大学物理题库第八章
大学物理知识总结习题答案(第八章)振动与波动
第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。
· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,为角频率,(t+)称为谐振动的相位,t =0时的相位称为初相位。
· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。
2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。
· 阻尼振动的动力学方程为222d d 20d d x xx t tβω++= 其中,γ是阻尼系数,2mγβ=。
(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。
(2) 当22ωβ=时,不再出现振荡,称临界阻尼。
(3) 当22ωβ<时,不出现振荡,称过阻尼。
4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力· 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。
习题解答---大学物理第八章习题 2
专业班级_____姓名________ 学号________第八章 稳恒电流的磁场一、选择题:1、在磁感应强度为B ρ的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n ρ与B ρ的夹角为α,则通过半球面S 的磁通量为:[ D ](A )B r 2π (B )B r 22π (C )απsin 2B r - (D )απcos 2B r -。
2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感应强度大小等于:[ D ](A )R I πμ20 (B )RI40μ (C )0(D ))11(20πμ-RI(E ))11(40πμ+RI3、电流由长直导线1沿切向经a 点流入一个电阻均匀分布的圆环,再由点沿切向从圆环流出,经长直导线2返回电源(如图)。
已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上。
设长直载流导线1、2和分别在O 点产生的磁感应强度为1B ρ、2B ρ、3B ρ,则圆心处磁感应强度的大小[ C ](A )0=B ,因为0321===B B B 。
(B)0=B , 因为虽然01≠B ,02≠B ,但021=+B B ρρ,03=B 。
(C )0≠B ,因为01≠B ,02≠B ,03≠B 。
(D )0≠B ,因为虽然03=B ,但021≠+B B ρρ。
4、 磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上,图(A )——(E )哪一条表示x B -的关系[ D ] 5、无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(R r <)的磁感应强度为i B ,圆柱体外(r> R )的磁感应强度为e B 。
则有:[ B ] (A)i B 、e B 均与r 成正比。
(B) i B 、e B 均与r 成反比。
(C)i B 与r 成反比,e B 与r 成正比。
大学物理第八章习题及答案
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
《大学物理》(8-13章)练习题
《大学物理》(8-13章)练习题(2022年12月)第八章气体运动论1.气体温度的微观或统计意义是什么?2.理想气体状态方程的三种形式?PV=N KT, p=nkT, (n=N/V)3.气体的最概然速率、方均根速率、平均速率的关系是什么?4.气体分子的平均平动动能的表达式及其意义?5.理想气体的内能?6.气体分子的平均自由程是指?7.单原子分子、刚性双原子分子气体的自由度数目各是多少?8、理想气体的微观模型是什么?综合练习1. 在某容积固定的密闭容器中,盛有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 4p1. ;B. 5p1;C. 6p1;D. 8p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B.pV mT⁄; C. pV kT⁄; D. pV RT⁄.3. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为( )A. 52pV; B. 32pV; C. pV; D. 12pV。
4 刚性双原子分子气体的自由度数目为()。
A. 2B. 3C. 4D. 55.气体温度的微观物理意义是:温度是分子平均平动动能的量度;温度是表征大量分子热运动激烈程度的宏观物理量,是大量分子热运动的集体表现;在同一温度下各种气体分子平均平动动能均相等。
6. 设v̅代表气体分子运动的平均速率,v p代表气体分子运动的最概然速率,(v2̅̅̅)12代表气体分子运动的方均根速率。
处于平衡状态下理想气体,三种速率关系为( )A. (v2̅̅̅)12=v̅=v p;B. v̅=v p<(v2̅̅̅)12;C. v p<v̅<(v2̅̅̅)12;D. v p>v̅>(v2̅̅̅)12。
大学物理第8章试卷答案
第8章电磁感应作业题答案一、选择题1、圆铜盘水平放置在均匀磁场中,B得方向垂直盘面向上,当铜盘绕通过中心垂直于盘面得轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动得相反方向流动。
(B) 铜盘上有感应电流产生,沿着铜盘转动得方向流动。
(C) 铜盘上有感应电流产生,铜盘中心处电势最高。
(D)铜盘上有感应电流产生,铜盘边缘处电势最高。
答案(D)2.在尺寸相同得铁环与铜环所包围得面积中穿过相同变化率得磁通量,则两环中A.感应电动势相同,感应电流相同;B.感应电动势不同,感应电流不同;ﻫC.感应电动势相同,感应电流不同;ﻫD.感应电动势不同,感应电流相同。
答案(C)ﻫ3. 两根无限长得平行直导线有相等得电流,2.但电流得流向相反如右图,而电流得变化率均大于零,有一矩形线圈与两导线共面,则ﻫ A.线圈中无感应电流;B.线圈中感应电流为逆时针方向;C.线圈中感应电流为顺时针方向;D.线圈中感应电流不确定。
答案: B(解:两直导线在矩形线圈处产生得磁场方向均垂直向里,且随时间增强,由楞次定律可知线圈中感应电流为逆时针方向。
)4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。
(a)、(b)、(c)处有三个光滑细金属框。
今使以速度向右滑动。
设(a)、(b)、(c)、(d)四种情况下在细棒中得感应电动势分别为ℇa、ℇb、ℇc、ℇd,则ﻫﻫA.ℇa=ℇb =ℇc <ℇdB.ℇa =ℇb=ℇc>ℇdC.ℇa=ℇb=ℇc =ℇd D.ℇa>ℇb <ℇc<ℇd答案:C5.一矩形线圈,它得一半置于稳定均匀磁场中,另一半位于磁场外,如右图所示,磁感应强度得方向与纸面垂直向里。
欲使线圈中感应电流为顺时针方向则ﻫA.线圈应沿轴正向平动;ﻫB.线圈应沿轴正向平动;C.线圈应沿轴负向平动;D.线圈应沿轴负向平动答案(A).*6.两个圆线圈、相互垂直放置,如图所示。
当通过两线圈中得电流、均发生变化时,那么ﻫ A.线圈中产生自感电流,线圈中产生互感电流;B.线圈中产生自感电流,ﻫ线圈中产生互感电流;ﻫC.两线圈中同时产生自感电流与互感电流;D.两线圈中只有自感电流,不产生互感电流。
大学物理第八章课后习题答案
大学物理第八章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大23分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).48 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.5分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有6tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM == 当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少7分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R RNBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.8分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高9分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.10 解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律t ΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以 V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d m F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d vv Kv v 积分后将gh 210=v 代入,可得()()[]1212t t K e gh K g g K----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为td d π4B d ρm I =式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为t t t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >t B 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有 22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为 12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍. 8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管。
大学物理第8章变化的电磁场试题及答案.docx
第8章变化的电磁场一、选择题1.若用条形磁铁竖直插入木质圆坏,则在坏中是否产生感应电流和感应电动势的判断](A)产生感应电动势,也产生感应电流(B)产生感应电动势,不产生感应电流(C)不产生感应电动势,也不产生感应电流(D)不产生感应电动势,产生感应电流T 8-1-1 图2.关于电磁感应,下列说法中正确的是[](A)变化着的电场所产生的磁场一定随吋间而变化(B)变化着的磁场所产生的电场一定随时间而变化(C)有电流就有磁场,没有电流就一定没有磁场(D)变化着的电场所产牛:的磁场不一定随时间而变化3.在有磁场变化着的空间内,如果没有导体存在,则该空间[](A)既无感应电场又无感应电流(B)既无感应电场又无感应电动势(C)有感应电场和感应电动势(D)有感应电场无感应电动势4.在有磁场变化着的空间里没有实体物质,则此空间屮没有[](A)电场(B)电力(C)感生电动势(D)感生电流5.两根相同的磁铁分别用相同的速度同时插进两个尺寸完全相同的木环和铜环内,在同一时刻,通过两环包闱面积的磁通量[](A)相同(B)不相同,铜环的磁通量大于木环的磁通量(C)不相同,木环的磁通量大于铜环的磁通量(D)因为木环内无磁通量,不好进行比佼_6.半径为G的圆线圈置于磁感应强度为一B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为几当把线圈转动使其法向与〃的夹角曰=6(?时,线圈中通过的电量与线圈面积及转动的时间的关系是](A)与线圈面积成反比,与时间无关(B)与线圈面积成反比,与时间成正比(C)与线圈面积成正比,与时间无关(D)与线圈面积成正比,与时间成正比7.一个半径为r的圆线圈置于均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R・当线圈转过30。
时,以下各量中,与线圈转动快慢无关的量是[](A)线圈中的感应电动势(B)线圈中的感应电流(C)通过线圈的感应电量(D)线圈回路上的感应电场& 一闭合圆形线圈放在均匀磁场中,线圈平面的法线与磁场成30。
大学物理第八章习题及答案
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
2024年大学物理磁场试题库含答案
第八章 磁场填空题 (简单)1、将通有电流为I的无限长直导线折成1/4圆环形状,已知半圆环的半径为R,则圆心O点的磁感应强度大小为 。
08IRμ2、磁场的高斯定理表白磁场是 无源场 。
3、只要有运动电荷,其周围就有 磁场 产生;4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。
电流I1产生的磁场作用在I 2回路上的合力F 的大小为,F的方向 水平向左 。
(综01201222()I I L I I La ab μμππ-+合) 5、有一圆形线圈,通有电流I,放在均匀磁场B 中,线圈平面与B垂直,则线圈上P点将受到 安培 力的作用,其方向为 指向圆心 ,线圈所受合力大小为 0 。
(综合)6、 是 磁场中的安培环路定理 ,它所反应的物理意义∑⎰==⋅n i i lI l d B 00μ是 在真空的稳恒磁场中,磁感强度沿任一闭合途径的积分等于乘以该闭合途径所包围的各电流的代数B 0μ和。
7、磁场的高斯定理表白通过任意闭合曲面的磁通量必等于 0 。
4题图5题图8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。
9、磁场最基本的性质是对 运动电荷、载流导线 有力的作用。
10、如图所示,在磁感强度为B 的均匀磁场中,有二分之一径为R的半球面,B 与半球面轴线的夹角为。
求通过该半球面的磁通量为。
(综合)α2cos B R πα- 12、一电荷以速度v 运动,它既 产生 电场,又 产生 磁场。
(填“产生”或“不产生”)13、一电荷为+q,质量为m ,初速度为的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 匀速圆0υ周 运动,其盘旋半径R=,盘旋周期T= 。
0m Bq υ2mBqπ14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a、b 所示),若通以电流为,则 a圆心I O的磁感应强度为___0__________;图b圆心O 的磁感应强度为。
大学物理习题答案解析第八章
第八章 电磁感应 电磁场8 -1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).8 -2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2的变化电流且,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A ) , (B ) , (C ),ti t i d d d d 21<2112M M =1221εε=2112M M ≠1221εε≠2112M M =1221εε<(D ) ,分析与解 教材中已经证明M21 =M12 ,电磁感应定律;.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ). 8 -5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) ,因而线圈的自感系数与回路的电流成反比 (D ) ,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为,求在时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成,其中称为磁链. 解 线圈中总的感应电动势当 时,.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.2112M M =1221εε<t i M εd d 12121=tiM εd d 21212=LI Φm =LI Φm =()Wb π100sin 100.85t Φ⨯=s 100.12-⨯=t tψt ΦN ξd d d d -=-=ΦN ψ=()()t tΦNξπ100cos 51.2d d =-=s 100.12-⨯=t V 51.2=ξtId d分析 本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁通量就需用来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则,所以,总磁通量可通过线积分求得(若取面元,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式求解.解1 穿过面元dS 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为tΦξd d -=⎰⋅=SΦS B d ()B B x =x d S d d =y x S d d d =tl ME M d d -=()x d xIμx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B ()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd=-+==⎰⎰⎰tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-=43ln π20dI μΦ=43ln π20d μI ΦM ==当电流以变化时,线圈中的互感电动势为 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量,它表现为变量I 和ξ的二元函数,将Φ代入 即可求解,求解时应按复合函数求导,注意,其中,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值.问此均匀磁场的磁感强度B 的值为多少? 分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为因此,流过导体截面的电量为则 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.tld d tI d μt I ME d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-=()ξf ΦS,1d =⋅=⎰S B tΦE d d -=v =tξd d 54.010C q -=⨯NBS NBS ΦΦΦ=-=-=0Δ12ii R R NBSR R Φq +=+=Δ()T 050.0=+=NSR R q B i分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用来计算线圈在始、末两个位置的磁链. 解 (1) 在始、末状态,通过线圈的磁链分别为, 则线圈中的平均感应电动势为电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?NBS ψ=1011π2r IS μN S NB ψ==2022π2r ISμN S NB ψ==V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE tΦE d d -=分析 本题及后面几题中的电动势均为动生电动势,除仍可由求解外(必须设法构造一个闭合回路),还可直接用公式求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势.在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或 端点P 距 形导轨左侧距离为x ,则即由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量常数.由法拉第电磁感应定律可知,E =0 又因 E =E OP +E PO 即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法. 8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.tΦE d d -=()l B d ⋅⨯=⎰lE v ()l B d d ⋅⨯=v E B R Rx Φ⎪⎭⎫⎝⎛+=2π212B R txRB t ΦE v 2d d 2d d -=-=-=()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B v B R θθBR E v v 2d cos d E π/2π/2===⎰⎰-==BS ΦtΦE d d -=分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果. 解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则因此棒两端的电势差为当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中, 则8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.()()r L lB ωl lB ωE L-rr ABAB 221d d --=-=⋅⨯=⎰⎰-l B v ()r L lB ωE U AB AB 221--==221r ωB E OA =()221r L B ωE OB -=()r L BL ωE E E OB OA AB 221--=-=分析 如前所述,本题既可以用法拉第电磁感应定律 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的. 解1 由上分析,得由矢量的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿 过回路的磁通量Φ为零,则回路的总电动势显然,E QO =0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况. 8 -13 如图(a)所示,金属杆AB 以匀速平行于一长直导线移动,此导线通有电流I =40A.求tΦE d d -=()l B d ⋅⨯=⎰lE v ()l B d ⋅⨯=⎰OPOP E v l αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L θL B ωl l θB ω022sin 21d sin B ⨯v QO PQ OP E E E tΦE ++==-=0d d ()221PQ B ωE E E QO PQ OP ==-=12.0m s -=⋅v杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式求解,建立图(a )所示的坐标系,所取导体元,该处的磁感强度.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式求得穿过该回路的磁通量,再代入公式,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为穿过回路的磁通量为回路的电动势为由于静止的形导轨上电动势为零,所以()l B d ⋅⨯=⎰lE v x l d d =xIμB π20=⎰⋅=SΦS B d tΦE d d -=()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B x y xIμΦd 2πd d 0=⋅=S B 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦV 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高. 8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足],因而线框中的总电动势为其等效电路如图(b)所示.2.用公式求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有.在求得线框在任意位置处的电动势E(ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势. 解1 根据分析,线框中的电动势为由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为相应电动势为V 1084.35-⨯-==E EAB ()0l B =⋅⨯d v ()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v tΦE d d -=v =tξd d hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d I I μ+=1vI ()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰令ξ=d ,得线框在图示位置处的电动势为由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即.根据牛顿运动定律,此时线框的运动微分方程为,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在时间内,线框为自由落体运动,于是其中时,()()1120π2d d l ξξl l I μt ΦξE +=-=v ()1120π2l d d l l I μE +=v ()A A F F =v ()tvv d d mF mg A =-1t t ≤()11t t gt ≤=v 1t t =gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为根据牛顿运动定律,可得线框运动的微分方程令,整理上式并分离变量积分,有积分后将代入,可得(3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为式中ρ 为铜的电阻率,d 为铜的密度.解 圆形回路导线长为,导线截面积为,其电阻R ′为在均匀磁场中,穿过该回路的磁通量为,由法拉第电磁感应定律可得回路中的感应电流为而,即,代入上式可得v Rl B IlB F A 22==tv m v d d 22=-R l B mg mRl B K 22=⎰⎰=-t t t g 110d d vv Kv vgh 210=v ()()[]1212t t K e gh K g g K----=v ()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v td d Btd d π4Bd ρm I =πR 22πr 22rR ρS l ρR =='BS Φ=tt t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='=2ππ2r R d m =dmRr π2π2=td d π4Bd ρm I =8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率等)密切相关,即.在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当时,电场线绕向与B 方向满足右螺旋关系;当 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向. (1) r <R ,r >R ,td d B1s T 010.0d d -⋅=tBtd d B S Bl E d d ⋅∂∂-=⎰⎰S S k t 0d d <t B 0d d >tBtB r t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tBr E k d d 2-=tB R t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tBr R E k d d 22-=由于,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此将r 、R 、的数值代入,可得,式中负号表示E k 的方向是逆时针的. 8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l的金属棒放在磁场中,设B 随时间的变化率为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势. 证1 由法拉第电磁感应定律,有证2 由题8 -17可知,在r <R 区域,感生电场强度的大小 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为0d d >tBtB r R E k d d 22-=tB d d 15m V 100.4--⋅⨯-=k E tBdd ⎰⋅=lk E l E d 0d =⋅l E k 22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQtBr E k d d 2=讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式计算L .式中E L 和都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为则若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E lk k PQ -=-==⋅=⎰⎰x E IΦL =tI E L Ld /d =t I d d xNIμB π20=12200lnπ2d π2d 21R R hI N μx h x NI μN N ψSR R ==⋅=⎰⎰S B 1220lnπ2R R h N μI ψL =8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果. 解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为, 通过N 匝回路的磁链为则自感8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l 的一对导线的自感(导线内部的磁通量可略去不计).I L N μnl μB 111==I LN μnl μB 222==221121S NB S NB ΨΨΨ+=+=2211221S μS μlN I ψL L L +==+=分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为穿过图中阴影部分的磁通量为则长为l 的一对导线的自感为如导线内部磁通量不能忽略,则一对导线的自感为.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为,()r d Iμr I μB -+=π2π200aa d l μr Bl ΦSad a-==⋅=⎰⎰-ln πd d 0S B aad l μI ΦL -==ln π0212L L L +=8π02lμL=0221=-=ΦΦΦΦΦΦΦ4222=+=故. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则 . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径. 解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度穿过小线圈A 的磁链近似为 则两线圈的互感为(2) 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?L IΦI ΦL 4422===21212I ΦM M ==RIμN B B200=A BA A A A S RIμN N S B N ψ200==H 1028.6260-⨯===RSμN N I ψM A B A A V 1014.3d d 4-⨯=-=tIME A解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10-3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的.()2/322202dR IR μB +=()22/32220π2r dR IR μBS ψC +==()2/3222202πd R R r μI ψM +==解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度则通过线圈C 的磁链为设断开电源过程中,通过C 的感应电荷为q C ,则有由此得相对磁导率8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即,式中为磁场能量密度,积分遍及磁场存在的空间.由于,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用求解L .解 (1) 密绕长直螺线管在忽略端部效应时,其自感,电流稳定后,线圈中电流,则线圈中所储存的磁能为在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度 处处相等, 110I n μμB r =S I n μμN BS N ψr c 11022==()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-=T 10.02110===SN RqcI n μμB r 1991102==I n μS N Rqcμr 221LI W m =V w W Vmm d ⎰=mwμB w m 22=V w LI V m d 212⎰=l S N L 2=REI =J 1028.3221522202-⨯===lRSE N μLI W m m w 3m J 17.4-⋅==SLW w mm。
(完整版)大学物理学(课后答案)第8章
第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。
则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。
而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。
8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。
开始时它们的压强和温度都相同。
现将3 J 热量传给氦气,使之升高到一定的温度。
若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。
故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。
故正确的是(C )。
8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。
又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。
大学物理第8章变化的电磁场试题及答案.docx
第8章变化的电磁场一、选择题1.若用条形磁铁竖直插入木质圆坏,则在坏中是否产生感应电流和感应电动势的判断](A)产生感应电动势,也产生感应电流(B)产生感应电动势,不产生感应电流(C)不产生感应电动势,也不产生感应电流(D)不产生感应电动势,产生感应电流T 8-1-1 图2.关于电磁感应,下列说法中正确的是[](A)变化着的电场所产生的磁场一定随吋间而变化(B)变化着的磁场所产生的电场一定随时间而变化(C)有电流就有磁场,没有电流就一定没有磁场(D)变化着的电场所产牛:的磁场不一定随时间而变化3.在有磁场变化着的空间内,如果没有导体存在,则该空间[](A)既无感应电场又无感应电流(B)既无感应电场又无感应电动势(C)有感应电场和感应电动势(D)有感应电场无感应电动势4.在有磁场变化着的空间里没有实体物质,则此空间屮没有[](A)电场(B)电力(C)感生电动势(D)感生电流5.两根相同的磁铁分别用相同的速度同时插进两个尺寸完全相同的木环和铜环内,在同一时刻,通过两环包闱面积的磁通量[](A)相同(B)不相同,铜环的磁通量大于木环的磁通量(C)不相同,木环的磁通量大于铜环的磁通量(D)因为木环内无磁通量,不好进行比佼_6.半径为G的圆线圈置于磁感应强度为一B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为几当把线圈转动使其法向与〃的夹角曰=6(?时,线圈中通过的电量与线圈面积及转动的时间的关系是](A)与线圈面积成反比,与时间无关(B)与线圈面积成反比,与时间成正比(C)与线圈面积成正比,与时间无关(D)与线圈面积成正比,与时间成正比7.一个半径为r的圆线圈置于均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R・当线圈转过30。
时,以下各量中,与线圈转动快慢无关的量是[](A)线圈中的感应电动势(B)线圈中的感应电流(C)通过线圈的感应电量(D)线圈回路上的感应电场& 一闭合圆形线圈放在均匀磁场中,线圈平面的法线与磁场成30。
大学物理第8章习题答案
µId 1
d
d
d B
dΦ µ d dI 4 Ei = − ln = 2 π dt 3 dt
0
Ei
顺时针方向
习题答案
8-12 解:
第八章电磁感应 电磁场 第八章电磁感应
r v v dEi = ( v × B ) ⋅ dl
O′
= vBdlsinθ
= ωrBsinθdl
= Bωl sin θdl
2
v B
O
a
l
L
b
Ei 方向
a
b
习题答案
第八章电磁感应 电磁场 第八章电磁感应
v v b 解:Eab = ∫a E k ⋅ d l
b
r dB r < R Ek = 2 dt
× × × × × × × × × × × × × × × ×
× × × × r dB dl cos θ = ∫a B × × × × × 2 dt × × × × × L h dB = ∫0 dl O × × × × × 2 dt EK h = r cosθ h θ hL dB × = a b 2 dt dl
L = µn V
2
N 2 πd 2 N 2 πd 2 L = µ 0 n 2V = µ0 ( ) l = µ0 l 4 l 4
2 2 2 2 2
1 2 1 N πd ε 2 µ 0 N πd ε Wm = LI = µ 0 ( ) = = 3.28 × 10 −5 J 2 2 l 4 R 8R 2l
2
习题答案
8-18
+
第八章电磁感应 电磁场 第八章电磁感应 连接oa和 与 构成回路 构成回路oab. 解:连接 和ob与ab构成回路
大学物理第八章习题
电磁感应一、选择题:(注意:题目中可能有一个或几个正确答案) 1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将: (A)加速铜板中磁场的增加 (B)减缓铜板中磁场的增加(C)对磁场不起作用 (D)使铜板中磁场反向[ B ] 解:根据愣次定律,感应电流的磁场总是力图阻碍原磁场的变化。
故选B2.一无限长直导体薄板宽度为l ,板面与Z 轴垂直,板的长度方向沿Y 轴,板的两侧与一个伏特计相接,如图。
整个系统放在磁感应强度为B的均匀磁场中,B的方向沿Z 轴正方向,如果伏特计与导体平板均以速度v向Y 轴正方向移动,则伏特计指示的电压值为(A) 0 (B)vBl 21(C) vBl (D) vBl 2[ A ]解:在伏特计与导体平板运动过程中,dc ab εε=,整个回路0=∑ε,0=i ,所以伏特计指示0=V 。
故选A3.两根无限长平行直导线载有大小相等方向相反的电流I ,I 以tI d d 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A)线圈中无感应电流。
(B)线圈中感应电流为顺时针方向。
(C)线圈中感应电流为逆时针方向。
(D)线圈中感应电流方向不确定。
[ B ]解:0d d >tI ,在回路产生的垂直于纸面向外的磁场⊗增强,根据愣次定律,回路中产生的电流为顺时针,用以反抗原来磁通量的变化。
故选B4.在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。
当直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220ra aRIr+-πμ (B)ar a RIr+ln20πμI(C)aRIr220μ (D)rRIa220μ[ C ]解:直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=ε感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为 ∆Φ=⋅Φ==⎰⎰Rt tR t i q 1d d d 1daRIrRr aIRS B 212120200μππμ=⋅⋅=⋅∆≈ 故选C5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的边长为l 。
大学物理第八章电磁感应部分的习题及答案
第八章 电磁感应一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。
2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
由于磁感强度变化而引起的感应电动势称为感生电动势。
3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。
两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。
4、简述感应电场与静电场的区别? 答:感生电场和静电场的区别5、写出麦克斯韦电磁场方程的积分形式。
答:⎰⎰==⋅svqdv ds D ρdS tB l E sL⋅∂∂-=⋅⎰⎰d0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d6、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差7、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。
二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流 ( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、对于位移电流,下列四种说法中哪一种说法是正确的 ( A ) A 、位移电流的实质是变化的电场 B 、位移电流和传导电流一样是定向运动的电荷 C 、位移电流服从传导电流遵循的所有规律 D 、位移电流的磁效应不服从安培环路定理3、下列概念正确的是 ( B )。
大学物理第8章习题
班级 学号 姓名 第8-1 电磁感应定律1. 如图两个导体回路平行,共轴相对放置,相距为D ,若沿图中箭头所示的方向观察到大回路中突然建立一个顺时针方向的电流时,小回路的感应电流方向和所受到的力的性质是:( )( A) 顺时针方向,斥力 ( B) 顺时针方向,吸力( C) 逆时针方向,斥力 ( D) 逆时针方向,吸力2. 如图一载流螺线管竖直放置,另一金属环从螺线管端上方沿管轴自由落下,设下落过程中圆面始终保持水平,则圆环在图中A ,B ,C 三处的加速度大小关系为:( )( A) A B C a a a >> ( B) B A C a a a >>( C) C A B a a a >> ( D) C B A a a a >>3. 如图一矩形导体线圈放在均匀磁场中,磁场方向垂直于线圈平面向里,a ,b 分别为线圈上下短边上的两个点,当线圈以速度v 垂直于磁场方向向右运动时,则:( )( A) ab 两点无电势差,线圈内无电流;( B) ab 两点有电势差,且V a >V b ,线圈内无电流;( C) ab 两点有电势差,且V b >V a ,线圈内有电流;( D) ab 两点有电势差,且V b >V a ,线圈内无电流。
4. 如图所示中圆形导体在均匀磁场中发生热膨胀,则将沿它以逆时针方向感应出一电流。
磁场的方向为 。
5. 如图所示,长螺线管横截面积为1S ,其上均匀密绕线圈,单位长度匝数为n ,且载有电流 1.5i A =,另有一N 匝密绕线圈套在螺线管外,并与螺线管共轴放置,其横截面积为2S 。
在25ms 内,螺线管中的电流以稳定的速率降低到零。
当电流正在变化时,线圈中所感应出的电动势有多大?6. 如图所示,正方形的导线框边长为2.0cm ,一磁场指向页面外,大小由24.0B t y =给出。
式中B 的单位为T ,t 的单位为s ,y 的单位为m ,确定当 2.5t s =时,环绕正方形的感应电动势,并指出方向。
大学物理课后习题(第八章)
第八章 机械振动选择题8—1 对做简谐运动的物体,下列说法正确的是 ( B )(A) 物体位于平衡位置且向Ox 轴负向运动时,速度和加速度都为零;(B) 物体位于平衡位置且向Ox 轴正向运动时,速度最大,加速度为零;(C) 物体位于负向最大位移时,速度和加速度都达到最大值;(D) 物体位于正向最大位移时,速度最大,加速度为零.8—2 一物体做简谐运动,其运动方程为cos()x A t ωϕ=+.在2T t =时,物体振动的速度为 ( D )(A) cos A ωϕ-; (B) cos A ωϕ;(C) sin A ωϕ-; (D) sin A ωϕ.8—3 一物体做简谐运动,其运动方程为πcos()4x A t ω=+.在4T t =时,物体振动的加 速度为 ( B )(A) 2ω2ω;(C) 2ω2ω . 8—4 一质点做简谐运动,其运动方程为π0.02cos(π)3x t =+.该简谐运动的周期和初相分别为 ( A ) (A) π2s,3; (B) π4s,3; (C) π2s,3-; (D) π4s,3-.8—5 对做简谐运动的弹簧振子,下列说法正确的是 ( B )(A) 加速度大小与位移成正比,加速度方向与位移方向相同;(B) 加速度方向恒指向平衡位置;(C) 振幅仅决定于0t =时刻物体的初始位移;(D) 振动频率和振动的初始条件有关.8—6 一质点做简谐运动,若将振动速度处于正最大值的时刻取作0t =,则振动初相ϕ为 ( A ) (A) π2-; (B) 0; (C) π2; (D) π. 8—7 一物体做简谐运动,振幅为A .在起始时刻质点的位移为2A,且向Ox 轴的正向运动.代表起始时刻该简谐运动的旋转矢量图为 ( C )8—8 一质点做简谐运动,周期是T ,该质点从平衡位置运动到2A x =处所需要的最短 时间是 ( A ) (A) 12T ; (B) 6T ; (C) 4T ; (D) 2T . 8—9 两个质点沿Ox 轴做振幅、频率皆相同的简谐运动,当第一个质点处于平衡位置且向Ox 轴负向运动时,第二质点在2A x =-处且向Ox 轴负向运动,则这两个简谐运动的相位差δ为 ( C ) (A) π2; (B) 2π3; (C) π6; (D) 5π6. 8—10 有两个弹簧振子做振幅相同的简谐运动,弹簧的劲度系数k 相同,但物体的质量不同,则两个振动系统的总能量 ( C )(A) 不同,物体质量大的系统总能量大; (B) 不同,物体质量小的系统总能量大;(C) 相同; (D) 无法确定.8—11 一弹簧振子做简谐运动.当位移为振幅的一半时,振动系统的势能为总能量的( A ) (A) 14; (B) 13; (C) 12; (D) 34. 8—12 一弹簧振子做简谐运动,总能量为E .如果简谐运动的振幅增大为原来的2倍,物体的质量增大为原来的4倍,则振动系统的总能量变为 ( D ) (A) 4E ; (B) 2E ; (C) 2E ; (D) 4E . 8—13 两个振动方向相同、频率相同、振幅均为A 的简谐运动合成后振幅仍为A .则这两个简谐运动的相位差为 ( C )(A) o 60; (B) o 90; (C) o 120; (D) o180.8—14 一质点同时参与两个简谐运动,运动方程分别为11cos x A t ω=、22cos x A t ω=,则合振动振幅为 ( A )(A) 12A A A =+; (B) 12A A A =-;(C) A =A =计算题8—15 一物体做简谐运动,其运动方程为 π0.1cos(20π)4x t =+ 式中,x 的单位为m ,t 的单位为s .求2s t =时物体的位移、速度和加速度.解 物体的速度和加速度分别为d π0.120πsin(20π)d 4π 2πsin(20π)4x t t t ==-⨯+=-+v()22d π0.120πcos(20π)d 4π 40πcos(20π)4a t t t ==-⨯+=-+v2s t =时,,物体的位移、速度和加速度分别为22ππ0.1cos(40π)m 0.1cos m 7.0710m 44t x -==+==⨯ 112ππ2πsin(40π)m 2πsin m s 4.44m s 44t --==-+=-⋅=-⋅v 22222ππ40πcos(40π)m 40πcos m s 279m s 44t a --==-+=-⋅=-⋅ 8—16 一质点沿Ox 轴做简谐运动,振幅为2610m -⨯,周期为2.0s .求物体振动速度的最大值和加速度的最大值.解 物体的简谐运动方程为 22πcos() 610cos(π)x A t T t ϕϕ-=+=⨯+式中的初相ϕ由计时起点决定.物体的振动速度和加速度分别为2d 610πsin(π)d x t tϕ-==-⨯+v 22d 610πcos(π)d a t t ϕ-==-⨯+v 速度和加速度的最大值分别为211max 610πm s 0.188m s ---=⨯⋅=⋅v2222max 610πm s 0.592m s a ---=⨯⋅=⋅8—17 已知一物体做简谐运动,振幅2210m A -=⨯,频率2Hz ν=,初相位π2ϕ=.求该物体的简谐运动方程.解 物体的简谐运动方程为2cos(2π)π 210cos(4π)2x A t t νϕ-=+=⨯+式中x 的单位为m ,t 的单位为s .8—18 一物体做简谐运动,其运动方程为π0.1cos(20π)4x t =+ 式中, x 的单位为m ,t 的单位为s .求振幅、角频率、频率、周期和初相.解 将运动方程π0.1cos(20π)m 4x t =+ 和物体简谐运动方程的标准形式cos()x A t ωϕ=+比较,可得物体简谐运动的振幅、角频率和初相分别为0.1m A = 1120πs 62.8s ω--== π4ϕ=由角频率,可计算出频率和周期分别为 110s 2πων-== 110.1s 10T ν=== 8—19 一物体做简谐运动,振幅2210m A -=⨯,角频率14πrad s ω-=⋅.0t =时,物体位于210m -处,并向Ox 轴负向运动.求该物体的简谐运动方程.解 物体的初始位置20110m x -=⨯,等于2A .0t =时,旋转矢量位置如图.由图可得π3ϕ=.物体的简谐运动方程为 2cos()π 210cos(4π)3x A t t ωϕ-=+=⨯+式中x 的单位为m ,t 的单位为s .8—20 一质量为10g 的物体做简谐运动,频率4Hz ν=.0t =时,位移为2cm -,初速度为零.求该物体的简谐运动方程.解 由于物体的初始位置为20m 210x -=-⨯,初始速度为00=v ,因此2cos02πsin A A ϕνϕ-==-由此可得物体简谐运动的振幅和初相分别为2210mπA ϕ-=⨯=物体的简谐运动方程为2cos(2π)210cos(8ππ)x A t t νϕ-=+=⨯+式中x 的单位为m ,t 的单位为s .8—21 一放置在光滑水平桌面上的弹簧振子,沿Ox 轴做简谐运动.振幅2310mA -=⨯,周期为0.5s .求下面两种初始条件下的简谐运动方程. (1) 当0t =时,物体在2A x =-处,并向Ox 轴负向运动; (2) 当0t =时,物体在平衡位置,并向Ox 轴正向运动.解 (1) 0t =时刻的旋转矢量1A 位置如图.由图可得12π3ϕ=.物体的简谐运动方程为 22πcos()2π 310cos(4π)3x A t Tt ϕ-=+=⨯+(2) 0t =时刻的旋转矢量2A 位置如图.由图可得2π2ϕ=-.物体的简谐运动方程为 22πcos()π 310cos(4π)2x A t T t ϕ-=+=⨯-简谐运动方程中的x 的单位为m ,t 的单位为s .8—22 一质量为0.25kg 的物体,在弹性力作用下沿Ox 轴做简谐运动,弹簧的劲度系数125N m k -=⋅.求:(1) 振动的周期和角频率;(2) 如果振幅2210m A -=⨯,在0t =时物体位于20110m x -=-⨯处,且向Ox 轴正向运动,求简谐运动方程.解 (1) 振动的角频率和周期分别为1110s ω--=== 2π2πs 0.628s 10T ω=== (2) 20110m x -=-⨯等于2A -.0t =时刻的旋转矢量的位置如图.由图可得2π3ϕ=-. 物体的简谐运动方程为 2cos()2π 210cos(10)3x A t t ωϕ-=+=⨯-式中x 的单位为m ,t 的单位为s .8—23 一质量为0.1kg 的物体,沿Ox 轴做简谐运动.振幅为21.010m -⨯,最大加速度为24.0m s -⋅.求物体通过平衡位置时的动能.解 因为最大加速度2max a A ω=,所以角频率的平方为 2max a Aω= 物体通过平衡位置时,动能最大,为22k 12E m A ω=.将2max a Aω=代入,可得22k max 2311221 0.1 4.0 1.010J 2.010J 2E m A ma A ω--==⎛⎫=⨯⨯⨯⨯=⨯ ⎪⎝⎭8—24 一物体做简谐运动,其运动方程为2ππ610cos()34x t -=⨯+ 式中,x 的单位为m ,t 的单位为s .求当x 值为多大时,振动系统的势能占总能量的一半.解 系统的势能为2p 12E kx =,总能量为212E kA =.在振动系统的势能占总能量的一半,即p 12E E =时,有 221124kx kA = 可得226.010m 4.2410m 22x A --=±=±⨯=±⨯ 8—25 一质点同时参与两个同方向的简谐运动,运动方程分别为2122π610cos(2)65π910cos(2)6x t x t -=⨯+=⨯-上面两式中,1x 、2x 的单位为m ,t 的单位为s .求合振动的振幅及初相.解 0t =时刻,质点参与的两个简谐运动的旋转矢量的位置如图.由图可得,合振动的振幅为2122(96)10m 310mA A A --=-=-⨯=⨯初相为25π6ϕϕ==- 8—26 一质点同时参与两个同方向的简谐运动,运动方程分别为124cos3π2cos(3)2x tx t ==+上面两式中, 1x 、2x 的单位为m ,t 的单位为s .求合振动的振幅及初相.解 0t =时刻,质点参与的两个简谐运动的旋转矢量的位置如图.由图可得,合振动的振幅为m 4.47m A ==初相为221arc tan arc tan 26.572A A ϕ===8—27 一质点同时参与两个同方向的简谐运动,运动方程分别为212225π610cos()6910cos()x t x t ϕ--=⨯-=⨯+上面两式中, 1x 、2x 的单位为m ,t 的单位为s .求:(1) 2ϕ为何值时合振动的振幅最大;(2) 2ϕ为何值时合振动的振幅最小.解 (1) 合振动的振幅最大时,212πk ϕϕ-=.由此可得215π2π2π6k k ϕϕ=+=-(2) 合振动的振幅最小时,()2121πk ϕϕ-=+.由此可得215ππ(21)π(21)π2π66k k k ϕϕ=++=+-=+。
(完整版)大学物理学(课后答案)第8章
第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。
则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。
而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。
8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。
开始时它们的压强和温度都相同。
现将3 J 热量传给氦气,使之升高到一定的温度。
若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。
故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。
故正确的是(C )。
8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。
又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 磁场 填空题 (简单)1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁感应强度大小为08IRμ 。
2、磁场的高斯定理表明磁场是 无源场 。
3、只要有运动电荷,其周围就有 磁场 产生;4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。
电流I 1产生的磁场作用在I 2回路上的合力F 的大小为01201222()I I L I I L aa b μμππ-+,F 的方向 水平向左 。
(综合)5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,则线圈上P 点将受到 安培 力的作用,其方向为 指向圆心 ,线圈所受合力大小为 0 。
(综合)6、∑⎰==⋅n i ilI l d B 00μ是 磁场中的安培环路定理 ,它所反映的物理意义是 在真空的稳恒磁场中,磁感强度B 沿任一闭合路径的积分等于0μ乘以该闭合路径所包围的各电流的代数和。
7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 0 。
8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。
9、磁场最基本的性质是对 运动电荷、载流导线 有力的作用。
4题图5题图10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α。
求通过该半球面的磁通量为2cos B R πα- 。
(综合)12、一电荷以速度v 运动,它既 产生 电场,又 产生 磁场。
(填“产生”或“不产生”)13、一电荷为+q ,质量为m ,初速度为0υ的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 匀速圆周 运动,其回旋半径R= 0m Bqυ,回旋周期T=2m Bqπ 。
14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为___0__________; 图b 圆心O 的磁感应强度为04IRμ。
15、在磁场中磁感应强度B 沿任意闭合路径的线积分总等于0i I μ∑ 。
这一重要结论称为磁场的环路定理,其数学表达式为0lB d l I μ=∑⎰。
16、磁场的高斯定理表明磁场具有的性质 磁感应线是闭合的,磁场是无源场 。
18、在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的根数不同,但电流的代数和相同,则磁感应强度沿两闭合回路的线积分 相同 ,两个回路的磁场分布 不相同 。
(填“相同”或“不相同” )判断题 (简单)1、安培环路定理说明电场是保守力场。
( × )2、安培环路定理说明磁场是无源场。
( × )3、磁场的高斯定理是通过任意闭合曲面的磁通量必等于零。
( √ )4、电荷在磁场中一定受磁场力的作用。
( × )5、一电子以速率V 进入某区域,若该电子运动方向不改变,则该区域一定无磁场;( × )6、在B=2特的无限大均匀磁场中,有一个长为L1=2.0米,宽L2=0.50米的矩形线圈,设线圈平面的法线方向与磁场方向相同,则线圈的磁通量为1Wb 。
( × )7、磁场力的大小正比于运动电荷的电量。
如果电荷是负的,它所受力的方向与正电荷相反。
(√) 8、运动电荷在磁场中所受的磁力随电荷的运动方向与磁场方向之间的夹角的改变而变化。
当电荷的运动方向与磁场方向一致时,它不受磁力作用。
而当电荷的运动方向与磁场方向垂直时,它所受的磁力为最大。
( √ )9、作用在运动电荷上的磁力F 的方向总是与电荷的运动方向垂直 。
( √ ) 10、均匀带电圆环中心的磁感应强度必然为零。
( √ ) 单项选择题1、(简单)磁场的高斯定理说明了稳恒磁场( 1)(1)磁场是闭合场; (2)磁感强度和面积的乘积为零; (3)磁场是有源场; (4)磁感线是不闭合曲线。
2、(一般综合)两无限长平行直导线的距离为d ,各自通有电流为I 1和I 2,且电流的流向相同,则(2)(1)两导线上每单位长度所受的相互排斥力为122I I d μπ ;(2)两导线上每单位长度所受的相互吸引力为122I I d μπ ; (3)两导线上每单位长度所受的相互吸引力为124I I d μπ ;(4)两导线之间没有相互作用力。
3、(简单)在真空稳恒磁场中,安培环路定理的数学表达式为: b A 、0lIB d l μ=∑⎰; B 、0lB d l I μ=∑⎰;C 、 0lIBd l μ=∑⎰; D 、0lBd l I μ=∑⎰。
4、(简单)磁场的高斯定理0=⋅⎰s d B s说明了稳恒磁场 cA 、磁感线是不闭合曲线;B 、磁感强度和面积的乘积为零;C 、磁场是无源场;D 、磁场是有源场。
5、(简单)一电子以速率υ进入某一区域,如果观测到该电子做匀速直线运动,那么该区域( d )A .一定没有电场,但不一定没有磁场;B .一定没有电场,也一定没有磁场;C.一定有电场,但不一定有磁场; D .既可能有电场,也可能有磁场6、(简单)一带电量为q 的粒子,以速度v 进入电场和磁场所在的区域,保持速度的大小和方向都不变,则E 和B 可能为: b(A )E ≠ 0 B = 0 (B )E = 0 B ≠ 0 (C )E 与B 平行 (D )E 与B 反平行 7、(简单)一带电粒子垂直射入均匀磁场,如果其m 增大到2倍,V 增大到2倍,B 增大到4倍,则粒子圆周运动范围内的磁通量增大到原来的 bA 、2倍 ;B 、4倍 ;C 、1/2倍 ;D 、1/4倍 。
8、(一般综合)如图所示,一宽为b 的薄金属板,其电流为I ,则在薄板的平面上,距板的一边为r 的点P 的磁感强度B 的大小及方向为 [ 3](1)方向垂直纸面向外,大小为r br bI+ln2πμ(2)方向垂直纸面向上,大小为r b r I+ln2πμ(3)方向垂直纸面向里,大小为r b r bI+ln2πμ(4)方向垂直纸面向下,大小为r b r I+ln2πμ10、(一般综合)两无限长平行直导线之间的距离为d ,各自通有电流为I 1和I 2,且电流的流向相同,则( d )A .两导线上每单位长度所受的相互排斥力为dI I 212πμ ;B .两导线之间没有相互作用力;C .两导线上每单位长度所受的相互吸引力为dI I 214πμ ;D .两导线上每单位长度所受的相互吸引力为dI I 212πμ 。
11、(一般综合)两平行的无限长载流直导线,分别通有电流I 1和I 2,如图所示。
已知其中间P 点处的磁感强度B = 0,则两电流I 1和I 2的大小和方向AA. I 1> I 2,同向;B. I 1> I 2,反向;C. I 1< I 2,同向;D. I 1< I 2,反向。
12、(简单)电量为q 的粒子在均匀磁场中运动,下列说法正确的是 ( b )(A)只要速度大小相同,所受的洛伦兹力就一定相同;(B)速度相同,带电量符号相反的两个粒子,它们受磁场力的方向相反,大小相等; (C)质量为m ,电量为g 的粒子受洛伦兹力作用,其动能和动量都不变; (D)洛伦兹力总与速度方向垂直,所以带电粒子的运动轨迹必定是圆。
13(简单一半径为r 的细导线圆环中通有稳恒电流I ,在远离该环的P 点处的磁感应强度 b(A)与Ir 成正比; (B)与Ir 2成正比; (C)与I /r 成正比; (D)与I /r 2成正比。
14、(简单)在一平面内有两条垂直交叉但相互绝缘的导线,流过每条导线的电流I 的大小相等,其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零 [ 4 ](1)仅在象限Ⅰ; (2)仅在象限Ⅰ、Ⅲ; (3)仅在象限Ⅰ、Ⅳ;(4)仅在象限Ⅱ、Ⅳ15、(综合)α粒子与质子以同一速率垂直于磁场方向入射到均匀磁场中,它们各自作圆周运动的半径比为:P R R α和周期比:P T T α分别为: [ 4 ](1) 1和2; (2)1和1; (3)2和2; (4)2和1;16、(简单)通以稳恒电流的长直导线,在其周围空间 [ b]A .只产生电场B .只产生磁场C .既产生电场,又产生磁场D .既不产生电场,也不产生磁场17、(一般综合)将空螺线管通以正弦交流电,由其空心螺线管的一端沿中心轴线射入一束电子流。
则电子在空心螺线管内的运动情况是( b )14题图A、简谐运动;B、匀速直线运动;C、匀加速直线运动;D、匀减速直线运动18、(一般综合)一电量为q的粒子在均匀磁场中运动,下列哪些说法是正确的? 2(1)只要速度大小相同,所受的洛伦兹力就一定相同;(2)速度相同,电量分别为+q和-q的两个粒子所受磁场力的方向相反,大小相等;(3)质量为m,电量为q的带电粒子,受洛伦兹力作用,其动能和动量都不变;(4)洛伦兹力总与速度方向垂直,所以带电粒子运动的轨迹必定是圆。
19、(简单)一带电粒子垂直射入均匀磁场,则它将作( a )A、匀速圆周运动;B、变速圆周运动;C、直线运动;D、匀加速直线运动。
20、(一般综合)有一由N匝细导线绕成的边长为b的正方形线圈,通有电流I,置于均匀外磁场B中,当线圈平面的法线方向与外磁场方向垂直时,该线圈所受的磁力矩M的大小为 [ 1 ](1)2NIb B;(2)2/2Nb IB;(3)2/4NIb B;(4)0 。
21、(简单)(如图)在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知 ( 1 )(1)d0LB l=⋅⎰,且环路上任意一点B = 0;(2)d0LB l=⋅⎰,且环路上任意一点B≠0;(3)d0LB l≠⋅⎰,且环路上任意一点B≠0;(4)d0LB l≠⋅⎰,且环路上任意一点B =常量。
22、(简单)一半圆形闭合线圈(如图二、1),其半径为R,通有电流I,若将它放入均匀磁场B 中,B的方向和线圈平面平行,此线圈所受到的磁力F和磁力矩M为( 4 )。
(1)F=2RIB , M=0; (2)21F=2R IB , M=2R BIπ;(3) F=0 , M=0; (4)21F=0, M=2R B Iπ。
21题图23、(简单)通以稳恒电流的长直导线,在其周围空间 [ a ]A .只产生电场;B .一定会产生磁场;C .不产生电场,只产生变化的磁场;D .既不产生电场,又不产生磁场 24、(简单)在真空稳恒磁场中,安培环路定理的数学表达式为: ( b )A 、lIB d l μ=∑⎰; B 、0l B d l I μ=∑⎰;C 、lIBd l μ=∑⎰; D 、0l Bd l I μ=∑⎰。
计算题1、(简单)如图所示,一根长直导线载有电流I 1=30A ,矩形回路载有电流I 2=20A,试计算作用在回路上的合力。