单相桥式全波整流电路

合集下载

《单相桥式全波整流电路》上课PPT

《单相桥式全波整流电路》上课PPT
直流稳压电源
直流稳压电源一般由电源变压器、整流电路、滤波电路和稳压电路等组成。
电源变压器:将输入的220V或380V交流电压变换为所需的低压交流电; 整流电路:将低压交流电转换成脉动直流电; 滤波电路:减小电压的脉动,使输出电压平滑; 稳压电路:使输出的直流电压基本不受电网波动及负载变动的影响。
《单相桥式全波整流电路》
上课
《单相桥式全波整流电路》
《单相桥式全波整流电路》
各种家用电器、电子设备的运行都需要稳定的直流电源。在一般的 电子产品,如手机、MP3/MP4、小型扩音器等,通常使用电池供电, 但仍有大量电器设备,如日常生活中常用的电视机、手机充电器、家庭 影院等,往往将交流220V转换成直流稳压电源来供电。
《单相桥式全波整流电路》
u1 u2
u2
u1 u2
当输入信号为正半 周时,VD1、VD3导通, VD2、VD4截止,负载 上有半波输出。
当输入信号为负半 U0 周时,VD2、VD4导通, VD1、VD3截止,负载 上有半波输出。
《单相桥式全波整流电路》
【桥式整流电路参数估算】
直流输出电压平均值
2U2 u2
U o(AV) 0.9U 2
与半波整流电路相比,在相同的变压器次级电压下, 对二极管的参数要求相对较低,并且还具有输出电压高、 变压器利用率高、脉动小等优点,因此得到广泛应用。
《单相桥式全波整流电路》
课堂讨论
某单相桥式全波整流电路, 如果其中一只整流二极管VD2 出现下列问题:(1)反接(2) 虚焊(3)击穿,将会对电路 产生什么影响?
u1
u2
《单相桥式全波整流电路》
输入正半周
VD4
u1 u2
VD3
输入负半周

2.1.4_单相桥式全控整流电路(电阻性负载)解析

2.1.4_单相桥式全控整流电路(电阻性负载)解析

4)输出电流有效值I与变压器二次侧电流I2 输出电流有效值I与变压器二次侧电流I2相同为
U U2 I I2 R R
1 π sin 2 2π π
4.3.2单相桥式全控整流电路(阻-感性负载)
1、电路结构
电感的感应电势使输出电压波形出现负波。输出电流是近似 平直的,晶闸管和变压器副边的电流为矩形波。
ud Ud
0
t1

t 2
t
iT1,4
id
Tr
iT2,3
0
Id
t
Id
i2 u2
VT1 a
VT3
L
0 u T1
t
u1
ud
b
VT2 VT4
0
R
u 2 (i2 )
t
u2 i2
Id
(a)
0
t
图4-4
(b)
2、工作原理
1)在u2正半波的(0~α)区间:

晶闸管VT1、VT4承受正压,但无触发脉冲,
3、波形
300
图4-2
600
900
1200
图4-3
1500

单相桥式整流器电阻性负载时的移相范围是 0~180º 。 α=0º 时,输出电压最高;α=180º 时,输出电压最小。
4. 基本数量关系 1)输出电压平均值Ud
1 Ud π



2U 2 sin tdt
4.3.1 单相桥式全控整流电路(电阻性负载)

1、电路结构 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成 共阳极,每一只晶闸管是一个桥臂。
ud (id )
Ud

单相桥式全波整流电路

单相桥式全波整流电路

整流电流大于IV
额定反向工作电压大于VRM
查晶体管手册,可选用整流电流为3A,额定反向工作电压 为100V的整流二极管2CZ12A(3A/100V)四只。
三、知识拓展
如果你的公司制造二极管,为了方 便使用者组装桥式整流电路,你有什么 好主意?
练习:QL型全桥堆的连接方法
T
V1
RL
全桥堆的正、负极端分别接负载的正、 负极。两个交流端接变压器输出端。
教学方法: 讲解法、作图法
过程教学: 一、复习引入
复习单相半波整流电路和单相全波整流电 路。
旧课回顾
1.单相半波整流电路
有什么优点和缺点? 优点:电路简单,变压器无抽头。 缺点:电源利用率低,输出电压脉动大。
旧课回顾
2.单相全波整流电路
有什么优点和缺点? 优点:整流效率高,
输出电压波动小。
缺点:变压器必须有中心抽头,
v1
负半-周负: 半-周:V3
TT
- - V4
V1
+ + V3
V4 V1 V21、桥式整流电路工作原理
RL RL 正半周:
V3 V2
电流通过V1、V3,V2、 V2V4截止。电流从右向左
通过负载。
V4 V1 V1负半周:
RL RL 电流通过V2、V4,V1、 V3截止。电流从右向左
通过负载。
V3 V2
§1.3.3 单相桥式全波整流电路
单相桥式全波整流电路
课题: §1.3.3 单相桥式全波整流电路
教学要求: 1、单相桥式全波整流电路的组成 2、整流原理 3、波形图 教学重点: 1、桥式全波整流电路的组成 2、整流原理分析 教学难点: 1、整流原理分析 2、整流电路中涉及输出电流、电压的计算

单相桥式全控整流电路(纯电阻_阻感_续流二极管_反电动势)

单相桥式全控整流电路(纯电阻_阻感_续流二极管_反电动势)

电力电子技术实验报告实验名称:单相桥式全控整流电路的仿真与分析班级:自动化091组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相桥式全控整流电路(电阻性负载) .............................................. 错误!未定义书签。

1. 电路的结构与工作原理 (1)2. 单相桥式全波整流电路建模 (2)3. 仿真结果与分析 (4)4. 小结 (6)二. 单相桥式全控整流电路(阻-感性负载) ............................................. 错误!未定义书签。

1. 电路的结构与工作原理................................................................. 错误!未定义书签。

2. 建模................................................................................................. 错误!未定义书签。

3. 仿真结果与分析............................................................................. 错误!未定义书签。

4. 小结................................................................................................. 错误!未定义书签。

三. 单相桥式全控整流电路(反电势负载)......................................... 错误!未定义书签。

1. 电路的结构与工作原理................................................................. 错误!未定义书签。

单相桥式全控整流电路的故障与处理

单相桥式全控整流电路的故障与处理

单相桥式全控整流电路的故障与处理单相桥式全控整流电路是一种常见的电力电子装置,用于将交流电转换为直流电。

然而,在实际应用中,由于各种原因,这种电路可能会出现故障。

本文将详细介绍单相桥式全控整流电路的故障原因、故障类型以及相应的处理方法。

一、故障原因1.1 电源问题:如果输入交流电源的电压不稳定或有较大的波动,可能导致整流电路出现故障。

1.2 元件老化:整流电路中的元件如二极管、晶闸管等可能会因长时间使用或负载过大而老化,从而影响其正常工作。

1.3 过载:如果负载超过了整流器所能承受的最大值,可能导致整流器无法正常工作。

1.4 温度过高:如果整流器长时间工作在高温环境下,可能会导致元件温度过高而损坏。

二、故障类型2.1 整流器不能正常启动:当开关触发脉冲信号无法触发晶闸管导通时,整流器无法启动。

2.2 整流输出波形不正常:当晶闸管导通或关断不正常时,整流输出波形可能会出现明显的畸变。

2.3 整流器无法输出电压:当整流器无法将交流电转换为直流电时,可能导致输出电压为零。

2.4 整流器过热:当整流器长时间工作在高温环境下,可能导致元件过热而损坏。

三、故障处理方法3.1 整流器不能正常启动的处理方法:3.1.1 检查开关触发脉冲信号是否正常:可以使用示波器检测开关触发脉冲信号的幅值和频率是否符合要求。

3.1.2 检查晶闸管是否工作正常:可以使用万用表或二极管测试仪检测晶闸管的导通状态,如果发现晶闸管损坏,需要更换新的晶闸管。

3.2 整流输出波形不正常的处理方法:3.2.1 检查晶闸管是否工作正常:同样可以使用万用表或二极管测试仪检测晶闸管的导通状态,并确保晶闸管能够准确地开启和关闭。

3.2.2 检查负载是否过大:如果负载超过了整流器所能承受的最大值,需要减小负载或增加整流器的容量。

3.3 整流器无法输出电压的处理方法:3.3.1 检查输入交流电源是否正常:可以使用示波器检测输入交流电源的电压波形是否稳定,如果发现波形不稳定,需要修复或更换电源。

单相桥式全控整流电路

单相桥式全控整流电路

晶闸管额定电压:
UVTrated k U sav VTmax 509 V
(ksav 1.5)
17
电力电子技术
(3)移相:改变触发脉冲出现的时刻,即改变α的大小,叫做 移相。改变α的大小,也就控制了整流电路输出电压的大小, 这种方式也叫做“相控”。
4
单相桥式全控整流电路
(4)移相范围:改变α使输出整流电压平均值从最大值降到最 小值(零或负最大值),α的变化范围叫做移相范围。单相 桥式整流电路电阻负载时移相范围为180º。
Id
变压器二次交流电流有效值 I2rms Id
10
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作波形
11
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作分析
由于存在反电势负载,晶闸管提前关断
停止导电角:=arcsin E
2U 2rm s
当α≥δ时,输出直流电压
电感有抗拒电流变化的特性,大电感负载状态由于电 感的储能作用,负载id始终连续且电流近似为一直线。
电路稳态工作时,每组晶闸管均在另一组晶闸管触发
导通时才换流关断,每组晶闸管导通时间均为180º。
8
9
单相桥式全控整流电路
大电感负载运行参数分析
交流电源电压 u2 2U2 sin t
整流输出电压平均值
负载整流电压平均值Udav
Udav
1 π
2U2rmssintd(t)
2U π
2rm
s
(1
c
os
)
0.9U2rm
s
1cos
2
直流电流平均值Idav
Idav
Udav R
0.9U2rms 1 cos

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告实验目的:通过实验,了解单相全控桥式整流电路的工作原理,掌握其控制特性和输出特性,加深对电力电子器件的认识。

实验设备和器件:1. 单相变压器。

2. 电阻箱。

3. 电容器。

4. 交流电压表。

5. 直流电压表。

6. 电压调节器。

7. 全控桥式整流电路实验箱。

8. 示波器。

9. 电流互感器。

10. 电阻负载。

11. 电感负载。

12. 电容负载。

13. 三通电压表。

14. 三通电流表。

15. 三通功率表。

16. 三相交流电源。

17. 直流电源。

18. 电子开关管(可控硅)。

实验原理:单相桥式全控整流电路是一种能够实现交流电能转换为直流电能的电路。

其工作原理是通过控制可控硅的导通角来控制整流电路的输出电压和电流。

当可控硅导通角为0时,整流电路输出电压和电流为最大值;当可控硅导通角为π时,整流电路输出电压和电流为0。

通过不同的控制方式,可以实现对输出电压和电流的精确控制。

实验步骤:1. 将实验箱连接好,接通交流电源和直流电源。

2. 调节电压调节器,使得交流电源输出额定电压。

3. 调节电阻箱和电容器,接入电路,使得整流电路工作在不同的负载条件下。

4. 调节可控硅的触发脉冲,观察输出电压和电流的变化。

5. 使用示波器观察整流电路的输入和输出波形,并记录数据。

6. 尝试不同的控制方式,比较输出特性的变化。

实验结果分析:通过实验,我们观察到了单相桥式全控整流电路在不同控制条件下的输出特性。

当可控硅的导通角变化时,输出电压和电流呈现出不同的变化规律。

在不同负载条件下,整流电路的输出特性也有所不同。

通过实验数据的记录和分析,我们可以得出结论,单相桥式全控整流电路可以实现对输出电压和电流的精确控制,适用于不同的负载条件。

实验总结:通过本次实验,我们深入了解了单相桥式全控整流电路的工作原理和特性。

掌握了实验中所用到的各种设备和器件的使用方法,加深了对电力电子器件的认识。

同时,通过实验数据的记录和分析,我们对单相桥式全控整流电路的特性有了更深入的理解。

2.1.5 单相桥式全控整流电路(阻-感性负载)

2.1.5 单相桥式全控整流电路(阻-感性负载)

ωt 2
ωt
α
Id
id
i2 u1 u2
iT2,3
ωt
Id
VT1
VT3
L
u T1
ωt
ud
R
VT2 VT4
u 2 (i2 )
ωt
u2 i2
Id
ωt
图2-10
2、工作原理 、
1)在u2正半波的(0~α)区间: ) 正半波的( )区间: 晶闸管VT 承受正压,但无触发脉冲,处于关断状态。 晶闸管 1、VT4承受正压,但无触发脉冲,处于关断状态。 假设电路已工作在稳定状态,则在0~ 区间由于电感释放 假设电路已工作在稳定状态,则在 ~α区间由于电感释放 能量,晶闸管VT 维持导通。 能量,晶闸管 2、VT3维持导通。 2)在u2正半波的 ) 正半波的ωt=α时刻及以后: 时刻及以后: 时刻及以后 在 ωt=α 处 触 发 晶 闸 管 VT1 、 VT4 使 其 导 通 , 电 流 沿 a→VT1→L→R→VT4→b→Tr的二次绕组 的二次绕组→a流通 , 此时 流通, 的二次绕组 流通 负载上有输出电压( 和电流。 负载上有输出电压(ud=u2)和电流。电源电压反向加到晶 闸管VT 使其承受反压而处于关断状态。 闸管 2、VT3上,使其承受反压而处于关断状态。
3、 基本数量关系 、 1)输出电压平均值 d )输出电压平均值U
1 Ud = π

π +α
α
2U 2 sin ωtd (ωt )
2 2U 2 = cos α = 0.9U 2 cos α π
2)输出电流平均值Id )输出电流平均值
Ud Id = R
3)晶闸管的电流平均值IdT 由于晶闸管轮流导电, 由于晶闸管轮流导电,所以流过每个晶闸管的平 均电流只有负载上平均电流的一半。 均电流只有负载上平均电流的一半。

单相全波和桥式整流电路

单相全波和桥式整流电路

单相全波整流电路中,若要求输出直流电压为18v,则整流电压器二次侧的输出电压时多少1》要求整流输出直流电压为18v而没有电容器滤波时,变压器二次侧的输出电压:U交=U直/0.9=18/0.9=20(V)2》整流输出直流设置了电容器滤波后电压为18v时,变压器二次侧的输出电压:U交=U直/0.9/1.41=18/0.9/1.41≈14(V)在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。

由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。

很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。

为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。

晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。

为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就是在自然换相点触发换相时的情况。

图1是电路接线图。

为了分析方便起见,把一个周期等分6段(见图2)。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管KP1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。

这时电流由a相经KP1流向负载,再经KP6流入b相。

变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。

加在负载上的整流电压为ud=ua-ub=uab经过60°后进入第(2)段时期。

这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。

这时电流由a相流出经KPl、负载、KP2流回电源c相。

变压器a、c两相工作。

单相全波可控整流电路单相桥式半控整流电路

单相全波可控整流电路单相桥式半控整流电路

单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。

图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。

变压器不存在直流磁化的问题。

单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。

单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。

单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。

因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。

如此即成为单相桥式半控整流电路(先不考虑VDR)。

单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。

其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。

b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。

c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。

d)u2过零变正时,VD4导通,VD2关断。

VT3和VD4续流,u d又为零。

3.续流二极管的作用1)避免可能发生的失控现象。

2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。

单相桥式全控整流电路

单相桥式全控整流电路

ud=0) ud=u2 ud=0 ud=-u2 ud=0
输出电压波形同电阻性负载,电路有自然续流功能 移相范围: 0~π; 导通角θ=π-α
㈡各电量计算
1、负载
Ud

0.9 1
cos
2
Id

Ud Rd
2、晶闸管
I dT

1 2
Id
IT
1 2
流二极管 IdD IdT
ID IT U DM 2U 2
㈢存在问题:失控现象
若突然关断触发脉冲或将α迅速移到 180°,可能出现一只晶闸管直通,两 只整流二极管交替导通的电路失去控制 的现象,即失控现象。 此时输出变成单相不可控半波整流电压 波形,导通的晶闸管会因过热而损坏。 解决办法:接续流二极管VD
㈣接续流二极管VD后电路分析
在的负半周 0<ωt<α期间 VT1~VT4都不导通 ωt=α 时刻 触发 0<ωt<α期间 VT2、VT4导通 ωt=π 时刻 VT2、VT4关断
结论
1、在交流电源电源u2的正、负半周里, VT1、 VT3和 VT2、VT2两组晶闸管轮流触发导通,将 交流电转变成脉动直流电;
2、改变 α 角度大小,ud、id波形相应改变;
2、参数计算:
•输出电流平均值
Id

Ud E Rd
•其它参数计算与大电感负载时相同
2.3 单相桥式半控整流电路
一、电路结构(flash)
将单相桥式全控整流电路中的一对晶 闸管换成两只整流二极管即可
工作特点:晶闸管需触发才导通;整 流二极管承受正向电压时会自然(换 相)导通
二、电路工作原理及参数计算
Id

Ud R

桥式整流和滤波电路

桥式整流和滤波电路
桥式整流和滤波电路
一、单相桥式全波整流电路 1.电路如图
V1~V4为整流二 极管,电路为桥
式结构。
2. 工作原理 (1)v2正半周时,如图1.2.4(a)所示,A点电位高于B点 电位,则V1、V3导通(V2、V4截止),i1自上而下流过负载RL; (2)v2负半周时,如图1.2.4(b)所示,A点电位低于B点电 位,则V2、V4导通(V1、V3截止),i2自上而下流过负载RL;
整流元件组合件称为整流堆,常见的有: (1)半桥:2CQ型,如图1.2.8(a)所示; (2)全桥:QL型,如图1.2.8(b)所示。
优点:电路组成简单、可靠。
电磁炉、电视机均 有应用。
图1.2.8 半桥和全桥整流堆
二、滤波电路
交流 整流
脉动
滤波 直流
电压
直流电压
电压
1.作用:滤除脉动直流电中脉动成分。 2.种类:电容滤波器、电感滤波器、复 式滤波器
【例l—3】 利用稳压二极管或二极管的 正向压降,是否也可以稳压?
❖ 【例l—4】 在图1—3所示电路中,发光二极 管导通电压U。=1.5 v,正向电流在5~l5 mA 时才能正常工作。试问:(1)开关S在什么位 置时发光二极管才能发光? (2)R的取值范围 是多少?
❖ 【例l-5】 VZ1和VZ2为两只稳压二极管,稳 压值分别为6.5 V和5 V。求图1—4所示电路 的稳压值。
图1.3.3 带电感滤波器
3.应用:较大功率电源。 4.缺点:体积大、重量大。
(四)复式滤波器
结构特点:电容与负载并联,电感与负载串联。 性能特点:滤波效果好。 1. L型滤波器 (1)电路: (2)原理:整流输出的脉动直流经过电感L,交流成分被 削弱,再经过电容C滤波,就可在负载上获得更加平滑的直流 电压。

单相桥式全控整流电路实验

单相桥式全控整流电路实验

单相桥式全控整流电路实验一、实验目的1.理解单相桥式全控整流电路的工作原理;2.掌握整流电路的参数测试方法;3.学习单相桥式全控整流电路的设计与调试方法。

二、实验原理单相桥式全控整流电路是一种常用的整流电路形式,其工作原理如下:在交流电源的正半周,整流二极管VT1和VT3导通,电流从变压器二次侧的输出端经VT1和VT3流至负载;而在交流电源的负半周,整流二极管VT2和VT4导通,电流从变压器二次侧的输出端经VT2和VT4流至负载。

通过控制晶闸管的触发角,可以调节输出电压的大小。

三、实验步骤1.搭建单相桥式全控整流电路,包括电源、变压器、整流二极管、负载和触发器等部分;2.连接电源,使电路开始工作;3.使用示波器观察整流电路的输入电压和输出电压的波形;4.调整触发器的触发角,观察输出电压的变化;5.测量整流电路的输入电压、输出电压、电流等参数;6.根据实验数据计算整流效率等参数;7.对实验结果进行分析,并与理论值进行比较。

四、实验结果与分析1.实验结果通过实验测量,得到以下数据:输入电压V1=220V,输出电压V2=90V,输出电流I2=5A,晶闸管两端电压VTH=10V,触发角α=10°。

根据这些数据,我们可以计算出整流效率为η=输出电压/输入电压×100%=90/220×100%=40.9%。

2.结果分析从实验结果可以看出,单相桥式全控整流电路的输出电压与输入电压的关系是近似的线性关系,输出电压随着触发角的增大而减小。

当触发角为90°时,输出电压为零,这表明单相桥式全控整流电路具有可控性。

同时,由于晶闸管两端存在电压降,因此整流效率受到一定的影响。

但是,当触发角较小时,整流效率较高。

五、结论通过本次实验,我们验证了单相桥式全控整流电路的工作原理和设计方法。

实验结果表明,单相桥式全控整流电路具有可控性好、效率较高的优点。

在实际应用中,可以通过调整触发角来调节输出电压的大小,实现电气设备的节能控制。

单相桥式全控整流电路(阻感性负载)

单相桥式全控整流电路(阻感性负载)

1.单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1.单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1) 在u2正半波的(0~α )区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工 作在稳定状态,则在O 〜α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2) 在u2正半波的ω t=α时刻及以后:在ω t=α处触发晶闸管 VT1、VT4使其导通,电流沿 a →VT1 → L → R →VT4 →b →Tr 的二次绕组→ a 流通,此时负载上有输出电压(ud=u2)和电流。

电源电 压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3) 在u2负半波的(π ~ π + α)区间:当ω t=π时,电源电压自然过零,感应电势使晶闸管 VT1、VT4继续导通。

1.1单相桥式全控整流电路电路结构(阻 -感性负载)单相桥式全控整流电路用四个晶闸管, 接成共阳极,每一只晶闸管是一个桥臂。

两只晶闸管接成共阴极,两只晶闸管 单相桥式全控整流电路(阻-感性负载)I!*-■\U/-1-kγ叫OO:Ow...0f ∣2√*-(b}≡r∣√在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关 断状态。

4)在u2负半波的ω t=π +α时刻及以后:在ω t=π + α处触发晶闸管 VT2、VT3使其导通,电流沿 b →VT3→L →R → VT2→a →Tr 的二次绕组→ b 流通,电源电压沿正半周期的方向施加到负载上, 负载上有输出电压(Ud=-U2)和电流。

此时电源电压反向加到 VT1、VT4上,使其承受反压而变为关断状态。

晶闸管 VT2、VT3 一直要导通到下一周期ω t=2 π +α处再次触发晶闸管VT1、VT4为止。

1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2单相双半波可控整流电路仿真模型(阻-感性负载)興朋rgui—B∣÷ FtJιIU lPUIHTfrIflηi pr1 ⅛B -∣S ,T⅛∏Ftor2电源参数,频率50hz,电压100v ,如图3⅞⅛ BIQCk Parameter5: AC VoItage SOUrCe AC Voltage SOUrCe (mask) CIink)Ideal S l innSOidaI AC VOlt age SIDUrCe-图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V ,周期0.02,占空比10%,时相延迟α /360*0.02, 如图4图4.单相桥式全控整流电路脉冲参数设置ApplyCancelHe :IPVT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5⅝∣ Source BloCk Parameters: PUISe Generator2图5.单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告一、实验目的1、熟悉单相桥式全控整流电路的工作原理。

2、掌握单相桥式全控整流电路在不同负载情况下的输出特性。

3、学会使用示波器等仪器观测电路中的电压、电流波形。

二、实验原理单相桥式全控整流电路由四个晶闸管组成,其电路图如下图所示:插入电路图在电源电压的正半周,晶闸管 VT1 和 VT4 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经 VT1、负载、VT4 流回电源的负端,负载上得到正电压;在电源电压的负半周,晶闸管 VT2 和VT3 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经VT2、负载、VT3 流回电源的负端,负载上得到负电压。

通过控制触发角α的大小,可以改变输出直流电压的平均值。

三、实验设备1、电力电子实验台2、示波器3、万用表4、电阻负载、电感负载四、实验内容及步骤(一)电阻负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。

(二)电感负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。

(三)反电动势负载实验1、按电路图连接好实验线路,将触发角α调至 0°。

2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。

单相桥式全波整电路原理图解

单相桥式全波整电路原理图解

单相桥式全波整流电路原理图解
上面是单相桥式全波整流电路的电路图
前半个周期,D1和D3导通,而D2和D4截止,加在RL上的是上正下负电压,后半个周期,D2和D4导通,而D1和D3截止,加在RL 上的还是上正下负的电压。

如此反复此电路和全波整流电路一样,都完全利用了电流的整个过程。

从而使得U0= 0.9U2。

继而也可以求出I0的平均值;
流过每个二极管的电流等于I0的一半;
在不考虑压降的情况下,当一组二极管导通时,另一组二极管截止,承受全部交流峰值电压,即为最高发向工作电压为根号二倍的U2;。

整流电路的分类

整流电路的分类

常见整流电路的分类整流电路是将交流电转换为直流电的电路。

根据整流电路的不同特点和应用需求,可以分为以下几种分类:一、单相半波整流电路:单相半波整流电路是最简单的一种整流电路。

它通过一个二极管将交流电的负半周削减掉,只保留正半周。

输出电压波形为脉冲形式,具有较大的脉动。

它由一个二极管和负载电阻组成。

其工作原理如下:1、输入:单相交流电源。

交流电源的电压随时间变化,正负半周交替出现。

2、二极管导通:当交流电源的正半周电压大于二极管的正向导通电压时,二极管处于导通状态。

此时,电流从二极管的正极流过,经过负载电阻后形成输出电流。

3、二极管截止:当交流电源的负半周电压小于二极管的正向导通电压时,二极管处于截止状态。

此时,二极管不导通,电流无法通过负载电阻。

通过以上工作原理,单相半波整流电路将交流电的负半周削减掉,只保留正半周。

输出电压波形为脉冲形式,具有较大的脉动。

脉动的原因是输出电流在截止期间没有输出,导致输出电压下降。

单相半波整流电路的优点是结构简单、成本低廉,适用于对输出电压要求不高的场合。

缺点是输出电压脉动大,效率较低。

在实际应用中,单相半波整流电路常用于对电压要求不严格的低功率电子设备中,如电子钟、电子秤等。

二、单相全波整流电路:单相全波整流电路通过两个二极管和一个中心点接地的负载电阻,将交流电的正负半周都转换为正半周输出。

输出电压波形为脉冲形式,脉动比半波整流电路小。

它是一种将单相交流电转换为直流电的电路,通过两个二极管和一个中心点接地的负载电阻来实现。

其工作原理如下:1、输入:单相交流电源。

交流电源的电压随时间变化,正负半周交替出现。

2、第一个二极管导通:当交流电源的正半周电压大于第一个二极管的正向导通电压时,第一个二极管处于导通状态。

此时,电流从第一个二极管的正极流过,经过负载电阻后形成输出电流。

3、第一个二极管截止,第二个二极管导通:当交流电源的负半周电压大于第二个二极管的正向导通电压时,第一个二极管处于截止状态,第二个二极管处于导通状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子技术基础与技能
制作:韦济全
重桥式全波整流电路
单相桥式全波整流电路
课题: §1.3.3 单相桥式全波整流电路
教学要求: 1、单相桥式全波整流电路的组成 2、整流原理 3、波形图 教学重点: 1、桥式全波整流电路的组成 2、整流原理分析 教学难点: 1、整流原理分析 2、整流电路中涉及输出电流、电压的计算
例题
有一直流负载,需要直流电压VL=60V,直流电流 IL=4A。求电源变压器次级电压V2并选择整流二极管。
解:因为负载电压VL=0.9V2
所以电源变压器次级电压 流过二极管的平均电流 VL V2= 0.9 60V = ≈66.7V 0.9
╳4A=2A
1 1 IV= I = 2 L 2
二极管承受的反向峰值电压 VRM 2V2=1.41╳66.7V ≈94V 选择整流二极管条件是: 整流电流大于IV 额定反向工作电压大于VRM
输出电压波动小。
缺点: 变压器必须有中心抽头,
二极管承受的反向电压高。
由于以上两个整流电路都有 缺点,应用比较少。
创设情景,导入
问题 能否结合两个电路的优点,再做改进呢? 设想
用半波整流电路的变压器, 把v2负半周利用起来。
▲试试看 ▲看你的设计模拟图 ▲让你的设计更上一层楼!
二、新课 讲解
1、电路图
单相桥式全波整流电路
教学方法: 讲解法、作图法 过程教学: 一、复习引入 复习单相半波整流电路和单相全波整流电 路。
旧课回顾
1.单相半波整流电路
有什么优点和缺点? 优点:电路简单,变压器无抽头。
缺点:电源利用率低,输出电压脉动大。
旧课回顾
2.单相全波整流电路 有什么优点和缺点? 优点: 整流效率高,
阅读课文
练习反馈故障分析
二极管接反: 一个二极管接反,变压器短路烧毁。
二极管短路: 一个二极管短路,变压器短路烧毁。 二极管断路: 一个二极管断路,变成半波整流电路。
负半周 不通
T
v1
+
v2
+
断路 RL
本节课我们学习了单相桥式整流电路的 组成、工作原理、波形图、参数计算以及常 见的故障,通过对电路的分析,我们可以总 结出单相桥式整流电路的特点是:输出电压 脉动小,每只整流二极管承受的最大反向电 压和半波整流的一样。由于每半周内变压器 二次绕组都有电流流过,变压器利用效率高 因此其应用比较广泛。
查晶体管手册,可选用整流电流为3A,额定反向工作电压 为100V的整流二极管2CZ12A(3A/100V)四只。
三、知识拓展
如果你的公司制造二极管,为了方 便使用者组装桥式整流电路,你有什么 好主意?
练习:QL型全桥堆的连接方法
T
V1
RL
全桥堆的正、负极端分别接负载的正、 负极。两个交流端接变压器输出端。
V2
V2
3、输出波形
下一页
4、参数计 负载和整流二极管上的电压和电流 算
(1)负载电压VL
VL 0.9V2
(2)负载电流IL
(3)二极管的平均电流IV
V L 0.9V 2 IL RL RL
IV
1 IL 2
(4)二极管承受反向峰值电压VRM
VRM 2V2
总结提炼
优点:输出电压高,纹波小,VRM 较低。应用广泛。
单相桥式整流电路
下一页
T
T
+
+
V4
V4
V1
RL
V1 2、桥式整流电路工作原理
v1
RL
正半周: 电流通过V1、V3,V2、V4 V2 截止。电流从右向左通 过负载。
V1负半周:
负半周: - V3 -负半周:
V3
V2
T
T
+
+
V4
V4
V1
RL
V1
V3
RL
V3
电流通过V2、V4,V1、V3 截止。电流从右向左通 过负载。
相关文档
最新文档