离散数学 第七章检测题及答案

合集下载

离散数学形考任务1-7试题及答案完整版

离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。

(2)设A,B都是命题公式,A B,则A B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

" 可符号化为: p q 。

(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。

(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。

”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。

(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。

(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。

(12)设P:你努力.Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。

(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。

()2.命题公式p q r是析取范式。

( √ )3.陈述句“x + y > 5”是命题。

离散数学课后习题答案第七章

离散数学课后习题答案第七章

第七章 特 殊 图 类习题7.11.解 因 m=n-1,这里m=6,所以n=6+1=7.2.解 不正确。

与平凡图构成的非连通图中有4个结点3条边,但是它不是树。

3K 3.证明 必要性。

因为G 中有n 个结点,边数m=n-1,又因为G 是连通的,由本节定理1可知,G 为树,因而G 中无回路。

再证充分性。

因为G 中无回路,又因为边数m=n-1,由本节定理1,可知G 为树,所以G 是连通的。

4.解 因 m=n-r,这里n=15,r=3,所以m=15-3=12,即G 有12条边。

5.解6个结点的所有不同构的树如图7-1所示。

图7-16.证明 由定理1,在任意的树中,边数),(m n 1−=n m;所以,由握手定理得)1(22)(1−==∑=n m v d ni i①⑴若T 没有树叶,则由于T 是连通图,所以T 中任一结点均有,从而2)(≥i v d n v d ni i2)(1≥∑= ②则①与②矛盾。

⑵若树T 仅有1片树叶,则其余1−n个结点的度数不小于2,于是121)1(2)(1−=+−≥∑=n n v d ni i③从而①、③相矛盾。

综合⑴,⑵得知T 中至少有两片树叶。

7.解 图7-2⑴中共有两棵非同构的生成树(如图7-3⑴,⑵)。

图7-2⑵中共有3棵非同构的生成树(如图7-3⑶,⑷,⑸)。

⑵⑴⑶⑷ ⑸图7-38.解 在图7-4中共有8棵生成树,如图7-5⑴~⑻所示,第i 生成树用表示。

,,,)8,,2,1( =iT i 7)(8=T W 8)()(61==T W T W 6)()(52==T W T W )()(73==T W T W 9)(4=T W 。

其中T 2,T 5是图中的最小生成树。

9.解 最小生成树T 如图7-7所示,W (T )=18。

a bc da b cda ba bcdabc d⑴⑵⑶⑷⑸⑹⑺ ⑻图7-5图7-4图7-6图7-7习题7.21.解 不一定是。

如图7-8就不是根树.2.解 五个结点可形成3棵非同构的无向树,如图7-9⑴,⑵,⑶所示。

离散数学左孝凌第七章答案

离散数学左孝凌第七章答案

离散数学左孝凌第七章答案离散数学左孝凌第七章答案【篇一:离散数学(左孝凌)课后习题解答(详细)】11. 下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。

⑴中国有四大发明。

⑵计算机有空吗?⑶不存在最大素数。

⑷ 21+3<5。

⑸老王是山东人或河北人。

⑹ 2与3都是偶数。

⑺小李在宿舍里。

⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以?。

⑾只有6是偶数,3才能是2的倍数。

⑿雪是黑色的当且仅当太阳从东方升起。

⒀如果天下大雨,他就乘班车上班。

解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。

2. 将下列复合命题分成若干原子命题。

⑴李辛与李末是兄弟。

⑵因为天气冷,所以我穿了羽绒服。

⑶天正在下雨或湿度很高。

⑷刘英与李进上山。

⑸王强与刘威都学过法语。

⑹如果你不看电影,那么我也不看电影。

⑺我既不看电视也不外出,我在睡觉。

⑻除非天下大雨,否则他不乘班车上班。

解:⑴本命题为原子命题;⑵ p:天气冷;q:我穿羽绒服;⑶ p:天在下雨;q:湿度很高;⑷ p:刘英上山;q:李进上山;⑸ p:王强学过法语;q:刘威学过法语;⑹ p:你看电影;q:我看电影;⑺ p:我看电视;q:我外出;r:我睡觉;⑻ p:天下大雨;q:他乘班车上班。

3. 将下列命题符号化。

⑴他一面吃饭,一面听音乐。

⑵ 3是素数或2是素数。

⑶若地球上没有树木,则人类不能生存。

⑷ 8是偶数的充分必要条件是8能被3整除。

⑸停机的原因在于语法错误或程序错误。

⑹四边形abcd是平行四边形当且仅当它的对边平行。

⑺如果a和b是偶数,则a+b是偶数。

解:⑴ p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵ p:3是素数;q:2是素数;原命题符号化为:p∨q⑶ p:地球上有树木;q:人类能生存;原命题符号化为:?p→?q⑷ p:8是偶数;q:8能被3整除;原命题符号化为:p?q⑸ p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹ p:四边形abcd是平行四边形;q:四边形abcd的对边平行;原命题符号化为:p?q。

离散数学第7章习题解答

离散数学第7章习题解答

第7章习题解答(1),(2),⑶,⑸都能组成无向图的度数列,其中除⑸外又都能组成无向简单图的度数列.分析1°非负整数列〃詔2,…,血能组成无向图的度数列当且仅当f川为r-1偶数,即心,〃2,…,〃”中的奇数为偶数个.(1),(2),(3),⑸中别离有4个,0个,4个,4个奇数,所以,它们都能组成无向图的度数列,固然,所对应的无向图极可能是非简单图•而(4)中有3个奇数,因此它不能组成无向图度数列.不然就违背了握手定理的推论.2°⑸虽然能组成无向图的度数列,但不能组成无向简单度数列.不然,若存在无向简单图G,以1,3,3,3为度数列,不妨设G中极点为儿宀宀宀,且〃(片)=1, 于是〃(”2)= d(y3) = J(v4) = 3.而儿只能与v2,v3»v4之一相邻,设片与冬相邻,这样一来,除冬能达到3度外,耳宀都达不到3度,这是矛盾的.在图所示的4个图中,(1)以1为度数列,⑵以2为度数列,⑶以3为度数列,(4) 以4为度数列(非简单图).⑴ (2)(3) (4)困7.5设有几简单图D以2, 2, 3, 3为度数列,对应的极点别离为y r v2,v3,v4,由于J(v) = J+(v) + ^-(v),所示,d\v l)-d-(v i) = 2-0 = Zd+(v2) = d(v2)-d-(v2)= 2-0 = 2,J*(V3)=d(v3)-d-(v3) = 3-2 = l,J+(v4)= 〃(勺)一旷(勺)= 3-3 = 0 由此可知,D的出度列为2,2, 1,0,且知足工(广化)=》旷(勺).请读者画出一个有向图.以2, 2, 3, 3为度数列,且以0,0, 2, 3为入度列,以2, 2, 1, 0为出度列.D的入度列不可能为1,1,1, 1.不然,必有出度列为2, 2, 2,2(因为J(v) = J*(v) + J-(v)),)此时,入度列元素之和为4,不等于出度列元素之和8,这违背握手定理.类似地讨论可知,1, 1, 1, 1也不能为D的出席列.不能.N阶无向简单图的最大度厶</7-1,而这里的n个正整数彼此不同, 因此这n个数不能组成无向简单图的度数列,不然所得图的最大度大于n,这与最大度应该小于等于n-1矛盾.(1) 16个极点.图中边数加= 16,设图中的极点数为〃.按照握手定理可知2m = 32 =》〃(片)=Inr-I所以,n = 16.(2)13个极点.图中边数也= 21,设3度极点个数为x,由握手定理有2in = 42 = 3 x 4 + 3x由此方程解出x = 10.于是图中极点数71 = 3+10 = 13.(3)III握手定理及各极点度数均相同,寻觅方程2x24 = nk的非负整数解,这里不会出现儿k均为奇数的惜况.其中“为阶级,即极点数,£为度数共可取得下面10种情况.①个极点,度数为48.此图必然是由一个极点的24个环组成,固然为非简单图.②2个极点,每一个极点的度数均为24.这样的图有多种非同构的情况,必然为非简单图.③3个极点,每一个极点的度数均为16.所地应的图也都是非简单图.④4个极点,每一个极点的度数均为12.所对应的图也都是非简单图.⑤6个极点,每一个极点的度数均为8,所对应的图也都是非简单图.⑥个极点,每一个极点的度数均为6.所对应的非同构的图中有简单图,也有非简单图.⑦12个极点,每一个极点的度数均为4.所对应的非同构的图中有简单图, 也有非简单图.⑧16个极点,每一个极点的度数均为3,所对应的非同构的图中有简单图,也有非简单图.⑨24个极点,每一个极点的度数均为2.所对应的非同构的图中有简单图,也有非简单图.⑩48个极点,每一个极点的度数均为1,所对应的图是唯一的,即由24个K,■ 组成的简单图.分析由于n阶无向简单图G A(G)<«-1,的以①所对应的图不可能有简单图•⑥-⑨既有简单图,也有非简单图,读者可以画出若干个非同构的图,而⑩只能为简单图.设G为n阶图,由握手定理可知70 = 2 x 35 =》〃(*]) n 3n,所以,这里,匕」为不大于兀的最大整数,例如[_2」=2丄2.5」=2,斤」=23.由于3(G) = n-l,说明G中任何极点v的度数J(v) > J(G) = /7-1,可是由于G为简单图,因此△(G)S-1,这乂使得J(v) < n -1,于是1,也就是说,G中每一个极点的度数都是幵-1,因此应有△(G)S-1.于是G为("-1)阶正则图,即G为n阶完全图K”.由G的补图7的概念可知,GUG为K”,由于n为奇数,所以,K”中各项极点的度数//-1为偶数•对于任意的卩e卩(G),应有v e V(G),且百度文库•好好学习.天天向上(V)_ d G(y) = C I K K(V)=办一1其中d G(v)表示V在G中的度数,J- (v)表示「在E中的度数.曲于n -1为偶数,所以,与4(叭同为奇数或同为偶数,因此若G有r个奇度极点,则7也有r个奇度极点.由于£>匸ZX所以,m <m.而n阶有向简单图中,边数/n<n(n-l),所以,应n(n -1) = m < m < n(n一1)这就致使川=n(n-l),这说明D为n阶完全图,且D =D.图给岀了心的18个非同构的子图,其中有11个生成子图(8-18),其中连通的有6个11, 12, 13, 14, 16,17).图中,n, m别离为极点数和边数.K-有11个生成子图,在图中,它们别离如图8-18所示•要判断它们肖中哪些是自补图,首先要知道同构图的性质,设G与G?的极点数和边数•若q = G2, 则= n2且m x = m2・£7.6百度文库•好好学习.天天向上(8)的补图为(14) = K,,它们的边数不同,所以,不可能同构.因此⑻与(14) 均不是自补图类似地,(9)的补图为(13),它们也非同构,因此它们也都不是自补图.(10)与(12)互为补图,它们非同构,因此它们都不是自补图.(15)与(17)互为补图,它们非同构,所以,它们都不是自补图.类似地,(16)与(18)互为补图且非同构,所以,它们也都不是自补图.而(11)与自己的补图同构,所以,(11)是自补图.3阶有向完全图共有20个非同构的子图,见图所示,其中(5)-(20)为生成子图,生成子图中(8), (13), (16), (19)均为自补图.分析在图所示的生成子图中,(5)与(11)互为补图,(6)与(10)互为补图,(7)与(9)互为补图,(⑵与(14)互为补图,(15)与(17)互为补图,(18)与(20) 互为补图,以上互为补图的两个图边数均不相同,所以,它们都不是自补图.而(8), (13), (16), (19)4个图都与自己的补图同构,所以,它们都是自补图.不能.分析在同构的意义下,G P G2,G3都中心的子图,而且都是成子图.而心的两条边的主成子图中,只有两个是非同构的,见图中(10)与(15)所示.山鸽巢原理可知,G r G2,G3中至少有两个是同构的,因此它们不可能彼此都非同构.鸽巢原理川只鸽飞进H个鸽巢,其中心2,则至少存在一巢飞入至少[口只n鸽子.这里「刃表示不小于X的最小整数.例如,⑵=2,「2.5] = 3.7. 14 G是唯一的,即便G是简单图也不唯一.百度文库-好好学习.天天向上分析 山握手定理可知2也=3从乂山给的条件得联立议程组 2m = 3/2<2〃 一 3 = m.解出” =6,加= 9.6个极点,9条边,每一个极点的度数都是3的图有多种非同 构的情况,其中有多个非简单图(带平行边或环),有两个非同构的简单图,在图的事实,设GG 都是n 阶简单图,则G, =G 2当且仅当石三房,其中瓦,不别离 为G 与62的补图.知足要求的简单图都是6阶9条边的3正则图,因此它们的补 图都为6阶6条边的2正则图(即每一个极点度数都是2).而心的所有生成子图 中,6条边2正则的非同构的图只有两个,见图中(3), (4)所示的图,其中(3)为(1) 的补图,⑷为⑵的补图,知足要求的非同构的简单图只有两个.但知足要求的非同简单图有多个非同构的,读者可自己画出多个来.将心的极点标定顺序,讨论片所关联的边.由鸽巢原理(见 题),与片关联 的5条边中至少有3条边颜色相同,不妨设存在3条红色边,见图中(1)所示(用 实线表示红色的边)并设它们关联另外3个极点别离为V 2,V 4,V 6.若”2,^,%组成 的心中还有红色边,比如边(v 2,v 4)为红色,则v,,v 2,v 4组成的©为红色心,见 图中⑵所示.若v 2,v 4,v 6组中(1), (2)给出了这两个非同构的简单图.知足条件的非同构的简单图只有图 中,(1),⑵所示的图,⑴与⑵所示的图,⑴ 与(2)是非同构的.注意在(1)中不存在3个彼此相邻的极点, 而在(2)中存在3个彼此相邻的极点,因此(1) 图与(2)图非同构.下面分析知足条件的简单 图只有两个是非同构的•首先注意到(1)中与 (2)中图都是心的生成子图,而且还有这样£ 7.8百度文库•好好学习.天天向上成的心各边都是蓝色(用虚线表示),则V2,V4,V6组成的&为蓝色的.(1> ⑵(3)困7.9在图所示的3个图中,(1)为强连通图,(2)为单向连通图,但不是强连通的,(3)是弱连通的,不是单向连通的,更不是强连通的.分析在(1)中任何两个极点之间都有通路,即任何两个极点都是彼此可达的,因此它是强连能的.(2)中c不可达任何极点,因此它不是强连通的,但任两个极点存在一个极点可达另外一个极点,所以,它是单向可达的.(3)中“,c彼此均不可达,因此它不是单向连通的,更不是强连通的.判断有向图的连通性有下面的两个判别法.1°有向图D是强连通的当且仅当D中存在通过每一个极点至少一次的回路.2°有向图D是单向连通的当且仅当D中存在通过每一个极点至少一次的通路.(1)中“仇为通过每一个极点一次的回路,所以,它是强连能的.⑵中为通过每一个极点的通路,所以,它是单向连通的,但没有通过每一个极点的回路,所以,它不是强连通的.(3)中无通过每一个极点的回路,也无通过每一个极点的通路,所以,它只能是弱连通的.G-E的连通分支必然为2,而G-V的连通分支数是不肯定的.百度文库-好好学习.天天向上分析 设E 为连通图G 的边割集,则G-E 的连通分支数p(G - E ) = 2,不可 能大于2.不然,比如“(G -E ) = 3,则G-E 由3个小图G,,G 2,G 3组成,且E 中边 的两个端点分属于两个不同的小图.设E”中的边的两个端点一个在G 中,另一 个在G?中,则E「uE ,易知〃(G-£”)= 2,这与F 为边割集矛盾,所以, p(G-E ) = 2.但p(G-V )不是定数,固然它大于等于2,在图中,"={“」,}为⑴的点割集, /XG-V ) = 2,其中G 为⑴中图.V =(v }为⑵中图的点割集,且卩为割点, “(G -V) = 4,其中G 为⑵中图.解此题,只要求岀D 的邻接矩阵的前4次幕即可.D 中长度为4的通路数为屮中元素之和,等于15,其中对角线上元素之和为3,即D 中长度为3的回路数为3. b 到6的长度为4的通路数等于尿:> =2.分析 用邻接矩阵的幕求有向图D 中的通路数和回路数应该注意以下儿点: 1°这里所谈通路或回路是概念意义下的,不是同构意义下的.比如,不同始 点(终点)的回路'o 1 1 0 1 0 0・ 0 A =0 1 0 10 0 0 0'1 1 1 1 ■1 1 0 1=0 1 1 10 0 0 1_"1 0 1 0 1 1 1・A 2=1 0 0 10 0 0 1'1 2 1 2~1 1 1 1A 4=1 1 0 10 0 0 1 (2)百度文库•好好学习.天天向上2°这里的通路或回路不但有低级的、简单的,还有复杂的.例/lO, v l,v2,v1,v2,v1是一条长为4的复杂回路.3°回路仍然看成是通路的特殊情况.读者可利用求D中长度为2和3的通路和回路数.答案A:④.分析G中有皿个k度极点,有(// - N k)个伙+1)度极点,由握手定理可知工J(v z) = k-N k + 伙 +1)(/7 一NJ = 2m=> Nk = n{k + 1) —2n.答案A:②;B:③.分析在图中,图(1)与它的补同构,再没有与图(1)非同构的自补图了,所以非同构的无向的4阶自补图只有1个.图(2)与它的补同构,图(3)与它的补也同构,而图(2)与图(3)不同构,再没有与(2), (3)非同构的自补图了,所以,非同械的5阶自补图有2个.(1)⑵⑶困7.12答案A:④;B:③;C:④;D:©.分析(1)中存在通过每一个极点的回路,如很/1力0.. (2)中存在通过每一个极点的通路,但无回路.(3)中无通过每一个极点至少一次的通路,其实,两个极点互不可达.(4)中有通过每一个极点至少一次的通路,但无回路,负Mcbd为通过每一个极点的通路•(5)中存在通过每一个极点至少一次的回路,如aedbcdba(6)中也存在通过每一个极点的回路,如baebdcb. ill题可知,(1), (5), (6)是强连通的,(1), (2), (4), (5), (6)是单向连能的,(2), (4)是非强连通的单向连通图.注意,强连通图必为单向连通图.6个图中,只有(3)既不是强连通的,也不是连通的,它只是弱连通图.在⑶中,从&到b无通路,所以d,<a y b>= 00,而方到a有唯一的通路加,所以〃<百度文库-好好学习.天天向上b.a >= 1 ・答案A:①;B:⑥(十)C:②;D:④.分析用Dijkstra标号法,将计算机结果列在表中.表中第x列最后标定回表示b到x的最短路径的权为y,且在b到x的最短路径上,Z邻接到x,即x的前驱元为乙曲表可知,a的前驱元为c (即a邻接到c), c的前驱元为b,所以,b到a的最短路径为仇其权为4.类似地计论可知,b到c的最短路径为be,其权为到d的最短路径为bceg〃,其权为到e的最短路径为bee,其权为7.答案A:⑧;B:⑩C:③;D:③和④.分析按求最先、最晚完成时间的公式,先求各极点的最先完成时间,再求最晚完成时间,最后求缓冲时间。

离散数学第七章课后答案

离散数学第七章课后答案

离散数学习题答案习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。

6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。

7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨解:原式()(()())p q r r p p q q r ⇔∧∧⌝∨∨⌝∨∧⌝∨∧()()()()()()p q r p q r p q r p q r p q r p q r ⇔∧∧⌝∨∧∧∨⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ⇔⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧⌝∨∧∧ 13567m m m m m ⇔∨∨∨∨,此即主析取范式。

主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ⇔∧∧。

9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨⌝∧ 解:公式的真值表如下:由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式1234567m m m m m m m ⇔∨∨∨∨∨∨习题三及答案:(P52-54)11、填充下面推理证明中没有写出的推理规则。

前提:,,,p q q r r s p ⌝∨⌝∨→结论:s证明:① p 前提引入②p q⌝∨前提引入③ q ①②析取三段论④q r⌝∨前提引入⑤ r ③④析取三段论⑥r s→前提引入⑦ s ⑤⑥假言推理15、在自然推理系统P中用附加前提法证明下面推理:(2)前提:()(),()∨→∧∨→p q r s s t u结论:p u→证明:用附加前提证明法。

离散数学作业7答案

离散数学作业7答案

离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。

要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。

并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。

一、填空题1.命题公式()→∨的真值是1或T .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→R .3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R)∨(P∧Q∧⌝R).4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为∃x(P(x) ∧Q(x)) .5.设个体域D={a, b},那么谓词公式)xA∀∃消去量词后的等值式为∨x(yB)(y(A(a)∨A(b))∨((B(a)∧B(b)) .6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0(F) .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.设P:今天是晴天。

则P2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P:小王去旅游。

Q:小李去旅游。

则P∧Q3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式.设P:明天下雪。

离散数学习题答案1-2-6-7-8-9章-2009-12-17

离散数学习题答案1-2-6-7-8-9章-2009-12-17

习题1:1. 解 (1){2,3,5,7,11,13,17,19}(2){x|x=20*k,k 是自然数}(3){2,-1}2. 解 (1){2,4}(2){1,2,3,4,5}(3){1,3}(4){1,3,5}3. 解 (1){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}(2)φ(3)全体自然数(4){0,2,4,6,8,10,12,14,16,18,20}(5)1,3,5,7,9,11,13,15,17,19}4. 解 (1)正确(2)正确(3)错误(4)正确5. 解 (1)A={1},B={{1}},C={{1}}(2)A={1},B={{1}},C={{{1}}}6. 解 (1)正确。

由子集的定义。

(2) 不一定。

如:A={1},B={{1}},C={{1}}。

(3)不一定。

如:A={1},B={1,2},C={{1,2}}(4)不一定。

如:A={1},B={1,2},C={{1,2}}。

7. 解 A={1,2},B={1},C={2},有B A ≠,但是C B C A =成立。

A={1,2},B={1},C={1},有B A ≠,但是C B C A =成立。

8. 解 (1)φ(2){φ}(3){{φ}}(4){φ,{φ}}9. 解 (1){1,2,3,4,5,6,7,8,9}(2){0,1,2,3,4,5,6,7,8,9,10}(3){0,3,6,7,8,9}10. 解 33311. 解 2512. 解(1)454(2)124(3)22013. 解 (1){φ}(2){φ,{a}}(3){φ,{φ},{a},{φ,a}}(4){φ,{φ},{{φ}},{{φ},φ}}(5){φ,{{φ}},{φ},{a},{{φ},φ},{{φ},a},{φ,a},{{φ},φ,a}}14. 证明:假设B ≠C ,则至少存在一元素x ∈B 且x ∉C 。

离散数学国防科大版第七章答案

离散数学国防科大版第七章答案

离散数学国防科大版第七章答案1、已知直线l的方程为2x-y+7=0,()是直线l上的点[单选题] *A、(2,3)B、(2,4)(正确答案)C、(2,-3)D、(-2,-3)2、9.一棵树在离地5米处断裂,树顶落在离树根12米处,问树断之前有多高()[单选题] *A. 17(正确答案)B. 17.5C. 18D. 203、在△ABC中,bcosA=acosB,则三角形为()[单选题] *A、直角三角形B、直角三角形C、等腰三角形(正确答案)D、等边三角形4、若39?27?=321,则m的值是()[单选题] *A. 3B. 4(正确答案)C. 5D. 65、18.下列说法正确的是()[单选题] *A.“向东10米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6℃,记为-6℃,那么+8℃的意义就是下降8℃D.若将高1米设为标准0,高20米记作+20米,那么-05米所表示的高是95米(正确答案) 6、14.命题“?x∈R,?n∈N*,使得n≥x2(x平方)”的否定形式是()[单选题] *A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?x∈N*,使得n<x2C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2(正确答案)7、9、横坐标为3的点一定在()[单选题] *A.与x轴平行,且与x轴的距离为3的直线上B.与y轴平行,且与y轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上(正确答案)D.与y轴正半轴相交,与x轴平行,且与x轴的距离为3的直线上8、26.已知(x﹣a)(x+2)的计算结果为x2﹣3x﹣10,则a的值为()[单选题] *A.5(正确答案)B.﹣5C.1D.﹣19、设函数在闭区间[0,1]上连续,在开区间(0,1)上可导,且(x)>0 则()[单选题] *A、f(0)<0B、f(0)<1C、f(1)>f(0)D、f(1)<f(0)(正确答案)10、计算-(a-b)3(b-a)2的结果为( ) [单选题] *A. -(b-a)?B. -(b+a)?C. (a-b)?D. (b-a)?(正确答案)11、-60°角的终边在(). [单选题] *A. 第一象限B. 第二象限C. 第三象限D. 第四象限(正确答案)12、21.如图,AB=CD,那么AC与BD的大小关系是()[单选题] * A.AC=BD(正确答案)B.AC<BDC.AC>BDD.不能确定13、21.在﹣5,﹣2,0,这四个数中最小的数是()[单选题] * A.﹣5(正确答案)B.﹣2C.0D.14、在0°~360°范围中,与-460°终边相同的角是()[单选题] *200°(正确答案)560°-160°-320°15、10.下列四个数中,属于负数的是().[单选题] *A-3(正确答案)B 3C πD 016、5.在数轴上点A,B分别表示数-2,-5,则A,B两点之间的距离可表示为()[单选题] *A.-2+(-5)B.-2-(-5)(正确答案)C.(-5)+2D(-5)-217、2、在轴上的点的纵坐标是()[单选题] *A.正数B.负数C.零(正确答案)D.实数18、下列各角中,与300°终边相同的角是()[单选题] *A、420°B、421°C、-650°D、-60°(正确答案)19、向量与向量共线的充分必要条件是()[单选题] *A、两者方向相同B、两者方向相同C、其中有一个为零向量D、以上三个条件之一成立(正确答案)20、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。

离散数学第七章检测题及答案

离散数学第七章检测题及答案

离散数学第七章检测题一、 单项选择题(每小题2分,共20分)1.下图中是哈密尔顿图的是( 2 )2.下面给出的四个图中,哪个不是汉密尔顿图( (4) ).3.下列是欧拉图的是( 2 )4. 下列各图不是欧拉图的是( 4 )5.设()A G 是有向图,G V E 的邻接矩阵,其第i 列中“1”的数目为( )。

(C)(1).结点i v 的度数; (2).结点i v 的出度; (3).结点i v 的入度; (4).结点j v 的度数。

6.无向图G 中有16条边,且每个结点的度数均为2,则结点数是( 2 )(1).8 (2).16 (3).4 (4).327.设G=为无向图〉〈EV,,23,7==EV,则G一定是((4)).(1).完全图;(2).零图;(3).简单图;(4).多重图.8.若具有n个结点的完全图是欧拉图,则n为( 2).(1).偶数;(2).奇数;(3).9;(4).10.9.无向图G是欧拉图,当且仅当().(1)(1).G连通且所有结点的度数为偶数;(2).G的所有结点的度数为偶数;(3).G连通且所有结点的度数为奇数;(4).G的所有结点的度数为奇数.10.下面哪一种图不一定是树().(3)(1).无圈连通图;(2).有n个结点1n-条边的连通图;(3).每对结点间都有路的图;(4).连通但删去一条边就不连通的图.二、填空题(每空3分,共45分)1.在下图中,结点v2的度数是 4 ,结点v5的度数是 3 。

2.在一棵根树中,有且只有一个结点的入度为__0___,其余所有结点的入度均为_1__。

其中入度为__0___的结点称为树根,出度为__0___的结点称为树叶。

3.设图111,G V E=,22221,,G V E E E=⊆且,如果,则称2G是1G的子图,如果,则称2G是1G的生成子图。

(2121,V V V V⊆=)4.在任何图,G E=中,∑∈Vvv)deg(= 2 │E│,其奇数度结点的个数必为偶数。

离散数学-第七章习题答案

离散数学-第七章习题答案

第7章习题答案1.f(x)=2|x|+1是从整数集合到正整数集合的函数,它的值域是什么?解:它的值域是正奇数集合。

2.试问下列关系中哪个能构成函数?(1){〈x,y〉|x,y∈N,x+y<10}(2){〈x,y〉|x,y∈R,y=x2}(3){〈x,y〉|x,y∈R,y2=x}解;(1)、(3)不满足函数的定义,只有(2)是函数。

3.下列集合能够定义函数吗?如果能,求出它们的定义域和值域。

(1){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈1,4〉〉,〈4,〈1,4〉〉}(2){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈3,2〉〉}(3){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈1,〈2,4〉〉}(4){〈1,〈2,3〉〉,〈2,〈2,3〉〉,〈3,〈2,3〉〉}解:(1)、(2)、(4)定义的是函数。

(1)的定义域是{1,2,3,4},值域是{〈2,3〉,〈3,4〉,〈1,4〉}(2)的定义域是{1,2,3},值域是{〈2,3〉,〈3,4〉,〈3,2〉}(4)的定义域是{1,2,3},值域是{〈2,3〉}4.设f,g都是函数,并且有f⊆g和dom(g)=dom(f),证明f=g证明:假设f≠g,因为f⊆g和dom(g)=dom(f),则存在x1∈dom(g)和dom(f),使得〈x1,y1〉∈g但〈x1,y1〉∉f,因为f是函数,在定义域上处处有定义,所以必存在y2,使得〈x1,y2〉∈f,由f⊆g得〈x1,y2〉∈g,这与g是函数满足单值性矛盾。

故假设错误,必有f=g。

6.设X={0,1,2},求出X X中的如下函数(1) f2(x)=f(x)(2) f2(x)=x(3) f3(x)=x解:(1)有10个函数,分别是:f1(x)={〈0,0〉,〈1,0〉,〈2,0〉}f2(x)={〈0,1〉,〈1,1〉,〈2,1〉}f3(x)={〈0,2〉,〈1,2〉,〈2,2〉}f4(x)={〈0,1〉,〈1,1〉,〈2,2〉}f5(x)={〈0,2〉,〈1,1〉,〈2,2〉}f6(x)={〈0,0〉,〈1,0〉,〈2,2〉}f7(x)={〈0,0〉,〈1,2〉,〈2,2〉}f8(x)={〈0,0〉,〈1,1〉,〈2,0〉}f9(x)={〈0,0〉,〈1,1〉,〈2,1〉}f10(x)={〈0,0〉,〈1,1〉,〈2,2〉}(2)有4个函数,分别是:f1(x)={〈0,0〉,〈1,1〉,〈2,2〉}f2(x)={〈0,0〉,〈1,2〉,〈2,1〉}f3(x)={〈0,2〉,〈1,1〉,〈2,0〉}f4(x)={〈0,1〉,〈1,0〉,〈2,2〉}(3)有3个函数,分别是:f 1(x )={〈0,0〉,〈1,1〉,〈2,2〉}f 2(x )={〈0,1〉,〈1,2〉,〈2,0〉}f 3(x )={〈0,2〉,〈1,0〉,〈2,1〉}8.设f,g,h 是N → N 的函数, 其中N 是自然数集合,f(n)=n +1, g(n)=2n,⎩⎨⎧=是奇数若是偶数若n n n h 10)(试确定:f f ,f g ,g h ,h g 及(f g) h 。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A⋃B)-C=(A-B) ⋃(A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→⌝F)→⌝C, B→(A∧⌝S)⇒B→Eb)∀x(P(x)→⌝Q(x)), ∀x(Q(x)∨R(x)),∃x⌝R(x) ⇒∃x⌝P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠∅且B≠∅,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

离散数学习题集及答案第6-7章图论含答案

离散数学习题集及答案第6-7章图论含答案

第6-7章一.选择/填空1、设图G 的邻接矩阵为0101010010000011100000100,则G 的边数为( D ). A .5 B .6 C .3 D .42、设有向图(a )、(b )、(c )与(d )如下图所示,则下列结论成立的是( A ).A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的3、给定无向图G 如下图所示,下面给出的结点集子集中,不是点割集的为( B ).A .{b , d }B .{d }C .{a , c }D .{b , e }4、图G 如下图所示,以下说法正确的是 ( D ) .A .{(a , c )}是割边B .{(a , c )}是边割集C .{(b , c )}是边割集D .{(a, c ) ,(b, c )}是边割集5、无向图G 存在欧拉通路,当且仅当(D ).A .G 中所有结点的度数全为偶数B .G 中至多有两个奇数度结点C .G 连通且所有结点的度数全为偶数D .G 连通且至多有两个奇数度结点6、设G 是有n 个结点,m 条边的连通图,必须删去G 的( A )条边,才能确定G 的一棵生成树.A .1m n −+B .m n −C .1m n ++D .1n m −+7、已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为(B ).A .8B .5C .4D .38、已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 9、连通无向图G 有6个顶点9条边,从G 中删去 4 条边才有可能得到G 的一棵生成树T .10、如右图 相对于完全图K 5的补图为(A )。

11、给定无向图,如下图所示,下面哪个边集不是其边割集( B )。

A 、;B 、{<v1,v4>,<v4,v6>};C 、;D 、。

12、设D 是有n 个结点的有向完全图,则图D 的边数为( A ) (A))1(−n n (B))1(+n n (C)2/)1(+n n (D)2/)1(−n n 13、无向图G 是欧拉图,当且仅当( C )(A) G 的所有结点的度数都是偶数 (B)G 的所有结点的度数都是奇数(C)G 连通且所有结点的度数都是偶数 (D) G 连通且G 的所有结点度数都是奇数。

离散数学常见典型题练习题及参考答案

离散数学常见典型题练习题及参考答案

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q) ⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p) ⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p)) ⇔1∧(p ∨⌝q) ⇔(p ∨⌝q) ⇔ M 1 ⇔∏(1) (2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r ⇔(p ∧⌝q)∧q ∧r ⇔0 所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0 (3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1 ⇔1所以该式为永真式.永真式的主合取范式为 1 主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P 中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解:F(x):2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学第七章检测题
一、 单项选择题(每小题2分,共20分)
1.下图中是哈密尔顿图的是( 2 )
2.下面给出的四个图中,哪个不是汉密尔顿图( (4) ).
3.下列是欧拉图的是( 2 )
4. 下列各图不是欧拉图的是( 4 )
5.设()A G 是有向图,G V E =的邻接矩阵,其第i 列中“1”的数目为( )。

(C)
(1).结点i v 的度数; (2).结点i v 的出度; (3).结点i v 的入度; (4).结点j v 的度数。

6.无向图G 中有16条边,且每个结点的度数均为2,则结点数是( 2 )
(1).8 (2).16 (3).4 (4).32
7.设G=为无向图〉〈E V ,,23,7==E V ,则G一定是( (4) ).
(1).完全图; (2).零图; (3).简单图; (4).多重图.
8.若具有n 个结点的完全图是欧拉图,则n 为( 2 ).
(1).偶数;(2).奇数; (3). 9; (4). 10.
9.无向图G 是欧拉图,当且仅当( ). (1)
(1).G 连通且所有结点的度数为偶数; (2).G 的所有结点的度数为偶数;
(3).G 连通且所有结点的度数为奇数; (4).G 的所有结点的度数为奇数.
10.下面哪一种图不一定是树( ). (3)
(1).无圈连通图; (2).有n 个结点1n -条边的连通图;
(3).每对结点间都有路的图; (4).连通但删去一条边就不连通的图.
二、 填空题(每空3分,共45分)
1.在下图中,结点v 2的度数是 4 ,结点v 5的度数是 3 。

2.在一棵根树中,有且只有一个结点的入度为__0___,其余所有结点的入度均为_1__。

其中入度为__0___的结点称为树根,出度为__0___的结点称为树叶。

3.设图111,G V E =,22221,,G E E E =⊆且,如果 ,则称2G 是1G 的子图,如果 ,则称2G 是1G 的生成子图。

(2121,V V V V ⊆=)
4.在任何图,G V E =中,∑∈V
v v )deg(= 2 │E │ ,其奇数度结点的个数必为
偶数 。

5.一棵有6个叶结点的完全二叉树,有___5__个内点;而若一棵树有2个结点度数为2,一个结点度数为3,3个结点度数为4,其余是叶结点,则该树有__9___个叶结点。

6.设图,G V E =,V ={ 1v ,2v ,3v ,4v }的邻接矩阵()A G = ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡0001
001111011010, 则 1v 的入度)(deg 1v = 3 ,4v 的出度)(deg 4v = 1 。

7.一个无向树中有6条边,则它结点数为 7 。

三、 简答题(每小题5分,共25分)
1.对有向图,G V E =求解下列问题:
(1)写出邻接矩阵A ;
(2),G V E =中长度为3的不同的路有几条?其中不同的回路有几条?
解:(1)邻接矩阵为:
0100100100000011
100000010A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦
, (2)2300110110010000100010,00010110000110100
1111
100001101A A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 则,,G V E =中长度为3的不同的路有10条,其中有1条不同的回路。

2.设有28盏灯,拟公用一个电源,求至少需要4插头的接线板的数目。

解:设至少需要4插头的接线板i 个,则有
(4-1)i=28-1 (3分)
故 i=9
即至少需要9个4插头的接线板。

(2分)
3.设有6个城市V 1,V 2,…,V 6,它们之间有输油管连通,其布置如下图,S i (数字)中S i 为边的编号,括号内数字为边的权,它是两城市间的距离,为了保卫油管不受破坏,在每段油管间派一连士兵看守,为保证每个城市石油的正常供应最少需多少连士兵看守?输油管道总长度越短,士兵越好防守。

求他们看守的最短管道的长度。

(要求写出求解过程)
解:为保证每个城市石油的正常供应最少需5连士兵看守.
求看守的最短管道相当于求图的最小生成树问题,此图的最小生成树为:
因此看守的最短管道的长度为: W(T)=1+1+2+2+2=8.
4.以给定权1, 4, 9, 16, 25, 36, 49, 64, 81, 100构造一棵最优二叉树。

5.一次学术会议的理事会共有20个人参加,他们之间有的相互认识,但有的相互不认识。

但对任意两个人,他们各自认识的人的数目之和不小于20,说明能否把这20个人排在圆桌旁,使得任意一个人认识其旁边的两个人?根据是什么?
解:可以把这20个人排在圆桌旁,使得任意一个人认识其旁边的两个人。

(1分) 根据是:分别用20个结点代表这20个人,将相互认识的人之间连一条线,便得到一个 无向简单图,G V E =,每个结点i v V ∈的度数是与i v 认识的人的数目,由题意知,i j v v V ∈,有deg()deg()20i j v v +≥,于是,G V E =中存在哈密尔顿回路,设12201i i i i C v v v v =是,G V E =中的一条哈密尔顿回路,按此回路安排园桌座位即符合要
求。

(4分)
四.证明与应用题(10分)
1. 某次聚会的成员到会后相互握手,试用图论的知识说明与奇数个人握手的人数一定是一
个偶数。

证: 用结点代表成员, 握手的成员之间连一条线, 则所有聚会的成员之间的握手
情况可以用一个图来表示,其中每个结点的度数就是该结点所代表的成员握
手的人数,由于任一图中奇数度结点的个数为偶数,所以与奇数个人握手的人数一定是一个偶数。

相关文档
最新文档