山西省2014年中考考前适应性训练数学试题
2014山西中考数学试题(解析版) - 副本
2014年山西省中考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.(3分)(2014•山西)计算﹣2+3的结果是( )A . 1B . ﹣1C .﹣5 D . ﹣62.(3分)(2014•山西)如图,直线AB 、CD 被直线EF 所截,AB ∥CD ,∠1=110°,则∠2等于( )A . 65°B . 70°C . 75°D . 80°3.(3分)(2014•山西)下列运算正确的是( )A . 3a 2+5a 2=8a 4 B . a 6•a 2=a 12 C . (a+b )2=a 2+b 2 D . (a 2+1)0=14.(3分)(2014•山西)如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( )A . 黄金分割B . 垂径定理C . 勾股定理D . 正弦定理5.(3分)(2014•山西)如图是由三个小正方体叠成的一个几何体,它的左视图是( )A .B .C .D .6.(3分)(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( ) A . 演绎 B . 数形结合 C . 抽象 D . 公理化7.(3分)(2014•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A . 频率就是概率B . 频率与试验次数无关8.(3分)(2014•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°9.(3分)(2014•山西)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m10.(3分)(2014•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的变长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2二、填空题(共6小题,每小题3分,共18分)11.(3分)(2014•山西)计算:3a2b3•2a2b=_________.12.(3分)(2014•山西)化简+的结果是_________.13.(3分)(2014•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k=_________.14.(3分)(2014•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_________.15.(3分)(2014•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为_________m.16.(3分)(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.三、解答题(共8小题,共72分)17.(10分)(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.18.(6分)(2014•山西)解不等式组并求出它的正整数解:.19.(6分)(2014•山西)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).20.(10分)(2014•山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):阅读思维表达项目人员甲93 86 73乙95 81 79(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(7分)(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)22.(9分)(2014•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(11分)(2014•山西)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.24.(13分)(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。
山西省2014年中考数学真题试题(含解析)
山西省2014年中考数学真题试题一、选择题(共10小题,每小题3分,共30分)2.(3分)(2014•山西)如图,直线AB 、CD 被直线EF 所截,AB∥CD,∠1=110°,则∠2等于( )4.(3分)(2014•山西)如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( )5.(3分)(2014•山西)如图是由三个小正方体叠成的一个几何体,它的左视图是( )D6.(3分)(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现7.(3分)(2014•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )8.(3分)(2014•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()9.(3分)(2014•山西)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危10.(3分)(2014•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的变长为a,则重叠部分四边形EMCN 的面积为()a2a2a2Da2二、填空题(共6小题,每小题3分,共18分)11.(3分)(2014•山西)计算:3a2b3•2a2b= _________ .12.(3分)(2014•山西)化简+的结果是_________ .13.(3分)(2014•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k= _________ .14.(3分)(2014•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_________ .15.(3分)(2014•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为_________ m.16.(3分)(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________ .三、解答题(共8小题,共72分)17.(10分)(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.18.(6分)(2014•山西)解不等式组并求出它的正整数解:.都是特殊的四边形,大家对于它们的性质都非常熟悉,如图,(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).20.(10分)(2014•山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(7分)(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)22.(9分)(2014•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(11分)(2014•山西)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q 的形状,并证明你的结论.24.(13分)(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2014年山西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2014•山西)计算﹣2+3的结果是()A.1B.﹣1 C.﹣5 D.﹣6考点:有理数的加法.分析:根据异号两数相加的法则进行计算即可.解答:解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选A.点评:本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.2.(3分)(2014•山西)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=110°,则∠2等于()A.65°B.70°C.75°D.80°考点:平行线的性质.分析:根据“两直线平行,同旁内角互补”和“对顶角相等”来求∠2的度数.解答:解:如图,∵AB∥CD,∠1=110°,∴∠1+∠3=180°,即100+∠3=180°,∴∠3=70°,∴∠2=∠3=70°.故选:B.点评:本题考查了平行线的性质.总结:平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.3.(3分)(2014•山西)下列运算正确的是()A.3a2+5a2=8a4B.a6•a2=a12C.(a+b)2=a2+b2 D.(a2+1)0=1考点:完全平方公式;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解答:解:A、原式=8a2,故选项错误;B、原式=a8,故选项错误;C、原式=a2+b2+2ab,故选项错误;D、原式=1,故选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.4.(3分)(2014•山西)如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是()A.黄金分割B.垂径定理C.勾股定理D.正弦定理考点:勾股定理的证明.分析:“弦图”,说明了直角三角形的三边之间的关系,解决了勾股定理的证明.解答:解:“弦图”,说明了直角三角形的三边之间的关系,解决的问题是:勾股定理.故选C.点评:本题考查了勾股定理的证明,勾股定理证明的方法最常用的思路是利用面积证明.5.(3分)(2014•山西)如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层一个正方形,第二层一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是()A.演绎B.数形结合C.抽象D.公理化考点:二次函数的性质;一次函数的性质;反比例函数的性质.专题:数形结合.分析:从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.解答:解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选B.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣,时,y取得最小值,即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.7.(3分)(2014•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率考点:利用频率估计概率.分析:根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.解答:解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴A、B、C错误,D正确.故选D.点评:本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.8.(3分)(2014•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°考点:圆周角定理.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.点评:此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.9.(3分)(2014•山西)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:2.5μm×0.000001m=2.5×10﹣6m;故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)(2014•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的变长为a,则重叠部分四边形EMCN 的面积为()A.a2B.a2C.a2D.a2考点:全等三角形的判定与性质;正方形的性质.分析:作EM⊥BC于点M,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形MCQE的面积求解.解答:解:作EM⊥BC于点M,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EN,四边形MCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形MCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形MCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.点评:本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.二、填空题(共6小题,每小题3分,共18分)11.(3分)(2014•山西)计算:3a2b3•2a2b= 6a4b4.考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a2b3•2a2b=(3×2)×(a2•a2)(b3•b)=6a4b4.故答案为:6a4b4.点评:此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键.12.(3分)(2014•山西)化简+的结果是.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=+==.故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.(3分)(2014•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k= 4 .考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C 点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C点坐标代入y=kx ﹣4即可得到k的值.解答:解:把y=0代入y=kx﹣4得y=﹣4,则B点坐标为(0,﹣4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y=得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx﹣4得2k﹣4=4,解得k=4.故答案为4.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.14.(3分)(2014•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与通过一次“手心手背”游戏能决定甲打乒乓球的情况,再利用概率公式即可求得答案.解答:解:分别用A,B表示手心,手背.画树状图得:∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况,∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2014•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为(4﹣2)m.考点:切线的性质.专题:应用题.分析:连接OB,延长OF,OE分别交BC于H,交AB于G,证得四边形BGOH是正方形,然后证得OB经过点P,根据勾股定理切点OB的长,因为半径OP=1,所以BP=2﹣1,然后求得△BPM≌△BPN得出P是MN的中点,最后根据直角三角形斜边上的中线等于斜边的一半即可求得.解答:解:连接OB,延长OF,OE分别交BC于H,交AB于G,∵DE、FG分别与⊙O相切于E、F两点,∴OE⊥ED,OF⊥FG,∵AB∥DE,BC∥FG,∴OG⊥AB,OH⊥BC,∵∠EOF=90°,∴四边形BGOH是矩形,∵两组平行墙壁间的走廊宽度都是1m,⊙O半径为1m,∴OG=OH=2,∴矩形BGOH是正方形,∴∠BOG=∠BOH=45°,∵P是的中点,∴OB经过P点,在正方形BGOH中,边长=2,∴OB=2,∵OP=1,∴BP=2﹣1,∵p是MN与⊙O的切点,∴OB⊥MN,∵OB是正方形BGOH的对角线,∴∠OBG=∠OBH=45°,在△BPM与△BPN中∴△BPM≌△BPN(ASA)∴MP=NP,∴MN=2BP,∵BP=2﹣1,∴MN=2(2﹣1)=4﹣2,点评:本题考查了圆的切线的性质,正方形的判定和性质,全等三角形的判定和性质以及勾股定理的应用,O、P、B三点共线是本题的关键.16.(3分)(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为﹣1 .考点:勾股定理;等腰三角形的性质;含30度角的直角三角形;等腰直角三角形.分析:过F点作FG∥BC.根据等腰三角形的性质和三角形内角和定理可得AF=CF,在Rt△CDF中,根据三角函数可得AF=CF=2,DF=,根据平行线分线段成比例可得比例式GF:BD=AF:AD,求得GF=4﹣2,再根据平行线分线段成比例可得比例式EF:EC=GF:BC,依此即可得到EF=﹣1.解答:解:过F点作FG∥BC.∵在△ABC中,AB=AC,AD是BC边上的中线,∴BD=CD=BC=1,∠BAD=∠CAD=∠BAC=15°,AD⊥BC,∵∠ACE=∠BAC,∴∠CAD=∠ACE=15°,∴AF=CF,∵∠ACD=(180°﹣30°)÷2=75°,∴∠DCE=75°﹣15°=60°,在Rt△CDF中,AF=CF==2,DF=CD•tan60°=,∵FG∥BC,∴GF:BD=AF:AD,即GF:1=2:(2+),解得GF=4﹣2,∴EF:EC=GF:BC,即EF:(EF+2)=(4﹣2):2,解得EF=﹣1.故答案为:﹣1.点评:综合考查了等腰三角形的性质,三角形内角和定理可得,三角函数,平行线分线段成比例,以及方程思想,本题的难点是作出辅助线,寻找解题的途径.三、解答题(共8小题,共72分)17.(10分)(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.考点:实数的运算;因式分解-运用公式法;负整数指数幂;特殊角的三角函数值.分析:(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.解答:解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014•山西)解不等式组并求出它的正整数解:.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:解①得:x >﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.都是特殊的四边形,大家对于它们的性质都非常熟悉,如图,如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).考点:利用旋转设计图案;菱形的性质;利用轴对称设计图案.分析:(1)利用菱形的性质以及结合图形得出筝形的性质分别得出异同点即可;(2)利用轴对称图形和中心对称图形的定义结合题意得出答案.解答:解:(1)相同点:①两组邻边分别相等;②有一组对角相等;③一条对角线垂直平分另一条对角线;④一条对角线平分一组对角;⑤都是轴对称图形;⑥面积等于对角线乘积的一半;不同点:①菱形的对角线互相平分,筝形的对角线不互相平分;②菱形的四边都相等,筝形只有两组邻边分别相等;③菱形的两组对边分别平行,筝形的对边不平行;④菱形的两组对角分别相等,筝形只有一组对角相等;⑤菱形的邻角互补,筝形的邻角不互补;⑥菱形的既是轴对称图形又是中心对称图形,筝形是轴对称图形不是中心对称图形;(2)如图所示:.点评:此题主要考查了利用旋转设计图案,借助网格得出符合题意的图形是解题关键.20.(10分)(2014•山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.考点:频数(率)分布直方图;算术平均数;加权平均数.分析:(1)根据平均数的计算公式分别进行计算即可;(2)根据加权平均数的计算公式分别进行解答即可;(3)由直方图知成绩最高一组分数段85≤x<90中有7人,公司招聘8人,再根据x甲=85.5分,得出甲在该组,甲一定能被录用,在80≤x<85这一组内有10人,仅有1人能被录用,而x乙=84.8分,在这一段内不一定是最高分,得出乙不一定能被录用;最后根据频率=进行计算,即可求出本次招聘人才的录用率.解答:解:(1)∵甲的平均成绩是:x甲==84(分),乙的平均成绩为:x乙==85(分),∴x乙>x甲,∴乙将被录用;(2)根据题意得:x甲==85.5(分),x乙==84.8(分);∴x甲>x乙,∴甲将被录用;(3)甲一定被录用,而乙不一定能被录用,理由如下:由直方图知成绩最高一组分数段85≤x<90中有7人,公司招聘8人,又因为x甲=85.5分,显然甲在该组,所以甲一定能被录用;在80≤x<85这一组内有10人,仅有1人能被录用,而x乙=84.8分,在这一段内不一定是最高分,所以乙不一定能被录用;由直方图知,应聘人数共有50人,录用人数为8人,所以本次招聘人才的录用率为=16%.点评:此题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(7分)(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点A作AE⊥CC'于点E,交BB'于点F,过点B作BD⊥CC'于点D,分别求出AE、CE,利用勾股定理求解AC即可.解答:解:过点A作AE⊥CC'于点E,交BB'于点F,过点B作BD⊥CC'于点D,则△AFB、△BDC、△AEC都是直角三角形,四边形AA'B'F,BB'C'D和BFED都是矩形,∴BF=BB'﹣B'F=BB'﹣AA'=310﹣110=200,CD=CC'﹣C'D=CC'﹣BB'=710﹣310=400,∵i1=1:2,i2=1:1,∴AF=2BF=400,BD=CD=400,又∵EF=BD=400,DE=BF=200,∴AE=AF+EF=800,CE=CD+DE=600,∴在Rt△AEC中,AC===1000(米).答:钢缆AC的长度是1000米.点评:本题考查了解直角三角形的应用,解答本题的关键是理解坡度坡角的定义,及勾股定理的表达式,难度一般.22.(9分)(2014•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?考点:一元二次方程的应用;分式方程的应用.分析:(1)利用原工作时间﹣现工作时间=4这一等量关系列出分式方程求解即可;(2)根据矩形的面积和为56平方米列出一元二次方程求解即可.解答:解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合题意,舍去).答:人行道的宽为2米.点评:本题考查了分式方程及一元二次方程的应用,解分式方程时一定要检验.23.(11分)(2014•山西)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q 的形状,并证明你的结论.。
2014中考数学模拟试题含答案(精选5套)
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014中考数学试题答案解析
山西省2014年中考数学试题(含答案和解析)第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算―2+3的结果是( )A.1B. ―1C.―5D.―6 答案:A考点:考查有理数的加法运算.解析: 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. -2+3=+(3-2)=12.如图,直线AB ,CD 被直线EF 所截,AB //CD ,∠1=110°,则∠2等于( )A. 65°B. 70°C. 75°D. 80°答案:B 考点:考查相交线和平行线的性质.解析:两直线平行,同位角、内错角相等,同旁内角互补. 两直线相交,对顶角相等,邻补角互补. ∵AB ∥CD ,∴∠1=∠4=∠5=110º,∠1+∠3=180º. ∴∠3=70º. ∴∠2=∠3=70º.∵∠2+∠4=180º, ∠2+∠5=180º. ∴∠2=70º. 3.下列运算正确的是( )A. 32a +52a =84a B. 6a ·2a =12a C. ()2b a +=2a +2b D. ()21+a =1 答案:D考点:考查整式加法与乘法运算、幂的运算、零指数幂的运算. 解析: 合并同类项:A. 32a +52a =84a ,错误,应为 82a . 同底数幂的乘法 :B. 6a ·2a =12a ,错误,应为8a .整式乘法中的完全平方公式:C. ()2b a +=2a +2b ,错误,应为2a +2ab+2b .任何不为零的数的零指数幂的结果为1: D. ()21+a =1,正确.4.右图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( ) A.黄金分割 B.垂径定理 C.勾股定理 D. 正弦定理 答案:C考点:考查勾股定理.解析: 选取了教材中的“弦图”,它解决的数学问题是勾股定理.5.右图是由三个小正方体叠成的一个几何体,它的左视图是( )A.B.C. D.答案:C考点:考查几何体的三视图.解析: 几何体的左视图是从侧面观察物体得到的平面图形.(第4题)6、我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( ) A.演绎 B.数形结合 C.抽象 D.公理化 答案:B考点:考查数学思想.解析: 研究函数的方法主要体现的是数形结合的数学思想.7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A. 频率就是概率 B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率 答案:D考点:考查随机事件发生的频率与概率的关系.解析:通过大量的重复试验,可以用频率来估计概率,因为频率一般会越来越接近概率. 8.如图,⊙O 是△ABC 的外接圆,连接OA ,OB ,∠OBA =50°,则∠C 的度数为( ) A. 30° B. 40° C. 50° D. 80° 答案:B 考点:考查圆周角定理、等腰三角形的性质、三角形的内角和定理. 解析: ∵OA=OB, ∴∠OAB =∠OBA=50º. ∴∠AOB=180 º-50 º-50 º =80 º.∴∠C=21∠AOB=40 º.9. PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m )的颗粒物,也可称为可入肺颗粒物. 它们含有大量的有毒、有害物质,对人体健康和大气环境有很大危害. 2.5μm 用科学记数法可表示为( )A. 2.5×510-m B. 0.25×710-m C. 2.5×610-m D. 25×510-m 答案:C考点:考查用科学记数法表示较小的数. 解析: 2.5×0.000001=0.0000025=2.5×610-.10.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,直角三角形FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N ,若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( ) A.322a B. 412a C. 952a D. 942a 答案:D考点:求重叠部分不规则四边形的面积.解析:过点E 分别作BC 、CD 边上的高,垂足分别为G 、H.由正方形的性质可得,△EHN ≌△EGM ,四边形EGCH 是正方形,AC=2a. ∴重叠部分四边形EMCN 的面积=正方形EGCH 的面积. ∵EC=2AE ,∴EC=322a . ∴EG=sin45º×EC=22×322a=32a∴正方形EGCH 的面积=2EG =232⎪⎭⎫ ⎝⎛a =942a (第8题)B(第10题)第Ⅱ卷 非选择题(共90分)二、填空题(本大题共6个小题,每小题3分,共18分)11.计算: b a b a 23223⋅=_________. 答案:644b a考点:单项式乘以单项式.解析:单项式乘以单项式,把它们的数字因数相乘,再把相同字母的幂分别相乘,对于单独的字母连同它的指数一起作为积的一个因式.12.化简96312-++x x 的结果是_________. 答案:31-x考点:异分母分式的加法运算. 解析:96312-++x x =()()()()()336333-++-+-x x x x x =()()()3363-++-x x x =()()333-++x x x =31-x 13. 如图,已知一次函数y=kx―4的图象与x 轴,y 轴分别交于A ,B 两点,与反比例函数y 8=在第一象限内的图象交于点C ,且A 为BC 的中点,则k=_________. 答案:4考点:一次函数和反比例函数、全等三角形的判定与性质. 解析:过点C 作x 轴的垂线,垂足为点D. ∵∠BOA=∠CDA=90º,∠OAB=∠CAD ,AB=AC. ∴△BOA ≌△CDA. ∴OB=CD=4,OA=AD. 把y=4代入反比例函数解析式,得x=2. ∴OD=2. ∴OA=AD =1. 把(1,0)代入一次函数解析式,得k =4.14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打. 规则如下:三人同时各用一只手随机出示手心或手背,若只有两人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定. 那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .答案:21 考点:求随机事件发生的概率.解析: 开始/ \甲 手心 手背/ \ / \乙 手心 手背 手心 手背/ \ / \ / \ / \ 丙 手心 手背 手心 手背 手心 手背 手心 手背共有8种可能的结果,且每一种结果出现的可能性相同.其中只有两人(包含甲)手势相同的有4种,所以甲打乒乓球的概率是84=21.H D15.一走廊拐角的横截面如图所示,已知AB ⊥BC ,AB ∥DE ,BC ∥FG ,且两组平行墙壁间的走廊宽度都是1m.⌒EF 的圆心为O ,半径为1m ,且∠EOF=90°,DE ,FG 分别与⊙O 相切于点E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与⊙O 相切于点P ,P 是⌒EF 的中点,则木棒MN 的长度为_________m.答案:()224-考点:等腰直角三角形的性质、切线的性质、正方形的性质.解析:延长OE 、OF 交AB 、BC 于点H 、K , 易得四边形BHOK 是正方形. △BMN 是等腰直角三角形.∴MN= 2BP . 又∵BP=BO -OP=122-, ∴MN= 2BP=2(122-)=()224-.16.如图,在△ABC 中,∠BAC=30°,AB=AC ,AD 是BC 边上的中线,∠ACE =21∠BAC ,C E 交A B 于点E ,交AD 于点F ,若B C =2,则EF 的长为_________.答案:13-考点:等腰三角形的性质、解直角三角形解析:∵AB=AC, AD 是BC 边上的中线, ∠BAC=30º.∴AD ⊥BC, ∠BAD=∠CAD=15º,∠BCA=(180º-30º)÷2=75º 又∵∠ACE =21∠BAC, ∴∠ACE=∠CAD=15º. 在Rt △DCF 中,∠FCD =∠BCA -∠ACE =75º-15º=60º. CD =21CB =1,CF =︒60cos CD =211=2. 过点B 作BG ⊥CE 于点G . 在Rt △BCG 中,∠BCG =60º,BC =2.CG =BC ×cos60º=2×21=1, BG =BC ×sin60º=2×23=3.在Rt △BEG 中,∠BEG =30º+15º=45º,BG =3. ∴EG = BG =3. ∴EC = EG +CG =3+1. ∴EF = EC -CF =3+1-2=3-1.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题共2个小题,每小题5分,共10分)(1)计算:()122160sin 212⨯⎪⎭⎫⎝⎛-︒⋅--(第16题)DB考点:有理数的乘方运算、特殊角的三角函数、负指数幂的运算、二次根式的运算. 解:原式=4×23-2×32 ················································································· (4分) =32-34=-32. ··········································································· (5分) (2)分解因式(x ―1)(x ―3)+1 考点:整式乘法与分解因式.解:原式=x 2-3x -x +3+1 ··········································································· (7分) =x 2-4x +4 ···························································································· (8分)=(x -2)2 ···································································································································(10分)18.(本题6分)解不等式组并求出它的正整数解. ⎩⎨⎧5x ―2>2x ―9,①1―2x ≥―3. ②考点:解一元一次不等式组、求不等式组的特殊解. 解:解不等式①,得x >37-. ······················································································· (1分) 解不等式②,得x ≤2. ··························································································· (2分) ∴原不等式组的解集为:37-<x ≤2. ························································ (4分) ∴原不等式组的正整数解为:1,2. ·································································· (6分) 19. (本题6分)阅读以下材料,并按要求完成相应的任务. 如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务: (1) 请说出筝形和菱形的相同点和不同点各两条;(2) 请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上; ②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影)(1)考点:菱形的性质.答案:相同点:①两组邻边分别相等(两组邻边相等,都有一组邻边相等);②有一组对角相等;③一条对角线垂直平分另一条对角线(一条对角线垂直于另一条对角线,一条对角线平分另一条对角线);④都是轴对称图形;⑤面积等于对角线乘积的一半;⑥都是四边形、都是特殊的四边形、都有四条边、内角和都是360度;不同点:①菱形的对角线互相平分,筝形的对角线不互相平分;②菱形的四条边都相等,筝形只有两组邻边分别相等;③菱形的两组对边互相平行,筝形的对边不平行;④菱形的两组对角分别相等,筝形只有一组对角相等;⑤菱形的邻角互补,筝形的邻角不互补;⑥菱形既是轴对称图形,又是中心对称图形,筝形是轴对称图形,不是中心对称图形;⑦四边的比值不同;⑧菱形的四条边都相等,筝形的四条边不都相等;写成判定式的语言,如:四条边相等的四边形是菱形,两组邻边分别相等的四边形是筝形,不给分;语言叙述错误,如:菱形的两个对角相等,筝形的一个对角相等,不给分.(2)考点:考查学生的画图能力和轴对称图形、中心对称图形的定义.本小题是开放题,答案不唯一;①只要符合题目要求均得2分;②未按要求涂阴影,扣1分;③菱形和筝形有重叠部分,不扣分;④顶点不在格点上,不给分;⑤画成和图1一样,不给分.参考答案如下:20. (本题10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人, 谁将被录用? (第20题)F A B CD E (3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值, 不包含右端数值,如最右边一组分数x 为: 85≤x<90), 并决定由高分到低分录用8名员工, 甲、乙两人能否被录用?请说明理由, 并求出本次招聘人才的录用率. 考点:统计中平均数的意义,频数分布直方图中数据的信息. 解:(1)∵ 甲x =843738693=++(分)……………………………………(1分) 乙x =853798195=++(分)……………………………………(2分) ∴ 乙x >甲x .∴乙将被录用.……………………………………(3分)(2)∵'甲x =10273586393⨯+⨯+⨯=85.5 …………………………… (4分) '乙x =10279581395⨯+⨯+⨯=84.8 …………………………… (5分)∴'甲x >'乙x . ∴甲被录用 ……………………………………… (6分)(3)甲一定能被录用,而乙不一定被录用. …………………………………(7分)理由如下:①甲得85.5在85≤x <90中,此组中有7人,需选8人,所以甲一定能被录用;②乙得分84.8分在80≤x <85中,此组中有10人,乙不一定是最高分,所以乙不一定能被录用.…………………………………………………(9分)由直方图知,应聘人数共有50人,录用人数为8人,所以本次招聘人才的录用率为: =16%. ……………………………………… (10分)21. (本题7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度AA ′,BB ′,CC ′分别为110米,310米,710米,钢缆AB 的坡度2:11=i ,钢缆BC 的坡度1:12=i ,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少?(注:坡度i 是指坡面的铅直高度与水平宽度的比) 考点:解直角三角形.解:如图,过点A 作AE ⊥CC ′于点E ,交BB ′于点F ,过点B 作BD ⊥CC ′于点D . ………………………………(1分) 则△AFB ,△BDC 和△AEC 都是直角三角形,四边形AA ′B ′F ,BB ′C ′D 和BFED 都是矩形. …………(2分) ∴BF =BB ′-FB ′=BB ′-AA ′=310-110=200,CD =CC ′-DC ′=CC ′-BB ′=710-310=400. …………(3分) ∵i 1=1:2,i 2=1:1,∴AF =2BF =400,BD =CD =400. 又∵FE =BD =400,DE =BF =200,∴AE =AF +FE =800,CE =CD +DE =600. ……………………(5分)(第21题)508∴在Rt △AEC 中,AC =10006008002222=+=+CE AE (米) ……(6分)答:钢缆AC 的长度为1000米. ……………………………………… (7分)22. (本题9分)某新建火车站站前广场需要绿化的面积为46000米2,施工队绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?考点:分式方程和一元二次方程的实际应用.解:(1)设该项绿化工程原计划每天完成x 米2…………………(1分) 根据题意,得45.122000460002200046000=---xx …………………(2分)整理得,6x=12000, 解,得,x=2000. …………………(3分) 经检验,x=2000是原方程的解. …………………………(4分)答:该项绿化工程原计划每天完成2000米2………………(5分) (2)设人行通道的宽度是x 米, 根据题意,得………………(6分) (20-3x)(8-2x)=56 …………… ……………………(7分)整理得,0523232=+-x x解,得,,21=x 3262=x (不合题意,舍去) ………(8分) 答:人行通道的宽度是2米. …………………………(9分)23. (本题11分)课题学习: 正方形折纸中的数学动手操作;如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为B'.数学思考:(1)求∠CB'F 的度数; (2)如图2,在图1的基础上,连接AB',试判断∠B'AE 与∠GCB'的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为B';再沿直线AH 折叠,使D 点落在EF 上,对应点为D';第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接B'P ,PD',D'Q ,QB'.试判断四边形B'PD'Q 的形状,并证明你的结论.(第16题)考点:这是一道几何综合题,考查了正方形的性质与判定、图形的对折(对称)性质、直角三角形性质、三角形的全等或相似等知识. (1)解法一:如图1,由对折可知∠EFC = 90°,CF =21CD ………………………(1分) ∵ 四边形ABCD 为正方形,∴ CD =CB.∴ CF =21CB . 又由折叠可知,CB'=CB∴ CF =21CB' ………………………………………(2分)∴ 在Rt △B'FC 中,sin ∠CB'F=B C CF =21. ∴∠CB'F=30° ………………………………………(3分)解法二:如图1,连接B'D ,由对折知,EF 垂直平分CD ,∴B'C= B'D , 由折叠可知, B'C=BC ∵ 四边形ABCD 为正方形 ∴ CD =BC∴ B'C=CD=B'D∴ △B'CD 为等边三角形. ……………………………(2分) ∴∠C B'D =60° ∵EF ⊥CD ∴∠C B'F=21∠C B'D=21×60°=30°…………………(3分)(2) ∠B'AE=∠GC B ′ …………………………………(4分) 证法一:如图2,连接B'D ,同(1)中解法二,△B'CD 为等边三角形. '……………………………(5分) ∴∠CD B'=60°∵ 四边形ABCD 为正方形.∴∠CDA =∠DAB = 90° ∴∠B'DA= 30° ∵ D B'=DA ∴∠DA B'=∠D B'A ∴∠DA B'=21( 180°-∠B'DA )= 75° ∴∠B'AE=∠DAB -∠DAB'=90°-75°=15°………(6分)由(1)知∠C B'F=30°,∵EF ∥BC ∴∠B'CB=∠C B'F=30°.由折叠知,∠GCB'=21∠B'CB=21×30°=15° ∴∠B'AE=∠GC B' ……………………………(7分)证法二:如图2,连接B'B 交CG 于点K ,由对折知,EF 垂直平分AB , ∴B' A= B' B , ∴∠B'AE=∠B'BE …………(5分) ∵ 四边形ABCD 为正方形. ∴∠ABC =90° ∴∠B'BE+∠KBC =90°. 由折叠知,∠BKC =90° ∴∠KBC +∠GCB =90°. ∴∠B'BE=∠GCB. ………(6分) 又由折叠知,∠GCB =∠GCB',∴∠B'AE=∠GC B' ……………………………(7分)(第24题图1)GFGF(第23题图2)(3) 四边形B'PD'Q 为正方形.证法一:如图3,连接AB',由(2)知,∠B'AE=∠GC B'.由折叠知,∠GCB' =∠PCN , ∴∠B' AE=∠PCN ,由对折知,∠AEB' =∠CNP =90°, AE =21AB , CN =21BC.又∵四边形ABCD 为正方形,∴AB =BC , ∴AE =CN , ∴△AEB'≌△CNP∴E B'=NP …………………………………………(9分) 同理可知,FD'=MQ , 由对称性可知,EB'= FD' ∴EB'= NP= FD '=MQ.由两次对折可知,OE =ON =OF =OM ,∴O B'=OP=O D '=OQ. ∴四边形B'PD'Q 为矩形. ………(10分) 由对折知,MN ⊥EF 于点O, ∴PQ ⊥B'D'于点O∴四边形B'PD'Q 为正方形. ……………………… …(11分)证法二:如图3. 由折叠和正方形ABCD 得,∠GB'C=∠B =90° 由(1)知,∠CB'F=30°, ∴∠GB'E=60°. 由对折知,∠BEF =90°. ∴∠EGB'=30°,∴E B'=21G B', 由折叠知,G B'=GB, ∴EB'=21GB . ………………(8分) 由对折知,∠MNC =∠B =90°.∵∠PCN =∠GCB , ∴△PNC ∽△GBC.∴===CBCBCB CN GB PN 2121.∴PN =21GB , ∴PN =EB' …………………………(9分)以下同证法一.24. (本题13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(―2,3),抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点. (1)求抛物线W 的解析式及顶点D 的坐标.(2)将抛物线W 和□OABC 一起先向右平移4个单位,再向下平移m (0<m<3)个单位,得到抛物线W'和□O'A'B'C'. 在向下平移的过程中,设□O'A'B'C'与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值.(3)在(2)的条件下,当S 取最大值时,设此时抛物线W'的顶点为F ,若点M 是x 轴上的动点,点N 是抛物线W'上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形,若存在,请直接..写出点M 的坐标;若不存在,请说明理由. 考点:这是一道代数与几何的综合题,考查了待定系数法确定二次函数解析式及函数的顶点坐标;通过图形平移在运动变化中求面积的最大值;平行四边形的存在性.(1)解:∵ 抛物线W 经过原点(0,0),∴设抛物线W 的解析式为y= a 2x +b x .∵ 抛物线W 经过A (4,0),C (―2,3)两点(第23题图3)H GF∴⎩⎨⎧16a+4b=0, 4a ―2b =3.解,得⎩⎨⎧a=41, b =―1.………(2分)∴抛物线W 的解析式为y=412x ―x ………(3分)∵y=412x ―x = 41()22-x ―1∴ 顶点D 的坐标为(2,―1) ……………(4分)(2) 由□OABC 得,CB ∥OA ,CB =OA =4又∵ C 点的坐标为(―2,3)∴ B 点的坐标为(2,3)……………………(5分) 如图,过点B 作BE ⊥x 轴于点E ,由平移可知, 点C'.在BE 上,且B C'=m.∴ BE =3, OE =2, ∴EA =OA -OE =2.设C'B'.与BA 交于点G ,C'O '与x 轴交于点H ,∵ CB'.∥x 轴,∴ △BCG ∽△BEA ……………………(6分)∴EA G C BE C B '=', 即23GC C B '=' ∴m C B G C 3232='=' ……………………(7分)由平移知,□O'A'B'C'与□OABC 的重叠部分四边形C'HAG 是平行四边形. ∴ S=E C G C '∙'=32m(3-m) ……………………(8分) =-32m 223⎪⎭⎫ ⎝⎛-m +23∵―23<0,且0<m<3, ∴当m=23时,S 有最大值为23……………… (9分)(3) 答:存在这样的点M 和点N .点M 的坐标分别是:()0,01M , ()0,42M ,()0,63M ,()0,144M …… (13分)。
2014年山西省中考模拟数学
2014年山西省中考模拟数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题前的括号内.1.(3分)﹣2的绝对值等于()A.﹣B.C.﹣2D. 2解析:根据绝对值的性质:一个负数的绝对值是它的相反数答案:即可.|﹣2|=2.答案:D.2.(3分)某汽车参展商为参加第8届中国(长春)国际汽车博览会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为()A.10.5×104B.1.05×105C.1.05×106D.0.105×106解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.105 000=1.05×105.答案:B.3.(3分)右图是由4个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.解析:从上面看可得到从上往下两行正方形的个数依次为2,1,并且在左上方.答案:C.4.(3分)一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()A.37B.35C.33.8D.32解析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数:28,32,35,37,37,位于最中间的数是35,∴这组数的中位数是35.答案:B.5.(3分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C. m>2D. m<2解析:根据题意可得x>0,将x化成关于m的一元一次方程,然后根据x的取值范围即可求出m的取值范围.由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.答案:C.6.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.网版权所有解析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.答案: A.7.(3分)下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径解析:根据直线的性质、平行四边形的性质、等腰梯形的性质和切线的性质判断各选项即可.A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确D、圆的切线垂直于经过切点的半径,故本选项正确.答案:B.8.(3分)下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1B.y=x2﹣1C.D.解析:一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y 值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.答案:D.9.(3分)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°解析:根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理答案:.∵AD∥BC,∴∠ADB=∠B=30°,再根据角平分线的概念,得:∠BDE=∠ADB=30°,再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°,答案:B.10.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E 分别在AB、BC边上,BD=BE=1.沿直线将△BDE翻折,点B落在点B′处.则点B′的坐标为()A.(1,2)B.(2,1)C.(2,2)D.(3,1)解析:首先根据折叠可以得到B′E=BE,B′D=BD,又点B的坐标为(3,2),BD=BE=1,根据这些条件即可确定B′的坐标.∵矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2),∴CB=3,AB=2,又根据折叠得B′E=BE,B′D=BD,而BD=BE=1,∴CE=2,AD=1,∴B′的坐标为(2,1).答案:B.(3分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:4★5=42﹣3×4+5,11.若x★2=6,则实数x的值是()A.﹣4或﹣1B. 4或﹣1C. 4或﹣2D.﹣4或2解析:先根据新定义得到x2﹣3x+2=6,整理得x2﹣3x﹣4=0,再把方程左边分解,原方程化为x﹣4=0或x+1=0,然后解一次方程即可.∵x★2=6,∴x2﹣3x+2=6,整理得x2﹣3x﹣4=0,∴(x﹣4)(x+1)=0,∴x﹣4=0或x+1=0,∴x1=4,x2=﹣1.答案:B.12.(3分)如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为()A. 5nB. 5n﹣1C. 6n﹣1D. 2n2+1解析:本题中可根据图形分别得出n=1,2,3,4时的小屋子需要的点数,然后找出规律得出第n个时小屋子需要的点数,然后将10代入求得的规律即可求得有多少个点.依题意得:摆第1个“小屋子”需要4+1=5个点;摆第2个“小屋子”需要4+1×4+1+2=11个点;摆第3个“小屋子”需要4+2×4+1+2+2=17个点.当n=n时,需要的点数为5+(n﹣1)×4+(n﹣1)×2=(6n﹣1)个.答案:C.二、填空题(本大题共4小题,每小题3分,共12分,不需要写出答案:过程,请把答案直接填写在题后的横线上)13.(3分)某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是.网版权所有解析:根据题意可得:在1分钟内,红灯亮30秒,绿灯亮25秒,黄灯亮5秒,故抬头看信号灯时,是黄灯的概率是=.答案:.14.(3分)如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD 的面积为.解析:根据菱形的对角线互相垂直且互相平分可得出对角线AC的长度,进而根据对角线乘积的一半可得出菱形的面积.由题意得:AO==4,∴AC=8,故可得菱形ABCD的面积为×8×6=24.答案:24.15.(3分)如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B 两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为度.解析:∠AOB与∠APB为所对的圆心角和圆周角,已知∠AOB=90°,利用圆周角定理求解.∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB=∠AOB=×90°=45°.答案: 45.16.(3分)活动课上,小华从点O出发,每前进1米,就向右转体a°(0<a<180),照这样走下去,如果他恰好能回到O点,且所走过的路程最短,则a的值等于.解析:根据多边形的外角和等于360°,用360°÷a°,所得最小整数就是多边形的边数,然后再求出a即可.根据题意,小华所走过的路线是正多边形,∴边数n=360°÷a°,走过的路程最短,则n最小,a最大,n最小是3,a°最大是120°.答案: 120.三、答案:题:本大题共9小题,共72分.请在题后空白区域内作答,答案:时应写出文字说明、证明过程或演算步骤.17.(6分)计算:.解析:第一步:化去绝对值的符号,锐角三角函数转化成特殊值,进行开立方运算,计算0指数;第二步:进行实数运算.答案:原式=2+1+1﹣2=2.18.(6分)化简:.解析:分母不变,直接把分子相加减即可.答案:原式===2.19.(6分)已知三个一元一次不等式:2x>4,2x≥x﹣1,x﹣3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是:(2)解:解析:(1)直接写出即可;(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.答案:(1)不等式组:.(2)解不等式组①,得x>2,解不等式组②,得x≥﹣1,∴不等式组的解集为x>2,.20.(7分)如图A、B是⊙O上的两点,∠AOB=l20°,C是弧的中点,求证四边形OACB是菱形.解析:连OC,由C是弧的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱形的判定方法即可得到结论.答案:连OC,如图,∵C是弧的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.21.(7分)如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.解析:先利用一次函数与图象的交点,再利用OC=2AO求得C点的坐标,然后代入一次函数求得点B的坐标,进一步求得反比例函数的解析式即可.答案:由题意 OC=2AO,由直线与x轴交于点A的坐标为(﹣1,0),∴OA=1.又∵OC=2OA,∴OC=2,∴点B的横坐标为2,代入直线,得y=,∴B(2,).∵点B在双曲线上,∴k=xy=2×=3,∴双曲线的解析式为y=.22.(8分)2011年7月1日,中国共产党90华诞,某校组织了由八年级700名学生参加的建党90周年知识竞赛.李老师为了了解学生对党史知识的掌握情况,从中随机抽取了部分同学的成绩作为样本,把成绩按优秀、良好、及格、不及格4个级别进行统计,并绘制成了如图的条形统计图和扇形统计图(部分信息未给出)请根据以上提供的信息,答案:下列问题:(1)求被抽取的部分学生的人数;(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;(3)请估计八年级的700名学生中达到良好和优秀的总人数.解析:(1)用不及格的百分比除以人数即为被抽取部分学生的人数;(2)及格的百分比等于及格的人数被抽查的人数,再求得优秀百分比和人数,用360°乘以及格的百分比即求出表示及格的扇形的圆心角度数;(3)先计算出被抽查的学生中达到良好和优秀的百分比,再乘以700即可.答案:(1)10÷10%=100(人);(2)良好:40%×100=40(人),优秀:100﹣40﹣10﹣30=20(人),30÷100×360°=108°,扇形统计图中表示及格的扇形的圆心角度数是108°.如图所示:(3)∵(人)∴700名学生中达到良好和优秀的总人数约是420人.23.(10分)为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x个,购买篮球和排球的总费用y元.(1)求y与x之间的函数关系式;(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?解析:(1)根据某校计划购买篮球和排球共20个,篮球为x个,则排球为(20﹣x)个,已知篮球每个80元,排球每个60元可列出函数式.(2)根据篮球的个数不少于排球个数的3倍,求出篮球的个数的最小值,从而可求出解.答案:(1)购买篮球x个,则排球为(20﹣x)个,则根据题意得:y=80x+60(20﹣x)=1200+20x;(2)由题意得,x≥3(20﹣x),解得x≥15,要使总费用最少,x必须取最小值15,y=1200+20×15=1500.答:购买篮球15个,排球5个,才能使总费用最少.最少费用是1500元.24.(10分)如图,四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请答案:下列问题:(1)如图1,当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图2,当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xOy中,点B的坐标为(1,1),点D的坐标为(5,3),如图3所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.解析:(1)利用三角形三边关系对应相等得出△PAC≌△PDB即可;(2)利用已知可证得四边形ADGK是矩形,进而得出AK2=DG2,CG2=BK2,即可得出答案;(3)结合图形得出当点P在直线AD与BC之间时,以及当点P在直线AD上方时和当点P 在直线BC下方时,分别求出即可.答案:(1)作BC的中垂线MN,在MN上取点P,连接PA、PB、PC、PD,如图(1)所示,∵MN是BC的中垂线,∴PA=PD,PC=PB,又∵四边形ABCD是矩形,∴AC=DB,即,∴△PAC≌△PDB(SSS),(2)证明:过点P作KG∥BC,如图(2)∵四边形ABCD是矩形,∴AB⊥BC,DC⊥BC∴AB⊥KG,DC⊥KG,∴在Rt△PAK中,PA2=AK2+PK2同理,PC2=CG2+PG2;PB2=BK2+PK2,PD2=DG2+PG2PA2+PC2=AK2+PK2+CG2+PG2,PB2+PD2=BK2+PK2+DG2+PG2AB⊥KG,DC⊥KG,AD⊥AB,可证得四边形ADGK是矩形,∴AK=DG,同理CG=BK,∴AK2=DG2,CG2=BK2∴PA2+PC2=PB2+PD2(3)∵点B的坐标为(1,1),点D的坐标为(5,3)∴BC=4,AB=2,∴S矩形ABCD=4×2=8,直线HI垂直BC于点I,交AD于点H,当点P在直线AD与BC之间时,S△PAD+S△PBC=BC·HI=4,即x+y=4,因而y与x的函数关系式为y=﹣x+4,当点P在直线AD上方时,S△PBC﹣S△PAD=BC·HI=4,而y与x的函数关系式为y=4+x,当点P在直线BC下方时,S△PAD﹣S△PBC=BC·HI=4,y与x的函数关系式为y=x﹣4.25.(12分)如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C 的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(),点C的坐标为();(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.解析:(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;(2)①利用菱形性质得出AD⊥OC,进而得出△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;②首先求出过C、D两点的坐标的直线CD的解析式,进而利用S四边形AMCN=S△AMN+S△CMN求出即可.答案:(1)∵抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),∴抛物线与x轴的交点坐标为:0=nx2﹣11nx+24n,解得:x1=3,x2=8,∴OB=3,OC=8,故B点坐标为(3,0),C点坐标为:(8,0);(2)①如图1,作AE⊥OC,垂足为点E∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4﹣3=1,又∵∠BAC=90°,∴△ACE∽△BAE,∴=,∴AE2=BE·CE=1×4,∴AE=2,∴点A的坐标为(4,2),把点A的坐标(4,2)代入抛物线y=nx2﹣11nx+24n,得n=﹣,∴抛物线的解析式为y=﹣x2+x﹣12,②∵点M的横坐标为m,且点M在①中的抛物线上,∴点M的坐标为(m,﹣m2+m﹣12),由①知,点D的坐标为(4,﹣2),则C、D两点的坐标求直线CD的解析式为y=x﹣4,∴点N的坐标为(m,m﹣4),∴MN=(﹣m2+m﹣12)﹣(m﹣4)=﹣m2+5m﹣8,∴S四边形AMCN=S△AMN+S△CMN=MN·CE=(﹣m2+5m﹣8)×4,=﹣(m﹣5)2+9,∴当m=5时,S四边形AMCN=9.。
2014年山西省中考数学试卷(附答案与解析)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2014年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23-+的结果是( )A .1B .1-C .5-D .6-2.如图,直线AB ,CD 被直线EF 所截,AB CD ∥,1110∠=,则2∠等于( )A .65B .70C .75D .80 3.下列运算正确的是( )A .224358a a a += B .6212aa a =C .222()a b a b +=+D .20(1)1a += 4.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的 “弦图”,它解决的数学问题是( )A .黄金分割B .垂径定理C .勾股定理D .正弦定理5.下右图是由三个小正方体叠成的一个几何体,它的左视图是( )ABCD6.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是 ( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图,O 是ABC △的外接圆,连接OA ,OB ,50OBA ∠=,则C ∠的度数为( )A .30B .40C .50D .809. 2.5PM 是指大气中直径小于或等于2.5μm 1μm=0.0000(01m)的颗粒物,也称为可入肺颗粒物.它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯10.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG △的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A.223aB .214aC .259aD .249a 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.计算:23232a b a b = . 12.化简21639x x ++-的结果是 . 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知一次函数4y kx =-的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .15.一走廊拐角的横截面如图所示,已知AB BC ⊥,AB DE ∥,BC FG ∥,且两组平行墙壁间的走廊宽度都是1m .EF 的圆心为O ,半径为1m ,且90EOF ∠=,DE ,FG 分别与O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与O 相切于点P ,P 是EF 的中点,则木棒MN 的长度为m .16.如图,在ABC △中,30BAC ∠=,AB AC =,AD 是BC 边上的中线,12ACE BAC ∠=∠,CE 交AB 于点E ,交AD 于点F ,若2BC =,则EF 的长为 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:211(2)sin60()122---⨯;(2)分解因式:(1)(3)1x x --+.18.(本小题满分6分)解不等式组并求出它的正整数解.5229,12 3.x x x --⎧⎨--⎩>①≥②19.(本小题满分6分)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉.生活中还有一种特殊的四边形——筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. 定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD 是筝形,其中AB AD =,CB CD =.判定:①两组邻边分别相等的四边形是筝形.②有一条对角线垂直平分另一条对角线的四边形是筝形.显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:数学试卷 第5页(共28页) 数学试卷 第6页(共28页)(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的88⨯网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下: ①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).图1图220.(本小题满分10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为8590x ≤<),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(本小题满分7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度'AA ,'BB ,'CC 分别为110米,310米,710米,钢缆AB 的坡度11:2i =,钢缆BC 的坡度21:1i =,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少米?(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(本小题满分9分)某新建火车站站前广场需要绿化的面积为246000米,施工队在绿化了222000米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少2米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为562米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本小题满分11分)课题学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为'B .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--数学试卷 第7页(共28页) 数学试卷 第8页(共28页)图1图2图3数学思考:(1)求'CB F ∠的度数;(2)如图2,在图1的基础上,连接'AB ,试判断'B AE ∠与'GCB ∠的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为'B ;再沿直线AH 折叠,使D 点落在EF 上,对应点为'D ;第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接'B P ,'PD ,'D Q ,'QB .试判断四边形''B PD Q 的形状,并证明你的结论.24.(本小题满分13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(2,3)-,抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点.(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和□OABC 一起先向右平移4个单位后,再向下平移(03)m m <<个单位,得到抛物线'W 和□O A B C ''''.在向下平移的过程中,设□O A B C ''''与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W '的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W '上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.5 / 14山西省2014年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】A【解析】23(32)1-+=+-=,故选A. 【考点】有理数的加法运算 2.【答案】B【解析】2∠的补角是1∠的内错角(同位角),根据“两直线平行,内错角(同位角)相等”可得2∠的补角1110=∠=︒,所以218011070∠=︒-︒=︒,故选A. 【考点】平行线的性质 3.【答案】D【解析】根据合并同类项法则,222358a a a +=,A 错;根据同底数幂的乘法法则,62628aa a a +==,B错;根据完全平方公式222()2a b a ab b +=++,C 错;因为210a +≠,根据非零数的零次幂等于1,D正确,故选D. 【考点】整式的计算 4.【答案】C【解析】根据勾股定理的证明方法可知应选C. 【考点】勾股定理 5.【答案】C【解析】从左边看只能看到上下两个小正方形,故选C. 【考点】几何体的三视图 6.【答案】B【解析】所谓演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程;所谓数形结合,就是根据数形之间的对应关系,通过数形的相互转化来解决数学问题的思想,实现数形结合;所谓抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征;数学上所说的“公理”就是一些不加证明而公认的前提,然后以此为基础,推演出所讨论对象的进一步内容,故选B.数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】OA OB =是圆心角的一半,【考点】等腰三角形的性质,圆周角定理【答案】C科学计数法是将一个数写成第Ⅱ卷(非选择题)222344232()()6a b a a b b a b =⨯=.【考点】整式的运算中单项式乘以单项式13- 1633(3)(3)(3)(3)(x x x x x x -=+=+++-+-分别于O相切于与O相切于点行墙壁间的走廊宽度相等,由对称性可知.连接OP,则OE于点H,则PH的延长线于点22MK=7/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)本小题是开放题,答案不唯一,参考答案如下:)93=x+甲=85(分)乙将被录用.)933865=3+5+2x⨯+⨯+'甲953+815+793+5+2⨯⨯x乙>,∴甲将被录用由直方图知成绩最高一组分数段【解析】解:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)11:2i =,又FE BD =AE AF ∴=+∴在Rt AEC △2AC AE =答:钢缆AC 四边形30CB F '∴∠=︒.四边形.EF CD ⊥12CB D '=⨯GCB '∠,连接B D '为等边三角形,.四边形DB DA '=DAB '∴∠=B AE '∴∠=由(1)知EF BC ∥由折叠知,B AE '∴∠=证法二:如图四边形90.BKC=.又由折叠知,GCB GCB'∠=∠,B AE GCB''∴∠=∠.又四边形数学试卷第23页(共28页)PCN ∠=PCN GBC △.PN CN GB CB ∴=12PN ∴=以下同证法一)抛物线抛物线2 14y x=∴顶点D的坐标为(2)由OABC得又C点的坐标为∴B点的坐标为(2,3)如图,过点B作BE x⊥轴于点E,C B x BC G BEA'''∴∥轴,△△.BC C GBE EA''∴=,即32BC C G''=,2233C G BC m''∴==.由平移知,O A B C''''与OABC的重叠部分四边形222)3233)22G C E m mm mm'=-+-+23-<,且0m<<∴当32m=(3)点M【考点】求抛物线解析式,相似三角形的判定与性质,最值问题,点的存在性数学试卷第27页(共28页)。
2014届中考适应性考试数学试题及答案
2014年中考数学模拟试题一、选择题:(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答。
) 1.若a 与2互为相反数,则2+a 等于( )A .0B .4C .25 D .232.如图,AE ∥BD ,︒=∠︒=∠40220 C ,则1∠的度数是( )A.︒110B.︒120C.︒130D.︒140 3.在“百度”搜索引擎输入“马航飞机失踪”,能搜索到与之相关的结果个数约为32300000,这个数用科学记数法表示为( ) A .3.23×108 B .3.23×107 C .32.3×106 D .0.323×1084.四中九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,5 5. 下列三个函数:①2y x =+;②4y x=;③221y x x =-+.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 6.下列各运算中,正确的是( )A. 6239)3(a a =- B. 624a a a =÷ C. 2523a a a =+ D. 4)2(22+=+a a7.下列四个命题:(1)对角线相等的梯形是等腰梯形;(2)对角线互相垂直且相等的四边形是正方形;(3)顺次连接矩形四边中点得到的四边形是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有 ( )A .1个B .2个C .3个D .4个8.将不等式组⎪⎩⎪⎨⎧-≤--<-x x xx 23421241的解集在数轴上表示出来,正确的是( )9.一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A.2个B.3个C.5个D.10个10. 若⊙O 1和⊙O 2的圆心距为3,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,则两圆的位置关系( )A.外离B.外切C.相交D.内切11.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( )A. 32.5°B. 57.5°C. 32.5°或57.5D. 65°或57.5°12.如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y 1),(2,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是( ) A . ①②B . ②③C . ②③④D . ①②④二、填空题(本大题共5道小题,每小题3分,共15分.把答案填在题中的横线上.)13.计算:212138-+= . 14. 随着国家抑制房价政策的出台,某楼盘房价连续两次下跌,由原来的每平方米5000元降至每平方米4050元,设每次降价的百分率相同,则降价百分率为 . 15.抛物线y =2x 2+3上有两点A (x 1,y 1)、B (x 2,y 2),且x 1≠x 2,y 1=y 2,当x=x 1+x 2时,y = . 16.在正方形ABCD 中,点E 是对角线BD 上一点,且AE BD 3=,则∠BAE= .17.如图,⊙O 与⊙O 1内切于点A ,⊙O 的弦BC 与⊙O 1相切于点D ,且BC ∥O 1O ,BC =4,则图中阴影部分的面积为_____ _. 三、解答题(9小题,共69分)18.(6分)已知222=-y x ,求x y x x y x y x 4)](2)()[(222÷-++-+的值.19.(6分)反比例函数xn y 7+=的图象的一支在第一象限, A (-1,a )、B (-3,b )均在这个函数的图象上.(1)图象的另一支位于什么象限?常数n 的取值范围是什么? (2)试比较a 、b 的大小;(3)作AC ⊥x 轴于点C ,若△AOC 的面积为5,求这个反比例函数的解析式.20.(6分)“六•一”快到了,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品。
2014年山西中考数学适应性真题及详解
2014年山西中考数学适应性真题一.选择题(共8小题) 1. 5-的倒数是( ) A .15B .15-C .5D .5-2.下列运算正确的是( ) A .532x x x -=B .222()a b a b +=+C .336()mn mn =D .624p p p ÷=3.我们虽然把地球称为“水球”,但可利用淡水资源匮乏.我国淡水总量仅约为899000亿米,用科学记数法表示这个数为( )A .0.899×104亿米3B .8.99×105亿米3C .8.99×104亿米3D .89.9×104亿米34.一个空心的圆柱如图所示,那么它的主视图是( )A .B .C .D .5.已知两圆的半径分别为3cm 、4cm ,圆心距为8cm ,则两圆的位置关系是( ) A .外离 B .相切 C .相交 D .内含 6.下列说法正确的是( )A .随机掷一枚硬币,正面一定朝上,是必然事件B .数据2,2,3,3,8的众数是8C .某次抽奖活动获奖的概率为150,说明每买50张奖券一定有一次中奖 D .想了解赤峰市城镇居民人均年收入水平,宜采用抽样调查 7.解分式方程131(1)(2)x x x =--+的结果为( ) A .1 B .1- C .2- D .无解8.如图,等腰梯形ABCD 中,AD ∥BC ,以点C 为圆心,CD 为半径的弧与BC 交于点E ,四边形ABED 是平行四边形,AB=3,则扇形CDE (阴影部分)的面积是( )A .32πB .2π C .π D .3π二.填空题(共8小题)9.一个n 边形的内角和为1080°,则n= .11.化简22(1)2211a a a a +÷+++= . 12.如图,在菱形ABCD 中,BD 为对角线,E 、F 分别是DC .DB 的中点,若EF=6,则菱形ABCD 的周长是 .13.投掷一枚质地均匀的骰子两次,两次的点数相同的概率是 .14.存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可).15.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为 . 16.将分数67化为小数是,则小数点后第2012位上的数是 .三.解答题(共9小题) 1720sin 30(2)-︒+--;18.求不等式组3(2)41413x x x x --≥⎧⎪+⎨>-⎪⎩的整数解.19.如图所示,在△ABC 中,∠ABC=∠ACB .(1)尺规作图:过顶点A 作△ABC 的角平分线AD ;(不写作法,保留作图痕迹) (2)在AD 上任取一点E ,连接BE 、CE .求证:△ABE ≌△ACE .20.如图,王强同学在甲楼楼顶A处测得对面乙楼楼顶D处的仰角为30°,在甲楼楼底B处测得乙楼楼顶D处的仰角为45°,已知甲楼高26米,求乙楼的高度. 1.7)21.甲、乙两名运动员在相同的条件下各射靶10次,每次射靶的成绩情况如图所示:22.(2012赤峰)如图,点O 是线段AB 上的一点,OA=OC ,OD 平分∠AOC 交AC 于点D ,OF 平分∠COB ,CF ⊥OF 于点F .(1)求证:四边形CDOF 是矩形;(2)当∠AOC 多少度时,四边形CDOF 是正方形?并说明理由.23.(2012赤峰)如图,直线1l y x =:与双曲线ky x=相交于点A (a ,2),将直线l 1向上平移3个单位得到l 2,直线l 2与双曲线相交于B .C 两点(点B 在第一象限),交y 轴于D 点. (1)求双曲线ky x=的解析式; (2)求tan ∠DOB 的值.24.(2012赤峰)如图,AB 是⊙O 的弦,点D 是半径OA 上的动点(与点A .O 不重合),过点D 垂直于OA 的直线交⊙O 于点E 、F ,交AB 于点C .(1)点H 在直线EF 上,如果HC=HB ,那么HB 是⊙O 的切线吗?请说明理由;(2)连接AE 、AF ,如果 AF=FB,并且CF=16,FE=50,求AF 的长.25.(2012赤峰)如图,抛物线25y x bx =--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1. (1)求抛物线的解析式; (2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.26.(2012赤峰)阅读材料:(1)对于任意两个数a b 、的大小比较,有下面的方法: 当0a b ->时,一定有a b >; 当0a b -=时,一定有a b =;反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a b 、的大小时,我们还可以用它们的平方进行比较: ∵22()()a b a b a b -=+-,0a b +> ∴(22a b -)与(a b -)的符号相同 当22a b ->0时,a b ->0,得a b > 当22a b -=0时,a b -=0,得a b = 当22a b -<0时,a b -<0,得a b <解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x ,每张B5纸的面积为y ,且x >y ,张丽同学的用纸总面积为W 1,李明同学的用纸总面积为W 2.回答下列问题: ①W 1= (用x 、y 的式子表示) W 2= (用x 、y 的式子表示) ②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l 上修建一个泵站,分别向A .B 两镇供气,已知A .B 到l 的距离分别是3km 、4km (即AC=3km ,BE=4km ),AB=xkm ,现设计两种方案:方案一:如图2所示,AP ⊥l 于点P ,泵站修建在点P 处,该方案中管道长度a 1=AB+AP .方案二:如图3所示,点A ′与点A 关于l 对称,A ′B 与l 相交于点P ,泵站修建在点P 处,该方案中管道长度a 2=AP+BP .①在方案一中,a 1= km (用含x 的式子表示); ②在方案二中,a 2= km (用含x 的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.解答:解:∵|﹣5|=5,5的倒数是,∴|﹣5|的倒数是.故选A.2、考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
2014年适应性考试数学试题答案
2014年适应性数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.A .±3B .3C .-3D .92.如图,AB ∥CD ,E 在AB 上,F 在CD 上,EG ⊥GF ,若∠BEG=120°,A .20°B .30°C .40°D . 60° 3.下列计算正确的是:A 、a 2+a 3=a 5B 、a 6÷a 2=a 3C 、(a 2)3=a 6D 、2a 2×3a =6a 2 4. 如图,是一个旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为:A.30° B .60° C.120° D.180°5. 为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为:A 、25.6 26B 、26 25.5C 、26 26D 、25.5 25.56.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是:7. 将图1所示的正六边形进行分割得到图2,再将图2中最小的某一个正六边形按同样的方式进行分割得到图3,再将图3中最小的某一个正六边形按同样的方式进行分割……,则第2014个图形中,共有_________个正六边形。
A .4027B .6040C .10066D .以上都不对从左面看(A) (D)(C) B CD8. 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,水面宽AB 是16,则截面水深CD 是:A. 3 B .4 C.5 D.6(7题) (8题) (9题)9. 如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则四边形AECF 的周长为:A .12 cmB .16 cmC .20 cmD .24 cm 10.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交, 其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b =0; ③a =4c -4;④方程ax 2+bx+c -2=0无实数根.其中正确的个数是: A . 4 B. 3 C. 2 D. 1二、填空题(共6小题,每小题3分,本大题满分18分)11.为做好房地产市场调控工作,同时为中低收入阶层提供基本住房保障,住建部通知,2014年全国将新开工保障房6000000套以上,将数字6000000用科学记数发表示为6×106。
2014年初三中考适应性考试数学试卷答案
- 1 - 2014年初三中考适应性考试数学试卷参考答案及评分标准一、选择题(本题有12小题,每小题4分,共48分)1. D2. C3. D4. B5. C6. A7. C8. D9. D 10. D 11. C 12. D二、填空题(本题有6小题,每小题4分,共24分)13. 2x ≠ 14.3(3)(3)a a +- 15. 1 16. 310 17. 点O 旋转了0453321802ππ•⨯=,平移了270391802ππ•=,所以共走了6π 18. 连结AM ,AN ,∵AC 是⊙o 的直径,∴∠AMC =900, ∠ANC =900, ∵AB =13,BM =5∴AM =12,∵CM =9∴AC =15, ∵△AMN ∽△ACD ∴AM :MN =CD :CA∴12:MN =13:15∴MN =13180三、解答题(本题有8小题,共78分,每题都必须写出解答过程)19. (本题8分) 解:(1)原式=a 2﹣4a +4+a 2+4a =2a 2+4, (4分)当3a =时,原式=2()2+4 =10; (6分)20.(本题8分)(1)证明:∵在△ABE 和△DCE 中∴△ABE ≌△DCE (AAS );………………………………………………………………4分(2)解:∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°……………………………………………………………………………8分21.(本题8分)(1)500 (2 分) 图略,对应的人数为180,正确得 (4分)(2)360500100⨯=72° (6分) (3)∵)8021405.118011005.0(5001⨯+⨯+⨯+⨯=1.2>1 ∴本次调查中学生参加户外活动的平均时间符合要求. (8分)。
2014年山西省中考模拟数学(三)
2014年山西省中考模拟数学(三)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)在5,0,-2,-3,这四个数中,最小的数是( )A. 5B. 0C. -2D. -3解析:-3<-2<0<5,答案:D.2.(3分)如图,把矩形ABCD沿直线EF折叠,若∠1=35°,则∠2=( )A. 65°B. 55°C. 45°D. 35°解析:如图,过点D作AE的平行线,则∠3=∠1=35°,∴∠4=90°-35°=55°,∴∠2=∠4=55°.答案:B.3.(3分)掷一枚质地均匀的硬币20次,下列说法正确的是( )A. 每2次必有1次正面向上B. 可能有10次正面向上C. 必有10次正面向上D. 不可能有20次正面向上解析:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,所以掷一枚质地均匀的硬币20次,可能有10次正面向上;答案:B.4.(3分)下列运算正确的是( )A. 2x2-3(x-5)=2x2-3x+5B. (x2)3=x5C.-3x2·(-2x3)=6x5D. 3x6÷x2=3x3解析:A、结果是2x2-3x+15,故本选项错误;B、结果是x6,故本选项错误;C、结果是6x5,故本选项正确;D、结果是3x4,故本选项错误;答案:C.5.(3分)如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A. 主视图改变,俯视图改变B. 左视图改变,俯视图改变C. 俯视图不变,左视图改变D. 主视图不变,左视图不变解析:将正方体①移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体①移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变.将正方体①移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体①移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变.将正方体①移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体①移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变.答案:D.6.(3分)不等式组的整数解是( )A. -1,1B. 0,1C. -1,0,1D. -2,0,1解析:,解①得:x>-2,解②得:x≤,则不等式组的解集是:-2<x≤.则整数解是:-1,0,1.答案:C.7.(3分)一次夏令营活动中,班长购买了甲、乙两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元,甲种矿泉水比乙种矿泉水多20瓶,乙种矿泉水价格是甲种矿泉水价格的1.5倍.若设甲种矿泉水的价格为x元,根据题意可列方程为( )A.-=20B. -=20C. -=20D. -=20解析:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得,-=20.答案:B.8.(3分)甲、乙两个不透明的袋子中装有只有颜色不同的小球,甲袋里有红、黑色球各一个,乙袋里有红、黑、白色球各一个,分别从这两袋中任取一球,那么取出的两个球颜色相同的概率为( )A.B.C.D.解析:画树状图得:∵共有6种等可能的结果,从两个袋子中各随机摸出1个小球,两球颜色恰好相同的只有2种情况,∴从两个袋子中各随机摸出1个小球,两球颜色恰好相同的概率为:=.答案:B.9.(3分)如图,沿AB方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AB上的一点C,取∠ACD=146°,CD=500m,∠D=56°.要使点A,C,E在同一条直线上,那么开挖点E离点D的距离是( )A. 500mB. 500sin56°mC. 500cos56°mD. 500tan56°m解析:∵∠DCE=180°-∠ACD=180°-146°=34°,∴∠E=180°-34°-56°=90°,∴△CDE是直角三角形,∴开挖点E离点D的距离=CD·cos56°=500cos56°m.答案:C.10.(3分)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减少解析:如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BC M=S△ABC,开始时,S△MPQ=S△ACM=S△ABC,点P到达AC的中点时,点Q到达BC的中点时,S△MPQ=S△ABC,结束时,S△MPQ=S△BCM=S△ABC,所以,△MPQ的面积大小变化情况是:先减小后增大.答案:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分) 2013年12月14日我国的第一艘月球车--“玉兔号”成功软着陆于月球雨海西北部.已知地球与月球之间的平均距离约为380000km,用科学记数法表示地球与月球之间的平均距离约为m.解析:380000km=380000000m=3.8×108米,答案:3.8×108.12.(3分)如果一个一元二次方程的两个非零实数根互为相反数,我们称这个方程为“根对称方程”.例如,方程x2-1=0,请你另外写出一个“根对称方程”.解析:x2-2=0为“根对称方程”.答案:x2-2=0.13.(3分)如图,△ABC≌△DCB,AC与BD相交于点E,若∠A=∠D=80°,∠ABC=60°,则∠BEC 等于.解析:∵∠A=80°,∠ABC=60°,∴∠ACB=180°-∠A-∠ABC=180°-80°-60°=40°,∵△ABC≌△DCB,∴∠CBD=∠ACB=40°,在△BCE中,∠BEC=180°-∠CBD-∠ACB=180°-40°-40°=100°.答案:100°.14.(3分)如图所示的图案是一个轴对称图形,若将其中的任意一个白色方块涂黑,所得的图案仍为轴对称图形的概率为.解析:根据题意,涂黑每一个格都会出现一种等可能情况,共出现8种等可能情况,而将任意任意一个白色方块涂黑时,都不会是轴对称图形,故其概率为=0;答案:0.15.(3分)如图,已知二次函数y=-x2+3x的对称轴与一次函数y=-2x的图象交于点A,则点A 的坐标为.解析:∵y=-x2+3x,∴对称轴为直线x===.把x=代入y=-2x,得y=-2×=-3,∴点A的坐标为(,-3).答案:(,-3).16.(3分)如图为等边三角形ABC和正方形DEFG的重叠情形,其中D,E两点分别在BC,AC 上,且CD=CE.若AB=6,GF=2,则点F到AB的距离是.解析:如图,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵CD=CE,∴△CDE是等边三角形,∵四边形DEFG是正方形,∴CD=CE=DE=GF=HI=2,∴EA=AB-CE=4,AH=(AB-HI)÷2=2,在Rt△AEH中,EH==2∴HF=EH-EF=2-2.即点F到AB的距离是2-2.答案:2-2.三、解答题(本大题含8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(1)计算:+()-2-2tan60°+|3-2|;(2)先化简,再求值:(a+2-)÷,其中a=1-.解析:(1)先分别根据数的开方法则、负整数指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.答案:(1)原式=2+4-2×+2-3=6-2+2-3=3;(2)原式=×÷=3a(a+3)·=3a2,当a=1-时,原式=3(1-)2=3(1+3-2)=12-6.18.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,B,C的坐标分别为(-3,2),(0,4),(0,2).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(3)若将△A1B1C绕某一点M旋转可以得到△A2B2C2,请画出旋转中心,并写出旋转中心M的坐标.解析:(1)以点C向下2个单位为坐标原点建立平面直角坐标系即可;(2)根据网格结构找出点A1、B1的位置,再与点C顺次连接即可;(3)根据旋转的性质,连接对应点A1A2、B1B2、CC2,交点即为旋转中心M.答案:(1)建立平面直角坐标系如图所示;(2)△A1B1C如图所示;(3)点M(2,-1).19.(8分) 如图,直线y=x+2与双曲线y=(k≠0)相交于A(1,m),B(n,-1)两点.(1)求双曲线的解析式;(2)若C(a,p)为第一象限内双曲线上(除点A外)一点,请直接写出m,n,p的大小关系式.解析:(1)把A,B点的坐标分别代入直线的解析式即可求得的交点坐标;把交点坐标代入反比例函数解析式即可求得双曲线的解析式.(2)反比例函数的图象在第一象限y随x的增大而减小,若a>1则m>p>0,若a<1则p >m>0.答案:(1)点A是线y=x+2上的点,把A(1,m)代入得m=1+2,解得m=3,∴A(1,3)把A(1,3)代入双曲线y=(k≠0)得3=,解得k=3,∴双曲线y=.(2)两种情况:①n<p≤m,②n<m≤p.20.(8分)立定跳远是我省2014年初中毕业生升学体育考试男生的选考项目,某校九年级共有100名男生选择了立定跳远,现从这100名男生中随机抽取10名男生进行测试,下面是他们测试结果的条形统计图.(另附:九年级男生立定跳远的计分标准)(注:成绩显示的是各分数段下限,若不到上限,则按下限计分,满分为15分)(1)求这10名男生在本次测试中,立定跳远距离的中位数,立定跳远得分的众数和平均数;(2)请你估计该校选择立定跳远的100名男生中立定跳远得14分(含14分)以上的人数;(3)请你根据统计结果,写出一个你发现的结论.解析:(1)先把数据先从小到大排列起来,再根据中位数,众数,平均数的概念求解即可;(2)利用100乘以,14分以上的人数所占的比例即可求解;(3)根据计算结果,写出一个正确的结论即可.答案不唯一.答案:(1)这10名学生的得分分别是:12,14,10,14,11,14,12,13,15,14.则中位数是:14分;众数是14分;平均数是:(12+14+10+14+11+14+12+13+15+14)=12.9(分);(2)立定跳远得14分(含14分)以上的人数是:100×=50(人);(3)学生成绩达到14分的人数最多.21.(9分)如图,已知BD是以O为圆心,AB长为直径的半圆的弦,AC⊥AB,BD∥OC,直线CD交AB的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2AC,求的值.解析:(1)首先证得△CAO≌△CDO,然后得到∠A=∠ADO=90°,从而利用直切线的判定定理判定直线CD是⊙O的切线;(2)由△CAO≌△CDO,得到AC=CD,根据DE=2AC,得到DE=2CD,然后利用△EDB∽△ECO,从而得到=;答案:(1)∵BD∥OC,∴∠DBO=∠COA,∠ODB=∠COD,∵OD=OB,∴∠ODB=∠OBD,∴∠COA=∠COD,在△CAO和△CDO中,∴△CAO≌△CDO(SAS),∴∠A=∠ADO,∵AC⊥AB,∴OD⊥CD,∴直线CD是⊙O的切线;(2)∵△CAO≌△CDO,∴AC=CD,∵DE=2AC,∴DE=2CD,∵BD∥OC,∴△EDB∽△ECO,∴=.22.(8分)2013年我省煤炭市场整体运行低迷,产量过剩问题严重,某煤化公司开发了A,B 两种煤产品,根据市场调研,发现如下信息:信息1:生产A种产品所获利润y(万元)与生产产品x(吨)之间存在二次函数关系y=ax2+bx.当x=1时,y=0.7;当x=3时,y=1.8.信息2:生产B种产品所获利润y(万元)与生产产品x(吨)之间存在正比例函数关系y=0.25x. 根据以上信息,解答下列问题:(1)求二次函数解析式;(2)若该公司每天生产A、B两种产品共100吨,请设计一个生产方案,使每天生产A,B两种产品获得的利润之和最大,最大利润是多少?解析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设生产A产品m吨,生产B产品(100-m)吨,生产A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.答案:(1)∵当x=1时,y=0.7;当x=3时,y=1.8.∴,解得,所以,二次函数解析式为y=-0.05x2+0.75x;(2)设生产A产品m吨,生产B产品(100-m)吨,生产A、B两种产品获得的利润之和为W元,则W=-0.05m2+0.75m+0.25(100-m)=-0.05m2+0.5m+25=-0.05(m-5)2+26.25,∵-0.1<0,∴当m=5时,W有最大值26.25,∴生产A产品5吨,生产B产品95吨,获得的利润之和最大,最大利润是26.25万元.23.(10分)两个全等的直角三角板ABC和DEF重叠在一起,∠BAC=∠EDF=30°,AC=DF=2.△ABC固定不动,将△DEF沿AC平移(点D在线段AC上移动).(1)猜想与证明:如图①,当点D为AC的中点时,请你猜想四边形BDCE的形状,并证明结论;(2)思考与验证:如图②,连接BD,BE,CE,四边形BDCE的形状在不断的变化,它的面积变化吗?若不变,求出其面积;若变化,请说明理由;(3)操作与计算:如图③,当点D为AC的中点时,将点D固定,然后再将△DEF绕点D顺时针旋转60°,若点P为线段AC延长线上一动点,求PE+PF的最小值.解析:(1)如图①,由平移可得:BE∥AD,BE=AD.由点D为AC的中点,∠ABC=90°可得BD=AD=DC,从而可以证到四边形BDCE是菱形.(2)连接AE,如图②,由于BE∥AC,BE=AD,可得S△DBE=S△EAD(等底等高),S△BAC=S△EAC(同底等高),进而得到S四边形BDCE=S△BAC,只需求出S△BAC即可得到四边形BDCE的面积.(3)过点E作直线AC的对称点E′,连接PE、PF、PE′、FE′,如图③,易得∠E′DF=90°,DF=2,DE′=,根据勾股定理可求出E′F,再根据“两点之间线段最短”即可求出PE+PF 的最小值.答案:(1)猜想:四边形BDCE是菱形.证明:如图①,由平移可得:BE∥AD,BE=AD.∵点D为AC的中点,∠ABC=90°,∴BD=AD=DC.∴BE=DC.∵BE=DC,BE∥AD,即BE∥DC,∴四边形BDCE是平行四边形.∵BD=DC,∴平行四边形BDCE是菱形.(2)四边形BDCE的面积不变.连接AE,如图②,由平移可得:BE∥AD,BE=AD.∴S△DBE=S△EAD.(等底等高),S△BAC=S△EAC.(同底等高)∴S四边形BDCE=S△DBE+S△EDC=S△EAD+S△EDC=S△EAC=S△BAC.∴四边形BDCE的面积不变.∵∠ABC=90°,∠BAC=30°,AC=2,∴BC=1,AB=.∴S△BAC=AB·BC=.∴四边形BDCE的面积为.(3)过点E作直线AC的对称点E′,连接PE、PF、PE′、FE′,如图③,则有PE=PE′,DE′=DE,∠E′DC=∠EDC=60°-30°=30°.∴∠E′DF=30°+30°+30°=90°.∵DF=2,DE′=DE=AB=,∴E′F2=DE′2+DF2=3+4=7.∴E′F=.∴PE+PF=PE′+PF≥E′F=.根据“两点之间线段最短”可知:当点E′、P、F三点共线时,PE+PF取到最小值,最小值为.24.(13分)如图,点A和点B分别在x轴和y轴上,且OA=OB=4,直线BC交x轴于点C,已知S△BOC=S△ABC,(1)求直线BC的解析式;(2)在直线BC上求作一点P,使四边形OBAP为平行四边形(尺规作图,保留痕迹,不写作法);(3)直线BC上是否存在点M,使△OAM为等腰三角形?若存在,求点M的坐标;若不存在,说明理由.解析:(1)根据三角形BOC面积与三角形ABC面积相等,得到C为OA的中点,确定出C坐标,设直线BC解析式为y=kx+b,将B与C坐标代入求出k与b的值,即可确定出直线BC解析式;(2)以A为圆心,OB长为半径在第四象限画弧,以O为圆心,AB长为半径画弧,两弧交于点P,利用两组对边相等的四边形为平行四边形得到ABOP为平行四边形;(3)以A为圆心,OA长为半径画弧,与BC交于点M,以O为圆心,OA长为半径画弧,与CP 交于M′,设M(x,y),利用两点间的距离公式列出方程,与直线BC解析式联立求出M坐标,同理求出M′坐标即可.答案:(1)∵S△BOC=S△ABC,且两三角形同高,∴OC=AC=OA=2,设直线BC解析式为y=kx+b,将C(2,0)和B(0,4)代入得:,解得:k=-2,b=4,则直线BC解析式为y=-2x+4;(2)如图所示:以A为圆心,OB长为半径在第四象限画弧,以O为圆心,AB长为半径画弧,两弧交于点P,则四边形ABOP为所求的平行四边形;(3)直线BC上存在点M,使△OAM为等腰三角形,以A为圆心,OA长为半径画弧,与BC交于点M,以O为圆心,OA长为半径画弧,与CP交于M′,如图所示,设M(x,y),由AM=OA=4,得到=4,即(x-4)2+y2=16,与直线BC解析式联立得:,消去y得:5x2-24x+16=0,即(5x-4)(x-4)=0,解得:x=或x=4(不合题意,舍去),将x=代入得:y=-+4=,此时M坐标为(,);以O为圆心,OA长为半径画弧,与CP交于M′,设M′(m,n),由OM′=OA=4,得到m2+n2=16,联立得:,消去n,整理得:m(5m-16)=0,解得:m=或m=0(不合题意,舍去),将m=代入得:n=-,此时M′(,-).。
2014届九年级数学中考适应性训练试卷及答案
一、选择题(本大题共有6小题,每小题3分,共18分)1.51-的相反数是( ▲ ) A .-5 B . 51- C .5D . 512. 下列各式计算正确的是( ▲ )A .a 3+2a 2=3a 6B .C .a 4•a 2=a8D .(ab 2)3=ab 63. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是( ▲ ) A .23°B . 22°C .37°D .67°4. 两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ▲ ) A.两个外离的圆 B.两个外切的圆 C.两个相交的圆D.两个内切的圆5. 下列说法正确的是( ▲ )A .某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖.B .为了解全国中学生的睡眠情况,应该采用普查的方式.C .一组数据3,5,4,5, 5,6,10的众数和中位数都是5.D .若甲数据的方差s 2甲=0.05,乙数据的方差s 2乙=0.1,则乙数据比甲数据稳定. 6.. 如图,二次函数y =ax 2+bx +c 的图象经过(-1,0)、(0,3),下列结论中错误的是( ▲ ) A . abc <0B .9a +3b +c=0C .a-b=-3D . 4ac ﹣b 2<0二、填空题(本大题共有10小题,每小题3分,共30分) 7.函数y = x − 1中自变量x 的取值范围是 ▲ .8.“2014中国兴化千垛菜花旅游节”4月3日开幕以来,引资112亿元,112亿元用科学计数法表示为 ▲ 元.9. 因式分解4x 2-64= ▲ .10.已知关于x 的不等式(3﹣a )x >a-3的解集为x <-1,则a 的取值范围是 ▲ .11. 已知关于x 的一元二次方程x 2+bx +b ﹣1=0有两个相等的实数根,则b 的值是 ▲ . 12.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于C 点,sinA=53,OA =10cm ,则AB 长为 ▲ cm .13.如图,△ABC 的外心坐标是____▲______.14.小明从点O 出发,沿直线前进10米,向左转n °(0<n <180),再沿直线前进10米,又向左转n °……照这样走下去,小明恰能回到O 点,且所走过的路程最短..,则n 的值等于 ▲ .15.观察下列等式:3=4-1、5=9-4、7=16-9、9=25-16 ……依此规律,第n 个等式(n 为正整数)为 ▲ .16. 如图,在Rt △ABC 中,AC =8,AB=10,DE 是中位线, 则圆心在直线AC 上,且与DE 、AB 都相切的⊙O 的半径长是 ▲ .三、解答题(本大题有10小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. (本题满分12分)(1)计算:|﹣12|+(20140﹣3tan30°;(2). 先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是2x 2-2x-7=0的根. 18. (本题满分8分)已知关于x ,y 的方程组⎩⎨⎧-=-=-5292my nx ny mx 的解为⎩⎨⎧=-=31y x ,求m n的值.19. (本题满分8分)某校为了了解学生对在课间操期间实行“阳光跑操”活动的喜欢程度,抽取部分学生并让每个人按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对此进行评价,图①和图②是该校采集数据后,绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.回答下列问题:(1)此次调查的样本容量为;(2)条形统计图中存在的错误是(填A、B、C、D中的一个);(3)在图2中补画条形统计图中不完整的部分;(4)若该校有600名学生,请估计该校“非常喜欢”和“比较喜欢”的学生共有多少人?20. (本题满分8分)一个不透明的布袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球1个,蓝球2个,黄球若干个,现从中任意摸出一个球是蓝球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是蓝球的概率;21. (本题满分10分)果农李明种植的草莓计划以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.李明为了加快销售,减少损失,对价格经过两次下调后,以每千克9.6元的单价对外批发销售.(1)求李明平均每次下调的百分率;(2)小刘准备到李明处购买3吨该草莓,因数量多,李明决定再给予两种优惠方案以供其选择:方案一:打九折销售;方案二:不打折,每吨优惠现金400元.试问小刘选择哪种方案更优惠,请说明理由.22. (本题满分10分)如图,某人在D处测得山顶C的仰角为37o,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,参考数据:sin370.60cos370.80tan370.75≈≈≈,,,).23. (本题满分10分)如图,矩形ABCD 中,对角线AC 、BD 交于点O ,DE∥AC ,CE∥BD 。
山西省2014年中考数学真题试题(含解析)
山西省2014年中考数学真题试题一、选择题(共10小题,每小题3分,共30分)1.(3分)(2014•山西)计算﹣2+3的结果是()A.1B.﹣1 C.﹣5 D.﹣62.(3分)(2014•山西)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=110°,则∠2等于()A.65°B.70°C.75°D.80°3.(3分)(2014•山西)下列运算正确的是()A.3a2+5a2=8a4B.a6•a2=a12C.(a+b)2=a2+b2 D.(a2+1)0=14.(3分)(2014•山西)如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是()A.黄金分割B.垂径定理C.勾股定理D.正弦定理5.(3分)(2014•山西)如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.6.(3分)(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是()A.演绎B.数形结合C.抽象D.公理化7.(3分)(2014•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率8.(3分)(2014•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°9.(3分)(2014•山西)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m10.(3分)(2014•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的变长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2二、填空题(共6小题,每小题3分,共18分)11.(3分)(2014•山西)计算:3a2b3•2a2b= _________ .12.(3分)(2014•山西)化简+的结果是_________ .13.(3分)(2014•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k= _________ .14.(3分)(2014•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_________ .15.(3分)(2014•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m ,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P 是的中点,则木棒MN的长度为_________m.16.(3分)(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB 于点E,交AD于点F.若BC=2,则EF的长为_________ .三、解答题(共8小题,共72分)17.(10分)(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.18.(6分)(2014•山西)解不等式组并求出它的正整数解:.19.(6分)(2014•山西)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).20.(10分)(2014•山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):项目阅读思维表达人员甲93 86 73乙95 81 79(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(7分)(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度:是指坡面的铅直高度与水平宽度的比)22.(9分)(2014•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(11分)(2014•山西)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.24.(13分)(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S 有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2014年山西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2014•山西)计算﹣2+3的结果是()A.1B.﹣1 C.﹣5 D.﹣6考点:有理数的加法.分析:根据异号两数相加的法则进行计算即可.解答:解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选A.点评:本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.2.(3分)(2014•山西)如图,直线AB、CD被直线EF所截,AB∥CD,∠1=110°,则∠2等于()A.65°B.70°C.75°D.80°考点:平行线的性质.分析:根据“两直线平行,同旁内角互补”和“对顶角相等”来求∠2的度数.解答:解:如图,∵AB∥CD,∠1=110°,∴∠1+∠3=180°,即100+∠3=180°,∴∠3=70°,∴∠2=∠3=70°.故选:B.点评:本题考查了平行线的性质.总结:平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.3.(3分)(2014•山西)下列运算正确的是()A.3a2+5a2=8a4B.a6•a2=a12C.(a+b)2=a2+b2 D.(a2+1)0=1考点:完全平方公式;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解答:解:A、原式=8a2,故选项错误;B、原式=a8,故选项错误;C、原式=a2+b2+2ab,故选项错误;D、原式=1,故选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.4.(3分)(2014•山西)如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是()A.黄金分割B.垂径定理C.勾股定理D.正弦定理考点:勾股定理的证明.分析:“弦图”,说明了直角三角形的三边之间的关系,解决了勾股定理的证明.解答:解:“弦图”,说明了直角三角形的三边之间的关系,解决的问题是:勾股定理.故选C.点评:本题考查了勾股定理的证明,勾股定理证明的方法最常用的思路是利用面积证明.5.(3分)(2014•山西)如图是由三个小正方体叠成的一个几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层一个正方形,第二层一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(2014•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是()A.演绎B.数形结合C.抽象D.公理化考点:二次函数的性质;一次函数的性质;反比例函数的性质.专题:数形结合.分析:从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.解答:解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选B.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣,时,y取得最小值,即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.7.(3分)(2014•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率考点:利用频率估计概率.分析:根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.解答:解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴A、B、C错误,D正确.故选D.点评:本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.8.(3分)(2014•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°考点:圆周角定理.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.点评:此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.9.(3分)(2014•山西)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:2.5μm×0.000001m=2.5×10﹣6m;故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)(2014•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的变长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2考点:全等三角形的判定与性质;正方形的性质.分析:作EM⊥BC于点M,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形MCQE的面积求解.解答:解:作EM⊥BC于点M,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EN,四边形MCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形MCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形MCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.点评:本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.二、填空题(共6小题,每小题3分,共18分)11.(3分)(2014•山西)计算:3a2b3•2a2b= 6a4b4.考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a2b3•2a2b=(3×2)×(a2•a2)(b3•b)=6a4b4.故答案为:6a4b4.点评:此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键.12.(3分)(2014•山西)化简+的结果是.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=+==.故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.(3分)(2014•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k= 4 .考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C点坐标代入y=kx﹣4即可得到k的值.解答:解:把y=0代入y=kx﹣4得y=﹣4,则B点坐标为(0,﹣4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y=得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx﹣4得2k﹣4=4,解得k=4.故答案为4.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.14.(3分)(2014•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与通过一次“手心手背”游戏能决定甲打乒乓球的情况,再利用概率公式即可求得答案.解答:解:分别用A,B表示手心,手背.画树状图得:∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况,∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2014•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为(4﹣2)m.考点:切线的性质.专题:应用题.分析:连接OB,延长OF,OE分别交BC于H,交AB于G,证得四边形BGOH是正方形,然后证得OB经过点P,根据勾股定理切点OB的长,因为半径OP=1,所以BP=2﹣1,然后求得△BPM≌△BPN得出P是MN的中点,最后根据直角三角形斜边上的中线等于斜边的一半即可求得.解答:解:连接OB,延长OF,OE分别交BC于H,交AB于G,∵DE、FG分别与⊙O相切于E、F两点,∴OE⊥ED,OF⊥FG,∵AB∥DE,BC∥FG,∴OG⊥AB,OH⊥BC,∵∠EOF=90°,∴四边形BGOH是矩形,∵两组平行墙壁间的走廊宽度都是1m,⊙O半径为1m,∴OG=OH=2,∴矩形BGOH是正方形,∴∠BOG=∠BOH=45°,∵P是的中点,∴OB经过P点,在正方形BGOH中,边长=2,∴OB=2,∵OP=1,∴BP=2﹣1,∵p是MN与⊙O的切点,∴OB⊥MN,∵OB是正方形BGOH的对角线,∴∠OBG=∠OBH=45°,在△BPM与△BPN中∴△BPM≌△BPN(ASA)∴MP=NP,∴MN=2BP,∵BP=2﹣1,∴MN=2(2﹣1)=4﹣2,点评:本题考查了圆的切线的性质,正方形的判定和性质,全等三角形的判定和性质以及勾股定理的应用,O、P、B三点共线是本题的关键.16.(3分)(2014•山西)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB 于点E,交AD于点F.若BC=2,则EF的长为﹣1 .考点:勾股定理;等腰三角形的性质;含30度角的直角三角形;等腰直角三角形.分析:过F点作FG∥BC.根据等腰三角形的性质和三角形内角和定理可得AF=CF,在Rt△CDF中,根据三角函数可得AF=CF=2,DF=,根据平行线分线段成比例可得比例式GF:BD=AF:AD,求得GF=4﹣2,再根据平行线分线段成比例可得比例式EF:EC=GF:BC,依此即可得到EF=﹣1.解答:解:过F点作FG∥BC.∵在△ABC中,AB=AC,AD是BC边上的中线,∴BD=CD=BC=1,∠BAD=∠CAD=∠BAC=15°,AD⊥BC,∵∠ACE=∠BAC,∴∠CAD=∠ACE=15°,∴AF=CF,∵∠ACD=(180°﹣30°)÷2=75°,∴∠DCE=75°﹣15°=60°,在Rt△CDF中,AF=CF==2,DF=CD•tan60°=,∵FG∥BC,∴GF:BD=AF:AD,即GF:1=2:(2+),解得GF=4﹣2,∴EF:EC=GF:BC,即EF:(EF+2)=(4﹣2):2,解得EF=﹣1.故答案为:﹣1.点评:综合考查了等腰三角形的性质,三角形内角和定理可得,三角函数,平行线分线段成比例,以及方程思想,本题的难点是作出辅助线,寻找解题的途径.三、解答题(共8小题,共72分)17.(10分)(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.考点:实数的运算;因式分解-运用公式法;负整数指数幂;特殊角的三角函数值.分析:(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.解答:解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014•山西)解不等式组并求出它的正整数解:.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.19.(6分)(2014•山西)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).考点:利用旋转设计图案;菱形的性质;利用轴对称设计图案.分析:(1)利用菱形的性质以及结合图形得出筝形的性质分别得出异同点即可;(2)利用轴对称图形和中心对称图形的定义结合题意得出答案.解答:解:(1)相同点:①两组邻边分别相等;②有一组对角相等;③一条对角线垂直平分另一条对角线;④一条对角线平分一组对角;⑤都是轴对称图形;⑥面积等于对角线乘积的一半;不同点:①菱形的对角线互相平分,筝形的对角线不互相平分;②菱形的四边都相等,筝形只有两组邻边分别相等;③菱形的两组对边分别平行,筝形的对边不平行;④菱形的两组对角分别相等,筝形只有一组对角相等;⑤菱形的邻角互补,筝形的邻角不互补;⑥菱形的既是轴对称图形又是中心对称图形,筝形是轴对称图形不是中心对称图形;(2)如图所示:.点评:此题主要考查了利用旋转设计图案,借助网格得出符合题意的图形是解题关键.20.(10分)(2014•山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):阅读思维表达项目人员甲93 86 73乙95 81 79(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.考点:频数(率)分布直方图;算术平均数;加权平均数.分析:(1)根据平均数的计算公式分别进行计算即可;(2)根据加权平均数的计算公式分别进行解答即可;(3)由直方图知成绩最高一组分数段85≤x<90中有7人,公司招聘8人,再根据x甲=85.5分,得出甲在该组,甲一定能被录用,在80≤x<85这一组内有10人,仅有1人能被录用,而x乙=84.8分,在这一段内不一定是最高分,得出乙不一定能被录用;最后根据频率=进行计算,即可求出本次招聘人才的录用率.解答:解:(1)∵甲的平均成绩是:x甲==84(分),乙的平均成绩为:x乙==85(分),∴x乙>x甲,。
2014年中考适应性考试数学试题及答案
2014年中考适应性考试数学试题及答案2014年初中学业考试适应性训练数学试题考⽣注意:1、考试时间120分钟;全卷共三道⼤题,总分120分2、请将答案写在答题卡上,答在试卷上⽆效。
⼀、填空题(每题3分,满分30分)1. 前⼏年甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,保留两个有效数字,⽤科学记数法表⽰这个数是 . 2、函数y=x 31-中,⾃变量x 的取值范围是。
3、如图所⽰,E 、F 是矩形ABCD 对⾓线AC 上的两点,试添加⼀个条件:_______________,使得△ADF ≌△CBE .4、把抛物线y=2x 2-3向右平移1个单位,再向上平移4个单位,则所得抛物线的解析式是 . 5、如图,Rt ABC △的斜边10AB cm =,3cos 5A =, 则_____.BC =6、从编号为1到10的10张卡⽚中任取1张,所得编号是 3的倍数的概率为 .7、过平⾏四边形 ABCD 对⾓线交点O 作直线m,分别交直线AB 于点E ,交直线CD 于点F ,若AB = 4,AE = 6 ,则DF 的长是 .8、分式112+-x x 的值为0 ,则 x 的值为 .9、已知圆锥的底⾯直径为4,母线长为6,则它的侧⾯展开图的圆⼼⾓为__ _____度 . 10.如图,有⼀系列有规律的点,它们分别是以O 为顶点,边长为正整数的正⽅形的顶点,A 1(0,1)、A 2(1,1)、A 3(1,0)、 A 4(2,0)、A 5(2,2)、A 6(0,2)、A7(0,3)、A 8(3,3)……,依此规律,点A 20的坐标为 . ⼆、选择题(每题3分,满分30分) 11、下列运算正确的是()A .236·a a a = B .11()22-=- C .164=± D .|6|6-=第5题图ABC12、在下列美丽的图案中,既是轴对称图形⼜是中⼼对称图形的个数是().(A )1个(B )2个(C )3个(D )4个 13、某班数学学习⼩组8名同学在⼀节数学课上发⾔的次数分别为 1、5、6、7、6、5、6、6则这组同学发⾔次数的众数和中位数分别是()A .6和6B .5和5C .6和5D .5和614、⼩明外出散步,从家⾛了20分钟后到达了⼀个离家900⽶的报亭,看了10分钟的报纸然后⽤了15分钟返回到家.则下列图象能表⽰⼩明离家距离与时间关系的是()15、如图,⼀个由若⼲个相同的⼩正⽅体堆积成的⼏何体,它的主视图、左视图和俯视图都是⽥字形,则⼩正⽅体的个数是()A .6B .6、7或8C .7 或8D .816、点P (-2,1)关于x 轴对称的点的坐标是()A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)17、顺次连接对⾓线互相垂直的四边形的各边中点,所得图形⼀定是() A .直⾓梯形 B .矩形 C .菱形 D .正⽅形18.若x ,y 为实数,且1x ++1y -=0,则2011()x y的值是( ) A .0B .1C .-1D .-201119、某城市计划⽤两年时间增加全市绿化⾯积,若平均每年绿化⾯积⽐上⼀年增长20%,则两年后城市绿化⾯积是原来的()A1.2倍B1.4倍C1.44倍D1.8倍20、.如图,矩形ABCD 中,AB=3,AD=4,△ACE 为等腰直⾓三⾓形,∠AEC=90°,连接BE 交AD 、AC 分别于F 、N ,CM 平分∠ACB 交BN 于M ,下列结论:①AB=AF ;②AE=ME ;10 20 30 40 50 900 0 A .时间/分距离/⽶ 900 距离/⽶ 900 距离/⽶ 900 距离/⽶ 10 20 30 40 0 时间/分10 20 30 40 50 0 时间/分10 20 30 40 50 0 时间/分B .C .D .(第15题图)③BE ⊥DE ;④52=??CEN CMN S S ,其中正确的结论的个数有().A.1个B.2个C.3个D.4个(第20题图)三、解答题(满分60分) 21.(本⼩题满分5分)先化简,再选⼀个你喜欢的值代⼊求值。
2014年山西省中考数学试卷
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前山西省2014年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23-+的结果是( )A .1B .1-C .5-D .6-2.如图,直线AB ,CD 被直线EF 所截,AB CD ∥,1110∠=,则2∠等于( )A .65B .70 C .75D .80 3.下列运算正确的是( )A .224358a a a += B .6212aa a =C .222()a b a b +=+D .20(1)1a += 4.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的 “弦图”,它解决的数学问题是( )A .黄金分割B .垂径定理C .勾股定理D .正弦定理5.下右图是由三个小正方体叠成的一个几何体,它的左视图是( )ABCD6.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是 ( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图,O 是ABC △的外接圆,连接OA ,OB ,50OBA ∠=,则C ∠的度数为( )A .30B .40 C .50D .809. 2.5PM 是指大气中直径小于或等于2.5μm 1μm=0.0000(01m)的颗粒物,也称为可入肺颗粒物.它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯10.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG △的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .223aB .214aC .259aD .249a 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.计算:23232a b a b = . 12.化简21639x x ++-的结果是. 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)13.如图,已知一次函数4y kx =-的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .15.一走廊拐角的横截面如图所示,已知AB BC ⊥,AB DE ∥,BC FG ∥,且两组平行墙壁间的走廊宽度都是1m .EF 的圆心为O ,半径为1m ,且90EOF ∠=,DE ,FG 分别与O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与O 相切于点P ,P 是EF 的中点,则木棒MN 的长度为m .16.如图,在ABC △中,30BAC ∠=,AB AC =,AD 是BC 边上的中线,12ACE BAC ∠=∠,CE 交AB 于点E ,交AD 于点F ,若2BC =,则EF 的长为.三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:211(2)sin 60()2---(2)分解因式:(1)(3)1x x --+.18.(本小题满分6分)解不等式组并求出它的正整数解.5229,12 3.x x x --⎧⎨--⎩>①≥②19.(本小题满分6分)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉.生活中还有一种特殊的四边形——筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. 定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD 是筝形,其中AB AD =,CB CD =.判定:①两组邻边分别相等的四边形是筝形.②有一条对角线垂直平分另一条对角线的四边形是筝形.显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:数学试卷 第5页(共8页) 数学试卷 第6页(共8页)(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的88⨯网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下: ①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).图1图220.(本小题满分10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为8590x ≤<),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(本小题满分7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度'AA ,'BB ,'CC 分别为110米,310米,710米,钢缆AB 的坡度11:2i =,钢缆BC 的坡度21:1i =,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少米?(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(本小题满分9分)某新建火车站站前广场需要绿化的面积为246000米,施工队在绿化了222000米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少2米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为562米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本小题满分11分)课题学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为'B .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--数学试卷 第7页(共8页) 数学试卷 第8页(共8页)图1图2图3数学思考:(1)求'CB F ∠的度数;(2)如图2,在图1的基础上,连接'AB ,试判断'B AE ∠与'GCB ∠的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为'B ;再沿直线AH 折叠,使D 点落在EF 上,对应点为'D ;第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接'B P ,'PD ,'D Q ,'QB .试判断四边形''B PD Q 的形状,并证明你的结论.24.(本小题满分13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(2,3)-,抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点.(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和□OABC 一起先向右平移4个单位后,再向下平移(03)m m <<个单位,得到抛物线'W 和□O A B C ''''.在向下平移的过程中,设□O A B C ''''与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W '的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W '上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.。