方程解 (1)x =0+1+2+34=1.5,y =1+3+5+74=4,x 1y 1+x 2y 2+x 3y 3+x 4y 4=0×1+1×3+2×5+3×7=34,x 21+x 22+x 23+x 24=02+12+22+32=14.(2)b =34-4×1.5×414-4×1.52=2,a =y -b x =4-2×1.5=1, 故线性回归方程为y =2x +1.回归分析的步骤(1)确定研究对象,明确哪个变量是自变量,哪个变量是因变量.(2)画出确定好的因变量关于自变量的散点图,观察它们之间的关系(如是否存在线性关系等). (3)由经验确定回归方程的类型(如果呈线性关系,则选用线性回归方程y =bx +a ). (4)按一定规则估计回归方程中的参数.一、选择题1.对变量x ,y 由观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v 由观测数据(u i ,v i )(i =1,2,…,10),得散点图(2),由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关考点回归分析题点回归分析的概念和意义答案 C解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关.2.某医学科研所对人体脂肪含量与年龄这两个变量研究得到一组随机样本数据,运用Excel 软件计算得y=0.577x-0.448(x为人的年龄,y为人体脂肪含量).对年龄为37岁的人来说,下面说法正确的是()A.年龄为37岁的人体内脂肪含量为20.90%B.年龄为37岁的人体内脂肪含量约为21.01%C.年龄为37岁的人群中的大部分人的体内脂肪含量约为20.90%D.年龄为37岁的人群中的大部分人的体内脂肪含量约为31.5%考点线性回归分析题点线性回归方程的应用答案 C解析当x=37时,y=0.577×37-0.448=20.901≈20.90,由此估计,年龄为37岁的人群中的大部分人的体内脂肪含量约为20.90%.3.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关,下列结论中正确的是() A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关考点回归分析题点回归分析的概念和意义答案 A解析由正相关和负相关的定义知A正确.4.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:若x,y线性相关,线性回归方程为y=0.7x+a,估计该制药厂6月份生产甲胶囊产量约为() A.8.0万盒B.8.1万盒C.8.9万盒D.8.6万盒考点线性回归分析题点线性回归方程的应用答案 B解析回归直线一定过样本点中心.由已知数据可得x=3,y=6,代入回归方程,可得a =y-0.7x=3.9,即线性回归方程为y=0.7x+3.9.把x=6代入,可近似得y=8.1,故选B. 5.工人月工资y(单位:元)关于劳动生产率x(单位:千元)的回归方程为y=650+80x,下列说法中正确的个数是()①劳动生产率为1 000元时,工资约为730元;②劳动生产率提高1 000元,则工资提高80元;③劳动生产率提高1 000元,则工资提高730元;④当月工资为810元时,劳动生产率约为2 000元.A.1 B.2 C.3 D.4考点线性回归分析题点线性回归方程的应用答案 C解析 代入方程计算可判断①②④正确.6.某化工厂为预测某产品的回收率y ,而要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =18x i y i =1 849,则y 与x 的线性回归方程是( ) A .y =11.47+2.62x B .y =-11.47+2.62x C .y =2.62+11.47x D .y =11.47-2.62x考点 线性回归方程 题点 求线性回归方程 答案 A解析 由题中数据,得x =6.5,y =28.5,∴b =∑i =18x i y i -8x y∑i =18x 2i -8x2=1 849-8×6.5×28.5478-8×6.52=367140≈2.62,a =y -b x ≈28.5-2.62×6.5=11.47,∴y 对x 的线性回归方程是 y =2.62x +11.47,故选A.7.为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线l 1和l 2,两人计算知x 相同,y 也相同,下列正确的是( ) A .l 1与l 2一定重合 B .l 1与l 2一定平行C .l 1与l 2相交于点(x ,y )D .无法判断l 1和l 2是否相交 考点 回归直线方程 题点 样本点中心的应用 答案 C解析 因为两个人在试验中发现对变量x 的观测数据的平均值都是x ,对变量y 的观测数据的平均值都是y ,所以两组数据的样本点中心都是(x ,y ),因为回归直线经过样本点的中心,所以l 1和l 2都过(x ,y ). 二、填空题8.某校小卖部为了了解奶茶销售量y (杯)与气温x (℃)之间的关系,随机统计了某4天卖出的奶茶杯数与当天的气温,得到下表中的数据,并根据该样本数据用最小二乘法建立了线性回归方程y =-2x +60,则样本数据中污损的数据y 0应为________.考点 线性回归分析 题点 线性回归方程的应用 答案 64解析 由表中数据易知x =10,代入y =-2x +60中, 得y =40.由y 0+34+38+244=40,得y 0=64.9.调查某移动公司的三名推销员,其工作年限与年推销金额的数据如下表所示.由表中数据算出线性回归方程y =bx +a 中的b =726.若该公司第四名推销员的工作年限为6年,则估计他的年推销金额约为________万元. 考点 线性回归分析 题点 线性回归方程的应用 答案 3解析 x =6,y =3,由回归直线经过样本点中心可知,该推销员年推销金额约为3万元. 10.某人对一地区人均工资x (千元)与该地区人均消费y (千元)进行统计调查,发现y 与x 有相关关系,并得到线性回归方程y =0.66x +1.562.若该地区的人均消费水平为7.675千元,则估计该地区的人均消费额占人均工资收入的百分比约为________.(精确到0.1%) 考点 线性回归分析 题点 线性回归方程的应用 答案 82.9%解析 当y =7.675时,x ≈9.262,所以该地区的人均消费额占人均工资收入的百分比约为7.6759.262×100%≈82.9%.11.某数学老师身高为176 cm ,他爷爷、父亲和儿子的身高分别是173 cm,170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________ cm. 考点 线性回归分析 题点 线性回归方程的应用 答案 183.5解析 记从爷爷起向下各代依次为1,2,3,4,5,用变量x 表示,其中5代表孙子.各代人的身高为变量y ,则有计算知x =2.5,y =175.25.由回归系数公式得b =3.3,a =y -b x =175.25-3.3×2.5=167,∴线性回归方程为y =3.3x +167,当x =5时,y =3.3×5+167=183.5,故预测其孙子的身高为183.5 cm. 三、解答题12.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:b =∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a =y -b x .考点 线性回归方程 题点 线性回归方程的应用解 (1)由题意,n =10,∑i =110x i =80,∑i =110y i =20,∴x =8010=8,y =2010=2.又∑i =110x 2i -10x 2=720-10×82=80,∑i =110x i y i -10x y =184-10×8×2=24, 由此得b =∑i =110x i y i -10x y∑i =110x 2i -10x2=2480=0.3,a =y -b x =2-0.3×8=-0.4, 故所求线性回归方程为y =0.3 x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄约为y =0.3×7-0.4=1.7(千元). 13.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t 的回归方程y =bt +a ;(2)用所求回归方程预测该地区2019年(t =10)的人民币储蓄存款.附:回归方程y =bt +a 中,b =∑i =1nt i y i -n t y∑i =1nt 2i -n t2,a =y -b t .考点 线性回归方程 题点 求线性回归方程 解 (1)列表计算如下:此时n =5,t =1n ∑i =1n t i=155=3,y =1n ∑i =1n y i =365=7.2.又l tt =∑i =1nt 2i -nt 2=55-5×32=10,l ty =∑i =1nt i y i -n t y =120-5×3×7.2=12,从而b =l ty l tt =1210=1.2,a =y -b t =7.2-1.2×3=3.6,故所求回归方程为y =1.2t +3.6.(2)将t =10代入回归方程,可预测该地区2019年的人民币储蓄存款为y =1.2×10+3.6=15.6(千亿元). 四、探究与拓展14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求线性回归方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本) 解 (1)x =8+8.2+8.4+8.6+8.8+96=8.5,y =16(90+84+83+80+75+68)=80.∵b =-20,a =y -b x , ∴a =80+20×8.5=250, ∴线性回归方程为y =-20x +250. (2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20⎝⎛⎭⎫x -3342+361.25, ∴该产品的单价应定为334元,才使工厂获得的利润最大.。

回归分析第1章课后习题参考答案

回归分析第1章课后习题参考答案

第一章回归分析概述习题参考答案1.1 变量间的统计关系和函数关系有什么区别?(1)确定性关系或函数关系:研究的是确定现象非随机变量间的关系。

(2)统计依赖或相关关系:研究的是非确定现象随机变量间的关系。

1.2 相关分析和回归分析的区别与联系?相关分析和回归分析的联系是:它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现;二者的区别是作为相互关系分析的方法,相关分析是通过提供一个相关系数来考察两变量间的联系程度,而回归分析则是重在建立两变量间的函数关系式,因此通常可以先考察相关系数的显著型,如果显著则可以进一步考虑建立变量间的回归方程。

此外,相关分析和回归分析又各有一些具体方法用于处理不同的情况,如相关分析还包括等级相关、质量相关和品质相关,回归分析还包括非线性回归等。

(其余区别在课本第四页最上面那段)1.3 线性回归模型中随机误差项ε的意义是什么?引入随机误差 使得变量之间的关系描述为一个随机方程,因而我们可以借助数学方法研究自变量和因变量之间的关系。

由于客观经济现象是错综复杂的,随机误差项可以概述表示由于人们的认识以及其他客观原因的局限而没有考虑到的种种偶然因素。

引入随机项扰动的理由如下:第一,表示被解释变量Y与解释变量X的不确定性关系第二,模型不可能包含所有变量,次要变量要省略;第三,确定模型数学形式肯定会有误差;第四,样本数据会有测量误差;第五,一些随机因素无法选入模型。

1.4 线性回归方程的基本假设是什么?假设1、解释变量X(x1 ,x2,…,xp)是确定性变量,不是随机变量;假设2、随机误差项ε具有零均值、等方差和序列不相关性:E(εi)=0 i=1,2, …Var (εi)=σ2 i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3 ε服从零均值同方差、零协方差的正态分布。

εi ~N(0, σ2 ) i=1,2, …,n假设4、样本容量的个数多于解释变量的个数,即:n>p假设5、随机误差项ε与解释变量X之间不相关:Cov(Xi, εi)=0 i=1,2, …,n(在课本第7页到第8页)1.6收集整理数据包括哪些内容?在课本第10到12页1.7构造回归理论模型的基本根据是什么?(1)散点图(2)实际问题背景的理论及方法建模技术原理(3)经验公式1.8至于回归模型建立之后为什么要检验?是因为我们不明确这个模型是否真正揭示了被解释变量与解释变量之间的关系,因而用此模型区做预测、控制和分析时不够慎重的。

应用回归分析试题(一)

应用回归分析试题(一)

应用回归分析试题(一)一、选择题1. 两个变量与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( D )A. 2R 越小,残差平方和越小B. 2R 越大,残差平方和越大C. 2R 与残差平方和无关D. 2R 越小,残差平方和越大 2.下面给出了4个残差图,哪个图形表示误差序列是自相关的(B )(A ) (B)(C ) (D )3.在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x ,i y ),1,2i ,…,n ;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图 如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( D )A .①②⑤③④B .③②④⑤①C .②④③①⑤D .②⑤④③①4.下列说法中正确的是(B )A.任何两个变量都具有相关关系B.人的知识与其年龄具有相关关系 C .散点图中的各点是分散的没有规律 D .根据散点图求得的回归直线方程都是有意义的12345678xey5. 下面的各图中,散点图与相关系数r 不符合的是(B )二、填空题1. OLSE 估计量的性质线性、无偏、最小方差。

2. 学习回归分析的目的是对实际问题进行预测和控制。

3. 检验统计量t 值与P 值的关系是P(|t |>|t 值|)=P 值,P 值越小,|t 值| 越大 ,回归方程越显著。

4. 在一元线性回归中,SST 自由度为n-1, SSE 自由度为n-2, SSR 自由度为1。

5. 在多元线性回归中,样本决定系数2R = 1SSR SSESSTSST =-。

三、叙述题1. 叙述一元线性回归模型中回归方程系数的求解过程及结果(OLSE 法)答案:定义离差平方和2^1)()(i ni i y y Q ∑=-=β最小二乘思想找出参数10,ββ的估计值^1^0,ββ。

使得离差平方和最小,使^1^0,ββ满足下述条件:∑∑==--=-=ni i i ni i i x y x y Q 1210,121^^010)(min ),(),(1ββββββββ根据微分中值定理可得:0)(2|0)(2|^11^01^11^11^00^00=---=∂∂=---=∂∂∑∑====i i n i i i n i i x x y Qx y Qββββββββββ求解正规方程组得到:⎪⎪⎪⎩⎪⎪⎪⎨⎧---=-=∑∑=-=----n i i n i i i x x y y x x xy 121^11^^0)())((βββ 令 --=-=--==--=--=-=-=∑∑∑∑y x n y x y y x x L xn x x x L ni i i i ni i xy ni ini i xx 1121212)()()(则一元线性回归模型中回归方程系数可表示为2. 叙述多元线性回归模型的基本假设 答案:假设1.解释变量12,,,K X X X 是非随机的 假设2.E (i ε)=0;假设3.var(iε)=2σ,i =1,2,……ncov(,i j εε)=0,i j ≠, ,i j =1,2,……n;假设4.解释变量12,,,K X X X 线性无关;假设5.2(0,)iN εσ3. 回归模型中随机误差项ε的意义是什么?答案:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与12,,px x x 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

研究生应用数理统计回归分析(一元)

研究生应用数理统计回归分析(一元)

1 0
^x中 1
0
2
成立:则
2 n 1 , ~ 1 , ~ 2 2 n 2 2 SS R 从而统计量 F ~ F 1, n 2 SS E n 2
SST
~
SS R
2
SS E
对给定的检验水平 ,
H0 的拒绝域为:F
(一元线性回归方程、经验公式) 回归分析的任务是,找出回归方程式,检验方程有效与否, 当方程有效时对Y 的值作预测与控制。
二、未知参数的估计及统计性质
1.最小二乘法 (Least squares estimate)
1, 2,, n) , 我们可以得到一个回归函数 y 0 1 x ,其中 0 , 1 待定。
Regression Models 回归模型的分类
回归模型
1个自变量
简单回归
2个以上自变量
多元回归
线性回归
非线性回归
二、回归分析的应用 (1)根据观测值,在误差尽可能小的情况下,建立因变 量和自变量x1 , ,xn的回归方程,并利用此方程对变量y 进行预测和控制; (2)判断自变量x1 , ,xn中,哪些变量对y的影响是显著 的,哪些是不显著的。
的总的偏差的平方和为
Q( 0 , 1 ) i 2 [ yi ( 0 1 xi )]2
i 1 i 1
n
n
ˆ , ˆ 称为最小二乘估计,这种方法成为最小二乘法 此得到的估计 0 1
我们希望选取适当的 0 , 1 , 使得 Q( 0 , 1 ) 的值最小,由
当x1,x2, ,xn互不相同时,方程组有解 0 y 1x Lxy 1 Lxx
1 n 1 n x xi , y yi n i 1 n i 1 Lxy ( xi x )( yi y ) x与y的离差平方和 Lxx ( xi x ) x, y的离差平方和

回归分析(第一讲)

回归分析(第一讲)


例如: 研究产品的销量与用于产品宣传的广告 费之间的关系;

因变量——销售量 自变量——广告费

我们用Y代表因变量, X代表自变量。 如果有多个解释变量,我们将用适当的 下标,表示各个不同的X。

例如,X1,X2,X3等等。
概念:总体回归线

下面通过一个例子予以说明。

某城市A产品生产企业共有5 5个(总体), 下表给出了这些企业产品价格(元)与A 产品月销量(万件)的有关数据。

例如,当X=10.1时,有7个Y值与之对应 当X=10.4时,相应地有6个Y值,等等。


对每个X,计算出一个Y的均值。将这些 均值点连起来,构成一条直线。 我们称该直线为总体回归直线 (Population Regression Line,PRL)。
(销量)
(各平均值连成的直线)
(售价)
概念要点:总体回归线

总体回归线: Y =β0+β1X 它描述的是X与Y的均值之间的关系。
概念:随机误差

每个个体的Y值与总体回归线之间的距离 (可正可负)
(销量)
每个点都有一个随机误差,以该点为例。
ε
i
(售价)
概念:回归模型(一元线性回归)
总体 Y的截距 总体 斜率 随机 误差
i
Yi 0 1Xi ε
因变量 Dependent Variable
自变量 Independent Variables
概念:回归模型(多元线性回归)
总体 Y的截距 总体 斜率 随机 误差
Y 0 1X1 2 X2 P X P
因变量 Dependent Variable 自变量 Independent Variables

第1章 1.1(一)回归分析

第1章 1.1(一)回归分析
^
^
^
^
研一研·问题探究、课堂更高效
§ 1.1(一)
思考
根据前面得到的回归方程, 能否预测一名美国女大学生
的体重?建立回归模型后能否一劳永逸, 在若干年后还可以
本 课 时 栏 目 开 关
使用,或者适用于多年以前的女大学生体重预测?
答 在使用回归方程进行预报时要注意: (1)回归方程只适用于我们所研究的样本的总体;
x2 i 900 1 089 1 225 1 369 1 521 1 936 2 116 2 500
yi2 900 1 156 1 369 1 521 1 764 2 116 2 304 2 601
8 i=1
xiyi 900 1 122 1 295 1 443 1 638 2 024 2 208 2 550
∑xiyi-8 x y ^ i=1 ∴b = 8 ≈1.041 5, 2 ∑x2 - 8 x i
作残差图如下图所示,由图可知,残差点比较均匀地分布在水 平带状区域中,说明选用的模型比较合适.
研一研·问题探究、课堂更高效
§ 1.1(一)
(4)计算相关指数 R2 计算相关指数 R2≈0.985 5. 说明了该运动员的成绩的差异有
本 课 时 栏 目 开 关
§ 1.1(一)
【学习要求】 1.了解随机误差、残差、残差图的概念. 2.会通过分析残差判断线性回归模型的拟合效果. 3.掌握建立线性回归模型的步骤.
本 课 时 栏 目 开 关
【学法指导】 通过对典型案例的讨论,了解回归分析的基本思路、方法及 其初步应用. 回归分析是对具有相关关系的两个变量进行统 计分析的一种常用方法. 学习中应该通过生活中详实事例理 解回归分析的方法,其步骤为通过散点图,直观地了解两个 变量的关系,然后,通过最小二乘法建立回归模型,最后通 过分析残差、相关指数等,评价模型的好坏.重点是了解回 归分析的思想方法,对其理论基础不做要求,避免单纯记忆 和机械套用公式进行计算.

回归分析(1)

回归分析(1)
回归分析的基本思想及 其初步应用相关 两个变量的关系 函数关系 线性相关
相关关系
非线性相关 相关关系:对于两个变量,当自变量取值一定时,因 变量的取值带有一定随机性的两个变量之间的关系. 函数关系中的两个变量间是一种确定性关系 相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况
求根据女大学生的身高预报体重的回归方程,并预报 一名身高为172cm的女大学生的体重.
ˆ y 故所求回归方程为: 0 .8 4 9 x 8 5 .7 1 2
r=0.798 表明体重与身高有很强的线性相关性,从 而说明我们建立的回归模型是有意义的.
ˆ y 0 .8 4 9 1 7 2 8 5 .7 1 2 6 0 .3 1 6( k g )
利用残差计算公式:
认为她的平均体重的估计值是60.316kg.
因为所有的样本点不共线,所以线性函数模型只能近 似地刻画身高和体重之间的关系,即:体重不仅受身 高的影响,还受其他因素的影响,把这种影响的结果 用e来表示,从而把线性函数模型修改为线性回归模 型:y=bx+a+e.其中,e包含体重不能由身高的线性 函数解释的所有部分.
如何刻画模型拟合的精度?
相关指数:R 2

1
i1
n
ˆ 2 ( yi yi ) ( yi y )
2

i1
n
在含有一个解释变量的线性模型中,R2恰好等于相关 系数r的平方. R2取值越大,则残差平方和越小,即模型的拟合效果 越好. R2=0.64,表明:“女大学生的身高解释了64%的体 重变化”,或者说“女大学生的体重差异有64%是 由身高引起的”.
(3)观测误差.由于测量工具等原因,得到的y的观 测值一般是有误差的,这样的误差也包含在e中. 以上三项误差越小,则回归模型的拟合效果越好.

8第4章相关分析与回归分析(1)

8第4章相关分析与回归分析(1)

4
3.2
80.8
7.2
10
14.5
5
7.8
199.7
16.5
19
63.2






20
6.8
139.4
7.2
28
64.3
21
11.6
368.2
16.8
32
163.9
22
1.6
95.7
3.8
10
44.5
23
1.2
109.6
10.3
14
67.9
24
7.2
196.2
15.8
16
39.7
25
3.2
102.2
二、用INSIGHT模块作相关分析
【例4-1】一家大型商业银行在多个地区设有分行, 其业务主要是进行基础设施建设、国家重点项目建 设、固定资产投资等项目的贷款。 近年来,该银行的贷款额平稳增长,但不良贷款额 也有较大比例的提高,这给银行业务的发展带来较 大压力。 为弄清楚不良贷款形成的原因,希望利用银行业务 的有关数据做些定量分析,以便找出控制不良贷款 的办法。 表4-1是该银行所属的25家分行2002年的有关业务数 据。
2. 结果分析
首先给出各个变量的描述性统计量,包括观测总数、 各变量的均值及标准差等。 然后给出变量的相关系数矩阵,原假设 H0:ρ = 0 的检验结果,即p值。
分析: (1) Y与x3、x2接近高度相关;
Y与x1、x4、x5为低度相关;Y与x6中度相关。
(2) Y与x3、x2、x6、x5,p < = 0.05,拒绝H0;
COV(X,Y)
D(X) D(Y)

(2023)一元线性回归分析研究实验报告(一)

(2023)一元线性回归分析研究实验报告(一)

(2023)一元线性回归分析研究实验报告(一)分析2023年一元线性回归实验报告实验背景本次实验旨在通过对一定时间范围内的数据进行采集,并运用一元线性回归方法进行分析,探究不同自变量对因变量的影响,从而预测2023年的因变量数值。

本实验中选取了X自变量及Y因变量作为研究对象。

数据采集本次实验数据采集范围为5年,采集时间从2018年至2023年底。

数据来源主要分为两种:1.对外部行业数据进行采集,如销售额、市场份额等;2.对内部企业数据进行收集,如研发数量、员工薪资等。

在数据采集的过程中,需要通过多种手段确保数据的准确性与完整性,如数据自动化处理、数据清洗及校验、数据分类与整理等。

数据分析与预测一元线性回归分析在数据成功采集完毕后,我们首先运用excel软件对数据进行统计及可视化处理,制作了散点图及数据趋势线,同时运用一元线性回归方法对数据进行了分析。

结果表明X自变量与Y因变量之间存在一定的线性关系,回归结果较为良好。

预测模型建立通过把数据拆分为训练集和测试集进行建模,本次实验共建立了三个模型,其中模型选用了不同的自变量。

经过多轮模型优化和选择,选定最终的预测模型为xxx。

预测结果表明,该模型能够对2023年的Y因变量进行较为准确的预测。

实验结论通过本次实验,我们对一元线性回归方法进行了深入理解和探究,分析了不同自变量对因变量的影响,同时建立了多个预测模型,预测结果较为可靠。

本实验结论可为企业的业务决策和经营策略提供参考价值。

同时,需要注意的是,数据质量和采集方式对最终结果的影响,需要在实验设计及数据采集上进行充分的考虑和调整。

实验意义与不足实验意义本次实验不仅是对一元线性回归方法的应用,更是对数据分析及预测的一个实践。

通过对多种数据的采集和处理,我们能够得出更加准确和全面的数据分析结果,这对于企业的经营决策和风险控制十分重要。

同时,本实验所选取的X自变量及Y因变量能够涵盖多个行业及企业相关的数据指标,具有一定的代表性和客观性。

回归分析1

回归分析1

另外,还可通过一些函数获取更多线性拟合模型的信息。 coef( ) resid( ) fitted( ) vcov( ) deviance( ) formula( ) df.residual( ) nobs( ) AIC( ) BIC( ) logLik( ) 提取系数向量的估计值。 提取残差向量。 提取拟合值向量。 提取β的OLS估计量条件方差阵的估计。 提取残差平方和。 提取模型公式。 提取残差的自由度n-k-1 提取模型中案例个数n 提取模型中AIC信息准则 提取模型中BIC信息准则。 提取模型中对数似然函数值。
opar <- par(mfrow=c(2,2), mex=0.6, mar=c(5,5,3,2)+.3) plot(fm, which=1:4); par(opar)
plot(fitted(fm),resid(fm)); abline(h=0,col=5,lwd=3) lines(lowess(fitted(fm), resid(fm)),col=2, lwd=2)
Median : 63.60
母亲身高和女儿身高的变化范围是相同的;
boxplot(heights,main="母女身高的箱线图") 女儿身高分 布与母亲身 高分布相比, 女儿身高分 布整体右移。
plot(heights, main="母女身高的散点",pch='.',cex=2) 女儿身高与母 亲身高是相关 的。整体上讲, 母亲高,女儿 也高。 abline(v=57.5,col=2) abline(v=58.5,col=2) abline(v=63.5,col=2) abline(v=64.5,col=2) abline(v=67.5,col=2) abline(v=68.5,col=2)

简单回归分析(1)

简单回归分析(1)
整理课件
❖在上一章中,对14名40~60岁的健康妇女的体重
(X)与基础代谢(Y)数据计算了相关系r数0(.964 ), 定量地描述了变量X与Y间的线性关联性。现在试用 回归分析的方法,从预测的角度来描述基础代谢(Y) 如何依存体重(X)的变化而变化的规律性。
❖(1)如果我们知道了一名健康妇女的基础代谢,能推断出 体重是多少吗?
❖ 特点:统计关系。X和Y的均数的关系,不同 于一般数学上X和Y的函数关系。
整理课件
反应变量(Y)依赖于另一自变量(X)简单线性回归 模型表述为:
Y|X X
Y :为第i个个体的反应变量值
X :为其自变量值
α :为回归直线的截距参数 β :为回归直线的斜率参数
整理课件
由样本数据建立的有关Y依X变化的回归方程:
整理课件
经数学推导可得下式:
( Y Y ) 2 ( Y ˆ Y ) 2 ( Y Y ˆ ) 2
S总 SS回 SS残 S
❖ SS 总为Y的离均差平方和,反映在回归之前,Y
的变异 ;
❖ SS 残为回归之后残差平方和。
❖SS总S正S残是回归的贡献,记为 ,SS称回 为回归平方
和。反映在Y的总变异中由于X与Y的直线关
❖ 解决办法:残差的直方图、正态概率图来考 察这一条件是否成立。
整理课件
方差相等(equal variance)
❖ 指在自变量X取值范围内,不论X取什么值, Y都具有相同的方差。
❖ 如果这一条件不满足,回归参数的估计有偏 性,置信区间估计及检验的结论均无效。
❖ 解决办法:采用散点图或残差的散点图判断 等方差性。
整理课件
❖ (2)此直线是使得误差平方和 yy2 为 最理小论值值的直之y线差,的即平因方变和量取的最实小际值观。察值y与

logistic_回归分析1

logistic_回归分析1
0
74
55
104663
212555
选择0和1使似然函数L达到最大,即最 大似然估计。
17
STATA命令
Expand f Logit y x Logit, or 或直接logisitc y x
18
expand f (317343 observations created)
OR e
0.4117232
1.509417
21
OR的95%可信区间为(1.06,2.14)
应用Logistic模型校正混杂作用
实例2:上例没有考虑吸烟情况,故将吸烟作 为分层加入,资料如下:
吸烟 不吸烟 饮酒 不饮酒 饮酒 不饮酒 患病 33 21 22 53 未患病 22331 14210 82332 198345 合计 22364 14231 82354 198398
. logistic y x Logistic regression Log likelihood = -1133.5955 Number of obs = 317347 LR chi2(1) = 5.20 (模型检验) Prob > chi2 = 0.0225 Pseudo R2 = 0.0023
----------------------------------------------------------------------------- y | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+--------------------------------------------------------------- x1 | .999979 .1877859 -0.00 1.000 .6920603 1.4449 x2 | 5.530467 1.0412 9.08 0.000 3.823925 7.998605 ------------------------------------------------------------------------------

回归分析中的变量间关系检验方法(Ⅰ)

回归分析中的变量间关系检验方法(Ⅰ)

回归分析中的变量间关系检验方法回归分析是统计学中常用的一种分析方法,用来研究一个或多个自变量对因变量的影响程度以及它们之间的关系。

在进行回归分析时,我们需要关注变量之间的关系检验方法,以确定它们之间是否存在显著的关联。

本文将从回归分析中的变量间关系检验方法展开讨论。

一、相关性分析在进行回归分析时,首先需要进行相关性分析,以确定自变量和因变量之间的相关程度。

相关性分析通常使用相关系数来衡量变量之间的相关性,其中最常用的是皮尔逊相关系数。

皮尔逊相关系数的取值范围在-1到1之间,当相关系数接近1时表示变量之间存在较强的正相关关系,接近-1时表示存在较强的负相关关系,接近0时表示变量之间无线性相关关系。

在回归分析中,相关性分析是非常重要的一步,它可以帮助我们初步了解变量之间的关系,为后续的回归分析奠定基础。

二、多重共线性检验在回归分析中,多个自变量之间可能存在多重共线性问题,即它们之间存在较强的线性相关关系。

多重共线性会导致回归系数估计不准确,甚至产生错误的推断结果。

因此,我们需要进行多重共线性检验,以确定自变量之间是否存在多重共线性。

常用的多重共线性检验方法包括方差膨胀因子(VIF)和特征根分析。

方差膨胀因子是用来衡量自变量之间共线性程度的指标,通常当VIF大于10时表示存在较强的多重共线性。

特征根分析则是通过计算自变量矩阵的特征值来判断共线性程度,一般来说,特征根接近0时表示存在共线性。

通过多重共线性检验,我们可以排除自变量之间的共线性影响,得到更准确的回归分析结果。

三、残差分析残差分析是用来检验回归模型的适配性和误差性质的重要方法。

在进行回归分析时,我们需要对残差进行分析,以确定模型的拟合程度和误差分布是否符合假设。

常用的残差分析方法包括残差散点图、残差的正态性检验和残差的独立性检验。

残差散点图可以帮助我们观察残差与预测值的关系,以判断模型是否存在异方差性或非线性关系。

残差的正态性检验则是用来检验残差是否符合正态分布,通常使用Shapiro-Wilk检验或Kolmogorov-Smirnov检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z
已知数据(xi, yi)(i =1,2,…,n), 如何利用 MATLAB软件实现以上的统计计算?
MATLAB软件实现
使用命令regress实现一元线性回归模型的计算
b = regress (Y, X) 或
默认值是
0.05
[b, bint, r, rint, stats] = regress(Y, X, alpha)
参数估计
设观测值为(xi, yi)(i=1,2,…,n), 代入模型中, yi = a + bxi +εi
最小二乘法:
n
min Q(a,b) [ yi (a bxi )]2 i 1
解出的参数记为 aˆ, bˆ
则回归方程: yˆ aˆ bˆx
yˆi aˆ bˆxi
yi yˆi残差值
-109.7219 -18.5724 -55.6100 -23.8029 -51.4019 449.6576 -33.4128 -109.3651 5.8160 92.1364 -32.3827]’(残差向量) rint=(略)(参见残差分析图)
stats = 0.9631(R2) 391.2713( F ) 0.0000 ( P{χ0} )
y1(i+1)=-460.5282+0.9840*x1(i+1);%钢材的预 测值
end
x1, y1
结果
x1 = 3372.0 3523.7 3682.3 3848.0 4021.2 4202.1 y1 = 3006.8 3162.9 3325.9 3496.3 3674.4
Z
如果从数据的散点图上发现y与x没 有直线关系,又如何计算?
[p,S]=polyfit(x,y,2);p
注意:x,y向量的维数要一致。S是一个数据结构, 用于其它函数的计算。
计算y的拟合值:
输入:[Y,delta]=polyconf(p,x,S);Y
结果: Y= 22.5243
28.3186 27.0450 22.5243 26.0582 27.0450 24.1689
3000
y=a+bx
2500
2000
1500
1000
500 1000 1500 2000 2500 3000 3500
钢材消费量y与国民收入x的散点图
回归分析是研究变量间相关关系的一种统计分析。 特点:试验指标(因变量)是随机变量。
图形解释:y = E(Y | x)= f(x)
y
假设:f(x) = ax+b
Y
~
a1x2 a2 x
N (0, 2 )
a3
;
ห้องสมุดไป่ตู้
一元多项式回归在matlab 软件中用命令
polyfit实现。如前面的例子,具体计算如下:
输入: (phg1.m)
x1=17:2:29;x=[x1,x1];
y=[20.48 25.13 26.15 30.0 26.1 20.3 19.35
24.35 28.11 26.3 31.4 26.92 25.7 21.3];
2、测定某矿脉的金属含量
一矿脉有13个相邻样本点,人为地设定 一个原点,现测得各样本点与原点的距离x, 与该样本点处某种金属含量y的一组数据如下:
x 2 3 4 5 7 8 10
y 106.42 109.2 109.58 109.5 110 109.93 110.49
x 11 14 15 15 18
Residual Case Order Plot
600
第12个数据点
异常,可删出
400
Residuals
200
0
-200
-400
5
10
15
Case Number
预测
x1(1)=3372;(hgy1.m)
for i=1:5 x1(i+1)=1.045*x1(i);%未来五年国民收入以4.5%的 速度递增
回归相残系关差数系向a数,量Rbe以=2X,Y及-FY1它-及统们x1它计,的们量置Y的和信置与区y信χ1 0间对区应间的概率p。
1 xn
yn
残差及其置信区间可以用rcoplot(r,rint)画图。
引例求解
输入:(hg1.m)
x=[1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311 2003 2435 2625 2948 3155 3372];
y=[698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825];
X=[ones(size(x')),x'],pause [c,cint,r,rint,stats]=regress(y',X,0.05),pause rcoplot(r,rint)
2
1 1 (x0 x)2
n
Lxx
ˆ 2 Q
n2
设y在某个区间(y1, y2)取值时, 应如何控制x的
取值范围, 这样的问题称为控制问题。
小结:
模型
Y a bx ; ~ N (0, 2 )

1、估计参数a,b,σ2;
Y ~ N (a bx, 2 )
2、检验模型正确与否;(即b→0)
3、预测或控制;
F U ~ F (1, n 2) Q /(n 2)
拒绝域 0 {F F1 (1, n 2)}
认为线性回归效果好
预测与控制
给定的自变量x0,给出E(y0)的点估计量:
yˆ0 aˆ bˆx0
y0的置信度为(1)%的预测区间为:
( yˆ0 dn , yˆ0 dn )
dn t (n 2)ˆ
输出:
c = -460.5282 (参数a) 0.9840 (参数b) cint = -691.8478 -229.2085 ( a的置信区间 )
0.8779 1.0900 ( b的置信区间 )
yˆ aˆ bˆx
r = [ 79.1248 69.1244 -29.3788 -104.1112 -83.5709 -44.5286
(|
-1 -rα(n-2)
·0
|
rα(n-2)
) 1
H0的拒绝域为: 0 {| rˆ | r (n 2)}
2、F-检验法 平方和分解公式:实测值估计值
n
n
n
( yi y)2 ( yi yˆi )2 ( yˆi y)2
i 1
i 1
i 1
记为 Lyy Q U 残差值,剩余平方和,越小越好
19
y 110.59 110.6 110.9 110.76 111 111.2
试建立合适的回归模型。(首先画散点图)
第一讲:一元线性与非线性回归分析
实验 简介一元 非线性回归模型
MATLAB软件实现 一元回归模型与回归分析 引例:钢材消费量与国民收入的关系
引例:钢材消费量与国民收入的关系
为了研究钢材消费量与国民收入之间的关 系,在统计年鉴上查得一组历史数据。
年份 消费(吨) 收入(亿)
1964 698 1097
拟合效果图: 35
26.0582 24.1689 27.9896 19.6904
27.9896 19.6904 28.3186
30
25
20
15
15
20
25
30
用polytool(x,y,2)还可以得到一个交互式画面。
Y
~
a1x2 a2 x
N (0, 2 )
a3
;
Export Parameters Parameters CI Prediction Prediction CI Residuals All
回归模型的假设检验
模型:Y = a + bx +ε
提出问题: H 0 : b 0; H1 : b 0
1、相关系数检验
r cov(X ,Y ) DX DY
| r |≤1
n
(xi x)( yi y)

i 1
n
n
( xi x )2
( yi y)2
i 1
i 1
| r |→1,线性相关 | r |→0,非线性相关
企 设备能力 劳动生产 企
业 (千瓦/人


1
2.8
6.7
8
2
2.8
6.9
9
3
3.0
7.2
10
4
2.9
7.3
11
5
3.4
8.4
12
6
3.9
8.8
13
7
4.0
9.1
14
设备能 力 4.8 4.9 5.2 5.4 5.5 6.2 7.0
劳动生 产率 9.8 10.6 10.7 11.1 11.8 12.1 12.4
在工作空间中,输入yhat,回车,得到预测值。
实验内容
1、确定企业年设备能力与年劳动生产率的关系
某市电子工业公司有14个所属企业,各企业 的年设备能力与年劳动生产率统计数据如下表。 试分析企业年设备能力与年劳动生产率的关系。 若该公司计划新建一个设备能力为9.2千瓦/人的 企业,估计劳动生产率将为多少?
...·.E.(.Y|x0) ···.E·(·Y|x1)
0
x0
x1
x
假设:
(y = E(Y | x)= f(x))
1)Y是一个正态随机变量,即Y服从正态分
布,并且有方差 D(Y)=σ2。
2)根据观测值作的散点图,观察出函数f(x) 是线性形式还是非线性形式。
相关文档
最新文档