上海卷数学高考知识点分布统计表及试题分析

合集下载

高考数学上海卷(理)全解全析

高考数学上海卷(理)全解全析

全国普通高等学校招生统一考试(上海)数学(理工农医类) 全解全析一 填空(4’×11)1.不等式|1|1x -<的解集是 . 【答案】(0,2)【解析】由11102x x -<-<⇒<<.2.若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a = . 【答案】2 【解析】由{2}, 22AB A B a =⇒⇒=只有一个公共元素.3.若复数z 满足z =i (2-z)(i 是虚数单位),则z = . 【答案】1i +【解析】由2(2)11iz i z z i i=-⇒==++. 4.若函数f (x )的反函数为f -1(x )=x 2(x >0),则f (4)= . 【答案】2【解析】令12(4)()44(0)2f t ft t t t -=⇒=⇒=>⇒=.5.若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +→b |= .【解析】222||()()2||||2||||cos7||73a b a b a b a a b b a b a b a b a b π+=++=++=++=⇒+=. 6.函数f (x )=3sin x +sin(π2+x )的最大值是 .【答案】2【解析】由max ()cos 2sin()()26f x x x x f x π=+=+⇒=.7.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 【答案】34【解析】已知 A C E F B C D 、、、共线;、、共线;六个无共线的点生成三角形总数为:36C ;可构成三角形的个数为:33364315C C C --=,所以所求概率为:3336433634C C C C --=; 8.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0 的x 的取值范围是 . 【答案】(1,0)(1,)-+∞【解析】 0 ()0 1 ()00 1 x f x x f x x >>⇔><⇔<<当时,;;由f (x )为奇函数得: 0 ()010 ()0 1 x f x x f x x <>⇔-<<<⇔<-⇒当时,;结论;9.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是 . 【答案】10.5,10.5a b ==【解析】根据总体方差的定义知,只需且必须10.5,10.5a b ==时,总体方差最小; 10.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a ,短轴长为2b 的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h 1、h 2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是 . 【答案】1122cot cot 2h h a θθ⋅+⋅≤ 【解析】依题意, 12||||2MF MF a +≤1122cot cot 2h h a θθ⇒⋅+⋅≤;11.方程x 2+2x -1=0的解可视为函数y =x +2的图像与函数y =1x 的图像交点的横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点(x i ,4x i )(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 . 【答案】(,6)(6,)-∞-+∞【解析】方程的根显然0x ≠,原方程等价于34x a x+=,原方程的实根是曲线3y x a=+与曲线4y x=的交点的横坐标;而曲线3y x a =+是由曲线3y x =向上或向下平移||a 个单位而得到的。

上海高中高考数学知识点总结

上海高中高考数学知识点总结

上海高中高考数学知识点总结数学是高中阶段的一门重要学科,也是高考的一科必考科目。

上海是我国教育事业发展最为先进的地区之一,其高中高考数学知识点体系较为完备。

下面将对上海高中高考数学知识点进行总结。

一、函数与方程1.一次函数:将函数的定义域与值域、函数图像的性质(斜率、截距、单调性、定义域、值域等)、函数的性质(奇偶性、周期性等)作为重点。

2.二次函数:将函数图像的性质(顶点、对称轴、单调性、定义域、值域等)、零点特征(判别式、根与系数的关系)以及函数与方程的应用问题作为重点。

3.三角函数:将基本函数的定义域与值域、函数图像的性质(周期、对称轴、单调性等)、反函数以及函数与方程的应用问题作为重点。

4.幂函数与指数函数:将函数图像的性质(单调性、定义域、值域等)、乘幂性质、对数函数与指数函数的关系以及函数与方程的应用问题作为重点。

5.对数函数与指数方程:将函数图像的性质(单调性、定义域、值域等)、对数性质、指数方程的解法以及函数与方程的应用问题作为重点。

6.三角方程:将三角函数的性质、解三角方程的方法以及函数与方程的应用问题作为重点。

7.不等式:将一次不等式、二次不等式、分式不等式的解法以及应用问题作为重点。

二、平面解析几何1.直线与圆:将直线的方程(一般式、斜截式、点斜式)、圆的方程(一般式、截距式、标准式)以及直线与圆的应用问题作为重点。

2.曲线的方程:将椭圆、双曲线、抛物线的方程、基本性质(焦点、准线等)以及曲线与方程的应用问题作为重点。

3.空间几何体:将点、线、面的位置关系、截距表示、距离性质以及平面与直线的交点、角度等问题作为重点。

三、立体几何1.空间几何体的计算:对长方体、正方体、圆柱体、圆锥体、球体的体积、表面积以及应用问题进行掌握。

2.空间向量:将向量的定义、线性运算、数量积、向量积、坐标表示以及应用问题作为重点。

四、概率与统计1.概率:将事件的概念、事件的运算、频率与概率的关系、条件概率、独立性、全概率公式、贝叶斯公式以及概率与统计的应用问题作为重点。

上海高考数学知识点整理(全)

上海高考数学知识点整理(全)

高考临近给你提个醒集合与简易逻辑1.例1.集合R x x y y M ∈==,2,R x x y y N ∈+-==,12,则=N M 例2.集合{}R x x y y x M ∈==,),(2,{}R x x y y x N ∈+-==,1),(2,=N M 例3.集合()(){}R a a M ∈+==λλ,4,32,1,集合()(){}R a a N ∈+==λλ,5,43,2,则=N M2.研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性。

例4.已知集合{},,lg()A x xy xy =,集合{}y x B ,||,0=,且B A =,则=+y x3.集合的性质:① 任何一个集合P 都是它本身的子集,记为P P ⊆。

② 空集是任何集合P 的子集,记为P ⊆∅。

③ 空集是任何非空集合P 的真子集,记为P ≠⊂∅。

注意:若条件为B A ⊆,在讨论的时候不要遗忘了∅=A 的情况。

例5.集合}012|{2=--=x ax x A ,如果∅=+R A ,实数a 的取值范围集合的运算:④ ()()C B A C B A =、()()C B A C B A =; ()()()U U U C AB C A C B =、()()()U U U C A B C A C B =。

⑤ ∅=⇔⊆⇔⊆⇔=⇔=B C A A C B C B A B B A A B A U U U 。

⑥ 对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为:n2、12-n、12-n、22-n。

例6.满足条件{}{}5,4,3,2,12,1⊆⊂≠A 的集合A 共有 个。

4.研究集合之间的关系,当判断不清时,建议通过“具体化...”的思想进行研究。

例7.已知{}N k k x x M ∈+==,12,{}N k k x x N ∈±==,14,则N M _____。

上海高三数学知识点分布

上海高三数学知识点分布

上海高三数学知识点分布上海高三学生面临着关键的学业考试,其中数学作为一门重要的科目,无疑是他们最需要关注和努力提升的。

为了更好地帮助广大高三学生学习数学,让他们能够有目标地进行知识点的复习和备考,下面将对上海高三数学知识点的分布进行详细的介绍。

一、函数与导数函数与导数是高三数学的基础,应该是学生们必须掌握的知识点之一。

这部分内容主要包括函数、函数的极限、函数的连续性、导数、导数的应用等。

在考试中,函数与导数的知识点通常占据了相当大的权重,因此学生们应该重点复习这一部分内容。

二、解析几何解析几何是高三数学中的重点内容之一。

它主要包括平面解析几何和空间解析几何两个部分。

平面解析几何涉及点、直线、圆等的相关知识,空间解析几何则进一步将这些概念扩展到三维空间。

解析几何作为一门几何学的分支,更加注重运用数学方法解决实际问题,因此在考试中也是一个重要的考点。

三、概率与统计概率与统计是高中数学的重要组成部分,也是上海高三数学考试中的一大热点。

在这一部分内容中,学生需要学习概率的基本概念、条件概率、随机变量、概率分布等知识,同时还需要熟悉统计学的基本方法和统计推断等。

概率与统计作为数学与现实生活相结合的重要部分,对培养学生的数学思维能力和数据分析能力具有重要意义。

四、数列与数学归纳法数列与数学归纳法是高三数学中的一项重要内容。

学生们需要学习数列的概念、通项公式、递推公式等,并能够通过数学归纳法解决一些特殊问题。

数列作为一项基础的数学工具,不仅在高中数学中频繁出现,而且在高等数学中也有广泛的应用。

五、三角函数三角函数作为数学的一个重要分支,也是高三数学中的热门考点。

学生们需要熟悉三角函数的定义、性质、基本公式等,并具备运用三角函数解决实际问题的能力。

三角函数在数学和物理等学科中都有广泛的应用,因此在高考中,它是一个不容忽视的知识点。

六、立体几何立体几何是高三数学中的重点和难点之一。

学生们需要掌握空间几何体的性质、计算几何体的体积和表面积等相关知识,并具备解决立体几何问题的能力。

2019年上海高考数学试卷分析

2019年上海高考数学试卷分析

2019年上海高考数学试卷分析一、填空题1.已知集合,则 .()(),3,2,A B =-∞=+∞A B ⋂=【答案】 ()2,3【解析】略【考点】集合的运算2.已知,且满足,则 .z C ∈15i z =-z =【答案】 5i -【解析】1155155i i zi i z i z i+=⇒-=⇒==--【考点】复数的运算3.已知向量,则与的夹角为.()()1,0,2,2,1,0a b ==a b 【答案】 2arccos5【解析】22cos arccos 55a b a b ⋅==⇒=⋅ αα【考点】空间向量的坐标运算4.已知二项式,则展开式中含项的系数为.()521x +2x 【答案】40【解析】 325240C =【考点】二项式定理5.已知、满足,求x y 002x y x y ⎧≥≥+≤⎪⎨⎪⎩23z x y =-【答案】6-【解析】如图所示,在23z x y =-()0,2【考点】线性规划6.已知函数周期为1,且当时,,()f x 01x <≤()2log f x x =则 .32f ⎛⎫=⎪⎝⎭【答案】1-【解析】 2311log 1222f f ⎛⎫⎛⎫===-⎪ ⎪⎝⎭⎝⎭【考点】函数的周期性7.若,且,则的最大值为 .x y R +∈、123y x+=yx【答案】98【解析】方法一:,当且仅当,19238y y x x +=≥=⇒≤12y x=即时,取到等号;2334x y ⎧⎪⎪⎨==⎪⎪⎩方法二:,211111131123303,2223y y y x x x x x x x x ⎛⎫⎛⎫⎛⎫+=⇒=->⇒=-=-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当,即时,取到最大值。

132x =23x =y x 98【考点】基本不等式8.已知数列前项和为,且满足,则 .{}n a n n S 2n n S a +=5S =【答案】3116【解析】,且2n n S a += ()1122,n n S a n n N*--∴+=≥∈112Sa +=()()11102,202,n n n n n n S a S a n n N a a n n N **---∴+--=≥∈⇒-=≥∈,即数列是以1为首项,为公比的等比数列112n n a a -∴={}n a 12即 5116a ∴=55531216S a S +=⇒=【考点】等比数列的前项和n 9.过抛物线的焦点并垂直于轴的直线分别与抛物线交于,24y x =F x l 24y x =A B 、在上方,为抛物线上一点,,则.A B M ()2OM OA OB =+-λλ=λ【答案】3【解析】由题意可知,则,代入可得,()()1,21,2A B -、()22,4M -λ()16422=-λ所以3=λ【考点】抛物线的性质【解析】方法一:第一步先分组,选两个不同的数字有种选法,哪个数字是相同数字210C 有种;第二步排序,三位数中不一样的数字在哪个位置有种;所以该三位数密码中,12C 13C 恰有两位数字相同的密码有种,综上所求概率为;2111023C C C⋅⋅2111023327=10100C C C ⋅⋅方法二:填空位置选相同数字,相同数字的位置,第三个数字,110C 23C 19C 所以所求概率为。

2023上海高考数学知识点分布

2023上海高考数学知识点分布

2023上海高考数学知识点分布
2023年上海高考数学的知识点分布主要涉及以下几个方面:
1. 函数与代数:这一部分涉及的知识点主要有函数、解析式、定义域、值域、反函数、函数的奇偶性、周期性和单调性等。

此外,还包括多项式函数、分式函数、根式函数和初等函数等知识点。

2. 三角函数与三角比:这一部分涉及的知识点主要有三角函数的定义、性质、图像和诱导公式,以及和差角公式、倍角公式和半角公式等。

此外,还包括正弦定理、余弦定理和三角形面积公式等知识点。

3. 立体几何:这一部分涉及的知识点主要有平面和直线的基本性质,平行和垂直的判定定理,角度和距离的计算,柱体、锥体和球体的基本性质和面积与体积的计算等。

4. 平面解析几何:这一部分涉及的知识点主要有直线的方程,一次函数和二次函数的图像和性质,圆的方程和性质,圆锥曲线的方程和性质等。

5. 概率与统计:这一部分涉及的知识点主要有概率的基本概念、随机变量及其分布、期望和方差等概念,以及统计的基本概念和方法,如样本、总体、平均数、中位数、众数、方差和标准差等。

6. 数列与极限:这一部分涉及的知识点主要有数列的定义、通项公式和前n项和公式等概念,以及数列的递推关系式。

此外,还包括极限的基本概念、运算方法和性质等知识点。

7. 复数:这一部分涉及的知识点主要有复数的定义、表示方法和运算性质等。

总体来说,2023年上海高考数学的知识点分布比较广泛,涵盖了高中数学的主要内容。

考生在备考时需要全面掌握各个知识点,同时注重理解和运用,加强练习和巩固。

上海高考数学知识点

上海高考数学知识点

上海高考数学知识点高考数学对于每一位考生来说都是至关重要的,而上海高考数学又有着其独特的知识点体系。

以下就为大家详细梳理一下上海高考数学的主要知识点。

一、集合与常用逻辑用语集合是数学中最基本的概念之一。

考生需要理解集合的概念,包括集合的表示方法(列举法、描述法等)、集合之间的关系(子集、真子集、相等)以及集合的运算(交集、并集、补集)。

常用逻辑用语方面,要掌握命题及其关系(原命题、逆命题、否命题、逆否命题),充分条件、必要条件和充要条件的判断,以及逻辑联结词(且、或、非)的运用。

二、函数函数是高中数学的核心内容。

首先要理解函数的概念,包括定义域、值域和对应关系。

常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数等。

考生需要掌握这些函数的图像和性质,如单调性、奇偶性、周期性等。

函数的应用也是重要考点,比如通过建立函数模型解决实际问题,如利润最大、成本最小等优化问题。

三、三角函数三角函数包括正弦函数、余弦函数、正切函数等。

要熟练掌握三角函数的定义、诱导公式、图像和性质。

解三角形是三角函数的重要应用,需要运用正弦定理和余弦定理来求解三角形的边长、角度和面积等问题。

四、数列数列是按照一定顺序排列的数。

等差数列和等比数列是重点,要掌握它们的通项公式、前 n 项和公式,以及数列的性质和递推关系。

数列的综合应用也是常见考点,比如与不等式结合考查。

五、平面向量平面向量包括向量的概念、线性运算(加法、减法、数乘)、数量积等。

要理解向量的坐标表示以及向量在几何问题中的应用,如证明平行、垂直关系,计算夹角和距离等。

六、不等式不等式包括一元一次不等式、一元二次不等式、简单的线性规划和基本不等式。

掌握不等式的解法和应用,特别是基本不等式在求最值问题中的应用。

七、立体几何立体几何主要考查空间几何体的结构特征、表面积和体积的计算,以及空间点、线、面的位置关系。

要掌握直线与平面、平面与平面平行和垂直的判定和性质定理,并能够运用空间向量法解决立体几何问题。

高考数学知识点分值分布表

高考数学知识点分值分布表

高考数学知识点分值分布表一、引言高考是每个考生所经历的一次重要考试,而数学作为其中的一门科目,占据了相当重要的地位。

通过了解,考生可以更好地对考试进行备考,并在考试中取得较好的成绩。

本文将详细介绍高考数学各个知识点的分值分布,并探讨其重要性和备考策略。

二、数与代数数与代数是高考数学中的基础知识点,也是解题的基础。

该部分内容包括了数的性质、数的运算、代数式与方程等。

据统计,该部分占据高考数学总分的30%左右。

因此,考生在备考时需要重点关注这部分内容,并且要熟练掌握基本的运算规则和解题方法。

三、函数函数是高考数学中的核心知识点之一,大部分考试题目都与函数相关。

在高考中,函数的分值约占总分的25%左右。

函数的学习包括了函数定义与性质、函数图像、函数的变化规律等内容。

考生需要通过大量的习题练习来加深对函数的理解,并能熟练地运用函数解题的方法。

四、几何几何是高考数学中的另一大模块,与函数具有相同的分值比例。

几何的学习内容包括了二维几何和三维几何,如平面几何、立体几何等。

考生需要掌握相关的几何定理和性质,并通过几何图形的画法和计算来解答题目。

在备考时,考生要注重对几何图形的认识和构造能力的培养。

五、概率统计与数据分析概率统计与数据分析是高考数学中综合能力的体现,也是近年来的热点考察内容。

概率统计与数据分析的学习包括了数据的收集与整理、概率的计算与应用、统计图的分析与解读等。

该部分在高考中所占的分值约为20%左右。

考生需要通过实际问题的分析和解决,提高概率统计与数据分析的能力。

六、解题策略在备考高考数学时,除了掌握各个知识点的内容,解题策略也是非常重要的。

以下是一些备考策略的建议:1.多做真题:通过做历年高考数学真题,考生可以了解考试的题型和难度分布,同时也能将知识点的理论联系到实际。

2.重点突破:根据知识点的分值分布,考生可以确定复习的重点。

将较重要的知识点进行集中复习,更易提高解题效率。

3.强化训练:通过大量的习题训练,考生可以熟练掌握解题方法和技巧,并提高对各种题型的适应能力。

上海市 高考数学题型分布表格

上海市 高考数学题型分布表格

上海市高考数学题型分布一、概述上海市高考是全国知名的高考之一,其数学考试题型分布一直备受关注。

为了帮助考生更好地了解上海市高考数学题型分布情况,本文将分析上海市高考数学试卷的题型分布,并提供相关数据和分析。

二、上海市高考数学试卷题型分布情况通过分析上海市历年高考数学试卷,可以发现其题型分布大致如下:1. 选择题选择题在上海市高考数学试卷中占据比重较大,其题型包括单选题和多选题。

单选题通常涉及基本的数学概念和计算能力,而多选题则需要考生在多个选项中选择正确的答案。

选择题的数量一般占据整张试卷的30-40。

2. 填空题填空题在上海市高考数学试卷中也占有一定比重,这类题目通常要求考生根据题目给出的条件,利用数学知识进行计算并填写答案。

填空题的数量一般占据整张试卷的20-30。

3. 解答题解答题在上海市高考数学试卷中也是非常重要的一部分,这类题目通常包括证明题和应用题,要求考生深入理解数学知识,灵活运用解题方法并进行推理和推断。

解答题的数量一般占据整张试卷的30-40。

4. 计算题计算题通常要求考生进行具体的数学计算和推导,这也是数学能力的一种体现。

计算题的数量一般占据整张试卷的10-20。

通过以上分析可知,上海市高考数学试卷的题型分布相对均衡,既考察了考生的数学基础知识和计算能力,也考察了考生的数学理解和解决问题的能力。

三、上海市高考数学试卷题型分布的意义和启示上海市高考数学试卷的题型分布不仅仅是一种组织形式,更是对考生数学能力的考察和评价。

合理的题型分布能够全面地考察考生的数学基础知识、计算能力、数学理解和解决问题的能力,有利于客观地评价考生的数学水平,为高等教育提供合格的人才。

上海市高考数学试卷的题型分布也对考生有着一定的启示。

通过深入了解数学试卷的题型分布,考生可以更好地调整备考策略,有针对性地进行复习和训练,提高自己的数学水平,取得更好的成绩。

四、结语上海市高考数学试卷的题型分布是对考生数学能力的考察和评价,也是对数学教育质量的体现。

上海高考数学知识点比重

上海高考数学知识点比重

上海高考数学知识点比重随着人们对教育的重视程度不断提高,高考成为了每个学生所面临的重要挑战。

作为高考的一科必考科目,数学在考试中的比重十分重要。

而在上海地区,数学成为了被广大学生所关注的焦点之一。

本文将探讨上海高考数学知识点的比重,并分析其对学生备考的指导意义。

在上海高考中,数学试卷的整体结构包括选择题和非选择题两部分。

选择题占据了数学试卷的60%左右,主要考察的是基础知识和计算能力。

而非选择题则占据了40%左右,主要考察的是解题思路和应用能力。

因此,学生的备考重点应当放在这两个方面。

一、选择题选择题的题型主要包括填空题、选择题和判断题。

在上海高考数学试卷中,选择题所占的比重较大。

而选择题的知识点主要包括代数运算、函数与方程、几何与空间等。

其中,代数运算是数学基础知识的重要组成部分,涉及到多种运算方法和运算规则。

学生需要掌握如因式分解、解方程、求根等代数运算方法,才能在选择题中得心应手。

此外,几何与空间也是选择题中的重要内容,需要学生对平面几何和立体几何有一定的认识和掌握。

二、非选择题非选择题主要包括填空题、解答题和应用题。

相较于选择题,非选择题更加注重应用和解题思路。

在上海高考数学试卷中,非选择题所占比重约40%,考察学生对数学知识的理解和运用能力。

在备考过程中,学生需要注重培养自己的解题思路和分析能力,通过训练提高答题的准确性和速度。

1.填空题填空题是非选择题中的一种,主要考察学生对数学概念和公式的掌握情况。

填空题通常难度较大,需要学生对知识点深入理解,并将其运用到具体的解题过程中。

在备考过程中,学生需要将填空题作为重点进行练习,通过反复训练提高对知识点的理解和应用能力。

2.解答题解答题是非选择题中最为重要的一部分,主要考察学生对数学问题的分析和解决能力。

在解答题中,学生需要根据题目的要求进行全面的思考和分析,找到解题的有效方法。

为了应对解答题,学生需要通过大量的题目练习,培养自己的思维能力和解题技巧。

上海高考理科数学考点分析及分值分布

上海高考理科数学考点分析及分值分布
集合与命题:命题中充分条件、必要条件判断
5
16
三角函数:三角函数正弦和差公式考察,数形结合
5
17
数列与不等式综合:等比数列等比中项、不等式判断
5
18
曲线与圆的方程和极限综合:极限的理解及直线与圆的方程
5
19
立体几何:线线平行的证明及空间直角坐标系里面线面角的求法
12
20
三角函数:余弦定理及函数最值的讨论
上海高考理科数学考点分析及分值分布
一、各题分析
题号
考点
分值
1
集合:集合的运算,交集和补集的计算
42复数:共轭复数源自理解及复数简单的计算43
矩阵与行列式:增广矩阵的定义
4
4
简单几何体:棱矩的体积公式
4
5
曲线与方程:抛物线的基本性质
4
6
简单几何体:圆锥的侧面积公式问题
4
7
指数与对数函数:指数函数与对数函数的方程
13,14,16,20,23(1),
29
数列
17,22
21
立体几何(包含几何体)
4,6,19
18
解析几何
5,9,18,21
27
函数(除三角函数外)
7,10,23(2)(3)
22
排列组合二项式概率统计
8,11,12
12
复数与向量
2,14
8
矩阵行列式
3
4
集合与不等式
1,15
9
4
8
排列组合二项式定理:排列问题
4
9
曲线与方程:双曲线的渐近线方程
4
10
函数:原函数与反函数单调性问题
4

上海卷高考数学知识点

上海卷高考数学知识点

上海卷高考数学知识点高考是每个学生都要面临的大考,尤其是对于理科生来说,数学占据了重要的分数比重。

而上海卷的高考数学考试一直以难度较高而著称。

在备考中,掌握上海卷高考数学的重点知识点至关重要。

本文将针对上海卷高考数学的知识点进行探讨,为同学们的备考提供一些指导。

一、函数与方程在数学中,函数与方程是最基础的概念之一。

上海卷高考数学试卷中常涉及到的函数与方程的知识点包括:一元二次函数、指数函数、对数函数、三角函数等。

对于这些知识点,同学们需要掌握函数的性质、图像与变换等基础概念,并能够熟练应用到解题中。

二、立体几何在几何学中,立体几何是一个重要的分支。

在上海卷高考数学试卷中,立体几何的题目经常出现。

常见的知识点包括:平行四边形、长方体、正方体、棱台、棱锥等。

同学们需要掌握立体几何的性质、公式和运用技巧,能够通过几何图形分析与计算,解决与立体几何相关的问题。

三、概率统计概率统计是数学中的一门重要学科,也是上海卷高考数学试题的重点考察内容之一。

概率统计的知识点包括:排列组合、事件与概率、随机变量等。

在备考中,同学们需要熟练掌握概率统计的基本概念和计算方法,能够灵活运用到各类应用题中。

四、导数与微分导数与微分是高中数学中较为复杂的知识点,也是上海卷高考数学考试中的难点之一。

同学们需要了解导数的定义、性质和计算方法,掌握导函数的相关运算规则和基本公式,并能够灵活运用到函数的求极限、最值、拐点等问题中。

五、平面向量平面向量是上海卷高考数学试卷中的重要考点之一。

同学们需要掌握平面向量的性质、运算法则和相关公式,并能够应用到平面几何、力学等问题中。

此外,同学们还需要熟悉平面向量的坐标表示法与几何表示法之间的转化,能够进行向量的分解、合成与投影计算。

综上所述,上海卷高考数学试卷涵盖了函数与方程、立体几何、概率统计、导数与微分、平面向量等多个知识点。

同学们在备考过程中应重点关注这些知识点,掌握基本概念和计算方法,并能够将其灵活应用到解题过程中。

上海卷数学高考知识点分布统计表及试题分析

上海卷数学高考知识点分布统计表及试题分析

近6年上海高考试题知识点分类表(2006年~2011年)2009年的高考命题以笔者所见,主要体现出以下几个特点(重点以2009年的理科试题为例进行分析):(1)考察的内容日趋全面,如在“二期课改”后新增加的矩阵、行列式(理科填空题第3题)、算法(理科填空题第4题)、离散型随机变量分布(理科填空题第7题)、概率的计算(选择题第16题)、统计(选择题第17题)、平面向量(解答题第21题)、空间向量(解答题第20题),以上在“二期课改”中新增知识板块和知识点都有所考察到,考察的分数多达30分以上。

在文科的试题中也涉及到线性规划(填空题第7题)、概率与统计(填空题第11题和选择题第18题)、三视图(选择题第16题),除了几个主要板块(函数、数列、立体和解析几何)以外的知识也达到了30分左右。

在分值的分布上,2009年的选择题进一步增加到14题,仍保持每题4分,选择题的题量保持不变,解答题减少一题。

对新增的向量的和行列式的知识,更强调了向量和行列式作为解题的工具进行使用,如平面向量在解析几何中的应用(解答题第21题)和空间向量在立体几何中的应用(解答题第19题),这体现了把数学方法作为工具使用的特点,在立体几何中空间向量的使用也淡化了学生思维的难度。

(2)对“双基”的考察更加重视,试题更着重对基本概念和基本解题方法的考察,对基本概念的直接考察从填空题的前8题中有很明显的考察(通常只涉及到1到2个知识点) ,对基本方法的考察也“不偏”、“不怪”,如解答题第19题重点考察了用空间向量的方法解答二面角的问题,第21题重点考察平面向量和解析几何的结合,解答题的第22题对考生对反函数的性质的了解提出了很高的要求。

在以上习题的解答过程中,充分地渗透出对“双基”的考察力度,为帮助学生从“题海”战术中解脱出来起到了很大的作用,指引学生真正回归课本上的概念和解题方法。

从解题方法上看,整张试卷没有考察到技巧性过强的方法,但对学生需要把相关知识进行关联思考的能力提出了很高的要求,如把算法与分段函数结合(填空题第4题),把向量与立体几何和平面几何的结合,把二项式定理判断余数与数列的结合(解答题第23题)等,以上知识点的考察不仅需要学生对各个知识点进行准确地了解,同时要求学生具有综合思考的能力,能灵活和准确地使用各种方法解决问题。

上海高中高考数学知识点总结(大全)解答

上海高中高考数学知识点总结(大全)解答

上海高中高考数学知识点总结(大全)一、集合与常用逻辑1 •集合概念元素:互异性、无序性2 .集合运算全集U:如U=R交集:A" B={xx€ A且x w B}并集:Au B ={xx E A或x w B}补集:C u A ={xx 乏U且x 芒A}3 .集合关系空集A子集A B:任意A= X,BA B = A^注:数形结合---4.四种命题A B文氏图、数轴A B = B = A B原命题:若p则q逆命题: 若q则p否命题:若_p贝y _q逆否命题:若_q 贝y _ p原命题:二逆否命题否命题:二逆命题5 .充分必要条件p是q的充分条件: P= qp是q的必要条件: P 二qp是q的充要条件: :p? q6 .复合命题的真值①q真(假)?“ —q ”假(真)②p、q同真?“ p A q”真③p、q都假? “p V q”假7.全称命题、存在性命题的否定- M, p(x )否定为:l:-M, 一p(X)l-M, p(x )否定为:- M, _p(X)、不等式1•一元二次不等式解法若a 0 , ax2• bx • c = 0 有两实根 C :::-),则ax2 bx c ::: 0 解集C ,)ax2 bx c 0解集(-::,-:" (:, ::)注:若a :::0,转化为a .0情况2 •其它不等式解法一转化2 2 xcau —acx<a二x <ax>au x>a 或xc—a 二x2>a2器 g f(x)g(x)0a f (x). a g(x):= f (x) g(x) ( a 1)j f(x)>0log a f (x) log a g(x) ( 0 a :: 1)[f(x) <g(x)3 .基本不等式①a2 b2 _ 2ab_a + 人s②若a, b R ,贝U --------- ab2注:用均值不等式a • b _ 2、. ab、ab乞(?b)22求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数=f(_x) = f(x)= f(x)图象关于y轴对称f(x)奇函数=f (-x)二-f (x) := f(x)图象关于原点对称注:①f(x)有奇偶性=定义域关于原点对称②f(x)奇函数,在x=0有定义=f(0)=0③“奇+奇=奇”(公共定义域内)2 .单调性f(x)增函数:X i V X 2— f(X i ) V f(X 2) 或 X l > X 2= f(x 1) > f(x 2)或 f(X l )- f(X 2)X r _X 2f(X )减函数:?注:①判断单调性必须考虑定义域② f(X )单调性判断定义法、图象法、性质法“增+增=增”③ 奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反3 •周期性T 是f(x)周期二f(X T^f(X )恒成立(常数T = 0)b4 ac - b当 X, f(x) min :2a4a2奇偶性:f(x)=ax +bx+c 是偶函数二b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数=b=0四、基本初等函数2.对数式log a N =b =a b =N (a>0,a 工 1)log a MN = log a M log a N解析式:f(x)=ax 2+bx+c, f(x)=a(x-h)2+kf(x)=a(x-x1)(x-x 2)对称轴:X 二 b顶点:(-―4 ac - b 2、, )2a2a 4 a 单调性: a>0, ( —oO一b]、、 r b 递减,[,2a2 a4 .二次函数)递增1.指数式a 0(a = 0) -namlOgar log a M -log a Nlog a M n二n log a Mlog a blog m blog m alg blg alog a Slog a n b n1log b a注:性质log a 1 = o log a a = 1 a loga N=N常用对数lgN=log10N , Ig2 Ig5=1自然对数ln N = log e N , lne=1定义域、值域、过定点、单调性?注:y=a x与y=log a x图象关于y=x对称(互为反函数)14.幕函数y 二x2, y 二x3, y 二x2, y 二x」y =x '在第一象限图象如下:五、函数图像与方程1.描点法函数化简T定义域T讨论性质(奇偶、单调)取2 .图平负”«>10 £ o V 1 a <0n二特殊点如零点、最值点等象变换移:“左加右减,上正下y = f (x)r y = f (x h)对称:“对称谁,谁不变,对称原点都要变”y = f (X )一浬t y =—f(x) y = f (x)一甥T y = f(—x) y = f (x) — 原^ y = _f(-x)3 .零点定理若 f (a) f (b) :: 0,则 y = f (x)在(a,b)内有零点 (条件:f (x)在[a,b ]上图象连续不间断)注:①f(x)零点:f(x)=O 的实根②在[a, b ]上连续的单调函数 f(x), f (a)f (b)则f (x)在(a,b)上有且仅有一个零点 ③二分法判断函数零点---f(a)f (b) < 0 ?六、三角函数1•概念第二象限角(2k 二• 3,2也川%) ( Z )直线x —a注:y = f(x) t y = f (2a - x):y = f (x) t y =| f (x) |保留x 轴上方部分,并将下方部分沿x 轴翻折到上方y ./ y=f(x) \ / \ /y\ r\ i ■ 1y=|f(x)| \r""ai j~^aob c "y = f (x) t y = f (| x |)保留y 轴右边部分,并将右边部分沿y 轴翻折到左边打y=f(x)\ /y\ / \ /y=f(|x|)\"^a 0―b —,xx翻折 伸缩:y = f (x)每一点的横坐标变为原来的倍…1 f(-x):::012•弧长 I = a ・r扇形面积Su^lr23•定乂 sin 〉= — cos 〉= — tan -=—r r x其中P (x, y )是〉终边上一点,PO = r4 .符号“一正全、二正弦、三正切、四余弦”5 •诱导公式:“奇变偶不变,符号看象限”如 Sin (2理一;工)=-sin : , cos (「: /2 心)=-si n :6 .7 .基本公式22sin a同角 sin •篇川 cos : = 1tan :COSa和差 si n - I’ sin t cos # 二 cos t s in :cos : : = cos -::cos : "sin -::sin :tan : 一,tan: 一曲sin 二,cos : - ■- 2sin(: —)■- 3sin : —cos :二 2sin( )6asin 二'bcos ; - . a 2 b 2 sin(U) (tan 二旦) b倍角sin2 - 2sin : cos :2 2 2 2co2 =cos : -sin : -2cos : -1 =1-tan2 週厂1 - tan :降幕21 cos2:cos a = ----------------2sin 2a =匸吨_叠加si nx cosx tanx 值域卜1,1][-1,1]无奇偶奇函数偶函数奇函数周期2n2n n对称轴x = k兀+兀/ 2x = k兀无中心(k n ,0 ) 5 / 2 + k兀,0 )(“ /2,0)注:k Z9 •解三角形• AB Csin cos —2 2sin A sin B/ A > -2七、数列基本关系 : sin( A+B)=sinCcos(A+B)=-cosC正弦定理:余弦定理:面积公式:asin A si nB si nCa = 2Rsi nA a :b :c 二s i rA:s i rB : s i rCa2=b2+ c2- 2bccosA (求边)2 2 2八b +c —a /缶岛、cosA= (求角)2bcg 1S^= abs inC2tan (A+B)=-ta nC注:ABC 中,A+B+C=a2> b2+c2?&三角函数的图象性质1、等差数列定义:an 1 -a n =d通项:a n=a1(n _1)d求和:n(a1 a n)1 ,…S n n— n(n 一1)d中项:a +cb ( a,b,c成等差)2性质:若m n = p q,贝廿a m - a n = a p - a q 2、等比数列定义:巧1二q(q =0) a n通项:n A.a n pq(q = 1)求和:Sn = a11 -qA) (q/)1 _q中项:b2= ac ( a, b,c成等比)性质:若m n = P q 贝廿a m a n = a p a q3、数列通项与前n项和的关系rS[ =a〔(n =1)a n = & Sn —Sn4(n Z2)4、数列求和常用方法公式法、裂项法、错位相减法、倒序相加法八、平面向量1 •向量加减三角形法则,平行四边形法则AB BC = AC首尾相接,OB -OC =CB共始点中点公式:AB AC =2 AD二D是BC中点—* —eif a ■ b cos 日.2 •向量数量积 a b= =X l X2 y1 y2注:① a, b 夹角:0°< 9 w 1800②a,b同向:a・b = a b3•基本定理a = ' 1e1 ' '2e2(ei,e2不共线--基底)平行: a // b = a = &b u X”2=x2 y1( b 鼻0 )垂直: ―►—#■―►—F-a丄b 吕a b = 0 二乂必2+ yiy2 = 02a=J x2 +y2a十b— -2 =(a 十b)=夹角:cose _ a,b.|a||b|注:①0 // a ②a b a b c (结合律)不成立③a b = a・c = b = c (消去律)不成立九、复数与推理证明1 .复数概念复数:z = a • bi(a,b • R),实部a、虚部b分类:实数(b=0),虚数(b^0),复数集C注:z是纯虚数二a = 0, b式0相等:实、虚部分别相等共轭:z = a - bi模:z = Ja2 +b2 z ・z = z?复平面:复数z对应的点(a,b)2 •复数运算加减:(a+bi ) ± (c+di)= ?乘法: (a+bi ) (c+di ) =?除法: a bi=(a bi)(c-di)除法:c di(c di)(c-di)乘方:i2 = -1・n ・4 k r,1=1・r 二i3 .合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题f小前题f结论)4 .直接与间接证明综合法:由因导果比较法:作差一变形一判断一结论反证法:反设一推理一矛盾一结论分析法:执果索因分析法书写格式:要证A为真,只要证B为真,即证……, 这只要证C为真,而已知C为真,故A必为真注:常用分析法探索证明途径,综合法写证明过程5 .数学归纳法:(1) 验证当n=1时命题成立,(2) 假设当n=k(k ■ N* , k_1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角范围0,二注:直线向上方向与x轴正方向所成的最小正角倾斜角为90时,斜率不存在2、直线方程点斜式y - y°=k(x -X o),斜截式y = kx by -y i _ x -捲y2 ■ y i x2 - x-i 截距式--1a b般式Ax By C = 0注意适用范围:①不含直线x = x0②不含垂直x轴的直线③不含垂直坐标轴和过原点的直线3、位置关系(注意条件)平行=k^ k2且d = b2垂直u k*? = _1 垂直 u A1A2 B1B2 = 0 4、距离公式两点间距离:|AB|= - (x^x2)2(y^ y2)2点到直线距离:d = 应「By。

上海高考数学知识点重点详解

上海高考数学知识点重点详解

上海高考数学知识点重点详解近几年来,上海高考数学的难度水平逐渐提高,要想在上海高考取得好成绩,对数学知识点的掌握至关重要。

下面将详细介绍上海高考数学的一些重点知识点。

一、函数与方程函数与方程是上海高考数学的基础,也是数学的核心概念。

在这个知识点中,主要包括函数的定义与理解、函数的性质、函数与方程的关系等内容。

对于函数的定义要求学生理解函数的自变量、函数值和函数关系的概念,并能够正确运用这些概念进行问题解决。

此外,函数与方程的关系也是该知识点中的重点内容,要求学生能够通过方程推断函数的性质,并通过函数绘图找到方程的解。

二、数列与数列的极限数列与数列的极限是高中数学的经典知识点,也是上海高考数学中的重点内容。

在数列与数列的极限这一知识点中,要求学生熟练掌握数列的定义、数列的性质和数列的收敛性等内容。

学生需要能够判断数列的递增性或递减性,找到数列的通项公式,并能够根据数列的性质进行数列极限的证明。

此外,学生还需要掌握数列极限的计算方法,包括夹逼准则、数列极限的性质等。

三、平面几何与立体几何平面几何与立体几何是上海高考数学中的另一个重点知识点。

在这个知识点中,要求学生熟练掌握平面几何与立体几何的基本概念和理论,并能够灵活运用这些概念进行问题解决。

其中,平面几何主要包括平面图形的性质、平面几何的条件判断和平面图形的计算等内容;立体几何主要包括空间几何的基本概念、空间几何的判定条件和空间几何的计算等内容。

学生需要能够正确运用平面几何与立体几何的理论和方法,进行相关问题的解决。

四、概率与统计概率与统计是上海高考数学中的必考内容,也是数学中的重要组成部分。

在这个知识点中,学生需要掌握概率与统计的基本概念、概率与统计的计算方法以及概率与统计的应用等内容。

其中,概率主要包括事件的概率、事件的运算法则和概率的计算方法等内容;统计主要包括统计的基本概念、统计的参数估计和统计的假设检验等内容。

学生需要能够正确运用概率与统计的知识,解决实际问题。

上海高中高考数学知识点总结

上海高中高考数学知识点总结

上海高中高考数学知识点总结一、数与代数1.数的整除与倍数2.最大公约数与最小公倍数3.约分与分数的四则运算4.质数、合数及其性质5.有理数的加减乘除6.数轴与坐标7.字母表示数与代数式的加减乘除8.幂与根的运算9.分式及其运算10.二次根式及其运算11.实数及其运算二、函数与方程1.一次函数与二次函数的图象、性质及函数关系2.零点与方程的解3.一元一次方程及其应用4.一元二次方程的解与性质5.二次函数与一元二次方程的应用6.二元一次方程组及其应用7.不等式及其应用8.绝对值与不等式的关系9.笛卡尔坐标系、直线方程与线性规划10.指数与对数11.幂函数与对数函数的图象与性质12.根式函数与绝对值函数的图象与性质13.复合函数与反函数三、几何与解析几何1.平面内角度与弧度制2.平面直角坐标系3.点、线、面的性质及相互位置关系4.直线斜率与截距5.直线的方程及应用6.直线的平行与垂直7.三角形、四边形的性质及计算8.圆的性质及计算9.向量的表示与运算10.平移、旋转与对称11.空间几何体的性质及计算12.空间直角坐标系13.空间两点间距离及中点公式14.空间平面与直线的位置关系四、概率与统计1.事件与概率2.随机事件的运算与特性3.随机变量及其分布4.离散型与连续型随机变量的性质5.抽样与统计总体6.随机事件的统计及其应用五、数学证明1.等差数列与等差数列的前n项和公式证明2.等比数列与等比数列的前n项和公式证明3.数学归纳法的应用与证明4.直角三角形中三角函数的定义及性质证明5.共面向量的线性相关性证明6.空间向量数量积的性质证明7.二次函数的图象性质证明。

上海数学高考知识点

上海数学高考知识点

上海数学高考知识点在上海高考数学中,有一些重要的知识点是考生需要重点掌握和准备的。

这些知识点包括代数、函数、数列、概率与统计等等。

在接下来的文章中,我们将详细论述这些知识点及其相关内容,以便考生有针对性地进行复习和备考。

一、代数代数是高考数学中的重要部分,其中主要涉及到方程与不等式、函数与图像、二次函数等内容。

考生需要熟练掌握一元一次方程、一元二次方程和一元一次不等式、一元二次不等式的解法,以及其在实际问题中的应用。

此外,函数与图像也是考试中的重要内容。

考生需要了解函数的定义与性质,熟悉基本函数的图像及其性质,例如线性函数、二次函数、指数函数和对数函数等。

二、数列数列也是高考数学中不可忽视的知识点。

数列可以分为等差数列和等比数列两种。

在等差数列中,考生需要熟练掌握通项公式和求和公式,能够准确地求解各种与等差数列相关的问题。

而在等比数列中,考生需要掌握通项公式、求和公式以及等比中项的求解方法。

三、概率与统计概率与统计是高考数学中的一大模块,其中概率包括基本概念、事件与概率、条件概率、独立性等内容。

考生需要了解概率的基本概念,并能够运用概率的方法解决实际问题。

统计部分主要包括数据的收集整理、频率分布和图表、统计参数的计算以及样本调查等内容。

考生需要熟悉统计的基本概念和相关计算方法,并能够通过实际数据进行统计分析。

总结上述所列的知识点只是上海高考数学中的一部分,考生在备考过程中还需要结合历年真题和模拟考试进行综合练习和巩固。

除此之外,考生还应重视数学思维能力的培养与发展,注重解题方法和思路的训练。

通过以上对上海高考数学知识点的介绍,相信考生能够更好地进行备考和答题,取得理想的成绩。

祝愿每位考生都能顺利通过高考,实现自己的人生目标!。

上海高考数学知识点重点详解

上海高考数学知识点重点详解
30.会求三角不等式,三角方程。
31.熟练掌握同角三角比关系和诱导公式了吗?
32(1)名的变换:化弦或化切(2)次数的变换:升、降幂公式(3)形的变换:统一函数形式,注意运用代数运算。
33.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?三角形的面积公式。
56.立体几何中平行、垂直关系证明的思路清楚吗?
线面平行的判定:
(缺一不可)
线面平行的性质:
三垂线定理(及逆定理):
线面垂直:
57.异面直线所成的角的定义及求法
一作、二证、三求、四结论(注意范围)
58.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
40.对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)
41.不等式恒成立问题,常用的处理方式是什么?(转化为最值问题)
;a<f(x)有解 a<f(x)的最大值
;a>f(x)有解 a>f(x)的最小值
42.等差数列的定义与性质
0的函数)
(6)求 的最值一般通过 的正负分界项来求出。
24.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
24.熟记三角函数的定义,单位圆中三角函数线的定义
25.迅速画出正弦、余弦、正切函数的图象,并由图象能写出单调区间、最值,对称点、对称轴。
作图。
27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
10.求函数的定义域有哪些常见类型?11.如何求复合函数的定义域?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近6年上海高考试题知识点分类表(2006年~2011年)
2009年的高考命题以笔者所见,主要体现出以下几个特点(重点以2009年的理科试题为例进行分析):
(1)考察的内容日趋全面,如在“二期课改”后新增加的矩阵、行列式(理科填空题第3题)、算法(理科填空题第4题)、离散型随机变量分布(理科填空题第7题)、概率的计算(选择题第16题)、统计(选择题第17题)、平面向量(解答题第21题)、空间向量(解答题第20题),以上在“二期课改”中新增知识板块和知识点都有所考察到,考察的分数多达30分以上。

在文科的试题中也涉及到线性规划(填空题第7题)、概率与统计(填空题第11题和选择题第18题)、三视图(选择题第16题),除了几个主要板块(函数、数列、立体和解析几何)以外的知识也达到了30分左右。

在分值的分布上,2009年的选择题进一步增加到14题,仍保持每题4分,选择题的题量保持不变,解答题减少一题。

对新增的向量的和行列式的知识,更强调了向量和行列式作为解题的工具进行使用,如平面向量在解析几何中的应用(解答题第21题)和空间向量在立体几何中的应用(解答题第19题),这体现了把数学方法作为工具使用的特点,在立体几何中空间向量的使用也淡化了学生思维的难度。

(2)对“双基”的考察更加重视,试题更着重对基本概念和基本解题方法的考察,对基本概念的直接考察从填空题的前8题中有很明显的考察(通常只涉及到1到2个知识点) ,对基本方法的考察也“不偏”、“不怪”,如解答题第19题重点考察了用空间向量的方法解答二面角的问题,第21题重点考察平面向量和解析几何的结合,解答题的第22题对考生对反函数的性质的了解提出了很高的要求。

在以上习题的解答过程中,充分地渗透出对“双基”的考察力度,为帮助学生从“题海”战术中解脱出来起到了很大的作用,指引学生真正回归课本上的概念和解题方法。

从解题方法上看,整张试卷没有考察到技巧性过强的方法,但对学生需要把相关知识进行关联思考的能力提出了很高的要求,如把算法与分段函数结合(填空题第4题),把向量与立体几何和平面几何的结合,把二项式定理判断余数与数列的结合(解答题第23题)等,以上知识点的考察不仅需要学生对各个知识点进行准确地了解,同时要求学生具有综合思考的能力,能灵活和准确地使用各种方法解决问题。

(3)对数学思维和数学能力考察的重视也是今年高考体现出来的趋势,包括:应用数学思维解决实际问题的能力(填空题第13题、解答题第20题)、数形结合的能力(填空题第11和第14题、选择题第18题、解答题第21题)、信息迁移能力(解答题第22题)和探究性能力(解答题第23题)。

对以上能力的考察能很好地考查出学员的数学素养和数学思维,真正体现出数学是“思维的体操”,为从“知识立意”转化为“能力立意”提供了很好的范例。

相关文档
最新文档