2017年第14届中国东南地区数学奥林匹克高二年级试题(图片版)

合集下载

历届东南数学奥林匹克试题

历届东南数学奥林匹克试题

目录2004年东南数学奥林匹克 (2)2005年东南数学奥林匹克 (4)2006年东南数学奥林匹克 (6)2007年东南数学奥林匹克 (9)2008年东南数学奥林匹克 (11)2009年东南数学奥林匹克 (14)2010年东南数学奥林匹克 (16)2011年东南数学奥林匹克 (18)2012年东南数学奥林匹克 (20)2004年东南数学奥林匹克1.设实数a、b、c满足a2+2b2+3c2=32,求证:3−a+9−b+27−c≥1.2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN.3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有a n+12≥2a n a n+2.(2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有a n+12≥2a n a n+2.4.给定大于2004的正整数n,将1,2,3,⋯,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值.5.已知不等式√2(2a+3)ccc(θ−π4)+6ssnθ+ccsθ−2csn2θ<3a+ 6对于θ∈�0,π2�恒成立,求a的取值范围.6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD⋅EE+DE⋅AE=AD⋅AE.7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛.但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛.如果4周内能够完成全部比赛,球n的值.注:A、B两队在A方场地矩形的比赛,称为A的主场比赛,B的客场比赛.8.求满足x−y x+y+y−z y+z+z−u z+u>0,且1≤x、y、z、u≤10的所有四元有序整数组(x,y,z,u)的个数.2005年东南数学奥林匹克1.(1)设a∈R.求证:抛物线y=x2+(a+2)x−2a+1都经过一个顶点,且顶点都落在一条抛物线上.(2)若关于x的方程y=x2+(a+2)x−2a+1=0有两个不等实根,求其较大根的取值范围.(吴伟朝供题)2.⊙O与直线l相离,作OO⊥l,P为垂足.设点Q是l上任意一点(不与点P重合),过点Q作⊙O的两条切线QA、QB,A、B为切点,AB与OP相交于点K.过点P作OP⊥QB,ON⊥QA,M、N为垂足.求证:直线MN平分线段KP.(裘宗沪供题)3.设n(n≥3)是正整数,集合P={1,2,⋯,2n}.求最小的正整数k,使得对于M的任何一个k元子集,其中必有4个互不相同的元素之和等于4n+1.(张鹏程供题)4.试求满足a2+b2+c2=2005,且a≤b≤c的所有三元正整数数组(a,b,c).(陶平生供题)5.已知直线l与单位圆⊙O相切于点P,点A与⊙O在直线l的,且A到直线l的距离为ℎ(ℎ>2),从点A作⊙O的两条切线,分别与直线l交于B、C两点.求线段PB与线段PC的长度之乘积.(冷岗松司林供题)6.将数集A=�a1,a2,⋯,a n�中所有元素的算术平均值记为O(A)�O(A)=a1+a2+⋯+a n n�.若B是A的非空子集,且P(B)=P(A),则称B是A的一个“均衡子集”.试求数集P={1,2,3,4,5,6,7,8,9}的所有“均衡子集”的个数.(陶平生供题)7.(1) 讨论关于x的方程|x+1|+|x+2|+|x+3|=a的根的个数;(2) 设a1,a2,⋯,a n为等差数列,且|a1|+|a2|+⋯+|a n|=|a1+1|+|a2+1|+⋯+|a n+1|=|a1−2|+|a2−2|+⋯+|a n−2|=507.求项数n的最大值.(林常供题)8.设0<α、β、γ<π2,且csn3α+csn3β+csn3γ=1.求证tan2α+tan2β+tan2γ≥3√32.(李胜宏供题)2006年东南数学奥林匹克1. 设a >b >0,f (x )=2(a+b )x+2ab 4x+a+b .证明:存在唯一的正数x ,使得f (x )=�a 13+b 132�3. (李胜宏 供题)2. 如图1,在△ABC 中,∠ABC =90°,D 、G 是边CA 上的亮点,连结BD 、BG .过点A 、G 分别作BD 的垂涎,垂足分别为E 、F ,连结CF .若BE =EE ,求证:∠ABG =∠DEC .图13. 一副纸牌共52张,其中,“方块”、“梅花”、“红心”、“黑桃”每种花色的牌个13张,标号依次是2,3,⋯,10,J ,Q ,K ,A .相同花色、相邻标号的两张牌称为“同花顺”牌,并且A 与2也算同花顺牌(即A 可以当成1使用).试确定,从这副牌中取出13张牌,使每种标号的牌都出现,并且不含同花顺取牌方法数.(陶平生 供题)4. 对任意正整数n ,设a n 是方程x 3+x n =1的实数根.求证: (1) a n+1>a n ;(2) ∑1(s+1)a i n s=1<a n .(李胜宏 供题)5. 如图2,在△ABC 中,∠A =60°,△ABC 的内切圆⊙I 分别切边AB 、AC 于点D 、E ,直线DE 分别与直线BI 、CI 相交于点F 、G .证明:EG =12BC .图2 6. 求最小的实数m ,使得对于满足a +b +c =1的任意正实数a 、b 、c ,都有m (a 3+b 3+c 3)≥6(a 2+c 2+c 2)+1. (熊 斌 供题)7. (1) 求不定方程mn +nn +mn =2(m +n +n )的正整数解(m ,n ,n )的组数; (2) 对于给定的整数k (k >1),证明:不定方程mn +nn +mn =k (m +n +n )至少有3k +1组正整数解(m ,n ,n ). (吴伟朝 供题) 8. 对于周长为n (n ∈N +)的圆,称满足如下条件的最小的正整数p n 个点A 1,A 2,⋯,A p n ,对于1,2,⋯,n −1中的每一个整数m ,都存在两个点A s 、A j (1≤s 、j ≤p n ).以A s 和A j 为端点的一条弧长等于m ,圆周上每相邻两点间的弧长顺次构成的序列T n =�a 1,a 2,⋯,a p n �称为“圆剖分序列”.列入,当n =13,圆剖分数为p 13=4,图3中所标数字为相B邻两点之间的弧长,圆剖分序列为T 13=(1,3,2,7), (1,2,6,4),求p 21和p 31,并给出一个相应的圆剖分序列.图3(陶平生 供题)73112007年东南数学奥林匹克1. 试求实数a 的个数,使得对于每个a ,关于x 的三次方程x 3=ax +a +1都有满足|x |<1000的偶数根.2. 如图1所示,设C 、D 是以O 为圆心、AB 为半径的半圆上的任意两点,过点B 作⊙O 的切线交直线CD 于P ,直线PO 于直线CA ,AD 分别交于点E 、F .证明:OE =OF .图13. 设a s =msn �k +s k �k ∈N ∗�,试求S n 2=[a 1]+[a 2]+⋯+[a n 2]的值.4. 试求最小的正整数n ,使得对于满足条件∑a s n s=1=2007的任一个具有n 项的正整数数列a 1,a 2,⋯,a n ,其中必有连续若干项之和等于30. 5. 设函数f (x )满足:f (x +1)−f (x )=2x +1(x ∈R ),且当x ∈[0,1]时有|f (x )|≤1,证明:当x ∈R 时,有|f (x )|≤2+x 2.6. 如图,在直角三角形ABC 中,D 是斜边AB 的中点,PB ⊥AB ,MD 交AC 于N ;MC 的延长线交AB 于E .证明:∠DBN =∠BCE .7. 试求满足下列条件的三元数组(a ,b ,c ):E(1) a<b<c,且当a,b,c为质数;(2) a+1,b+1,c+1构成等比数列.8.设正实数a,b,c满足:abc=1,求证:对于整数k≥2,有a k a+b+b k b+c+c k c+a≥32.2008年东南数学奥林匹克1.已知集合S={1,2,⋯,3n},n是正整数,T是S的子集,满足:对任意的x、y、z∈T(x、y、z可以相同),都有x+y+z∉T.求所有这种集合T的元素个数的最大值.(李胜宏供题)2.设数列{a n}满足a1=1,a n+1=2a n+n(1+2n)(n=1,2,⋯).试求通项a n的表达式.(吴伟朝供题)3.在△ABC中,BC>AB,BD平分∠ABC交AC于点D,AQ⊥BO,垂足为Q,M是边AC的中点,E是边BC的中点.若△PQM的外接圆⊙O与AC的另一个交点为H.求证:O、H、E、M四点共圆.(郑仲义供题)4.设正整数m、n≥2,对于任一个n元整数集A=�a1,a2,⋯,a n�,取每一对不同的数a s、a j(j>s),作差a j−a s.由这C n2个差按从小到大.衍生数列顺序排成的一个数列,称为集合A的“衍生数列”,记为A生A生中能被m整除的数的个数记为A生(m).5.证明:对于任一正整数m(m≥2),n圆整数集A=�a1,a2,⋯,a n�及B={1,2,⋯,n}所对应的A生及B生,满足不等式A生(m)≥B生(m)(陶平生供题)6.求出最大的正数λ,使得对于满足x2+y2+z2=1的任何实数x、y、z成立不等式|λxy+yz|≤√52. (张正杰供题)7. 如图1,△ABC 的内切圆⊙I 分别切BC 、AC 于点M 、N ,E 、F 分别为边AB 、AC 的中点,D 是针线EF 于BI 的交点.证明:M 、N 、D 三点共线.图1(张鹏程 供题) 8. 杰克(Jack )船长与他的海盗们掠夺到6个珍宝箱A 1,A 2,A 3,A 4,A 5,A 6,其中A s (s =1,2,⋯,6)内有金币a s 枚(诸a s 互不相等).海盗们设计了一种箱子的布局图(如图2),并推派一人和船长轮流拿珍宝箱.每次可任意拿走不与两个或两个以上的箱子相连的整个箱子.如果船长最后所取得的金币不少于海盗们所取得的金币,那么船长获胜.问:若船长先拿,他是否有适当的取法保证获胜?图2 (孙文先 供题)9. 设n 为正整数,f (n )表示满足以下条件的n 位数(称为波形数)a 1a 2⋯a n �������������的个数:a 1a 2 a 3 a 4a 6 a 5i.每一位数码a s∈{1,2,3,4},且a s≠a s+1(s=1,2,⋯);ii.当n≥3时,a s−a s+1与a s+1−a s+2(s=1,2,⋯)的符号相反.(1)求f(10)的值;(2)确定f(2008)被13除得的余数.(陶平生供题)2009年东南数学奥林匹克1.试求满足方程x2−2xy+126y2=2009的所有整数对(x,y).(张鹏程供题)2.在凸五边形ABCDE中,已知AB=DE,BC=EA,AB≠EA,且B、C、D、E四点共圆.证明:A、B、C、D四点共圆的充分必要条件是AC=AD.(熊斌供题)3.设x,y,z∈R+,√a=x(y−z)2,√b=y(z−x)2,√c=z(x−y)2;求证:a2+b2+c2≥2(ab+bc+ca). (唐立华供题)4.在一个圆周上给定十二个红点;求n的最小值,使得存在以红点为顶点的n个三角形,满足:以红点为顶点的每条弦,都是其中某个三角形的一条边.(陶平生供题)5.设1,2,⋯,9的所有排列X=�x1,x2,⋯,x9�的集合为A;∀X∈A,记f(X)=x1+2x2+3x3+⋯+9x9,P={f(X)|X∈A};求|P|. (其中|P|表示集合M的元素个数).6.已知⊙O、⊙I分别是△ABC的外接圆和内切圆;证明:过⊙O上的任意一点D,都可作一个△DEF,使得⊙O、⊙I分别是△DEF的外接圆和内切圆.(陶平生供题)7.设f(x,y,z)=x(2y−z)1+x+3y+y(2z−x)1+y+3z+z(2x−y)1+z+3x,其中x,y,z≥0,且x+y+z=1.求f(x,y,z)的最大值和最小值.(李胜宏供题)8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T型五方连块?(孙文先供题)2010年东南数学奥林匹克1. 设a 、b 、c ∈{0,1,⋯9}.若二次方程ax 2+bx +c =0有有理根,证明:三位数abc�����不是质数. (张鹏程 供题)2. 对于集合A ={a 1,a 2,⋯,a m },记O (A )=a 1a 2⋯a m .设A 1,A 2,⋯A n (n =C 201099)是集合{1,2,⋯,2010}的所有99元子集.求证:2011|∑O (A s )n s=1. (叶永南 供题)3. 如图1,已知△ABC 内切圆⊙I 分别与边AB 、BC 切于点F 、D ,之心啊AD 、CF 分别于⊙I 交于另一点H 、K.求证:FD⋅HK FH⋅DK =3.图1 (熊 斌 供题)4. 设正整数a 、b 满足1≤a <b ≤100.若存在正整数k ,使得ab |a k +b k ,则称数对(a ,b )是“好数对”.求所有好数对的个数.(熊 斌 供题)5. 如图2,△ABC 为直角三角形,∠ACB =90°,M 1、M 2为△ABC 内任意两点,M 为线段M 1M 2的中点,直线BM 1、BM 2、BM 与AC 分别交于点N 1、N 2、N.求证:M 1N 1BM 1M 2N 2BM 22MN BM .图2 (裘宗沪 供题)6. 设Z +为正整数集合,定义:a 1=2,a n+1=msn �λ�∑1a i n s=1+1λ<1,λ∈Z +�(n =1,2,⋯). 求证:a n+1=a n 2−a n +1. (李胜宏 供题)7. 设n 是一个正整数,实数a 1,a 2,⋯,a n 和n 1,n 2,⋯,n n 满足:a 1≤a 2≤⋯≤a n 和n 1≤r 2≤⋯≤n n .求证:∑∑==≥n i nj j i j i r r a a 110),min((朱华伟 供题)8. 在一个圆周上给定8个点A 1,A 2,⋯,A 8.求最小的正整数n ,使得以这8个点为顶点的任意n 个三角形中,必存在两个有公共边的三角形.(陶平生 供题)21B2011年东南数学奥林匹克1.已知min x∈R ax2+b√x2+1=3.(1)求b的取值范围;(2)对给定的b,求a.2.已知a、b、c为两两互质的正整数,且a2|(b3+c3),b2|(a3+ c3),c2|(a3+b3)求a、b、c的值.3.设集合P={1,2,3,⋯,50},正整数n满足:M的任意一个35元子集中至少存在两个不同的元素a,b,使a+b=n或a−b=n.求出所有这样的n.4.如图1,过△ABC的外心O任作一直线,分别与边AB,AC相交于M,N,E,F分别是BN,CM的中点.证明:∠EOE=∠A.图15. 如图2,设AA0,BB0,CC0是△ABC的三条角平分线,自A0作A0A1∥BB0,A0A2∥CC0,A1,A2分别在AC,AB上,直线A1A2∩BC=A3;类似得到点B3,C3.证明:A3,B3,C3三点共线.图26.设O 1,O 2,⋯,O n 为平面上n 个定点,M 是该平面内线段AB 上任一点,记|O s P |为点O s 与M 的距离,s =1,2,3,⋯,n ,证明:≤∑∑∑===ni i ni i n i i B P A P M P 111,max . 7.设数列{a n }满足:a 1=a 2=1,a n =7a n−1−a n−2,n >3.证明:对于每个n ∈N ∗,a n +a n+1+2皆为完全平方数.8.将时钟盘面上标有数字1,2,⋯,12的十二个点,分别用红、黄、蓝、绿四种颜色各染三个点,现以这些点为顶点构造n 个凸四边形,使其满足:(1) 每个四边形的四个顶点四色都有;(2) 任何三个四边形,都存在某一色,该色的三个顶点所标数字各不相同.求n 的最大值.32012年东南数学奥林匹克1. 求一个三元整数组(l ,m ,n )(1<l <m <n ),使得∑k l k=1,∑k m k=l+1,∑k n k=m+1依次成等比数列.2. 如图1,△ABC 的内切圆I 在边AB ,BC ,CA 上的切点分别是D ,E ,F ,直线EF 与直线AI ,BI ,DI 分别相交于点M ,N ,K .证明:DP ⋅KE =DN ⋅KE .图1 3. 对于合数n ,记f (n )为其最小的三个正约数之和,g (n )为其最大的两个正约数之和.求所有的正合数n ,使得g (n )等于f (n )的某个正整数次幂.4. 已知实数a ,b ,c ,d 满足:对任意实数x ,均有acccx +bccc 2x +cccc 3x +dccc 4x ≤1, 求a +b -c +d 的最大值.当a +b -c +d 取最大值时,求实数a ,b ,c ,d 的值.5. 如果非负整数m 及其各位数字之和均为6的倍数,则称m 为“六合数”.求小于2012的非负整数中“六合数”的个数.6. 求正整数n 的最小值,使得A东南数学奥林匹克�n−20112012−�n−20122011<�n−201320113−�n−201120133.7.如图2,△ABC中,D为边AC上一点且∠ABD=∠C,点E在边AB上且BE=DE,设M为CD重点,AA⊥DE于点H.已知AA=2−√3,AB=1,求∠APE的度数.图2设m是正整数,n=2m−1,O n={1,2,⋯,n}为数轴上n个点所成的集合.一个蚱蜢在这些点上跳跃,每步从一个点跳到与之相邻的点.求m的最大值,使对任意x,y∈O n,从点x跳2012步到点y的跳法种数为偶数(允许中途经过点x,y).。

2017年全国高中数学联赛A卷试题和答案

2017年全国高中数学联赛A卷试题和答案

2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________. 4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 5.正三棱锥ABC P -中,1=AB ,2=AP ,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为__________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值;(2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a ,Λ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21Λ是n 个不超过m 的互不相同的正整数,且n a a a ,,,21Λ互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.。

2017年全国高中数学联合竞赛试题和解答(A卷)

2017年全国高中数学联合竞赛试题和解答(A卷)

2017年全国高中数学联赛A卷一试一、填空题1•设f(x)是定义在R上的函数,对任意实数x有f(x 3) f(x_4) = -1 .又当0辽X ::: 7时,f (x) =log2(9 —x),则f(—100)的值为______________2•若实数x, y满足x2+2cosy =1,贝U x — cosy的取值范围是___________2 23.在平面直角坐标系xOy中,椭圆C的方程为:x y 1 , F为C的上焦点,A为C的9 10右顶点,P是C上位于第一象限内的动点,则四边形OAPF的面积的最大值为 _____________ . 4•若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是5•正三棱锥P - ABC中,AB =1 , AP =2,过AB的平面:将其体积平分,则棱PC与平面a所成角的余弦值为___________ .6•在平面直角坐标系xOy中,点集K =〈x,y)x, y - -1,0,1】在K中随机取出三个点,贝U这三点中存在两点之间距离为J5的概率为______________7•在ABC中,M是边BC的中点,N是线段BM的中点若.A ABC的面积为3J3,则AM AN的最小值为______________ •8•设两个严格递增的正整数数列也Jb n 1满足:a®:::2017,对任意正整数n,有a n^ =a n* +a n,b n+ =2b n,则a 的所有可能值为___________ •二、解答题9•设k,m为实数,不等式x2—kx —m兰1对所有la,b】成立证明:b—a兰2应.10•设/必必是非负实数,满足x1 x2 X3 =1,求(x1 3x2 5X3)(X1 •—-)的最3 5小值和最大值•11.设复数Z1,Z2满足Re(z1) 0, ReZ) 0,且Re(才)=Re(z;) = 2(其中Re(z)表示复数z的实部)•(1)求Re⑵Z2)的最小值;(2)求N +2 + Z2 + 2 —乙—Z2的最小值•2017年全国高中数学联赛 A 卷二试.如图,在:ABC 中,AB=AC , I 为:ABC 的内心,以A 为圆心,AB 为半径作圆 M , 以I 为圆心,IB 为半径作圆 『2,过点B , I 的圆r 3与】1,丨2分别交于点P,Q (不同于点B ).设IP 与BQ 交于 点R .证明:BR_CR 二.设数列^aj 定义为 Q =1 ,a + nQ 兰 n,a n + = Jn =1,2,….求满足an- n,a n A n,a r ::: r < 32的正整数r 的个数•三•将33 33方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等 •若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”•试求分隔边条数的最小值•四•设m,n 均是大于1的整数,m_n , a 1,a 2/' ,a n 是n 个不超过 m 的互不相同的正整数, 且a 「a 2,…,a .互素•证明:对任意实数x ,均存在一个i (1 一 i 一 n ),使得2017年全国高中数学联赛A 卷一试答案1.答案:丄解:由黃件知*广(工+[4) = _—-——=r 所以dA-100)= <(-100 + 14x7)= === ~/(5) log-422a i x2 m(m 1)II X ,这里| y 表示实数y到与它最近的整数的距离答案:[-1*若+1] *解:由于 v'-1-2cosr^[-1. 3J* 故[-点间.由cw r --— 可知» v -cos v-x --------------- ----- -(.V - U : - 1.阖此当 r =[时,1- 7 'A g 和有最小值|(这时$可以S1-):当V - V'时 * A cos r 有最大值Jj I (这时F 可以取 2由于+的值域是[7 巧+ 1]・从而x-eosy 的取值范围是[-1, V3 + IL3.答第芈.£r解:易知卫⑶0)} F(0, 1). i 殳P 的坐标是(3cos<9, J?6审询,W 0冷・则盈>S — s 叫州F 屮 」辺神|——(vTOcosf/ I .sin//)= —^―sin(^ + ip) *2 2arctati ^1" 当/y-ardanVlO 时・四边形Oz 尸尸面积的最大值为芒叵. 10 24.答案:75. _解;考虑平稳数赢*若b = 0,则□ = ), c 怎{01}「有2个平稳数.若B=l ・JWX 仏2},虫{0丄2"有2x3 = 6个平稳数・, ^r2<6<8,则口,匚€少一1",占+ 1八 有7x3x3 = 63个平稳数.若b = 9、则{8,9} 1有2x2 = 4个平稳数.综上可知,平橈数的个数是2 + 6 +利+ 4=方・5.-丄 j.Jiihim 11WTT …答案:看解:设血PC 的中点分別为H ,则易证平而卫&灯就是平面口.由中线 长公式知5 I gg 」"土 %—; 2KMMC 石 故棱PC 与平面任所戒角的余弦值为婕.106.解:易知K 中有9个点,故在K 中粗机取出三个点的 方式数为C : = 84种.将K 中的点按右图标记为其中有8 对点之问的葩奥为J?.由对称性,考虑取厶局两点的情 况.则剩下的一个点有7种取法,这样有7x8 = 56个三点 组(不计每组中三点的次序人对每个4G = U,--S 8). K中恰有4宀4乜两点与之距證为{这里下标按模8理解).因而恰有 卩,心/』(心kN …⑻这$个三点组被计了两次.从而满足条件的三点组个 数为56-8 = 48・进而所求概率为—=-.S4 77.答案土 C 卜I 解:由条件知f AMACt AN故2'?斗 4I ,-?—-1' ][ ( I —' I TAM AN - -{Jfi + ^C]*| -.4B + - JC - - 3|AB^ +|^C| -4JS-Jtj.由于 ^3 = S 曲北=|jC | ■ sin J = |^45||/1C| r 所以 AB AC — 4* 进2 4步可得 AH AC — .4( I €0> .4 — 2* 从而IV/r所以 KM = JIC')- -PC --(2^= ---- T2文易知直线/<在平滴。

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
2017年全国高中数学联合竞赛(四川初赛)
(5月14日下午14:30—16:30)
题目



总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.

2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文

2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文

可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。

5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。

2020年(第17届)中国东南地区数学奥林匹克高二年级第二天试题(含答案)

2020年(第17届)中国东南地区数学奥林匹克高二年级第二天试题(含答案)

第十七届中国东南地区数学奥林匹克浙江•诸暨高二年级第二天2020 年8 月 6 H 上午8:00-12:001.集合…,2020}.称W={w(a,b)=(a + b) + a〃a,bwJ}c/ 为“吴,填合,Y = {y{a ,h) = (n + b) ah\a. bEI]C\l为“翻”集介.X = wcy为“西子,集合. (I) K求“西子”集合中最大致与最小数之和:(Z)若“越”集合中的元#"=y(%b)(a&b)及小方法不姓一(妇30 = y(l,5) = y(2.3)〉,就称〃为“卓越ST.求“越”亲合中“卓越故’的个数.2.如图,在四边形4BC0中,cKBC - ^ADC < 90\以4C为直径的圆。

与边BC. CD的%一个交点分用为E. F. M为9D的中点,AN LBD尸点M证明:M , N, E, F四点其四.B V3.将所行不含T方国了的正整数从小到大排成数列5,/山3.・・・,/ 证明;存在无方多个正整数八,使得册八一0=2020.4,用•个喷头对一张lx ri的方格方条的条一格进行喷法,当啧头对指定的第«1 WiVn)格喷涂时,该格被染成黑色•同时。

第i格相邻的左例方格和右侧方格(在存在的情况卜)独立地各彳弓的概率也被染成黑色.设在最佳策略卜(使喷涂次数尽可能少),喷完n个方格所需要喷涂的次教期望侑为了(初求7S)的通项公式.第十七届中国东南地区数学奥林匹克浙江•诸暨高二年级第二天2020年8月6日上午8:00T2:001.集合,=口,2,…,2020).称 W = {w(a,b) = (a + b) + aZj|a,b|e/}n/ 为“吴”集合,f = {y(a,d) = (a + d)• ab\a,为“越”集合,X = WAV为••西子”集合.(1)试求“西了”集合中最大数与最小数之和;(2)若“越”集合3的元素n = y(aM(asb)表小”法不唯一(如30 = y(L5) = y(2,3)),就称几为“卓越数”.求“越”集合中“卓越数”的个数.证明:(1)若正整数孤£卬,即有正整数a,b,使得n = a十力十。

抽屉原理在组合数学中的应用

抽屉原理在组合数学中的应用

2中等数学叙嗲活劫镙歿饼;I抽屉原理在组合数学中的应用刘媛媛石泽晖(长春吉大附中实验学校,130021)中图分类号:〇141.2 文献标识码:A文章编号:1005 - 6416(2021)05 - 0002 - 05(本讲适合高中)抽屉原理也被称为鸽巢原理或狄利克莱 原理,它是组合数学中一个基本且重要的原理,许多存在性问题的证明和极值问题中不等关系的得出都可以用抽屉原理来解决.1知识介绍抽屉原理具体内容在不同的背景下(代 数、几何等)略有不同,常见形式主要有以下几种:抽屉原理(1)若将m个物件放到n个抽屉里,则必有一个抽屉至少有+1n个物件,其中,[a]表示不超过实数a的最大 整数;(2)若将m个物件放到n个抽屉里,则必有一个抽屉内至多有[@1个物件.n证明(1)反证法.若每个抽屉内至多有个物件,则放人71个抽屉内的物件总数至多为n—~- ^n(— ~^=m-l,这 与抽屉内共有m个物件矛盾.故必有一个抽屉内至少有1+ 1个物件.n(2)的证法同样,此处省略.抽屉原理的实质是对物件最多的抽屉内 至少有多少个物件,物件最少的抽屉内至多收稿日期:2021 -01 -11有多少个物件的估计,本质是极端原理.平均值原理(1)设,a2,…,an 6R,h|(a i+a2+...+a n)J l K,a2,…,an 中必有一个数不小于1也必有一个数不大于4;⑵设o^,%,…,an 6R,G= 7ai°2",an*则h,a2,…,an中必有一个数不小于G,也必有一个数不大于C.事实上,平均值原理中的均值可以替换成任何一种均值,结论依然成立.图形重叠原理在平面上有n个面积分别为51,52,一,5…的图形>1132,一,疋,把这«个图形按任意方式放入一个面积为S的固定图形4内.(1) 若& +s2 +…+ s… >5,则存在两个 平面图形卓、4(1A <)矣n),它们有公共内点;(2) 若&+S2 +…+S…<S,则在>4内必 存在一点,不属于U2,…,纪中任意一个•此结论同样适用于一维、三维情况.抽屉原理本身并不难,用其解题关键是如何设计“抽屉”,即题中涉及元素的具体分类方式.2例题选讲2.1合理“划分抽屉”解决组合问题例1设S=l l,2,…,100!.求最大的整数fc,使得S有个互不相同的非空子集,具有性质:对这A个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元2021年第5期3素与这两个子集中的最大元素均不相同.[1] (2014,全国高中数学联合竞赛)解对于有限非空实数集用m in夂 max4分别表示4的最小元素、最大元素.考虑S的所有包含1且至少有两个元素 的子集,共2" - 1个,记为岑,…,七^丨•它们 显然满足要求.因为 min(/!;Di4,+)= 1 < max A-,所以人下面证明A>299时不存在满足要求的友 个子集.将丨1,2,…,100丨按以下方式划分为如 下2"-1个子集:对任意的m 6丨4,5,…,100|,记对于任意的,定义集合对U u |m|;[,A B m t U I mi !,则共有2^2个不同的集合对.将11,2,3丨的非空子集按以下方式分成 三个子集对:{13|;11,3};|2,3|},1|2|;{1,2!|,I H I ;{1,2,3( !.从而,共有£2m—2 +3 =2" -1个不同 的子集对.若非空子集个数多2",则必有两个在同一组中,故它们交集中的最小元素与最大元素相同,矛盾.因此,1.例2甲选了 13个两两不同的三位数,乙从甲选的13个三位数中再挑选几个三位数.若通过四则运算可以使最后的结果属于区间(3,4),则乙获胜;否则,甲获胜.问:谁 有获胜策略?(第34届阿根廷数学奥林匹克)解乙有获胜策略.将所有三位数按如下方式分成八个集合,同一集合中最大数除以最小数的值小于4G\ ={100,101 ,•••,133},G2 =)134,135,---,178!,G3 =j179,180,---,238!,G4 ={239,240,---,318},g5 =j319,320,---,425!,G6 =|426,427,…,567| ,G7 =|568,569,…,757i ,G8 =|758,759,…,999|.因为甲共选取13个三位数,且13 >8,所以,由抽屉原理,知必有两个三位数属于同 一集合,不妨设为A(A > *2 ),显然,,41<^<y-去掉这两个三位数,剩下11个三位数属 于同一集合,由于11 >8,则由抽屉原理,知 必有两个三位数属于同一集合,不妨设为巧、尤4(),显然,X43再去掉这两个三位数,剩下9个三位数属于同一集合,由于9 >8,则由抽屉原理,知必有两个三位数属于同一集合,不妨设为 ■*5、无6($5〉),显然,,*5 41 <—<了.尤63由此得X}X^y1 +1 +1 =3 < — + —+ —丨2 丨4 丨64 4 4 A<了 + 了 + 了=4.故乙有获胜策略.[2]利用抽屉原理,知研究此类问题的关键是构造合适的“抽屉”,即确定恰当的分类规则,将题目中涉及的元素按照一定的性质进行分类.当取出的元素数量足够多时,由抽屉 原理,知至少有某些元素属于同一个集合.从 而,这些元素具有某种性质,进而得出结论. 构造抽屉的原则是与题设密切相关的,常用 方法有:分割区间、分割图形、同余分类、最大 奇因子、划分集合等方式,使用时具体要看题4中等数学设条件所关注的性质.2.2 “计算总量”,用抽屉原理估计最值例3 设5=14,/12,"•,/!…}(〇.多2),其 中,义,/12,…,七是n个互不相同的有限集合,满足对任意次、禹6S,均有6S.若灸=m in丨4丨>2( I Z I表示有限集合Z的1矣i矣n元素个数),证明:存在$ G,使得尤属于次,禹,…人中的至少f个集合.[3](2015,全国高中数学联合竞赛)证明不妨设丨41= 6.设在次,…,人中与々不相交的集合有5个,重新记为A,fi2,…,虼;设包含岑的集合有f个,重新记为C丨,C2,…,C,.由已知条件,知晃U A G S,即B i UA1 6于是,得到一个映射/:\B l ,B2,--,B S\\CX,C2,--,C t\,f(B i)= B i U A l.显然,/是单射.从而,s矣z.i^:Al =在^,七,…,火中除去乂,氏,…,Ci,C2,…,后,在剩下的n-s-t个集合中,设包含a,的集合有个.由于剩下的n-s-f个集合中每个集合与岑的交非空,即包含某个A,于是,x x +x2 + •••+ xk^n- s-1.从而,/i,中的各个元素出现在集合…,火中的次数总和满足T= k t+n-s-t=n+ (k-l)t-s^n.由抽屉原理,知至少存在一个m 6丨i,2,…,M,使得〜彡f.上述问题的特征是:题中所给的元素具有任意性•题设为集合4,4,…,人和所涉及的元素提供的条件均是平等的、任意的.题 目探究的结论是一个存在性命题,证明存在一个元素具有某种性质,且只需说明存在性,并不需要指明具体是哪个集合满足此要求.这类问题考虑用抽屉原理处理,通过计算抽 屉中元素的总量来得出相应结论,是抽屉原 理非常典型的应用.2.3应用“图形重叠原理”解决组合几何问题例4 一农夫在120 m x 100 m的矩形 土地中有九个直径为5 m的圆形菜园.证明: 无论圆形菜园的位置如何设置,农夫总能建 一"t"25 m x35 m的矩形菜园•(2018,越南数学奥林匹克)证明设矩形仙CZ)满足Zlfi = CZ)= 120=5C= 100•将其分割为 10 个 30 x40 的小矩形,如图1.图1考虑九个圆形菜园的圆心.由抽屉原理,知必存在某个小矩形不包含这九个圆心中的任何一个.设这个矩形为;O^T,其中,XY= ZT= 40 ,XT=Y Z=30.考虑矩形x y z r内的矩形z'r r,使 得两个矩形的对应边平行且距离为2. 5.则 矩形z'r z'r为25 x35,且与每个圆形菜园 均无重叠.[2]例5 平面上给定100个半径为1的 圆,使得任意三个圆心所构成的三角形的面积至多为i o a证明:存在一条直线至少与1〇 个圆相交.(2018,中国台湾数学奥林匹克选训营)证明证明一个更一般的命题:平面上给定n个半径为1的圆,使得任三个圆心所构成的三角形面积至多为n,证明:存在一条直线至少与个圆相交.+2令S为这〃个圆心所成的集合.2021年第5期5设S中距离最远的两点间的距离为丄任取S中异于的一点C.因为以,所以,点C到直线仙的距离至多为^.从而,若直线Z丄于点Z),则集合S 中任一点在/上的投影点将落入以Z)为中心、$为长度的区间内.又集合S中两点距离最大值为d,则S 中的点在直线/的投影点必落在一个长度为 d的区间内.故此区间长度至多为y/An .注意到,这n个圆投影到直线/上全是 长度为2的区间,而这些区间均包含在一个长度至多为A+2的区间内.令这个区间为/,C,•为第i(l在n)个圆在直线Z上的投影.由于所有(;的长度总和为2n,且其均落 在/中,依照图形重叠原理,这表明,/中至少要有一个点X同时属于至少个圆C,++2中.故取平行于且过点尤的直线g即可.取n= 100,得200 200 n,___—= —^>9,v^+222即g至少与10个圆相交.[2]用图形重叠原理解决组合几何中的存在 性问题时,题中所给元素条件具有任意性也是一典型特征,如例5中涉及的100个圆,条 件是任意的、平等的,题目的结论是一个存在 性命题,有以上特征的问题通常可以考虑用图形重叠原理去解决.练习题1.设集合S=丨1,2,".,3/1丨为正整数,71为S的子集,满足:对于任意的x、y、z G T (;«、y、z可以相同),均有;+ y+ z备71.求所有这种集合r的元素个数的最大值.[4](第五届中国东南地区数学奥林匹克)提示取T0 = \x\x S H x^n+ \\=|n+ 1,r e+2,•••,3n\ ,此时,i r Qi= 2re,且r Q中任三个数的和大于3心于是,不在r。

2017年全国高中数学联合竞赛试题及解答.(A卷)

2017年全国高中数学联合竞赛试题及解答.(A卷)



2 2 1 AM AN 3 AB AC 4 AB AC , 8
由 3 S ABC
1 3 AB AC sin A AB AC 得 AB AC 4 2 4
2
所以 AB AC 2 ,所以 3 AB
AC 8 3 ,当且仅当 AB
x x1 3x 2 5 x3 x1 2 3
★解析:由柯西不等式

x3 的最小值和最大值。 5 x2 5 x3 3 x3 5 1
2
x x x1 3x 2 5 x3 x1 x1 3 x 2 x1 2 3 3 5
当 x1 1 , x 2 0 , x 3 0 时取等号,故所求的最小值为 1 ; 又 x1 3 x 2 5 x 3 x1

x 2 x3 1 5x x1 3 x 2 5 x 3 5 x1 2 x 3 3 5 5 3
2
512 b1 ② 55
★证明:记 f ( x ) x kx m , x a, b ,则 f ( x ) 1,1 。于是
2
f (a ) a 2 ka m 1 ①; f (b) b 2 kb m 1 ② ab ab 2 ab )( ) k( ) m 1 ③ 2 2 2 ①+②- 2 ③知 f(
2017 年全国高中数学联合竞赛一试(A 卷)
一、填空题:本大题共 8 个小题,每小题 8 分,共 64 分。 2017A1、设 f ( x ) 是定义在 R 上函数,对任意的实数 x 有 f ( x 3) f ( x 4) 1 ,又当 0 x 7 时, f ( x ) log 2 (9 x ) ,则 f ( 100) 的值为 ◆答案:

决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题14 选讲部分(解析版) 含解析

决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题14 选讲部分(解析版) 含解析

解答题1.【 2016年第二次全国大联考(江苏卷)】【选修4—1几何证明选讲】(本小题满分10分)若AB 为定圆O 一条弦(非直径),4AB =,点N 在线段AB 上移动,F 90∠ON = ,F N 与圆O 相交于点F ,求F N 的最大值.2.【 2016年第二次全国大联考(江苏卷)】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值6的一个特征向量为111α⎡⎤=⎢⎥⎣⎦,属于特征值1的一个特征向量为232α⎡⎤=⎢⎥-⎣⎦.求A 的逆矩阵.【答案】121321132A -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】解:由题意得11611a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,33122a b c d ⎡⎤⎡⎤⎡⎤=⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦则 66323322a b c d a b c d +=⎧⎪+=⎪⎨-=⎪⎪-=-⎩ , (6)分解得3234a cb d =⎧⎪=⎪⎨=⎪⎪=⎩,即3324A ⎡⎤=⎢⎥⎣⎦,所以121321132A -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. ………………………………………10分3. 【 2016年第二次全国大联考(江苏卷)】【选修4—4:坐标系与参数方程】(本小题满分10分)过点P (-3,0)且倾斜角为30°的直线和曲线2cos24ρθ=相交于A 、B 两点.求线段AB 的长.4.【 2016年第二次全国大联考(江苏卷)】【选修4—5:不等式选讲】(本小题满分10分)设 x ,y ,z ∈R +,且1x y z ++=,求证:2222221x y z y z z x x y++≥+++ 【答案】详见解析.【解析】2222()[()()()]x y z y z z x x y y z z x x y +++++++≥+++ 22222()()()x y z x y z x y z y z z x x y∴++++≥+++++即2222221x y z y z z x x y++≥+++……………10分 5【 2016年第二次全国大联考(江苏卷)】一个袋中有若干个红球与白球,一次试验为从中摸出一个球并放回袋中,摸出红球概率为p ,摸出白球概率为q ,摸出红球加1分,摸出白球减1分,现记“n 次试验总得分为n S ”. (Ⅰ)当21==q p 时,记||3S =ξ,求ξ的分布列及数学期望;(Ⅱ)当32,31==q p 时,求)4,3,2,1(028=≥=i S S i 且的概率. 【答案】(Ⅰ)详见解析(Ⅱ)33536587123088080()()()()33218733P C C ⨯=+⋅⋅==或 【解析】(Ⅰ)||3S =ξ 的取值为1,3,又21==q p ; 故43)21()21(2)1(213=⋅==C P ξ,41)21()21()3(33=+==ξP . 所以ξ的分布列为:6. 【 2016年第二次全国大联考(江苏卷)】数列}{n a 各项均为正数,211=a ,且对任意的*N ∈n ,有)0(21>+=+c ca a a n n n .(Ⅰ)求证:121ni icca =<+∑; (Ⅱ)若20161=c ,是否存在*N ∈n ,使得1>n a ,若存在,试求出n 的最小值,若不存在,请说明理由.【答案】(Ⅰ)详见解析(Ⅱ)2018 【解析】证明:(Ⅰ)∵2111nn n ca a a +=+,∴n n n ca c a a +-=+1111,即nn n ca ca a +=-+1111, 121111ca c a a +=-, 232111ca c a a +=-, ……nn n ca c a a +=-+1111, ∴nn ca c ca c ca c a a ++++++=-+111112111 , ∴111111121ni in c ca a a a =+=-<=+∑ . …5分 (Ⅱ)∵n n n n a a a a >+=+2120161,∴}{n a 单调递增. 得20162121a a a <<<= , 由201621n n n aa a +=+⇒20161111+=-+n n n a a a ⇒201612016120161122016212017++++++=-a a a a ,∵)2016,,2,1(0 =>i a i , ∴201620161122017⨯<-a , 解得:12017<a ,7.【2016年第三次全国大联考【江苏卷】】[选修4-1:几何证明选讲](本小题满分10分) 如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE AC =,求证:PDE POC ∠=∠.A【答案】详见解析【解析】AE AC = ,AB 为直径,OAC OAE ∴∠=∠POC OAC OCA OAC OAC EAC ∴∠=∠+∠=∠+∠=∠又EAC PDE ∠=∠ PDE POC ∴∠=∠.8.【2016年第三次全国大联考【江苏卷】】[选修4-2:矩阵与变换](本小题满分10分) 变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M ;变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦.求函数2y x =的图象依次在1T ,2T 变换的作用下所得曲线的方程.9.【2016年第三次全国大联考【江苏卷】】[选修4-4:坐标系与参数方程](本小题满分10分)已知参数方程为0cos sin x x t y t θθ=+⎧⎨=⎩(t 为参数)的直线l 经过椭圆2213x y +=的左焦点1F ,且交y 轴正半轴于点C ,与椭圆交于两点A 、B (点A 位于点C 上方).若1F C B =A ,求直线l的倾斜角θ的值. 【答案】6πθ=【解析】把cos sin x t y t θθ⎧=⎪⎨=⎪⎩代入椭圆方程,并整理得:()2212sin cos 10tθθ+--=,设点A 、B 对应的参数为A t 、B t ,由1FB AC =结合参数t 的几何意义得:A B C tt t +=,即212sin cos θθθ=+,解得1sin 2θ=,依题意知0,2πθ⎛⎫∈ ⎪⎝⎭,∴6πθ=.10.【2016年第三次全国大联考【江苏卷】】[选修4-5:不等式选讲](本小题满分10分)已知函数()2(0)f x x a x a =-+->,若正实数c b ,满足1=++c b a ,且不等式cb c b a x f +++≥222)(对任意实数x 都成立,求a 的取值范围.【答案】270-≤<a【解析】由条件可知10<<a ,故2)(-+-=x a x x f a a -=-≥22又因1=++c b a ,故a c b -=+1,故2222)1(21)(21a c b c b -=+≥+ 原不等式可化为22222)1(21)1)(2(a a c b a a a -+≥++≥--化简得0342≤-+a a ,解之得270-≤<a .11.【2016年第三次全国大联考【江苏卷】】(本小题满分10分) 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为71.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.用ξ表示甲,乙最终得分差的绝对值. (1)求袋中原有白球的个数;(2)求随机变量ξ的概率分布列及期望E ξ.31434712(0)35C C P C ξ⋅===;4224434719(2)35C C C P C ξ+⋅===;1343474(4)35C C P C ξ⋅===,121945402435353535E ξ=⨯+⨯+⨯=.12.【2016年第三次全国大联考【江苏卷】】(本小题满分10分)已知三位数abc ,其中c b a ,,不全相同,若将这个三位数的三个数字按大小重新排列,得出最大数和最小数(如百位数字为0,也视作三位数),两者相减得到一个新数,定义这一操作为f ,如792038830)308(=-=f ,再对新数进行第二次操作f ,依次类推,若记经过第n 次后所得新数为n f(1)已知618=abc ,求2f ,3f ;(2)设的三个数字中的最大数字与最小数字之差为d ,经n 次操作后新数n n n c b a 的三个数字中的最大数字与最小数字之差为n d ①已知61=d ,求证:当1>n 时,5=n d ; ②求证:当6≥n 时,495=n f .【答案】(1)5943699632=-=f ,4954599543=-=f ;(2)详见解析当51=d 时,4959952=⨯=f ,结论成立;当61=d 时,由①已证结论成立; 当71=d 时,6939972=⨯=f ,由(1)可证结论成立; 当81=d 时,7929982=⨯=f ,从而72=d ,故证结论成立; 当91=d 时,8919992=⨯=f ,从而82=d ,故证结论成立; 综上所述,当6≥n 时,495=n f .13.【2016年第四次全国大联考【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,在锐角三角形ABC 中,AB AC =,以AB 为直径的圆O 与边,BC AC 的交点分别为,D E ,且DF AC ⊥于点F .(Ⅰ)求证:DF 是O ⊙的切线;(Ⅱ)若3CD =,7=5EA ,求AB 的长.14.【2016年第四次全国大联考【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)在平面直角坐标系xOy 中,设点P (x ,5)在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点Q (y -2,y ),求1x y -⎡⎤⎢⎥⎣⎦M .【答案】1x y-⎡⎤⎢⎥⎣⎦M1610⎡⎤=⎢⎥-⎣⎦【解析】依题意,1234⎡⎤⎢⎥⎣⎦5x⎡⎤=⎢⎥⎣⎦2yy-⎡⎤⎢⎥⎣⎦,即102320x yx y+=-⎧⎨+=⎩,,解得48xy=-⎧⎨=⎩,,...4分.由逆矩阵公式知,矩阵M1234⎡⎤=⎢⎥⎣⎦的逆矩阵1213122--⎡⎤⎢⎥=-⎢⎥⎣⎦M,......8分所以1x y-⎡⎤⎢⎥⎣⎦M213122-⎡⎤⎢⎥=-⎢⎥⎣⎦48-⎡⎤⎢⎥⎣⎦1610⎡⎤=⎢⎥-⎣⎦. ......10分15.【2016年第四次全国大联考【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),直线l过点P,且倾斜角为π6,圆C:θρsin6=.(Ⅰ)求直线l的参数方程和圆C的直角坐标方程;(Ⅱ)设直线l与圆C相交于,A B两点,求PA PB⋅.16.【2016年第四次全国大联考【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)已知函数()f x R.(Ⅰ)求实数m的取值范围;(Ⅱ)若m 的最大值为n ,当正数b a ,满足41532n a b a b+=++时,求47a b +的最小值.【答案】(Ⅰ)6≤∴m (Ⅱ)23 【解析】(Ⅰ) 函数()f x 的定义域为R ,∴240x x m ++--?恒成立,即24m x x ?+-恒成立,又6)4()2(42=--+≥-++x x x x ,6≤∴m . ………5分(Ⅱ)由(Ⅰ)知6=n ,由基本不等式知,47a b +=141(47)()6532a b a b a b++++ 1[(5)(32)]6a b a b =+++413()5322a b a b +≥++,当且仅当15,2626a b ==时取等号, 47a b ∴+的最小值为23. ………10分 17. 【2016年第四次全国大联考【江苏卷】】 (本小题满分10分)过直线2y =-上的动点P 作抛物线214y x =的两条切线,PA PB ,其中A ,B 为切点. (Ⅰ)若切线,PA PB 的斜率分别为12,k k ,求证:12k k 为定值; (Ⅱ)求证:直线AB 过定点.18. 【2016年第四次全国大联考【江苏卷】】 (本小题满分10分)设f (n )=(a +b )n(n ∈N *,n ≥2),若f (n )的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f (n )具有性质P . (Ⅰ)求证:f (7)具有性质P ;(Ⅱ)若存在n ≤2016,使f (n )具有性质P ,求n 的最大值. 【答案】(Ⅰ)详见解析(Ⅱ)k =989或945.【解析】(Ⅰ)f (7)的展开式中第二、三、四项的二项式系数分别为123777C 7,C 21,C 35===,因为132777C C 2C +=,即123777C ,C ,C 成等差数列,所以f (7)具有性质P . …………………………4分 (Ⅱ)设f (n )具有性质P ,则存在k ∈N *,1≤k ≤n -1,使11C ,C ,C k k k n n n -+成等差数列,所以11C C 2C k k k n n n -++=.整理得,4k 2-4nk +(n 2-n -2)=0, …………………7分 即(2k -n )2=n +2,所以n +2为完全平方数. 又n ≤2016,由于442<2016+2<452,所以n 的最大值为442-2=1934,此时k =989或945. ……10分19.【2016年第一次全国大联考【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交BA 的延长线于点C .若DB DC =,求证:CA AO =.20.【2016年第一次全国大联考【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵10120206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,,求矩阵1.A B - 【答案】1101212.1060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦【解析】设矩阵A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,于是11,0,2a b c d =-===,从而110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,……7分 所以1101212.1060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦……10分 21. 【2016年第一次全国大联考【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系中,设直线l过点2),(3,)32A B ππ,且直线l 与曲线:sin (0)C a a ρθ=>有且只有一个公共点,求实数a 的值. 【答案】 2.a =【解析】点2),(3,)32A B ππ的直角坐标为3(),(0,3)2A B ,从而直线l 的直角坐标方程30,y -+=曲线:sin (0)C a a ρθ=>的直角坐标方程为222()24a a x y +-=……5分因为直线l 与曲线C 有且只有一个公共点,所以|3|2,022aa a -+=>,解得2.a =……10分 22.【2016年第一次全国大联考【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)求函数y =.23. 【2016年第一次全国大联考【江苏卷】】在四棱锥P ABCD -中,直线,,AP AB AD 两两相互垂直,且//,AD BC 2AP AB AD BC ===. (1)求异面直线PC 与BD 所成角的余弦值; (2)求钝二面角B PC D --的大小.A PB CD【答案】(1(2)3.4π24. 【2016年第一次全国大联考【江苏卷】】设数列{}n a 按三角形进行排列,如图,第一层一个数1a ,第二层两个数2a 和3a ,第三层三个数45,a a 和6a ,以此类推,且每个数字等于下一层的左右两个数字之和,如123245356,,,a a a a a a a a a =+=+=+ .(1)若第四层四个数为0或1,1a 为奇数,则第四层四个数共有多少种不同取法? (2)若第十一层十一个数为0或1,1a 为5的倍数,则第十一层十一个数共有多少种不同取法?12345678910a a a a a a a a a a【答案】(1)13448C C +=(2)82=256 【解析】(1)设第4层四个数字依次为1234,,,x x x x ,则第3层三个数字依次为12,x x +2334,x x x x ++,第2层两个数字依次为1232342,2x x x x x x ++++,所以1a =123433x x x x +++. ……………2分25.【2016高考押题卷(1)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,△ABC 内接于⊙O ,点D 在OC 的延长线上,AD 与⊙O 相切,割线DM 与⊙O 相交于点M ,N ,若∠B=30°,AC=1,求DM ⋅DN【答案】3【解析】因为AD 与O 相切,所以30DAC B ∠=∠=︒,设圆的半径为r ,则122,1sin 30r r ==∴=︒,连接OA ,则1OA OC AC ===,即OAC ∆为正三角形,所以60OCA ∠=︒,30ODA OAC DAC ∠=∠-∠=︒,在Rt OAD ∆中,1OA =,所以AD =23DM DN AD ⨯==.26.【2016高考押题卷(1)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知曲线C :1xy =,若矩阵M -⎥=⎥⎥⎦对应的变换将曲线C 变为曲线C ',求曲线C '的方程.【答案】.222y x -=【解析】设曲线C 一点(,)x y ''对应于曲线C '上一点(,)x y ,∴2222x x y y '⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎢⎥⎢⎥⎥=⎢⎥⎢⎥⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,∴22x y x ''-=,22x y y ''+=,……5分∴x '=y '=,∴1x y ''==,∴曲线C '的方程为222y x -=. …10分27. 【2016高考押题卷(1)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系下,已知圆O :cos sin ρθθ=+和直线:sin()42l πρθ-=, (1)求圆O 和直线l 的直角坐标方程;(2)当()0,θπ∈时,求直线l 与圆O 公共点的一个极坐标.28.【2016高考押题卷(1)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)已知,,a b c均为正数,证明:2222111()a b c a b c+++++≥【答案】详见解析.【解析】因为a b c ,,均为正数,由均值不等式得22223()a b c abc ++≥3,………………2分因为13111()abc a b c -++≥3,所以223111(()abc a b c-++)≥9 . (5)分故22222233111(()()a b c abc abc a b c-++++++)≥39. (当且仅当c b a ==时取等号)又32233()9()abc abc -+≥(当且仅当433=abc 时取等号),所以原不等式成立.…………………………………10分29. 【2016高考押题卷(1)【江苏卷】】如图,在空间直角坐标系O - xyz 中,正四棱锥P -ABCD的侧棱长与底边长都为,点M ,N 分别在PA ,BD 上,且13PM BN PA BD ==. (1)求证:MN ⊥AD ;(2)求MN 与平面PAD 所成角的正弦值.(2)设平面PAD 的法向量为(,,),n x y z =(3,3,0),(3,0,3),AD AP =--=-30. 【2016高考押题卷(1)【江苏卷】】设集合{}5,4,3,2,1=S ,从S 的所有非空子集中,等可能地取出一个.(1)设S A ⊆,若A x ∈,则A x ∈-6,就称子集A 满足性质p ,求所取出的非空子集满足性质p 的概率;(2)所取出的非空子集的最大元素为ξ,求ξ的分布列和数学期望()ξE . 【答案】(1)317=p (2)详见解析. 【解析】可列举出集合S 的非空子集的个数为:31125=-个.(2分)(1)满足性质p 的非空子集为:{}3,{}5,1,{}4,2,{}5,3,1,{}4,3,2,{}5,4,2,1,{}5,4,3,2,1共7个,所以所取出的非空子集满足性质p 的概率为:317=p .(6分) (2)ξ的可能值为1,2,3,4,5.ξ1 2 3 4 5P 311 312 314 318 3116 (9分) ()31129311653184314331223111=⨯+⨯+⨯+⨯+⨯=ξE .(10分) 31.【2016高考押题卷(3)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,已知圆O 的半径OB 垂直于直径M AC ,为AO 上一点,BM 的延长线交圆O 于点N ,过N 点所作的切线交CA 的延长线于点P . (1)求证:PC PA PM ⋅=2;(2)若圆O 的半径为32,且OM OA 3=,求MN 的长.PBC32.【2016高考押题卷(3)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵⎢⎣⎡-=12A ⎥⎦⎤21,⎢⎣⎡=01B ⎥⎦⎤-12. (1)计算AB ;(2)若矩阵B 将直线0232:=+-y x l 变为直线/l ,求直线/l 的方程.33. 【2016高考押题卷(3)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)已知直线l 的参数方程⎩⎨⎧-=+=t y t x l 11:(t 为参数)曲线C 的参数方程为⎩⎨⎧==θθsin cos 2:y x C (πθ20≤≤),若直线l 与曲线C 交于两点N M ,,求MN 的长度.【答案】||MN ==【解析】将曲线C 化为普通方程可得:4422=+y x (该曲线为椭圆),-----------------2分直接将参数方程代入可得:01652=+-t t ,-----------------------------------------------4分 解之得:1=t 或51=t ,---------------------------------------------------------------------------6分 当1=t 时,0,2==y x ,即得直线l 与曲线C 的一个交点为)0,2(M ,---------------7分 当51=t 时,54,56==y x ,得直线l 与曲线C 的一个交点为)54,56(N ,--------------8分 所以MN 的长度为||MN ==------------------------------------------10分34.【2016高考押题卷(3)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)若c b a ,,是正数,且1=++c b a .(1)求证:9111≥++c b a ; (2)求证:29111≥+++++a c c b b a .35、【2016高考押题卷(3)【江苏卷】】某品牌汽车S 4店经销C B A ,,三种排量的汽车,其中C B A ,,三种排量的汽车依次有5,4,3款不同的车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1)求该单位购买的3辆汽车均为B 排量的概率;(2)记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望. 【答案】(1)155(2)详见解析 【解析】(1)设该单位购买的3辆汽车均为B 种排量汽车为事件M ,则343121().55C P M C ==-2分所以该单位购买的3辆汽车均为B 种排量汽车的概率为155.--------------------------3分(2)容易算得随机变量X 的所有可能取值为1,2,3.36、【2016高考押题卷(3)【江苏卷】已知各项均为正数的数列}{n a 的首项11=a ,其前n 项和为n S ,若))(1(21*∈+=N n a a S nn n . (1)求5432,,,a a a a 的值;(2)由此归纳出通项n a 的表达式,并用数学归纳法加以证明. 【答案】.(1)122-=a 233-=a 344-=a (2)1--=n n a n【解析】(1)因)1(2122212a a a a S +=+=,即012222=-+a a ,解之可得:122-=a , ------1分再由)1(21333213a a a a a S +=++=可得:0122323=-+a a ,解之可得233-=a ;------------2分再由)1(214443214a a a a a a S +=+++=可得:0132424=-+a a ,解之可得344-=a ;----------------------------------------------------------------3分 由)1(2144543215a a a a a a a S +=++++=可得:014525=-+a a ,解之可得454-=a .------------------------------------------------4分37.【2016高考押题卷(2)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,在⊙O 直径AB 的延长线上任取一点C ,过点C 做直线CE 与⊙O 交于点D 、E ,在⊙O 上取一点F ,使点A 是弧EF 的中点,连接DF 交直线AB 于G .若CB=OB ,求CGCB的值.【答案】32==CA CO CG CB 【解析】连接OE,因点A 是弧EF 的中点,故EOA EDF ∠=∠,从而E 、D 、G 、O 四点共圆,得CE•CD=CO•CG,又因CE•CD=CA•CB,故CA•CB=CO•CG,当CB=OB 时,32==CA CO CG CB 38.【2016高考押题卷(2)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)若二阶矩阵M 满足:12583446M ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦.曲线22:221C x xy y ++=在矩阵M 所对应 的变换作用下得到曲线C ',求曲线C '的方程.39.【2016高考押题卷(2)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分)已知曲线C 的极坐标方程是ρ=2sin θ,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 54253(t 为参数),设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值. 【答案】15+.【解析】解析:(Ⅰ)曲线C 的极坐标方程可化为ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2﹣2y=0,得圆C 的圆心坐标为C (0,1),半径r=1, 将直线l 的参数方程化为直角坐标方程,得)2(34--=x y 令y=0,得x=2,即M 点的坐标为(2,0),因5=MC ,N 是曲线C 上一动点, 故MN 的最大值为15+.40.【2016高考押题卷(2)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分) 已知a ,b ,c R ∈,若444444a b c m ++=,关于x 的不等式|2|1x m -≤的整数解有且仅有一个值为3(m 为整数),求222a b c ++的最大值.41.【2016高考押题卷(2)【江苏卷】】(本小题满分10分)如图,在四棱锥ABCD S -中,底面ABCD 为正方形,⊥SA 平面ABCD ,E 为SC 的中点,F 为AC 上一点,且2=AB ,22=SA .(Ⅰ)若//EF 平面SBD ,试确定F 点的位置; (Ⅱ)求二面角D SC B --的余弦值.【答案】(Ⅰ)F 是GC 中点(Ⅱ)31.【解析】以A 为原点, AB 、AD 、AS 所在直线分别为z y x 、、轴建立空间直角坐标系. 则)0,0,0(A ,)0,0,2(B ,)0,2,2(C ,)0,2,0(D ,)22,0,0(S ,)2,1,1(E ,)0,,(a a F ,其中220<<a .(Ⅰ) 设AC 与BD 的交点为G ,则)0,1,1(G ,连接SG ,)2,1,1(---=a a ,)22,1,1(-=,42. 【2016高考押题卷(2)【江苏卷】】(本小题满分10分)对于数列{}n a ,称∑-=+--=11111)(k i i i k a a k a P ,其中N k k ∈≥,2为数列{}n a 的前k 项“波动均值”.若对任意的N k k ∈≥,2,都有)()(1k k a P a P <+,则称数列{}n a 为“趋稳数列”. (1)若数列2,,1x 为“趋稳数列”,求x 的取值范围;(2)已知数列{}n a 的首项为1,各项均为整数,前k 项的和为k S ,且对任意N k k ∈≥,2,都有)(2)(3k k a P S P =,试计算:)()1()(2)(3322n nn n n a P C n a P C a P C -+++ , 其中N n n ∈≥,2【答案】(1)),23(+∞(2))()1()(2)(3322n nn n n a P C n a P C a P C -+++ )123(231+-=+n n. 【解析】(1)因()1Px x =-,1(2)(12)2P x x =-+-,故由题意得)21(211-+->-x x x即21->-x x ,两边平方得441222+->+-x x x x ,解之得23>x 所以x 的取值范围是),23(+∞43.【2016高考冲刺卷(2)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,PAQ ∠是直角,圆O 与射线AP 相切于点T ,与射线AQ 相交于两点,B C .求证:BT 平分OBA ∠.【答案】详见解析【解析】连结OT .因为AT 是切线,所以OT AP ⊥.………………………2分 又因为PAQ ∠是直角,即AQ AP ⊥, 所以AB OT ,所以TBA BTO ∠=∠. ………………………………… 5分 又OT OB =,所以OTB OBT ∠=, …………………8分 所以OBT TBA ∠=∠,即BT 平分OBA ∠. …………………………………10分44.【2016高考冲刺卷(2)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵1252M x -⎡⎤⎢⎥=⎢⎥⎣⎦的一个特征值为2-,求2M.45. 【2016高考冲刺卷(2)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系中,求圆θρsin 8=上的点到直线3πθ=(R ∈ρ)距离的最大值.【答案】6.【解析】解:圆的直角坐标方程为22(4)16x y +-=, …………3分直线的直角坐标方程为y =, …………6分 圆心(0,4)到直线的距离为2d ==,则圆上点到直线距离最大值为246D d r =+=+=. …………10分46.【2016高考冲刺卷(2)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分) 设,x y 均为正数,且x y >,求证:2212232x y x xy y +≥+-+.【答案】详见解析.【解析】因为x >0,y >0,x -y >0, 22211222()2()x y x y x xy y x y +-=-+-+-,…………………………………4分=21()()()x y x y x y -+-+-3=≥, ……………………8分所以2212232x y x xy y ++-+≥. ……………………………………………10分47. 【2016高考冲刺卷(2)【江苏卷】】 一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的,,A B C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量h 表示该网民购买商品的种数,求h 的概率分布和数学期望.所以随机变量h 的概率分布为:…………………………8分 故数学期望1111123012324424412E =⨯+⨯+⨯+⨯=h . …………………………10分 48. 【2016高考冲刺卷(2)【江苏卷】】设集合{}1,2,3,,(3)M n n =≥,记M 的含有三个元素的子集个数为n S ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为n T . (1)求33T S ,44T S ,55T S ,66T S 的值; (2)猜想nnT S 的表达式,并证明之.和(1)k -个k , ……………8分 所以1k k T T +=+213243(1)k k ⨯+⨯+⨯++- 3222223412[]2k k k C C C C C +=++++⋅⋅⋅+ 3322233412[]2k k k C C C C C +=++++⋅⋅⋅+3311222k k k C C ++-=+3122k k C ++=1(1)12k k S +++=,即11(1)12k k T k S ++++=.所以当1n k =+时,猜想也成立.综上所述,猜想成立. ……………10分49.【2016高考冲刺卷(4)【江苏卷】】【选修4—1几何证明选讲】如图,PAQ ∠是直角,圆O 与射线AP 相切于点T ,与射线AQ 相交于两点,B C .求证:BT 平分OBA ∠.50.【2016高考冲刺卷(4)【江苏卷】】【选修4—2:矩阵与变换】在平面直角坐标系xOy 中,设点()1,2A -在矩阵1001M -⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点A ',将点()3,4B 绕点A '逆时针旋转90 得到点B ',求点B '的坐标. 【答案】(1,4)B '-.【解析】解:设(,)B x y ',则由10110122--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得(1,2)A ' 则(2,2),(1,2),A B A B x y '''==--0121110224x x y y --=-⎡⎤⎡⎤⎡⎤⎧=⇒⎨⎢⎥⎢⎥⎢⎥-=⎣⎦⎣⎦⎣⎦⎩,(1,4)B '-51. 【2016高考冲刺卷(4)【江苏卷】】【选修4—4:坐标系与参数方程】在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为sin()3πρθ-=椭圆C 的参数方程为2cos x t y t=⎧⎪⎨=⎪⎩ (t 为参数) .(1)求直线l 的直角坐标方程与椭圆C 的普通方程; (2)若直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.52.【2016高考冲刺卷(4)【江苏卷】】【选修4—5:不等式选讲】设x ,y 均为正数,且x >y ,求证:x +4x 2-2xy +y 2≥y +3.【答案】详见解析. 【解析】证明:x -y +4x 2-2xy +y 2=(x -y )+4(x -y )2(3分)=x -y 2+x -y2+4(x -y )2,(5分)53. 【2016高考冲刺卷(4)【江苏卷】】如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AAC C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点. (Ⅰ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅱ)是否存在点P ,使得直线1AC //平面AMP ?请说明理由. 【答案】(Ⅱ)12BP PB =. 【解析】AMPCBA 1C 1B 1所以二面角P AM B --.………………………………5分 (Ⅱ)存在点P ,使得直线1AC //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.54. 【2016高考冲刺卷(4)【江苏卷】】设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n,n ∈N ,n ≥2.(1)设n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值; (2)设b k =1k n k+-a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求1||m mn S C - 【答案】(1)1024(2)1.【解析】解:(1)因为a k =(-1)kkn C ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=67891011111111111111C C C C C C +++++ =01101110111111111()21024.2C C C C ++++== ……………………………………………3分 (2)b k =1k n k +-a k +1=(-1)k +11k n k+-1k n C +=(-1)k +1knC ,……………………………………5分当1≤k ≤n -1时,b k =(-1)k +1kn C = (-1)k +1(111k k n n C C ---+)=(-1)k +111k n C --+(-1)k +11kn C -=(-1)k -111k n C ---(-1)k1kn C -. (7)分当m =0时,011||||m m n n S b C C --==1. ……………………………………8分 当1≤m ≤n -1时,S m =-1+1mk =∑[(-1)k -111k n C ---(-1)k 1k n C -]=-1+1-(-1)m 1m n C -=-(-1)m1m n C -,所以1||mmn S C -=1. 综上,1||mmn S C -=1. ……………………………………10分 55.【2016高考冲刺卷(8)【江苏卷】】【选修4—1几何证明选讲】如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△PAE ∽△BDE .56.【2016高考冲刺卷(8)【江苏卷】】【选修4—2:矩阵与变换】 已知a ,b 是实数,如果矩阵A =32a b ⎡⎤⎢⎥-⎣⎦所对应的变换T 把点(2,3)变成点(3,4). (1)求a ,b 的值.(2)若矩阵A 的逆矩阵为B ,求B 2. 【答案】(1)a =-1,b =5.(2)⎥⎦⎤⎢⎣⎡--=45112B .【解析】解:(1)由题意,得323234a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得6+3a =3,2b -6=4,…………………4分所以a =-1,b =5.…………………………………………………………6分(2)由(1),得3152A -⎡⎤=⎢⎥-⎣⎦.由矩阵的逆矩阵公式得2153B -⎡⎤=⎢⎥-⎣⎦……………………8分所以⎥⎦⎤⎢⎣⎡--=45112B ……………………………………………………………10分57. 【2016高考冲刺卷(8)【江苏卷】】【选修4—4:坐标系与参数方程】在平面直角坐标系xOy 中,直线l 过点(12)M ,,倾斜角为3π﹒以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆:6cos C ρθ=﹒若直线l 与圆C 相交于A B ,两点,求M A M B ⋅的值.58.【2016高考冲刺卷(8)【江苏卷】】【选修4—5:不等式选讲】求函数f (x )=的最大值. 【答案】【解析】解:函数定义域为[0,4],且f (x )≥0.由柯西不等式得[52+22+2)]≥(52,······················5分即27×4≥(52,所以x =10027时,取等号.所以,函数f (x )=··································10分59. 【2016高考冲刺卷(8)【江苏卷】】 如图,在平面直角坐标系xOy 中,抛物线y 2=2px (p >0)的准线l 与x 轴交于点M ,过M 的直线与抛物线交于A ,B 两点.设A (x 1,y 1)到准线l 的距离为d ,且d =λp (λ>0).(1)若y 1=d =1,求抛物线的标准方程;(2)若AM AB λ+=0,求证:直线AB 的斜率为定值.所以k 2=2,所以直线AB 的斜率为定值. ………………10分60. 【2016高考冲刺卷(8)【江苏卷】】设实数12n a a a ,,,满足120n a a a +++= ,且12||||||1n a a a +++ ≤(*n ∈N 且2)n ≥,令(*)nn a b n n=∈N .求证:1211||22n b b b n+++- ≤(*)n ∈N .61.【2016高考冲刺卷(1)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于点D ,AC ⊥CD ,DE ⊥AB ,C 、E 为垂足,连接,AD BD . 若4AC =,3DE =,求BD 的长.62.【2016高考冲刺卷(1)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵1214A ⎡⎤=⎢⎥-⎣⎦,求矩阵A 的特征值和特征向量. 【答案】.属于特征值12λ=的一个特征向量121α⎡⎤=⎢⎥⎣⎦,属于特征值23λ=的一个特征向量211α⎡⎤=⎢⎥⎣⎦【解析】矩阵A 的特征多项式为()2125614f λλλλλ--==--+, ……………2分 由()0f λ=,解得12λ=,23λ=. …………………………………………4分当12λ=时,特征方程组为20,20,x y x y -=⎧⎨-=⎩故属于特征值12λ=的一个特征向量121α⎡⎤=⎢⎥⎣⎦;………………………………7分ABDEOC·当23λ=时,特征方程组为220,0,x y x y -=⎧⎨-=⎩故属于特征值23λ=的一个特征向量211α⎡⎤=⎢⎥⎣⎦. …………………………10分63.【2016高考冲刺卷(1)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分) 在极坐标系中,求圆θρsin 8=上的点到直线3πθ=(R ∈ρ)距离的最大值.64.【2016高考冲刺卷(1)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分)已知正实数,,a b c 满足231a b c ++=,求证:24627111a b c ++≥. 【答案】详见解析.【解析】因为正实数,,a b c 满足231a b c ++=,所以1≥23127ab c ≤, …………………………5分所以23127ab c ≥因此,24611127a b c ++≥ ……………………10分65.【2016高考冲刺卷(1)【江苏卷】】(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=AC =4,AA 1⊥平面ABC ; AB ⊥AC ,(1)求二面角A 1-BC 1-B 1的余弦值; (2)在线段BC 1存在点D ,使得AD ⊥A 1B ,求BDBC 1的值.【答案】(1)1625(2)1925BD BC λ==1A 1B 1C ABC因为9[0,1]25∈,所以在线段BC 1上存在点D , 使得AD ⊥A 1B . 此时,1925BD BC λ==. ………10分66【2016高考冲刺卷(1)【江苏卷】】(本小题满分10分)已知,N*k m ∈,若存在互不相等的正整数12,,a a …,m a ,使得1223,,a a a a …11,,m m m a a a a -同时小于k ,则记()f k 为满足条件的m 的最大值.(1)求(6)f 的值;(2)对于给定的正整数n (1)n >,(ⅰ)当(2)(1)(2)n n k n n +<≤++时,求()f k 的解析式; (ⅱ)当(1)(2)n n k n n +<≤+时,求()f k 的解析式.又∵从集合1A 中选出的i a 至多n 个,∴()21f k n =-, ………………10分 (写出(ⅰ)、(ⅱ)题的结论但没有证明各给1分.)67.【2016高考冲刺卷(3)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,过点P 作圆O 的割线PBA 与切线PE ,E 为切点,连接AE BE ,,APE ∠的平分线与AE BE ,分别交于C D ,,其中30APE ∠=︒.(Ⅰ)求证:ED PB PDBD PA PC⋅=; (Ⅱ)求PCE ∠的大小.68.【2016高考冲刺卷(3)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵1252M x -⎡⎤⎢⎥=⎢⎥⎣⎦的一个特征值为2-,求2M . 【答案】264514M ⎡⎤=⎢⎥⎣⎦【解析】2λ=-代入3x = ……5分∴264514M ⎡⎤=⎢⎥⎣⎦…………10分69.【2016高考冲刺卷(3)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分) 在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos (0)C a a ρθθ=>过点(2,4)P --的直线(t为参数)与曲线C 相交于点,M N 两点.(1)求曲线C 的平面直角坐标系方程和直线l 的普通方程;(2成等比数列,求实数a 的值.70.【2016高考冲刺卷(3)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分) 已知函数()121f x x x =++- (1)解不等式()4f x <(2)若不等式()1f x a ≥+对任意的x R ∈恒成立,求实数a 的取值范围. 【答案】(1)513x ⎧⎫-<<⎨⎬⎩⎭;(2){}|31a a -≤≤. 【解析】71.【2016高考冲刺卷(3)【江苏卷】】(本小题满分10分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档