全国重点名校高考数学难点突破——圆锥曲线综合题
2023年高考数学热点专题解析几何模型通关突破圆锥曲线压轴小题(解析版)
![2023年高考数学热点专题解析几何模型通关突破圆锥曲线压轴小题(解析版)](https://img.taocdn.com/s3/m/c44b9df5a48da0116c175f0e7cd184254b351bc2.png)
突破圆锥曲线压轴小题圆锥曲线的压轴小题往往与圆的方程、平面向量、解析几何等知识交回,与实际生活密切相关,提升数学运算,逻辑推理,数学建模的核心素养。
类型一 圆锥曲线与向量、圆等知识的交汇问题【例1】(1)(2022·济南联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1(-c ,0),F 2(c ,0),点P 是椭圆C 上一点,满足|PF 1——→+PF 2——→|=|PF 1——→-PF 2——→|,若以点P 为圆心,r 为半径的圆与圆F 1:(x +c )2+y 2=4a 2,圆F 2:(x -c )2+y 2=a 2都内切,其中0<r <a ,则椭圆C 的离心率为( ) A.12 B.34 C.104 D.154【答案】C【解析】由|PF 1——→+PF 2——→|=|PF 1——→-PF 2——→|两边平方, 可得PF 1——→·PF 2——→=0,则PF 1——→⊥PF 2——→,由已知得⎩⎪⎨⎪⎧|PF 1|=2a -r ,|PF 2|=a -r ,即|PF 1|-|PF 2|=a ,由|PF 1|+|PF 2|=2a ,得⎩⎨⎧|PF 1|=3a 2,|PF 2|=a2,在△PF 1F 2中,由|PF 1|2+|PF 2|2=|F 1F 2|2 得9a 24+a 24=4c 2,即e 2=c 2a 2=58,所以e =104. (2)(2022·广州模拟)已知A ,B 分别为椭圆C :x 24+y 2=1的左、右顶点,P 为椭圆C 上一动点,P A ,PB 与直线x =3交于M ,N 两点,△PMN 与△P AB 的外接圆的周长分别为l 1,l 2,则l 1l 2的最小值为( )A.54 B.34 C.24 D.14【答案】A思路引导母题呈现【解析】由已知得A (-2,0),B (2,0),设椭圆C 上动点P (x ,y ), 则利用两点连线的斜率公式可知k P A =y -0x +2,k PB =y -0x -2,∴k P A ·k PB =y -0x +2·y -0x -2=y 2(x +2)(x -2)=y 2x 2-4=1-x 24x 2-4=-14.设直线P A 的方程为y =k (x +2), 则直线PB 的方程为y =-14k (x -2),根据对称性设k >0,令x =3,得y M =5k ,y N =-14k ,即M (3,5k ),N 1(3,)4k−,则|MN |=5k +14k . 设△PMN 与△P AB 的外接圆的半径分别为r 1,r 2, 由正弦定理得2r 1=|MN |sin ∠MPN ,2r 2=|AB |sin ∠APB ,∵∠MPN +∠APB =180°,∴sin ∠MPN =sin ∠APB , ∴l 1l 2=2πr 12πr 2=r 1r 2=|MN ||AB |=5k +14k 4≥25k ·14k 4=54, 当且仅当5k =14k ,即k =510时,等号成立,即l 1l 2的最小值为54. 【方法总结】高考对圆锥曲线的考查,经常出现一些与其他知识交汇的题目,如与平面向量交汇、与三角函数交汇、与不等式交汇、与导数交汇等等,这些问题的实质是圆锥曲线问题. 【针对训练】(1)(2022·深圳模拟)F 1,F 2分别为双曲线C :x 2-y 22=1的左、右焦点,过F 1的直线l 与C 的左、右两支曲线分别交于A ,B 两点,若l ⊥F 2B ,则F 2A —→·F 2B —→等于( ) A .4-2 3 B .4+ 3 C .6-2 5 D .6+25 【答案】C【解析】在双曲线C 中,a =1,b =2,c =3, 则F 1(-3,0),F 2(3,0),因为直线l 过点F 1,由图知,直线l 的斜率存在且不为零,因为l ⊥F 2B ,则△F 1BF 2为直角三角形, 可得|BF 1|2+|BF 2|2=|F 1F 2|2=12, 由双曲线的定义可得|BF 1|-|BF 2|=2,所以4=(|BF 1|-|BF 2|)2=|BF 1|2+|BF 2|2-2|BF 1|·|BF 2|=12-2|BF 1|·|BF 2|, 可得|BF 1|·|BF 2|=4,联立⎩⎪⎨⎪⎧|BF 1|-|BF 2|=2,|BF 1|·|BF 2|=4,解得|BF 2|=5-1,因此F 2A —→·F 2B —→=(F 2B —→+BA —→)·F 2B —→=F 2B —→2+BA —→·F 2B —→ =(5-1)2=6-2 5.(2)(多选)(2022·德州模拟)已知椭圆C :x 25+y 2b 2=1(0<b <5)的左、右焦点分别为F 1,F 2,点P 在椭圆上,点Q 是圆x 2+(y -4)2=1关于直线x -y =0对称的曲线E 上任意一点,若|PQ |-|PF 2|的最小值为5-25,则下列说法正确的是( ) A .椭圆C 的焦距为2B .曲线E 过点F 2的切线斜率为C .若A ,B 为椭圆C 上关于原点对称的异于顶点和点P 的两点,则直线P A 与PB 斜率之积为-15D .|PQ |+|PF 2|的最小值为2 【答案】BC【解析】圆x 2+(y -4)2=1关于直线x -y =0对称的曲线为以C (4,0)为圆心,1为半径的圆, 即曲线E 的方程为(x -4)2+y 2=1,由椭圆定义有|PF 1|+|PF 2|=2a =25, |PQ |-|PF 2|=|PQ |-(25-|PF 1|) =|PQ |+|PF 1|-25≥|Q ′F 1|-2 5.由图知Q ′(3,0),|Q ′F 1|-25=3+c -25=5-25, 解得c =2,b =1, 椭圆方程为x 25+y 2=1.故焦距|F 1F 2|=2c =4,A 错误;|PQ |+|PF 2|≥|Q ′F 2|=3-c =1,D 错误; 设曲线E 过点F 2的切线斜率为k , 则切线方程为kx -2k -y =0,由圆心到切线方程的距离等于半径得|4k -2k -0|1+k 2=1,即k =±33,B 正确; 设P (x 0,y 0),A (x 1,y 1),B (-x 1,-y 1),则k P A ·k PB =y 1-y 0x 1-x 0·-y 1-y 0-x 1-x 0=y 21-y 2x 21-x 20, 又点P ,A ,B 都在椭圆上,即x 25+y 20=1, x 215+y 21=1⇒y 21-y 20x 21-x 20=-15,C 正确.类型2 圆锥曲线与三角形“四心”问题【例2】(1)(2022·苏州联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,点P 是双曲线C 右支上异于顶点的点,点H 在直线x =a 上,且满足PH →=λ1212()PF PF PF PF +,λ∈R .若5HP →+4HF 2——→+3HF 1——→=0,则双曲线C 的离心率为( )A .3B .4C .5D .6 【答案】C【解析】由PH →=λ1212()PF PF PF PF +,λ∈R ,则点H 在∠F 1PF 2的角平分线上,由点H 在直线x =a 上,则点H 是△PF 1F 2的内心, 由5HP →+4HF 2——→+3HF 1——→=0,由奔驰定理(已知P 为△ABC 内一点,则有S △PBC ·P A →+S △P AC ·PB →+S △P AB ·PC →=0)知,1212HF F HF P HF P S S S △△△∶∶=5∶4∶3,即12|F 1F 2|·r ∶12|PF 1|·r ∶12|PF 2|·r =5∶4∶3, 则|F 1F 2|∶|PF 1|∶|PF 2|=5∶4∶3, 设|F 1F 2|=5λ,|PF 1|=4λ,|PF 2|=3λ, 则|F 1F 2|=2c =5λ,即c =5λ2,|PF 1|-|PF 2|=2a =λ,即a =λ2,则e =ca=5.(2)(2022·江苏百师联盟联考)过抛物线C :x 2=2py (p >0)上点M 作抛物线D :y 2=4x 的两条切线l 1,l 2,切点分别为P ,Q ,若△MPQ 的重心为G 3(1,)2,则p =________.【答案】316【解析】设M 200(,)2x x p,P (x 1,y 1),Q (x 2,y 2), 设过点M 的直线方程为x =t 200()2x y p −+x 0,①与y 2=4x 联立得y 2=4t 20()2x y p −+4x 0,即y 2-4ty +2tx 20p-4x 0=0,② 由题意知Δ=16t 2-42002(4)tx x p −,即2pt 2-x 20t +2px 0=0,则t 1+t 2=x 202p ,t 1·t 2=x 0(t 1,t 2分别表示l 1,l 2斜率的倒数),由于方程②Δ=0,则其根为y =2t , 当t =t 1时,y 1=2t 1,当t =t 2时,y 2=2t 2, ∵△MPQ 的重心为G 3(1,)2,∴x 202p +y 1+y 2=x 202p +2(t 1+t 2) =x 202p +2×x 202p =3x 202p =92,③ 而x 1+x 2=t 1201()2x y p−+x 0+t 2202()2x y p −+x 0 =2(t 21+t 22)-x 202p(t 1+t 2)+2x 0=2[(t 1+t 2)2-2t 1t 2]-x 202p(t 1+t 2)+2x 0=22002(2)4x x p−-x 404p 2+2x 0=x 404p 2-2x 0. ∴x 0+x 1+x 2=x 404p 2-x 0=3,④联立③④得p =316.【方法总结】圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题.但“四心”问题进入圆锥曲线后,让我们更是耳目一新.在高考数学复习中,通过研究三角形的“四心”与圆锥曲线的结合问题,快速提高数学解题能力.【针对训练】 (1)(2022·南京外国语学校模拟预测)已知F 1(-1,0),F 2(1,0),M 是第一象限内的点,且满足|MF 1|+|MF 2|=4,若I 是△MF 1F 2的内心,G 是△MF 1F 2的重心,记△IF 1F 2与△GF 1M 的面积分别为S 1,S 2,则( ) A .S 1>S 2 B .S 1=S 2C .S 1<S 2D .S 1与S 2大小不确定【答案】B【解析】因为|MF 1|+|MF 2|=4>|F 1F 2|=2,所以M 的轨迹是椭圆x 24+y 23=1在第一象限内的部分,如图所示.因为I 是△MF 1F 2的内心,设内切圆的半径为r , 所以(|MF 1|+|MF 2|+|F 1F 2|)·r 2=|F 1F 2|·y M2,所以r =y M 3,所以S 1=|F 1F 2|·r 2=y M3,又因为G 是△MF 1F 2的重心, 所以OG ∶GM =1∶2, 所以12122133MOF F MF S S S ==△△ =13·|F 1F 2|·y M 2=y M3,所以S 1=S 2. (2)(2022·湖北·荆州中学模拟预测)在平面直角坐标系Oxy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 【答案】32【解析】设OA 所在的直线方程为y =ba x ,则OB 所在的直线方程为y =-ba x ,解方程组⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得⎩⎨⎧x =2pba ,y =2pb 2a 2,所以点A 的坐标为2222(,)pb pb a a ,抛物线的焦点F 的坐标为(0,)2p .因为F 是△OAB 的垂心,所以k OB ·k AF =-1 ,所以-b a ·2222()2pb papba −=-1⇒b 2a 2=54. 所以e 2=c 2a 2=1+b 2a 2=94,解得e =32. 类型3 圆锥曲线在生活中的应用【例3】(1)(2022·湛江质检)根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,点连线的夹角.请解决下面问题:已知F 1,F 2分别是双曲线C :x 2-y 22=1的左、右焦点,若从点F 2发出的光线经双曲线右支上的点A (x 0,2)反射后,反射光线为射线AM ,则∠F 2AM 的角平分线所在的直线的斜率为( )A .- 3B .-33 C.33D.3 【答案】B【解析】由已知可得A (x 0,2)在第一象限, 将点A 的坐标代入双曲线方程可得x 20-42=1, 解得x 0=3,所以A (3,2), 又由双曲线的方程可得a =1,b =2, 所以c =3,则F 2(3,0),所以|AF 2|=2,且点A ,F 2都在直线x =3上,又|OF 1|=|OF 2|=3,所以tan ∠F 1AF 2=|F 1F 2||AF 2|=232=3,所以∠F 1AF 2=60°,设∠F 2AM 的角平分线为AN , 则∠F 2AN =(180°-60°)×12=60°,所以∠F 2AM 的角平分成所在的直线AN 的倾斜角为150°, 所以直线的斜率为tan 150°=-33. (2)(2022·莆田华侨中学模拟预测)第24届冬奥会,是中国历史上第一次举办的冬季奥运会,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图1,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图2),且两切线斜率之积等于-916,则椭圆的离心率为( )图1 图2A.34B.74C.916D.32 【答案】B【解析】若内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由离心率相同,可设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(m >1), ∴A (-ma ,0),B (0,mb ), 设切线AC 为y =k 1(x +ma ), 切线BD 为y =k 2x +mb , ∴⎩⎪⎨⎪⎧y =k 1(x +ma ),x 2a 2+y 2b 2=1,整理得(a 2k 21+b 2)x 2+2ma 3k 21x +m 2a 4k 21-a 2b 2=0, 由Δ=0知(2ma 3k 21)2-4(a 2k 21+b 2)(m 2a 4k 21-a 2b 2)=0,整理得k 21=b 2a 2·1m 2-1,同理⎩⎪⎨⎪⎧y =k 2x +mb ,x 2a 2+y 2b 2=1,可得k 22=b 2a 2·(m 2-1),∴(k 1k 2)2=b 4a4=29()16−,即b 2a 2=916, 故e =c a=a 2-b 2a 2=74. 【方法总结】圆锥曲线的光学性质、新定义问题、圆锥曲线的应用等内容在高考占一席之地.研究圆锥曲线的光学性质、新定义问题、圆锥曲线的应用等相关问题,体现出数学的应用性.【针对训练】(1)(2022·德州市教育科学研究院二模)如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为x 2+4y 2=4,其左、右焦点分别是F 1,F 2,直线l 与椭圆C 切于点P ,且|PF 1|=1,过点P 且与直线l 垂直的直线l ′与椭圆长轴交于点M ,则|F 1M |∶|F 2M |等于( )A.2∶ 3 B .1∶ 2 C .1∶3 D .1∶3 【答案】C【解析】l 平分∠F 1PF 2, 因为12PMF PMF S S △△=|F 1M ||F 2M |=12|PF 1||PM |sin ∠F 1PM 12|PF 2||PM |sin ∠F 2PM =|PF 1||PF 2|, 由|PF 1|=1,|PF 1|+|PF 2|=4得|PF 2|=3, 故|F 1M |∶|F 2M |=1∶3.(2)(2022·东北育才学校二模)一个工业凹槽的轴截面是双曲线的一部分,它的方程是y 2-x 2=1,y ∈[1,10],在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A .1B .2C .3D .2.5 【答案】A【解析】清洁钢球能擦净凹槽的最底部时,轴截面如图所示,圆心在双曲线的对称轴上,且圆与双曲线的顶点相切,设半径为r ,圆心为(0,r +1), 圆的方程为x 2+(y -r -1)2=r 2, 代入双曲线方程y 2-x 2=1,得y 2-(r +1)y +r =0,∴y =1或y =r , 要使清洁钢球到达底部,即r ≤1.1.(2023·陕西榆林·陕西省神木中学校考模拟预测)已知双曲线()2222:10,0x y C a b a b−=>>的左、右焦点分别为1F 、2F ,点P 在双曲线C 的右支上,且124PF PF =,双曲线C 的一条渐近线方程为y kx =,则k 的最大值为( )A .43B .43−C .34D .34−【答案】A【分析】根据三角形两边之和大于第三边,1F 、2F 和P 共线时取等号,列出,a c 的不等式即可. 【详解】124PF PF =,122PF PF a −=,2128,33PF a PF a ∴== 1212+≥PF PF F F .53c a ∴≤2222169b c a a ∴=−≤43b a ∴≤ 即k 的最大值为43故选:A.模拟训练且4AP AQ a ⋅=−的坐标,代入4AP AQ a ⋅=−当by x a=时,如图,设联立222b y xa x y c ⎧=⎪⎨⎪+=⎩,解得又因为(,0)A a −,所以AQ 所以(2,AP a =,(0,AQ =−所以2AP AQ b ⋅=−22+=a b ,所以25a =同理,当y =−时,亦可得2. 所以()222211()()|2|||44AP AQ AP AQ AP AQ AO QP a ⎡⎤⋅=+−−=−=⎣⎦2,2⎫⎛+∞⎪ ⎪ ⎭⎝【分析】根据椭圆的标准方程求出焦点坐标,利用直线的斜截式方程设出直线的方程,将直线方程与椭圆所以121222,2,x x OM ON y y ⎛⎫⎛== ⎪ ⎝⎭⎝所以0OM ON ⋅>,所以114x x OM ON y y ⋅=21421k −⨯+−−,设2MF FN =,点Q B .54利用2MF FN =求出点,则221212(,1),(,44x x MF x FN x =−−=由2MF FN =得:−218x =,因此点Q 的纵坐标为60,则该双曲线的离心率为A .33B .3 【答案】D60,即603=2360, ax b=的倾斜角为60, 603=24a =A .74B .2C .【答案】D【分析】设双曲线的标准方程为(222210,x y a a b −=>【详解】设双曲线的标准方程为(222210,x y a a b −=>则由题意最小横截面的直径为20cm ,可知10a =5025⎛⎫⎛⎫8.(2022·四川成都·树德中学校考模拟预测)双曲线的光学性质为90,tanA .10B .102C .3 【答案】B【分析】设1AF m =,()20,0AF n m n =>>,根据题意可得AB =a 表示),然后在12AF F △中,应用勾股定理得出a 、c 的关系,求得离心率.【详解】连接1AF 、1BF ,易知1F 、A 、D 共线,1F 、B 、C 共线,设1AF m =,(2AF n m =>(1tan tan 180ABF ABC ∠=−∠由勾股定理可得1BF AF =18090BAD −∠=,2221212+AF AF F F =,即(设(),M x y ,则12222y y k k x x x ⋅=⋅=+−直线1A M 的方程为()12y k x =+,直线A 即111142343,2323k k Q k k ⎛⎫−+ ⎪ ⎪++⎝⎭,.OAB 可能为锐角三角形.过点(0,1M .若3AF =,则AOB 的面积为最小值为3+AOB S =,从而利用基本不等式即可判断⎩故1OA OB x x ⋅=对于B :因为对于所以()0,1M 在抛物线AOBS=D :由选项A.若伞柄垂直于地面,太阳光线与地面所成角为B.若伞柄垂直于地面,太阳光线与地面所成角为C.若伞柄与太阳光线平行,太阳光线与地面所成角D.若太阳光线与地面所成角为π6,则小明调整伞柄位置,伞在地面的影子可以形成椭圆,且椭圆长轴长的15.(多选题)(2023·山东淄博·统考一模)已知曲线C 的方程为2214x y m+=(4m <且m ≠C 与x 轴的左、右交点,P 为C 上任意一点(不与A ,B 重合),则( )A .若1m =−,则C 为双曲线,且渐近线方程为2y x =±B .若P 点坐标为()1,n ,则C 为焦点在x 轴上的椭圆 C .若点F 的坐标为()4,0m −,线段PF 与x 轴垂直,则2m PF =D .若直线PA ,PB 的斜率分别为1k ,2k ,则124m k k =− 【答案】BD【分析】根据方程的特征和椭圆与双曲线的性质逐项进行分析即可判断.112PF F S =20.(2023·云南玉溪·统考一模)已知。
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)
![高考数学最新真题专题解析—圆锥曲线综合(新高考卷)](https://img.taocdn.com/s3/m/64ff806e326c1eb91a37f111f18583d049640fe9.png)
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
2022年高考数学圆锥曲线重难点专题突破(全国通用)专题09 双曲线中的定点、问题含解析
![2022年高考数学圆锥曲线重难点专题突破(全国通用)专题09 双曲线中的定点、问题含解析](https://img.taocdn.com/s3/m/dfd08eb9f021dd36a32d7375a417866fb84ac0ab.png)
(A,B 异于点 Q),若 k1 k2 1,试判断直线 AB 是否经过定点,若存在定点,求出该定点坐标;若不存在, 说明理由.
22.在平面直角坐标系 xOy 中,已知动点 P 到点 F 2, 0 的距离与它到直线 x 3 的距离之比为 2 3 .记点 P
2
3
的轨迹为曲线 C .
(1)求曲线 C 的方程;
(2)过点 F 作两条互相垂直的直线 l1 ,l2 .l1 交曲线 C 于 A ,B 两点,l2 交曲线 C 于 S ,T 两点,线段 AB 的
中点为 M ,线段 ST 的中点为 N .证明:直线 MN 过定点,并求出该定点坐标.
专题 09 双曲线中的定点、定值、定直线问题
2,过
A1
点且斜率
1
的直线
l
与双曲线
C
交于另一点
B
,已知
△A1BF
的面积为
9 2
.
(1)求双曲线的方程;
(2)若过 F 的直线与双曲线 C 交于 M , N 两点,试探究直线 A1M 与直线 A2N 的交点 Q 是否在某条定直线
上?若在,请求出该定直线方程;若不在,请说明理由.
19.已知双曲线 C : x2 y2 1的左、右顶点分别为 A, B ,过右焦点 F 的直线 l 与双曲线 C 的右支交于 P,Q 45
16.已知双曲线
x2 a2
y2 b2
1
(a
0, b
0)
,过双曲线上任意一点
P
分别作斜率为
b a
和
b a
高考重难点突破圆锥曲线50道题(3)含详细解析
![高考重难点突破圆锥曲线50道题(3)含详细解析](https://img.taocdn.com/s3/m/f4ca76896294dd88d0d26b79.png)
高考重难点突破圆锥曲线50道题(3)含详细解析1.已知抛物线C:y2=4x的焦点为F,直线l过点P(2,1),交抛物线于A,B两点.(1)若P为AB中点,求l的方程.(2)求|AF|+|BF|的最小值..2.已知抛物线C:y2=2x,过点M(2,0)的直线l交抛物线C于A,B两点,点P是直线上的动点,且PO⊥AB于点Q.(Ⅰ)若直线OP的倾斜角为,求|AB|;(Ⅱ)求的最小值及取得最小值时直线l的方程.3.设F为抛物线C:y2=2px的焦点,A是C上一点,F A的延长线交y轴于点B,A为FB 的中点,且|FB|=3.(1)求抛物线C的方程;(2)过F作两条互相垂直的直线l1,l2,直线l1与C交干M、N两点,直线l2与C交于D,E两点,求四边形MDNE面积的最小值.4.已知椭圆C:1(a>b>0)的左右焦点分别为F1,F2,A,B为椭圆C上位于x轴同侧的两点,△AF1F2的周长为6,∠F1AF2,的最大值为.(Ⅰ)求椭圆C的方程;(Ⅱ)若∠AF1F2+∠BF2F1=π,求四边形AF1F2B面积的取值范围.5.已知椭圆C:1(a>b>0)的短轴长等于2,离心率为.(1)求椭圆C的方程;(2)设O为坐标原点,过右焦点F的直线与椭圆C交于A、B两点(A、B不在x轴上),若,求四边形AOBE面积S的最大值.6.设椭圆E:>的右焦点为F,上顶点为M;CD是过点F且垂直于x 轴的椭圆E的弦,|CD|=3.(1)求椭圆E的方程;(2)圆F的半径为1,直线1过点M与圆F交于A、B两点,O为坐标原点,若|OA|•|OB|=1,求直线l的方程.7.已知抛物线C:y2=4x上有一点P位于x轴的上方,且|PF|=2.(Ⅰ)求P点的坐标;(Ⅱ)若直线P A,PB的倾斜角互补,分别交曲线C于A,B两点(点A,B,P不重合),试判断直线AB的倾斜角是否为定值,若是,求出此值,若不是请说明理由.8.已知椭圆C:1(a>b>0)的离心率为,左,右焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,△AF2B的周长为8,(1)求该椭圆C的方程.(2)设P为椭圆C的右顶点,Q为椭圆C与y轴正半轴的交点,若直线l:y x+m,(﹣1<m<1)与圆C交于M,N两点,求P、M、Q、N四点组成的四边形面积S的取值范围.9.已知椭圆C:1(a>b>0)过点A(2,0),双曲线1的离心率为.(1)求椭圆C的方程;(2)过原点O作两条射线OM,ON分别交椭圆C于M,N两点,当OM,ON斜率分别为k1,k2且△OMN的面积为1时,试问k1•k2是否为定值?若为定值,求出该定值;若不为定值,请说明理由.10.已知抛物线C:x2=2py(p>0)的焦点F到准线距离为2.(1)若点E(1,1),且点P在抛物线C上,求|PE|+|PF|的最小值;(2)若过点N(0,b)的直线与圆M:x2+(y﹣2)2=4相切,且与抛物线C有两个不同交点AB,求△AOB的面积.11.已知椭圆C:1(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,以PF1为直径的圆E:x2过点F2.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P且斜率大于0的直线l1与C的另一个交点为A,与直线x=4的交点为B,过点(3,)且与l1垂直的直线l2与直线x=4交于点D,求△ABD面积的最小值.12.已知椭圆C:y2=1,斜率为l的直线l与椭圆C交于A(x1,y1),B(x2,y2)两点,且x1>x2.(Ⅰ)若A,B两点不关于原点对称,点D为线段AB的中点,求直线OD的斜率;(Ⅱ)若存在点E(3,y0),使得∠EBA=∠AEB=45°,求直线AB的方程.13.已知O为坐标原点,点F1,F2为椭圆M:1(a>b>0)左右焦点,G为椭圆M上的一个动点,△GF1F2的最大面积为,椭圆M的离心率为.(1)求椭圆M的标准方程;(2)过抛物线N:y一点P与抛物线N相切的直线l与椭圆M相交于A、B两点,设AB的中点为C,直线OP与直线OC的斜率分别是k1,k2,证明:k1k2为定值.14.已知抛物线C:y2=2px(p>0)过点M(1,﹣2),且焦点为F,直线l与抛物线相交于A,B两点.(1)求抛物线C的方程,并求其准线方程;(2)O为坐标原点.若,证明直线l必过一定点,并求出该定点.15.已知圆D:(x﹣2)2+(y﹣1)2=1,点A在抛物线C:y2=4x上,O为坐标原点,直线OA与圆D有公共点.(1)求点A横坐标的取值范围;(2)如图,当直线OA过圆心D时,过点A作抛物线的切线交y轴于点B,过点B引直线l交抛物线C于P、Q两点,过点P作x轴的垂线分别与直线OA、OQ交于M、N,求证:M为PN中点.16.已知抛物线C:y2=2px(p>0)的焦点为F,点B(m,2)在抛物线C上,A(0,),且|BF|=2|AF|.(1)求抛物线C的标准方程;(2)过点P(1,2)作直线PM,PN分别交抛物线C于M,N两点,若直线PM,PN 的倾斜角互补,求直线MN的斜率.17.已知点P(1,2)到抛物线C:y2=2px(p>0)准线的距离为2.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,求直线P A与PB的斜率之积.18.在平面直角坐标系xOy中,已知椭圆C:1(a>b>0)的离心率为,且过点(,).(1)求椭圆C的方程;(2)设点P(4,2),点M在x轴上,过点M的直线交椭圆C交于A,B两点.①若直线AB的斜率为,且AB,求点M的坐标;②设直线P A,PB,PM的斜率分别为k1,k2,k3,是否存在定点M,使得k1+k2=2k3恒成立?若存在,求出M点坐标;若不存在,请说明理由.19.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.20.已知椭圆C:1(a>0,b>0)的左、右焦点分别为F1、F2,离心率为,过焦点F2的直线l交椭圆C于A、B两点,当直线l垂直于x轴时,|AB|.(1)求椭圆C的标准方程:(2)已知椭圆上顶点为P,若直线l斜率为k,求证:以AB为直径的圆过点P.21.已知抛物线C:x2=2py(p>0的焦点为F,点M(2,m)(m>0)在抛物线上,且|MF|=2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,过点F作切线l0的垂线,垂足为Q,则点Q是否在定直线上,若是,求定直线的方程;若不是,说明理由.22.已知椭圆C:1(a>b>0)的短轴长等于2,离心率为.(Ⅰ)求椭圆C的标准方程(Ⅱ)若过点(﹣3,0)的直线l与椭圆C交于不同的两点M,N,O为坐标原点,求•的取值范围.23.已知椭圆C:(a>b>0)的离心率,且椭圆过点(,1)(1)求椭圆C的标准方程(2)设直线l与C交于M,N两点,点D在C上,O是坐标原点,若,判定四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.24.已知椭圆C:,(a>b>0)过点(1,)且离心率为.(Ⅰ)求椭圈C的方程;(Ⅱ)设椭圆C的右顶点为P,A,B是椭圆上异于点P的两点,直线P A,PB的斜率分别为k1k2,若k1+k2=1,试判断直线AB是否经过一个定点?若是,则求出该定点的坐标;若不是,则说明理由.25.已知椭圆:>>的离心率为,,为焦点是,的抛物线上一点,H为直线y=﹣a上任一点,A,B分别为椭圆C的上,下顶点,且A,B,H三点的连线可以构成三角形.(1)求椭圆C的方程;(2)直线HA,HB与椭圆C的另一交点分别交于D,E,求证:直线DE过定点.26.在平面直角坐标系xOy中,已知曲线C的方程是1(a,b>0).(1)当a=1,b=2时,求曲线C围成的区域的面积;(2)若直线l:x+y=1与曲线C交于x轴上方的两点M,N,且OM⊥ON,求点(,)到直线l距离的最小值.27.在直角坐标系中,已知椭圆E经过点M(2,),且其左右焦点的坐标分别是(﹣3,0),(3,0).(1)求椭圆E的离心率及标准方程;(2)设P(﹣3,t)为动点,其中t∈(,),直线l经过点P且与椭圆E相交于A,B两点,若P为AB的中点,是否存在定点N,使|NA|=|NB|恒成立?若存在,求点N的坐标;若不存在,说明理由28.已知椭圆C:y2=1的左、右焦点分别为F1,F2,P是椭圆C上在第二象限内的一点,且直线PF2的斜率为.(1)求P点的坐标;(2)过点Q(﹣2,0)作一条斜率为正数的直线l与椭圆C从左向右依次交于A,B两点,是否存在实数λ使得∠AF1B=λ∠AF1P?若存在,求出λ的值;若不存在,请说明理由.29.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型建筑物.建在水源不十分充分的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.图1)(1)图2为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径.已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m,俯视图为三个同心圆,其半径分别为40m,m,30m,试根据上述尺寸计算主视图中该双曲线的标准方程(m为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,y=0,y=h,绕y轴旋转形成的旋转体的体积为(用a,b,h表示)(用积分计算不得分,图3、图4)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m(底部),最薄处厚度为0.3m(喉部,即左右顶点处).试计算该冷却塔内壳所在的双曲线标准方程是,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是m3(计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加.现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元)30.已知椭圆:>>经过点,,左焦点,,直线l:y =2x+m与椭圆C交于A,B两点,O是坐标原点.(1)求椭圆C的标准方程;(2)若△OAB面积为1,求直线l的方程.31.已知F1、F2为椭圆C:1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M(,1).(1)求椭圆C的方程;(2)若过点(,0)的直线l与椭圆C交于A、B两点,若0,求直线l的方程.32.设椭圆:>>的右焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆Γ截得的线段长为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)如图,A、B分别为椭圆Γ的左、右顶点,过点F的直线l与椭圆Γ交于C、D两点.若,求直线l的方程.33.已知椭圆C:>>经过点(,1),离心率为.(1)求椭圆C的方程;(2)过点M(2,0)的直线l交椭圆于A,B两点,F为椭圆C的左焦点,若,求直线l的方程.34.已知F1,F2分别为椭圆:>>的左右焦点,上顶点为M,且△F1MF2的周长为,且长轴长为4.(1)求椭圆C的方程;(2)已知P(0,3),若直线y=2x﹣2与椭圆C交于A,B两点,求.35.已知椭圆C的中心为坐标原点O,焦点F1,F2在x轴上,椭圆C短轴端点和焦点所组成的四边形为正方形,且椭圆C短轴长为2.(1)求椭圆C的标准方程.(2)P为椭圆C上一点,且∠F1PF2,求△PF1F2的面积.36.已知抛物线C:y2=2px(p>0)的焦点与椭圆的右焦点重合.(1)求抛物线C的方程及焦点到准线的距离;(2)若直线y x+1与C交于A(x1,y1),B(x2,y2)两点,求y1y2的值.37.已知离心率为的椭圆C:1(a>b>0)的左焦点为F1,过F1作长轴的垂线交椭圆于M,N两点,且|MN|=2.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB 长度的最小值.38.已知抛物线y2=2px(p>0)上一点M(x0,2)到焦点F的距离|MF|,倾斜角为α的直线经过焦点F,且与抛物线交于两点A、B.(1)求抛物线的标准方程及准线方程;(2)若α为锐角,作线段AB的中垂线m交x轴于点P.证明:|FP|﹣|FP|•cos2α为定值,并求出该定值.39.已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F 的距离为.(Ⅰ)求抛物线E的方程;(Ⅱ)不过圆点的动直线l交抛物线于A、B两点,且满足OA⊥OB.(i)求证直线l过定点:(ii)设点M为圆C上任意一动点,求当动点M到直线l的距离最大时直线l的方程.40.设抛物线C:y2=2px(P>0)的焦点为F,直线l与抛物线C交于不同的两点A,B,线段AB中点M的横坐标为2,且|AF|+|BF|=6.(Ⅰ)求抛物线C的标准方程;(Ⅱ)若直线l(斜率存在)经过焦点F,求直线l的方程.41.己知点M为抛物线C:y2=4x上异于原点O的任意一点,F为抛物线的焦点,连接MF 并延长交抛物线C于点N,点N关于x轴的对称点为A.(Ⅰ)证明:直线MA恒过定点:(Ⅱ)如果|FM|=λ|OM|,求实数λ的取值范围.42.在直角坐标系xOy中,抛物线y2=4x与圆C:(x﹣a)2+y2=a2交于O,A,B三点,且O、A、B将圆C三等分(1)求a的值;(2)设直线l与抛物线交于M,N两点,点A位于第一象限,若直线AM,AN的斜率之和为,证明当线MN过定点,并求出定点坐标.43.设抛物线C:y2=4x的焦点为F,过F的直线l与C交于A,B两点.(1)若|AF|=2|BF|,求直线l的斜率;(2)设线段AB的垂直平分线交x轴于点D,求证:|AB|=2|DF|.44.在平面直角坐标系xOy中,曲线Γ:y=x2﹣mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.45.设抛物线C:y2=2px(p>0)的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点M(﹣1,0).(1)求抛物线C的方程;(2)设过点(2,0)的直线l1,l2分别与抛物线C交于点D,E和点G,H,且l1⊥l2,求四边形DGEH面积的最小值.46.在平面直角坐标系中,已知抛物线y2=2px(p>0)的焦点F到双曲线x21的渐近线的距离为.(1)求该抛物线的方程;(2)设抛物线准线与x轴交于点M,过M作斜率为k的直线l与抛物线交于A,B两点,弦AB的中点为P,AB的中垂线交x轴于N,求点N横坐标的取值范围.47.已知点P(6,﹣2)是抛物线C:y2=mx上一点,直线y=k(x﹣2)(k≠0)与抛物线C交于A,B两点.(1)求P到抛物线C焦点的距离;(2)若M的坐标为(0,1),且MA⊥MB,求k的值.48.已知点O为坐标原点椭圆C:1(a>b>0)的右焦点为F,离心率为,点P,Q分别是椭圆C的左顶点、上顶点,△POQ的边PQ上的中线长为.(1)求椭圆C的标准方程;(2)过点F的直线l交椭圆于A、B两点直线P A、PB分别交直线x=2a于M、N两点,求.49.已知椭圆1(a>b>0),若在(2,0),(,),(,)(,)四个点中有3个在M上.(1)求椭圆M的方程;(2)若点A与点B是椭圆M上关于原点对称的两个点,且C(﹣4,0),求•的取值范围.50.设抛物线C:y2=2px(p>0)的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点M(﹣1,0).(1)求抛物线C的方程;(2)若直线:与抛物线C交于R,S两点,点N为曲线E:上的动点,求△NRS面积的最小值.高考重难点突破圆锥曲线50道题(3)含详细解析参考答案与试题解析1.已知抛物线C:y2=4x的焦点为F,直线l过点P(2,1),交抛物线于A,B两点.(1)若P为AB中点,求l的方程.(2)求|AF|+|BF|的最小值..【解答】解:(1)设A(x1,y1),B(x2,y2).则x1+x2=4,y1+y2=2又,两式相减可得:(y1﹣y2)(y1+y2)=4(x1﹣x2).∴2(y1﹣y2)=4(x1﹣x2).,即直线l的斜率为2,∴直线l的方程为y=2(x﹣2)+1.即y=2x﹣3.(2)直线l的方程为x=m(y﹣1)+2由⇒y2﹣4my+4m﹣8=0.y1+y2=4m,∵|AF|+|BF|=x1+1+x2+1=x1+x2+2=m(y1﹣1)+2+m(y2﹣1)+2+2=m(y1+y2)﹣2m+6=4m2﹣2m+6当m时,|AF|+|BF|取最小值.最小值为.2.已知抛物线C:y2=2x,过点M(2,0)的直线l交抛物线C于A,B两点,点P是直线上的动点,且PO⊥AB于点Q.(Ⅰ)若直线OP的倾斜角为,求|AB|;(Ⅱ)求的最小值及取得最小值时直线l的方程.【解答】解:(Ⅰ)依题意可设直线OP的方程为:y=x﹣2.联立,可得x2﹣6x+4=0,所以AB2.(Ⅱ)设直线l的方程为x=my+2.由得y2﹣2my﹣4=0.设A(x1,y1),B(x2,y2),则.∴AB.又PQ:y=﹣mx,故P(,)∴点P到直线l的距离d=|PQ|.∴3令m2+4=t,f(t).函数f(t)在[4,+∞)单调递增,∴f(t)min=f(4),此时m=0∴3,∴的最小值为,此时直线l的方程为x=2.3.设F为抛物线C:y2=2px的焦点,A是C上一点,F A的延长线交y轴于点B,A为FB 的中点,且|FB|=3.(1)求抛物线C的方程;(2)过F作两条互相垂直的直线l1,l2,直线l1与C交干M、N两点,直线l2与C交于D,E两点,求四边形MDNE面积的最小值.【解答】解:(1)如图,∵A为FB的中点,∴A到y轴的距离为,∴|AF|,解得p=2.∴抛物线C的方程为y2=4x;(2)由已知直线l1的斜率存在且不为0,设其方程为y=k(x﹣1).由,得k2x2﹣(2k2+4)x+k2=0.∵△>0,设M(x1,y1)、N(x2,y2)。
圆锥曲线中综合问题(题型归纳)
![圆锥曲线中综合问题(题型归纳)](https://img.taocdn.com/s3/m/65ab602b0a4e767f5acfa1c7aa00b52acec79c75.png)
圆锥曲线中综合问题【考情分析】1.圆锥曲线的综合问题是高考考查的重点内容,常见的热点题型有:范围、最值问题,定点、定值问题,探索型问题等.2.以解答题的压轴题形式出现,难度较大,重在提升逻辑推理、直观想象、数学运算的核心素养.【题型一】圆锥曲线中的最值、范围问题【典例分析】1.(2021·山东滕州一中高三模拟)已知椭圆22:143x y C +=的左顶点为A ,过其右焦点F 作直线交椭圆C 于D ,E (异于左右顶点)两点,直线AD ,AE 与直线:4l x =分别交于M ,N ,线段MN 的中点为H ,连接FH .(1)求证:FH DE ⊥;(2)求DEH △面积的最小值.【解析】(1)由已知得(1,0)F ,设()11,D x y ,()22,E x y ,直线DE 的方程为1x my =+,与椭圆方程联立得()2234690m y my ++-=,122634m y y m +=-+,122934y y m =-+设直线AD 的方程为11(2)2y y x x =++,与直线:4l x =联立得1164,2y M x ⎛⎫⎪+⎝⎭,同理可得2264,2y N x ⎛⎫⎪+⎝⎭,则()()()12121221212123233323339M N H my y y y y y y y y m my my m y y m y y ++⎛⎫+==+==- ⎪+++++⎝⎭,(4,3)H m ∴-,3041FH m k m --==--,当0m =时,显然DE FH ⊥;当0m ≠时,()11DE FH k k m m⨯=⨯-=-时,DE FH ⊥,综上,可得DE FH ⊥.(2)12234y y m -===+()2122121||34m DE y y m +=-=+,H 到直线DE的距离d ==(221811||234DFHm S DE d m +=⨯=+△,设2211t m t =≥⇒=-,()3322()(1)31314t t f t t t t ==≥+-+,()422233'()031t t f t t +=>+()f t ∴在[1,)+∞上单调递增,min 1()(1)4f t f ==,当1t =,即0m =时取得最小值.DEH ∴ 面积的最小值是92.2.(2021·山东省实验中学高三模拟)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 是椭圆C上位于第二象限的任一点,直线l 是12F PF ∠的外角平分线,直线2PF 交椭圆C 于另一点Q ,过左焦点1F 作l 的垂线,垂足为N ,延长1F N 交直线2PF 于点M ,||2ON =(其中O 为坐标原点),椭圆C 的离心率为12.(1)求椭圆C 的标准方程;(2)求1PF Q 的内切圆半径r 的取值范围.【解析】(1)由题意可得1||||F N NM =,且1||||PF PM =,所以1222||||||||||2PF PF PM PF MF a +=+==,因为O ,N 分别为线段12F F ,1F M 的中点,所以ON 为12MF F △的中位线,所以2//ON MF 且21||||22ON MF a ===,由12c a =,222a b c =+得23b =,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知2(1,0)F ,设直线2PF 的方程为1(0)x my m =+≠,由点P 在第二象限求得33m <.设11(,)P x y ,22(,)Q x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩得22(34)690m y my ++-=,由根与系数的关系得122634m y y m +=-+,122934y y m =-+,所以12212121212211121||||2()42234PF Q m S F F y y y y y y m +=⋅⋅-=⨯+-+△,令2231()3t m t =+>,则221m t =-,所以12212121213(1)4313PF Q t t S t t t t===-+++△,因为13y t t=+在233t >时单调递增,所以15332y t t =+>所以11283153PF Q S t t=∈+△,又11111(||||||)4422PF Q S PF PQ QF r a r r =++⋅=⋅⋅=△,所以83045r <<,即305r <<,所以1PF Q 内切圆半径r 的取值范围是23)5.【提分秘籍】求解圆锥曲线中最值、范围问题的主要方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.【变式演练】1.(2021·辽宁本溪高级中学高三模拟)已知点F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,椭圆上任意一点到点F 距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若M 为椭圆C 上的点,以M 为圆心,MF 长为半径作圆M ,若过点(1,0)E -可作圆M 的两条切线,EA EB (,A B 为切点),求四边形EAMB 面积的最大值.【解析】(1)根据题意椭圆上任意一点到点F 距离的最大值为3,最小值为1.所以31a c a c +=⎧⎨-=⎩,解得2,1a c ==,所以b =因此椭圆C 的标准方程为22143x y +=(2)由(1)知,()1,0E-为椭圆的左焦点,根据椭圆定义知,||||4ME MF +=,设|r MF MB ==|,∵点E 在圆M 外,∴||4ME r r =->,∴12r ≤<所以在直角三角形MEB 中,||EB ==1||||2MEB S EB MB =⋅= ,由圆的性质知,四边形EAMB面积22MEB S S == ,其中12r ≤<.即)12S r =≤<.令()322412y r r r =-+≤<,则2682(34)y r r r r '=-+=--当413r <<时,0y '>,3224y r r =-+单调递增;当423r <<时,0y '<,3224y r r =-+单调递减.所以,在43r =时,y 取极大值,也是最大值此时maxS ==2.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的两焦点与短轴的一个端点的连线构成等边三角形,直线10x y ++-=与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)BMN △是椭圆C 的内接三角形,若坐标原点O 为BMN △的重心,求点B 到直线MN 距离的取值范围.【解析】(1)设椭圆2222:1x y C a b+=的右焦点()2,0F c ,则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆:()222x c y a -+=,所以圆心到直线10x y ++=的距离d a ==,又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以2,a c b ==,解得:2,1a b c ===,所以椭圆的标准方程为22143x y +=;(2)设(),B m n ,设,M N 的中点为D ,直线OD 与椭圆交于A,B 两点,因为O 为BMN △的重心,则2BO OD OA ==,所以,22m n D ⎛⎫-- ⎪⎝⎭即B 到直线MN 的距离是原点O 到直线MN 距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时B 在长轴的端点处.由2OB =得:1OD =,则O 到直线MN 距离为1,B 到直线MN 距离为3;当MN 的斜率存在时,设()()1122,,,M x y N x y ,则有:22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得:()()()()12121212043x x x x y y y y +-+-+=,因为D 为,M N 的中点,所以1212,x x m y y n +=-+=-,所以121234y y mk x x n-==--,所以直线MN 的方程为3242n m m y x n ⎛⎫+=-+ ⎪⎝⎭,即2268430mx ny n m +++=,所以原点O 到直线MN距离22d =.因为22143m n +=,所以223124m n =-,所以22d ===因为203n <≤,所以3<≤13≤<,所以332d ≤<综上所述,33332d ≤≤.即点B 到直线MN 距离的取值范围33,32⎡⎤⎢⎥⎣⎦.【题型二】圆锥曲线中的定点、定值问题【典例分析】1.(2021浙江镇海中学高三模拟)已知()0,1F 且满足1PF x =+的动点(),P x y 的轨迹为C.(1)求曲线C 的轨迹方程;(2)如图,过点()1,0-T 的斜率大于零的直线与曲线C 交于D ,M 两点,()1,1Q -,直线DQ 交曲线C 于另外一点N ,证明直线MN 过定点.【解析】(1)∵1PF x =+,1x ≥-1x =+,等式两边平方整理得24y x =.(2)证明:设()11,M x y ,()22,N x y ,()33,D x y .由21123344y x y x ⎧=⎨=⎩两式相减得1313134DM y y k x x y y -==-+.所以直线DM 的方程为()11134y y x x y y -=-+,整理得()13134y y y x y y +=+(*).因为点T 在直线上,所以134y y =①,同理直线DN 的方程为()23234y y y x y y +=+,因为点Q 在直线上,所以()23234y y y y -+=+②.由①②两式得2211444y y y y ⎛⎫-+=+⋅ ⎪⎝⎭,整理得()121244y y y y =-+-.由(*)式同理知直线MN 的方程为()12124y y y x y y +=+,所以()()1212124444y y y x y y x y y +=+=-+-,整理得直线MN 的方程为()()()12441y y y x ++=-,所以直线MN 过定点()1,4-.2.(2021·天津八中高三模拟)已知椭圆C :2221(0)6x y b b+=>的左、右焦点分别为()1,0F c -和()2,0F c ,P 为椭圆C 上任意一点,三角形12PF F 面积的最大值是3.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点()2,0的直线l 交椭圆C 于A ,B 两点,且9,04Q ⎛⎫⎪⎝⎭,证明:QA QB ⋅ 为定值.【解析】(Ⅰ)由题意知226c b =-,当P 点位于椭圆C 短轴端点时,三角形12PF F 的面积S 取最大值,此时max 1232S c b bc =⨯⨯==.所以229b c =,即()2269bb -=,解得23b=.故椭圆C 的方程为22163x y +=.(Ⅱ)(方法1)当直线l 的斜率不为0时,设直线l :2x my =+交椭圆于()()1122,,,A x y B x y .由22226x my x y =+⎧⎨+=⎩消去x 得,()222420m y my ++-=.则12122242, 22m y y y y m m +=-=-++.而112299,,,44QA x y QB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以()()2121212129911144416QA QB x x y y m y y m y y ⎛⎫⎛⎫⋅=--+=+-++ ⎪⎪⎝⎭⎝⎭()222222141211512421621616m m m m m m m --⎛⎫⎛⎫=+---+=+=- ⎪ ⎪+++⎝⎭⎝⎭.当直线l 的斜率为0时,(A B ,则998115,0,06441616QA QB ⎫⎛⎫⋅=⋅=-+=-⎪ ⎪⎭⎝⎭ .故QA QB ⋅ 为定值,且为1516-.(方法2)当直线l 的斜率存在时,设直线l :()2y k x =-交椭圆于()()1122,,,A x y B x y .由22(2)26y k x x y =-⎧⎨+=⎩消去y 得,()2222218860k x k x k +-+-=.则2122821k x x k +=+,21228621k x x k -=+.而112299,,,44QA x y QB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.所以()()222121212129998112444416QA QB x x y y k x x k x x k ⎛⎫⎛⎫⎛⎫⋅=--+=+-++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ()22222228698811242142116k k k k k k k -⎛⎫=+⋅-+⋅++⎪++⎝⎭22126818115621161616k k --=+=-+=-+.当直线l 的斜率不存在时,可求得()()2,1,2,1A B -,则991152,12,11441616QA QB ⎛⎫⎛⎫⋅=-⋅--=-=- ⎪ ⎪⎝⎭⎝⎭ .故QA QB ⋅ 为定值,且为1516-.【提分秘籍】1.求定值问题的思路方法(1)思路:求解定值问题的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.(2)方法:从特殊入手,求出定值,再证明这个值与变量无关;直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.求定点问题的解题方法(1)动直线l 过定点问题:设动直线方程(斜率存在)为y=kx+t,由题设条件将t 用k 表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C 过定点问题:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.【变式演练】1.(2021·广东华南师范大学附属中学高三模拟)设A ,B 为双曲线2222:1x y C a b-=(0,0)a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于,P Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由l x ⊥轴时,AMN 为等腰直角三角形,可得||||||AF NF MF ==,所以2ba c a+=,即2220c ac a --=,故220e e --=,结合1e >,解得2e =.故双曲线C 的离心率为2.(2)因为2c e a ==,所以双曲线:C 222213x y a a-=,显然直线l 的斜率不为0,设直线:2l x my a =+,11(,)M x y ,22(,)N x y ,联立直线l 与双曲线C 的方程得2222213x my a x y a a=+⎧⎪⎨-=⎪⎩,化简得222(31)1290m y amy a -++=,根据根与系数的关系,得2121222129,3131am a y y y y m m +=-⋅=--,①所以121224()431ax x m y y a m -+=++=-,②222221212122342()431a m a x x m y y am y y a m --⋅=⋅+++=-,③设直线:AM 11()y y x a x a =++,直线:AN 22()y y x a x a=++,令2ax =,可得121233(,),(,)22()22()ay ay a a P Q x a x a ++,设()G x y ,是以PQ 为直径的圆上的任意一点,则0PG QG ⋅=,则以PQ 为直径的圆的方程为2121233()[][]022()2()ay ay a x y y x a x a -+--=++,由对称性可得,若存在定点,则一定在x 轴上,令0y =,可得2121233()022()2()ay ay a x x a x a -+⋅=++,即2212212129()024[()]a y y a x x x a x x a -+=+++,将①②③代入,可得22222222229931()034424()3131a a a m x a m a a a a m m ⋅--+=---+⋅+--,即229(24a x a -=,解得x a =-或2x a =,所以以PQ 为直径的圆过定点(,0)a -,(2,0)a .2.(2021·山师大附中高三模拟)已知圆(22:12C x y +=,动圆M过点)D且与圆C 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)假设直线l 与轨迹E 相交于A ,B 两点,且在轨迹E 上存在一点P ,使四边形OAPB 为平行四边形,试问平行四边形OAPB 的面积是否为定值?若是,求出此定值;若不是,请说明理由.【解析】(1)因为CD =<,所以点D 在圆内.又因为圆M 过点D 且与圆C相切,所以MC MD =,所以MC MD CD +=>.即点M 的轨迹是以C ,D 为焦点的椭圆.则2a =,即a =又因为222a b -=,所以21b =.故动圆圆心M 的轨迹E 的方程为:2213x y +=.(2)当直线AB 的斜率不存在时,可得直线AB 的方程为32x =±,此时32A y =,所以四边形OAPB 的面积32S =.当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,由22,13y kx m x y =+⎧⎪⎨+=⎪⎩整理得,()()222316310k x kmx m +++-=.因为直线l 与轨迹E 相交于A ,B 两点,所以()()()222222361231112310k m k m k m =-+-=-+>△.设()11,A x y ,()22,B x y ,则122631kmx x k +=-+,()21223131m x x k -=+.所以()121222231my y k x x m k +=++=+.设AB 的中点为Q ,则Q 的坐标为223,3311km m k k ++⎛⎫-⎪⎝⎭.因为四边形OAPB 为平行四边形,所以22622,3131km m OP OQ k k ⎛⎫==- ⎪++⎝⎭,所以点P 的坐标为2262,3131km m k k ⎛⎫-⎪++⎝⎭.又因为点Р在椭圆上,所以222262311331km m k k ⎛⎫- ⎪+⎛⎫⎝⎭+= ⎪+⎝⎭.整理得,22431m k =+.又因为12223131AB x k k =-==++,原点О到直线AB的距离为d =所以平行四边形OAPB的面积322AOBS S AB d ==⋅== .综上可知,平行四边形OAPB 的面积为定值32.1.(2021·江苏南京师范大学附属中学高三模拟)已知抛物线2:2(0)C y px p =>,满足下列三个条件中的一个:①抛物线C 上一动点Q 到焦点F 的距离比到直线:1m x =-的距离大1;②点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7;③该抛物线C 被直线:20n x y --=所截得弦长为16.请选择其中一个条件解答下列问题.(1)求抛物线C 的标准方程;(2)O 为坐标原点,直线l 与抛物线C 交于M ,N 两点,直线OM 的斜率为1k ,直线ON 的斜率为2k ,当124k k ⋅=-时,求OMN 的面积的最小值.【解析】(1)若选择①,则抛物线C 上一动点Q 到焦点F 的距与到直线:2m x =-的距离相等,故22p=,故4p =,所以抛物线的方程为28y x =.2=72p +,解得4p =,故抛物线的方程为28y x =.若选择③,则由222y x y px=-⎧⎨=⎩可得2240y py p --=,16=,解得4p =,故抛物线的方程为28y x =.(2)设:MN x my n =+,()11,M x y 、()22,N x y ,因为MN 与抛物线C 相交于M 、N ,所以将:MN x my n =+代28y x =消去x 得:2880y my n --=,则264640m n ∆=+>且128y y m +=,128y y n ⋅=-,由题意可知111y k x =,222y k x =,所以1212122212121264644888y y y y k k y y x x y y n ⋅⋅=⋅====-⋅-⋅,所以2n =,所以OMN的面积1212122S y y y y =⨯⨯-=-=≥,当且仅当0m =时等号成立,所以OMN的面积的最小值为2.(2021·重庆第一中学高三模拟)已知A ,B 分别为椭圆()2222:10x y C a b a b+=>>的左、右顶点,F 为右焦点,点P 为C 上的一点,PF 恰好垂直平分线段OB (O 为坐标原点),32PF =.(1)求椭圆C 的方程;(2)过F 的直线l 交C 于M ,N 两点,若点Q 满足OQ OM ON =+(Q ,M ,N 三点不共线),求四边形OMQN面积的取值范围.【解析】(1)由题意可知(),0F c ,(),0B a ,∵PF 恰好垂直平分线段OB ,∴2a c =,令x c =,代入22221x y a b +=得:2b y a =±,∴232b a =,∴2222232a cba abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩,∴椭圆C 的方程为:22143x y +=.(2)由题意可知直线l 的斜率不为0,设直线l 的方程为:1x my =+,设()11,M x y ,()22,N x y ,联立方程221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x 得:()2234690m y my ++-=,∴()223636340m m ∆=++>,∴122634m y y m -+=+,122934y y m -=+,设MN 的中点为E ,则2OQ OM ON OE =+=,∴MN 与OQ 互相平分,四边形OMQN 为平行四边形,∴OMQN S 平行四边形2OMN S =△12122OF y y =⨯⨯⨯-12y y =-==212134m=+,令1t =≥,则()2121211313OMQN t S t t t t==≥++平行四边形,∵11333y t t t t ⎛⎫ ⎪=+=+ ⎪ ⎪ ⎪⎝⎭在[1,)+∞上单调递增,∴134t t+≥,∴(]120,313t t∈+,∴03OMQN S <≤平行四边形.综上所述,四边形OMQN 面积的取值范围为(0,3].3.(2021·浙江杭州高级中学高三模拟)已知抛物线2:2(0)C x py p =>的焦点为F ,点P 为抛物线C 上一点,点P 到F 的距离比点P 到x 轴的距离大1.过点P 作抛物线C 的切线,设其斜率为0k .(1)求抛物线C 的方程;(2)直线:l y kx b =+与抛物线C 相交于不同的两点A ,B (异于点P ),若直线AP 与直线BP 的斜率互为相反数,证明:00k k +=.【解析】(1)解:设点()00,P x y ,由点P 到F 的距离比点P 到x 轴的距离大1,可得01PF y =+,即0012py y +=+,所以2p =,即抛物线C 的方程为24x y =.(2)证明:设()11,A x y ,()22,B x y ,直线AP 的斜率为AP k ,直线BP 的斜率为BP k ,则()101010AP y y k x x x x -=≠-,()202020BP y yk x x x x -=≠-.因为直线AP 与直线BP 的斜率互为相反数,所以AP BP k k =-,即10201020y y y y x x x x --=---,又点()11,A x y ,()22,B x y 均在抛物线上,可得222200211020444x x x x x x x x --=---,化简可得1202x x x +=-,因为2114x y =,2224x y =,所以()2212124x x y y -=-,即1212124y y x x x x -+=-,故012122x y y k x x -==--,因为24x y =,所以214y x =,所以1 2y x '=,则0012k x =,故00k k +=.4.(2021·湖南长沙长郡中学高三模拟)已知椭圆E :()222210x y a b a b+=>>上有一点A ,点A 在x 轴上方,1F ,2F分别为E 的左,右焦点,当△12AF F 121sin 2AF F ∠=.(Ⅰ)求E 的标准方程;(Ⅱ)若直线l 交E 于P ,Q 两点,设PQ 中点为M ,O 为坐标原点,2PQ OM =uu u r uuu r,作ON PQ ⊥,求证:ON为定值.【解析】(Ⅰ)由椭圆的性质知,△12AF F 的面积取最大时,A 为椭圆的上顶点,即(0,)A b ,而12||2F F c =,∴12121||||2AF F S F F OA bc =⋅== 121sin 2b AF F a ∠==,又222a bc =+,∴24a =,21b =,可得E 的标准方程2214x y +=.(Ⅱ)由题意,2PQ OM =uu u r uuu r且PQ 中点为M ,易得90POQ ∠=︒,即OP OQ ⊥,若直线l 斜率不存在时,P ,Q 关于x 轴对称,2PQ OM =uu u r uuu r知:横纵坐标的绝对值相等,不妨假设P 在第一象限,则(,)P m m ,(,)Q m m -在椭圆上,∴255m =,此时,M N 两点重合,即255ON =;若直线l 斜率为0时,同理可得255ON =,若直线l 斜率存在且不为0时,设直线l 为(0)y kx b b =+≠,11(,)P x y ,22(,)Q x y ,则11(,)OP x y = ,22(,)OQ x y =,且12120x x y y +=,联立椭圆与直线得:222(41)84(1)0k x kbx b +++-=且2216(41)0k b ∆=-+>,∴122841kb x x k +=-+,21224(1)41b x x k -=+,即2222222221212122224(1)84()414141k b k b b k y y k x x kb x x b b k k k --=+++=-+=+++,∴222222224(1)45440414141b b k b k k k k ----+==+++,即||b =.∴||5ON==,为定值.5.(2021·天津南开中学高三模拟)已知点A,B分别为椭圆2222:1(0)x yE a ba b+=>>的左顶点和上顶点,且坐标原点O到直线AB 的距离为61313,椭圆E的离心率是方程2650x-+=的一个根.(1)求椭圆E的标准方程;(2)若(3,0)P,过P作斜率存在的两条射线PM,PN,交椭圆E于M,N两点,且PM PN⊥,问:直线MN经过定点吗?若经过,求出这个定点坐标;若不经过,说明理由.【解析】(1)因为椭圆E的离心率是方程2650x-+=的一个根,所以2e=或3e=.因为椭圆E的离心率(0,1)e∈,所以53e=.因为3ca=,所以2295a c=,所以222245b ac c=-=,因为点A,B分别为椭圆E的左顶点和上顶点,所以||AB===.因为坐标原点O到直线AB 的距离为61313,所以11||22ab AB=,=⨯,所以c=,所以29a=,24b=,所以椭圆E的标准方程为22194x y+=.(2)当直线MN的斜率存在时,设MN:y=kx+m,由22194y kx mx y=+⎧⎪⎨+=⎪⎩,消元并化简得222(49)189360k x kmx m+++-=,设1122(,),(,)M x y N x y ,则1221849km x x k +=-+,212293649m x x k-=+,又(3,0)P ,PM PN ⊥,所以1212133y yx x ⋅=---,所以1212123()9()()0x x x x kx m kx m -+++++=,即221212(1)(3)()(9)0k x x km x x m ++-+++=,所以2222293618(1)(3)(9)04949m kmk km m k k--++-++=++,所以2222(1)(936)(3)(18)(9)(49)0k m km km m k +-+--+++=,即224554130k km m ++=,所以30k m +=或15130k m +=,当30k m +=时,(3)y k x =-,此时M ,N ,P 重合,舍去.当15130k m +=时,15(13y k x =-,恒过点15(,0)13.当直线MN 的斜率不存在时,MN ⊥x 轴,设(),3M t t -,则()223194t t -+=,解得1513t =,所以此时直线MN 也过点15(,0)13.所以直线MN 恒过定点15(,0)13.6.(2021·湖南长郡中学高三模拟)已知抛物线2:4C x y =的焦点为F ,准线为l .设过点F 且不与x 轴平行的直线m 与抛物线C 交于A ,B 两点,线段AB 的中点为M ,过M 作直线垂直于l ,垂足为N ,直线MN 与抛物线C 交于点P .(1)求证:点P 是线段MN 的中点.(2)若抛物线C 在点P 处的切线与y 轴交于点Q ,问是否存在直线m ,使得四边形MPQF 是有一个内角为60︒的菱形?若存在,请求出直线m 的方程;若不存在,请说明理由.【解析】(1)证明:由题意知直线m 的斜率存在且不为0,故设直线m 的方程为1(0)y kx k =+≠,代入24x y =,并整理得2440x kx --=.所以216160k ∆=+>,设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.设()00,M x y ,则12022x x x k +==,200121y kx k =+=+,即()22,21M k k +.由MN l ⊥,得(2,1)N k -,所以MN 中点的坐标为()22,k k.将2x k =代入24x y =,解得2y k =,则()22,P k k ,所以点P 是MN 的中点.(2)由24x y =,得24x y =,则'2x y =,所以抛物线C 在点()22,P k k的切线PQ 的斜率为k ,又由直线m 的斜率为k ,可得m PQ ∥;又M N y ∥轴,所以四边形MPQF 为平行四边形.而||MF ==()222||211MP k k k =+-=+,由||||MF MP =,得21k =+,解得3k =±,即当3k =±时,四边形MPQF 为菱形,且此时2||1||||PF k MP MF ==+==,所以60PMF ∠=︒,直线m 的方程为13y x =±+,2即0x +=或0x +=,所以存在直线m ,使得四边形MPQF 是有一个内角为60︒的菱形.。
2022年高考数学圆锥曲线重难点专题突破(全国通用)专题04 椭圆中的定点、定值、定直线问题含解析
![2022年高考数学圆锥曲线重难点专题突破(全国通用)专题04 椭圆中的定点、定值、定直线问题含解析](https://img.taocdn.com/s3/m/23bcfc18640e52ea551810a6f524ccbff021ca53.png)
2022年高考数学圆锥曲线重难点专题突破(全国通用)专题04椭圆中的定点、定值、定直线问题一、单选题1.已知F 为椭圆22:132x y C +=的右焦点,点A 是直线3x =上的动点,过点A 作椭圆C 的切线AM ,AN ,切点分别为M ,N ,则||||||MF NF MN +-的值为()A .3B .2C .1D .02.已知过原点的动直线l 与椭圆22132x y +=交于A ,B 两点,D 为椭圆C 的上顶点,若直线AD ,BD 的斜率存在且分别为1k ,2k ,则12k k =()A .23-B .23C .32D .32-3.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点()A .(1,0)B .C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭4.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=()A .54B .45C .43D .345.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =()A .13B .3C .12D .26.已知椭圆22:13x C y +=,过x 轴上一定点N 作直线l ,交椭圆C 于A ,B 两点,当直线l 绕点N 任意旋转时,有2211||||t AN BN +=(其中t 为定值),则()A .9t =B .4t =C .3t =D .2t =7.如图,1A ,2A 为椭圆22195x y+=的长轴的左、右端点,O 为坐标原点,S ,Q ,T 为椭圆上不同于1A ,2A 的三点,直线1QA ,2QA ,OS ,OT 围成一个平行四边形OPQR ,则22OS OT +=()A .5B.3+C .9D .148.已知M 是椭圆2212516x y +=上一点,1F ,2F 是椭圆的左,右焦点,点I 是12MF F ∆的内心,延长MI 交线段12F F 于N ,则MI IN的值为()A .53B .35C .43D .34二、多选题9.已知1F ,2F 是椭圆C :22143x y +=的左、右焦点,且1F ,2F 分别在椭圆C 的内接ABC 的AB 与AC 边上,圆I 是ABC 的内切圆,则下列说法正确的是()A .ABC 的周长为定值8B .当点A 与上顶点重合时,圆I 的方程为22325x y +=C .2211AF CF +为定值43D .当AB x ⊥轴时,线段BC 交x 轴于点D ,则24OF OD ⋅=10.已知椭圆2222:1(0)x y a b a b +=>>的离心率为22,ABC 的三个顶点都在椭圆上,O 为坐标原点,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,F ,且三条边所在直线的斜率分别1k ,2k ,3k ,且1k ,2k ,3k 均不为0,则()A .22:2:1a b =B .直线AB 与直线OD 的斜率之积为2-C .直线BC 与直线OE 的斜率之积为12-D .若直线OD ,OE ,OF 的斜率之和为1,则123111k k k ++的值为2-11.已知椭圆22:12520x y M +=的左、右焦点分别是1F ,2F ,左、右顶点分别是1A ,2A ,点P 是椭圆上异于1A ,2A 的任意一点,则下列说法正确的是()A .125PF PF +=B .直线1PA 与直线2PA 的斜率之积为45-C .存在点P 满足1290F PF ∠=︒D .若12F PF △的面积为P 的横坐标为12.如图,已知椭圆22142x y +=的左、右顶点分别是12,A A ,上顶点为1B ,在椭圆上任取一点C ,连结1A C 交直线2x =于点P ,连结2A C 交OP 于点M (O 是坐标原点),则下列结论正确的是()A .12CA CA k k 为定值B .112A P OP k k =C .2OP A C ⊥D .1MB 三、填空题13.已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________.14.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________.15.已知椭圆22221(0)x y a b a b+=>>与直线11:2l y x =,21:2l y x =-,过椭圆上一点P 作12,l l 的平行线,分别交12,l l 于,M N 两点,若||MN 为定值,则ab=__________.16.已知椭圆2212x y +=与y 轴交于点M ,N ,直线y x =交椭圆于12,A A 两点,P 是椭圆上异于12,A A 的点,点Q 满足1122,P A Q QA A A P ⊥⊥,则||||QM QN +=__________四、解答题17.在平面直角坐标系xOy 中,已知点()M ,直线:l x =P 到点M 的距离与到直线l 的(1)求动点P 的轨迹E 的方程;(2)设曲线E 与x 轴交于A 、B 两点,过定点()1,0N -的直线与曲线E 交于C 、D 两点(与A 、B 不重合),证明:直线AC ,BD 的交点在定直线上.18.已知椭圆C :22221(0)x y a b a b+=>>的左右顶点分别为1A ,2A ,右焦点为2(1,0)F ,点31,2B ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆C 的方程;(2)若直线l :(4)(0)y k x k =-≠与椭圆C 交于M ,N 两点,已知直线1A M 与2A N 相交于点G ,证明:点G 在定直线上,并求出此定直线的方程.19.椭圆2222:1(0)x y E a b a b +=>>的离心率e =A ,B 分别为椭圆E 的左、右顶点,P 为椭圆E 上任意一点,PAB △面积的最大值为2.(1)求椭圆E 的方程;(2)过点(1,0)F 且斜率不为零的直线交椭圆E 于M ,N 两点,过点M 作直线4x =的垂线,垂足为H ,证明:直线HN 与x 轴的交点为定点.20.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,直线2x =-被椭圆C 截得的线段长为(1)求椭圆C 的方程;(2)设过椭圆C 的右焦点F 与坐标轴不垂直的直线l 交C 于点A ,B ,交y 轴于点E ,P 为线段AB 的中点,EQ OP ⊥且Q 为垂足.问:是否存在定点H ,使得QH 的长为定值?若存在,求点H 的坐标;若不存在,请说明理由.21.已知椭圆()2222:10x y C a b a b =>>+过点()0,1A ,且离心率为2.(1)求椭圆C 的方程;(2)过A 作斜率分别为12, k k 的两条直线,分别交椭圆于点, M N ,且122k k +=,证明:直线MN 过定点.22.已知椭圆C :22221x y a b +=()0a b >>的右焦点为()1,0F ,点1,2P ⎛⎫ ⎪ ⎪⎝⎭在C 上,c 为椭圆C 的半焦距.(1)求椭圆C 的标准方程;(2)若经过F 的直线l 与C 交于A ,B (异于P )两点,与直线2a x c=交于点M ,设PA ,PB ,PM 的斜率分别为1k ,2k ,3k ,求证:1232k k k +=.专题04椭圆中的定点、定值、定直线问题一、单选题1.已知F 为椭圆22:132x y C +=的右焦点,点A 是直线3x =上的动点,过点A 作椭圆C 的切线AM ,AN ,切点分别为M ,N ,则||||||MF NF MN +-的值为()A .3B .2C .1D .0【解析】由已知可得10F (,),设1122(,),(,)M x y N x y ,(3,)A t 则切线AM ,AN 的方程分别为11132x x y y +=,22132x x y y+=,因为切线AM ,AN 过点(3,)A t ,所以1112ty x +=,2212ty x +=,所以直线MN 的方程为12tyx +=,因为10F (,),所以0112t ⨯+=,所以点10F (,)在直线MN 上,所以,,M N F 三点共线,所以||||||0MF NF MN +-=,故选:D2.已知过原点的动直线l 与椭圆22132x y +=交于A ,B 两点,D 为椭圆C 的上顶点,若直线AD ,BD 的斜率存在且分别为1k ,2k ,则12k k =()A .23-B .23C .32D .32-【解析】由题知(D ,可设()11,A x y ,()11,B x y --,则21111221112y y y k k x x x --=⋅=-,又A 在椭圆上,故2211132x y +=,即2211223y x =-,所以1223k k =-.3.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点()A .(1,0)B.C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=,所以212122224,44mk m y y y y k k --+==++,()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --== ,,AB AC ⊥,所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =,当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意;当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.4.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=()A .54B .45C .43D .34【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=,因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=,所以3344(,0),(0,)M N x y ,因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==,故选:D 5.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =()A .13B .3C .12D .2【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩,解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++,代入(*)得121293433y y x y y -+==-, 14y k x =+,22yk x =+,122211443k x k x x +∴==-=++.故选:A6.已知椭圆22:13x C y +=,过x 轴上一定点N 作直线l ,交椭圆C 于A ,B 两点,当直线l 绕点N 任意旋转时,有2211||||t AN BN +=(其中t 为定值),则()A .9t =B .4t =C .3t =D .2t =【解析】设点()()1122(,0),(0),,,,N m m A x y B x y >当直线l 与x 轴不重合时,设l 的方程为x ty m =+,代入椭圆方程,得:22()33ty m y ++=,即()2222121222233230,33mtm t y tmy m y y y y t t -+++-=∴+=-=++.()()2222221121111||BM AM x m y x m y ∴+=+-+-+()()2222222121211111111t y y t y t y ⎛⎫=+=+ ⎪+++⎝⎭()()22212121222222121221111y y y y y y t y y t y y +-+=⋅=⋅++21221212121y y t y y y y ⎡⎤⎛⎫+⎢⎥=⋅- ⎪+⎢⎥⎝⎭⎣⎦()222222312133t mt t m m ⎡⎤+⎛⎫⎢⎥=⋅- ⎪+--⎝⎭⎢⎥⎣⎦当直线l 绕点N 任意旋转时,有2211||||t AN BN +=(其中t 为定值),当0t =时,222116||||3AN BN m +=--当1t =时,2222211128||||233m AN BN m m ⎡⎤⎛⎫+=⋅-⎢⎥ ⎪--⎝⎭⎢⎥⎣⎦∴222261283233m m m m ⎡⎤⎛⎫-=-⎢⎥ ⎪---⎝⎭⎢⎥⎣⎦,解得:23=2m 代入当0t =时,222116=4||||3AN BN m +=--.故选:B.7.如图,1A ,2A 为椭圆22195x y+=的长轴的左、右端点,O 为坐标原点,S ,Q ,T 为椭圆上不同于1A ,2A 的三点,直线1QA ,2QA ,OS ,OT 围成一个平行四边形OPQR ,则22OS OT +=()A .5B.3+C .9D .14【解析】由22195x y +=可得:3a =,所以()13,0A -,()23,0A ,设()()()001122,,,,,Q x y S x y T x y ,则2200195x y +=,200519x y ⎛⎫=- ⎪⎝⎭,直线OS ,OT 的方程分别为1y k x =,2y k x =,则21QA k k =,12QA k k =,20200012220000519533999x y y y k k x x x x ⎛⎫- ⎪⎝⎭=⋅===-+---,由122195y k xx y =⎧⎪⎨+=⎪⎩可得21214559x k =+,2211214559k y k =+,同理可得22224559x k =+,2222224559k y k =+,因此2222221122OS OT x y x y +=+++()()()222212112221212125451451451451812559595959kk kk k k k k ⎛⎫+ ⎪+++⎝⎭=+=+++++()22211122211145181251267014595959k k k k k k +++=+==+++.故选:D .8.已知M 是椭圆2212516x y +=上一点,1F ,2F 是椭圆的左,右焦点,点I 是12MF F ∆的内心,延长MI 交线段12F F于N ,则MI IN的值为()A .53B .35C .43D .34【解析】如图,点M 是椭圆2212516x y +=上一点,过点M 作BM 垂直直线12F F 于点B ,过点I 作IA 垂直直线12F F 于点A ,设12MF F ∆的内切圆半径为r ,则IA r =,由三角形面积相等即:121212MF F MF I MIF IF F S S S S =++ 得:12112211112222F F MB r MF r F F r MF ⋅=++又122MF MF a +=,故得:111222222c MB r a r c ⋅=⋅+⋅,所以IA c MB a c =+,由椭圆方程2212516x y +=得:5a =,4b =,223c a b =-=,所以38IAc MBa c ==+由MNB 与INA 相似,可得:38IA IN MB MN ==,令3IN m =,则8MN m =,可求得:383IN IN m IMMN INm m ===--35,故选A .二、多选题9.已知1F ,2F 是椭圆C :22143x y+=的左、右焦点,且1F ,2F 分别在椭圆C 的内接ABC 的AB 与AC 边上,圆I 是ABC 的内切圆,则下列说法正确的是()A .ABC 的周长为定值8B .当点A 与上顶点重合时,圆I 的方程为22325x y +=C .2211AF CF +为定值43D .当AB x ⊥轴时,线段BC 交x 轴于点D ,则24OF OD ⋅=【解析】对于A :连接2BF ,根据椭圆的定义得:22121248AB BF AF AF AF BF BF a ++=+++==,则ABC 的周长为()22228AB BC CA AB BC CF AF AB BF AF ++=+++>++=,故选项A 错误;对于B :当点A 与上顶点重合时,此时(3A ,()11,0F -,直线1AF :)31y x =+,与椭圆C 的方程联立得)221143y x x y ⎧=+⎪⎨+=⎪⎩可得8,5B ⎛- ⎝⎭,利用对称性知8,5C ⎛ ⎝⎭,165AB =,165AC =,165BC =,设ABC 的内切圆的半径为r ,()12ABC AB BC C S A r ++=⋅,即1161161616252555r ⎛⎫⨯=⨯++⨯ ⎪⎝⎭,解得r =,故选项B 错误;对于C :设直线AC :()1y k x =-,与椭圆C 的方程22143x y +=联立得()22223484120k x k x k +-+-=,设()11,A x y ,()22,C x y ,则2122834k x x k +=+,212241234k x x k -=+,得()21142AF x ===-,同理可得()22142CF x =-,所以()()122212121216211224441643x x AF CF x x x x x x -++=+==---++,故选项C 正确;对于D :当AB x ⊥轴时,31,2A ⎛⎫- ⎪⎝⎭,31,2B ⎛⎫-- ⎪⎝⎭,又因为()21,0F ,直线2AF :()314y x =--,与椭圆C 的方程联立得139,714C ⎛⎫- ⎪⎝⎭,所以直线BC :310120x y --=,令0y =,得点D 横坐标为4,于是24OF OD ⋅=,故选项D 正确,故选:CD.10.已知椭圆2222:1(0)x y a b a b +=>>的离心率为22,ABC 的三个顶点都在椭圆上,O 为坐标原点,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,F ,且三条边所在直线的斜率分别1k ,2k ,3k ,且1k ,2k ,3k 均不为0,则()A .22:2:1a b =B .直线AB 与直线OD 的斜率之积为2-C .直线BC 与直线OE 的斜率之积为12-D .若直线OD ,OE ,OF 的斜率之和为1,则123111k k k ++的值为2-【解析】对于A:因为椭圆的离心率2222122c e a ⎛⎫=== ⎪ ⎪⎝⎭,所以2212c a =,因为222212b a c a =-=,所以22:2:1a b =,故选项A 正确;对于B :设()11,A x y ,()22,B x y ,()00,D x y ,则1202x x x +=,1202y y y +=,所以2211221x y a b +=,2222221x y a b +=,两式相减可得:22221212220x x y y a b --+=,即()()01201222220x x x y y y a b --+=,所以()()01201222x x x y y y a b =---,12112202012ODy b k y y k x x x a -⋅=⋅=-=--,故选项B 不正确;对于C:由选项B 同理可得22212OEb k k a ⋅=-=-,故选项C 正确;对于D :由选项B 同理可知2231212OD OE OF k k k b k k k a ⋅=⋅=⋅=-=-,可得112OD k k =-,212OE k k =-,312OF k k =-由已知可得1OD OE OFk k k ++=,即123111112k k k ⎛⎫-++= ⎪⎝⎭,所以1231112k k k ++=-,故选项D 正确;故选:ACD.11.已知椭圆22:12520x y M +=的左、右焦点分别是1F ,2F ,左、右顶点分别是1A ,2A ,点P 是椭圆上异于1A ,2A 的任意一点,则下列说法正确的是()A .125PF PF +=B .直线1PA 与直线2PA 的斜率之积为45-C .存在点P 满足1290F PF ∠=︒D .若12F PF △的面积为P的横坐标为【解析】由题意5,a b c ===,1(F,2F ,1(5,0)A -,2(5),0A,短轴一个顶点2B ,12210PF PF a +==,A 错;设(,)P x y ,则2212520x y +=,2220(1)25x y =-,所以1222221420(1552525255PA PA y y y x k k x x x x =⨯==-⨯=-+---,B 正确;因为22221tan 12OF OB F OB ∠==<,所以22045OB F ︒<∠<︒,从而12222290F B F OB F ∠=∠<︒,而P 是椭圆上任一点时,当P 是短轴端点时12F PF ∠最大,因此不存在点P 满足1290F PF ∠=︒,C 错;(,)P x y,1212132PF F P P S F F y y ===△4P y =,则21612520P x +=,P x =D 正确.故选:BD .12.如图,已知椭圆22142x y +=的左、右顶点分别是12,A A ,上顶点为1B ,在椭圆上任取一点C ,连结1A C 交直线2x =于点P ,连结2A C 交OP 于点M (O 是坐标原点),则下列结论正确的是()A .12CA CA k k 为定值B .112A P OP k k =C .2OP A C⊥D .1MB【解析】椭圆的左右顶点分别12(2,0),(2,0)A A -,因为点C 在椭圆上,所以设点C的坐标为(2cos )θθ,[0,2]θπ∈,对于A ,1222222sin 2sin 2sin sin 12cos 22cos 24cos 42sin 2CA CA k k θθθθθθθθ=⋅===-+---,所以A 正确;对于B,因为112cos 2A P CA k k θθ==+,所以直线AP为y x 2x =,得y =P的坐标为,所以2sin cos 1OPk θθ=+,所以112A P OP k k =,所以B 正确;对于C,因为22cos 2CA k θθ=-,所以2222sin 12cos 2cos 12(cos 1)CA OP k k θθθθθθ⋅=⋅==--+-,所以2OP A C ⊥,所以C 正确;对于D ,直线OP为y x =,直线2A C为y x =由两直线的方程联立方程组,解得2(cos 1)22sin ,3cos 3cos x y θθθθ+==--,所以点M的坐标为2(cos 1)sin ,3cos 3cos θθθθ⎛⎫+ ⎪ ⎪--⎝⎭,因为1B ,所以222124(cos 1)(3cos )MB θθ+=+-⎝,当43cos ,sin 55θθ==-时,22212434(1)90255744121(3)355MB ⎛⎫+- =+-=>⎪--⎝⎭所以1MB错误,故选:ABC 三、填空题13.已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________.【解析】由题意,椭圆的左顶点为(-4,0),设()()12:=+4,:=+4OM ON l y k x l y k x ,由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩,则121814Mk y k =+,由()2222222141616414=+4N x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩,因为122k k =-,所以222122214164641416N k k x k k --==++,则1211616N k y k -=+,所以()()()2111421118298442N M MNN M k k y y k k x x k k +-===---,于是()112211212189:144161424MNk k l y k x k k k ⎛⎫-=--+ ⎪+-⎝⎭,化简得:1219:724MN k l y x k ⎛⎫=+ ⎪-⎝⎭,令9287049x x +=⇒=-,所以直线MN 经过x 轴上的定点28,09⎛⎫- ⎪⎝⎭.14.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________.【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0,设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+,又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14,则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2,则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m )=(1+4k2)x 1x 2+(2+4km )(x 1+x 2)+4m 2+4=()()2221441234k mk +-++(2+4km )28km 34k-++4m 2+4=0则m 2﹣km ﹣2k 2=0,∴(m ﹣2k )(m+k )=0,∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2).此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0).当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14.综上,直线BC 过定点(1,0).15.已知椭圆22221(0)x y a b a b+=>>与直线11:2l y x =,21:2l y x =-,过椭圆上一点P 作12,l l 的平行线,分别交12,l l 于,M N 两点,若||MN 为定值,则ab=__________.【解析】当点(0,)P b 时,过椭圆上点P 作12,l l 的平行线分别为11,22y x b y x b =+=-+,联立1212y x b y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)2b M b ,同理可得(,2b N b -,所以2MN b =,当点(,0)P a 时,过椭圆上点P 作12,l l 的平行线分别为11,2222a ay x y x =-=-+,联立12212a y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)24a a M ,同理可得(,)24a a N -,所以2a MN =,所以MN 为定值,则22ab =,所以4a b=.16.已知椭圆2212x y +=与y 轴交于点M ,N ,直线y x =交椭圆于12,A A 两点,P 是椭圆上异于12,A A 的点,点Q 满足1122,P A Q QA A A P ⊥⊥,则||||QM QN +=__________【解析】由题意知,联立2212x y +=与y x =,2212x y y x⎧+=⎪⎨⎪=⎩,不妨设12,A A ⎛⎫ ⎪ ⎪⎝⎭⎝⎭,不妨设P ⎝⎭,因为点Q 满足1122,P A Q QA A A P ⊥⊥,根据椭圆的对称性,所以6633Q ⎛⎫ ⎪ ⎪⎝⎭,,又不妨设()M 0,1,()N0,-1QM QN =()2222222||||2118QM QN QM QN QM QN+=++⋅⎫⎫=++++=⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭所以||||QM QN +=四、解答题17.在平面直角坐标系xOy中,已知点()M,直线:l x =P 到点M 的距离与到直线l 的距离之比为32.(1)求动点P 的轨迹E 的方程;(2)设曲线E 与x 轴交于A 、B 两点,过定点()1,0N -的直线与曲线E 交于C 、D 两点(与A 、B 不重合),证明:直线AC ,BD 的交点在定直线上.【解析】(1)设(),P x y2=,整理得2214x y +=所以动点P 的轨迹E 是椭圆,方程为2214x y +=.(2)由题意知,直线的斜率不为0,设过点(1,0)N -的直线方程为1x my =-,代入椭圆E 的方程,整理得()224230m y my +--=,因为()()22241241630m m m ∆=++=+>,所以设()11,C x y ,()22,D x y ,()12,2x x ≠±,则12224m y y m +=+,12234y y m =-+①,由(1)得(2,0)A -,(2,0)B ,则直线AC 的方程为11(2)2y y x x =++,直线BD 的方程为22(2)2yy x x =--,联立两直线方程,消去y 整理得()()()()2112122122222x y x y x x y x y -++=⋅+--,②将111x my =-,221x my =-代入②整理得()()121211212422my y y y y x y y y ++-=⋅++,③把①式代入③,整理得121244424224m y m x m y m --+=⋅=-++,即直线AC 与直线BD 的交点的横坐标恒等于4-所以直线AC ,BD 的交点恒在定直线4x =-上.18.已知椭圆C :22221(0)x y a b a b+=>>的左右顶点分别为1A ,2A ,右焦点为2(1,0)F ,点31,2B ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆C 的方程;(2)若直线l :(4)(0)y k x k =-≠与椭圆C 交于M ,N 两点,已知直线1A M 与2A N 相交于点G ,证明:点G 在定直线上,并求出此定直线的方程.【解析】(1)因为2(1,0)F ,所以c =1,由题意知:222219141a b ab ⎧=+⎪⎪⎨⎪+=⎪⎩,解得2a b =⎧⎪⎨⎪⎩则椭圆的方程为:22143x y +=.(2)由椭圆对称性知G 在0x x =上,假设直线l 过椭圆上顶点,则M ,则k =,而833,55N ⎛ ⎝⎭,1:(2),2A M l y x =+2:(2),2A N l y x =--其交点G ⎛ ⎝⎭,所以G 在定直线x =1上;当M 不在椭圆顶点时,设()()1122,,,M x y N x y ,由22(4)143y k x x y =-⎧⎪⎨+=⎪⎩,整理得:()2222343264120k x k x k +-+-=,则22121222326412,3434k k x x x x k k -+==++,111:(2),2A M y l y x x =++222:(2),2A N y l y x x =--当x =1时,1212322y y x x -=+-,得()()121234422k x k x x x ---=+-,得()12122580x x x x -++=,得222264123225803434k k k k-⨯-⨯+=++,上式显然成立,所以G 在定直线x =1上.19.椭圆2222:1(0)x y E a b a b +=>>的离心率32e =,A ,B 分别为椭圆E 的左、右顶点,P 为椭圆E 上任意一点,PAB △面积的最大值为2.(1)求椭圆E 的方程;(2)过点(1,0)F 且斜率不为零的直线交椭圆E 于M ,N 两点,过点M 作直线4x =的垂线,垂足为H ,证明:直线HN 与x 轴的交点为定点.【解析】(1)当点P 为椭圆上下顶点时,PAB △的面积最大,即12222ab ab ⋅=⇒=又c e a ==222a b c =+,故2a =,1b =,椭圆E 的方程为2214x y +=;(2)设直线MN 的方程为1x ty =+,()11,M x y ,()22,N x y ,则()14,H y 由221440x ty x y =+⎧⎨+-=⎩得()224230t y ty ++-=,12224t y y t +=-+,12234y y t =-+直线HN 的方程为1212(4)4y y y y x x --=--令0y =得()1121121121212124143444y y ty y y x y ty y x y y y y y y -+--=-=-=----又12224ty y t +=-+,12234y y t =-+,故()121232ty y y y =+()11212335242y y y x y y -+=-=-,即直线HN 与x 轴的交点为定点5,02⎛⎫⎪⎝⎭.20.已知椭2222:1(0)x y C a b a b +=>>的离心率为22,直线2x =-被椭圆C截得的线段长为(1)求椭圆C 的方程;(2)设过椭圆C 的右焦点F 与坐标轴不垂直的直线l 交C 于点A ,B ,交y 轴于点E ,P 为线段AB 的中点,EQ OP ⊥且Q 为垂足.问:是否存在定点H ,使得QH 的长为定值?若存在,求点H 的坐标;若不存在,请说明理由.【解析】(1)由题意得:22c e a ==,222a c b -=,化简得222a b =,故C 的方程为:22221(0)2x y b b b+=>将2x =-代入椭圆C的方程得:||y =,所以=24b =,所以2228a b ==,所以椭圆C 的方程:22184x y +=;(2)设()11,A x y ,()22,B x y ,()00,P x y ,直线AB 的方程为()2y k x =-,则直线AB 与y 轴的交点为()0,2E k -由2211184x y +=,2222184x y +=,得212121214182y y y y x x x x -+⨯=-=--+又2121y y k x x -=-,021021OP y y y k x x x +==+,所以12OP k k =-,故OP 的方程为12y x k=-,由EQ OP ⊥得:2EQ k k =,所以直线EQ 的方程为22y kx k =-,即2(1)y k x =-,所以直线EQ 过定点()1,0M ,所以Q 在以OM 为直径的圆220x y x +-=上,所以存在定点1,02H ⎛⎫ ⎪⎝⎭,使QH 的长为定值12.21.已知椭圆()2222:10x y C a b a b =>>+过点()0,1A,且离心率为2.(1)求椭圆C 的方程;(2)过A 作斜率分别为12, k k 的两条直线,分别交椭圆于点, M N ,且122k k +=,证明:直线MN 过定点.【解析】(1) 椭圆()2222:10x y C a b a b =>>+过点()0,1A ,即211b=,∴1b =;2c e a == ,又222a c b -=,2a ∴=,∴椭圆C 的方程为:2214x y +=.(2)当直线MN 斜率不存在时,设直线方程为x t =,则()(),, ,M t s N t s -,则1211,s s k k t t-+==--,121122s s k k t t t -+∴+=+==---,解得:1t =-,∴直线方程为1x =-;当直线MN 斜率存在时,设直线方程为y kx m =+,联立方程组2244x y y kx m⎧+=⎨=+⎩得:()222418440k x kmx m +++-=,设()()1122, , , M x y N x y ,则122841km x x k +=-+,21224441m x x k -⋅=+(*),则()()()121212121212121212122111y x x y x x kx x m x x y y k k x x x x x x +-++-+--+=+==,将*式代入化简可得:288244km km -=-,即()()110k m m ---=,整理得:1k m =+,代入直线MN 方程得:()()11y m x m m x x =++=++,即()10x x y m ++-=,联立方程组10x y x+=⎧⎨=⎩,解得:1x =-,1y =-,∴直线MN 恒过定点()1,1--;综上所述:直线MN 恒过定点()1,1--.22.已知椭圆C :22221x y a b +=()0a b >>的右焦点为()1,0F,点1,2P ⎛⎫ ⎪ ⎪⎝⎭在C 上,c 为椭圆C 的半焦距.(1)求椭圆C 的标准方程;(2)若经过F 的直线l 与C 交于A ,B (异于P )两点,与直线2a x c=交于点M ,设PA ,PB ,PM 的斜率分别为1k ,2k ,3k ,求证:1232k k k +=.【解析】(1)解:因为椭圆C :22221x y a b +=()0a b >>的右焦点为()1,0F ,所以1c =.①因为点21,2P ⎛⎫ ⎪ ⎪⎝⎭在C上,所以22211a b ⎝⎭+=,②又222a b c =+,③由①②③,解得a =1b =.故椭圆C 的标准方程为2212x y +=.(2)证明:22==a x c,设()11,A x y ,()22,B x y ,直线():1AB y k x =-,则()2,M k .由()221,1,2y k x x y ⎧=-⎪⎨+=⎪⎩消去y 得()2222124220k x k x k +-+-=,所以2122412k x x k +=+,21222212k x x k-=+,所以()()1212121212122222111122222211112112------⎛⎫+=+=+=-+=-⋅ ⎪------⎝⎭y y k x k x k k k k x x x x x x ()22122212122242222212222224122111212k x x k k k k k k x x x x k k -+--+=-⋅=-⨯=--++--+++,又因为3212-==--k k k 所以1232222⎛⎫+== ⎪ ⎪⎝⎭k k k k ,命题得证.。
高考数学考纲解读与热点难点突破专题17圆锥曲线热点难点突破理含解析
![高考数学考纲解读与热点难点突破专题17圆锥曲线热点难点突破理含解析](https://img.taocdn.com/s3/m/5e2695d5b4daa58da1114a05.png)
圆锥曲线x2 y2垂足为点A ,1.已知 F ,F 是双曲线 a2- b2= 1( a>0,b>0) 的左、右焦点, 过 F 作双曲线一条渐近线的垂线,122交另一条渐近线于点→ 1 →,且 AF2= F2B ,则该双曲线的离心率为 ()B36 5A. 2B.2 C.3 D .2答案 A2.设椭圆 x2 + y 2 =1(> >0) 的焦点为 1, 2,P 是椭圆上一点,且∠12=π,若△ 12的外接圆和内切a2b2a bF FF PF3F PF圆的半径分别为 R ,r ,当 R = 4r 时,椭圆的离心率为 ( )4212A. 5B. 3C. 2D. 5 答案 B分析x2 y2 1 - c, 2 ,P 为椭圆上一点,且∠ 1 2 π 1 2椭圆 a2+ b2=1( a >b >0) 的焦点为 F(0) ,F ( c, 0) F PF = 3 ,| F F | =2c ,|F1F2| 2c依据正弦定理 sin ∠F1PF2=π =2R ,sin32 3 ∴ R = 3 c ,3∵ R = 4r ,∴ r = 6 c , 由余弦定理,( 2c ) 2= | PF 1 |2+ | PF 2| 2- 2| PF 1||PF 2|cos ∠ F 1PF 2,由 | PF | + | PF | = 2a ,∠ F PF =3 ,1212π 1 24 a2- c2) ,可得 | PF || PF | =3(1则由三角形面积公式 1|PF1| + |PF2| +|F1F2|11 21 22() · r =2| PF || PF |sin ∠F PF ,可得 ( 2a +2c ) ·3 4 3c = ( a2- c2) · ,6 32c 2∴ e == .a33.2000 多年前,古希腊大数学家阿波罗尼奥斯(Apollonius) 发现:平面截圆锥的截口曲线是圆锥曲线.已知圆锥的高为, 为地面直径,顶角为 2θ ,那么可是极点P 的平面与夹角π> >θ 时,截口曲线为PH ABPH 2 a椭圆;与 PH 夹角 a = θ 时,截口曲线为抛物线;与 PH 夹角 θ >a >0 时,截口曲线为双曲线.如图,底面内 的直线 AM ⊥ AB ,过 AM 的平面截圆锥获得的曲线为椭圆,此中与 PB 的交点为 C ,可知 AC 为长轴.那么当 C 在线段上运动时,截口曲线的短轴端点的轨迹为 ()PBA .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分答案D分析 如图,由于对于给定的椭圆来说,短轴的端点Q 到焦点 F 的距离等于长半轴,但短轴的端点到直aQ线 AM 的距离也是 a ,即说明短轴的端点 Q 到定点 F 的距离等于到定直线 AM 的距离,且点 F 不在定直线 AM上,因此由抛物线的定义可知,短轴的端点的轨迹是抛物线的一部分,应选D.4.过双曲线 x2 - y2=1( a>0, >0) 的左焦点且垂直于x 轴的直线与双曲线交于 , B 两点, D 为虚轴的一个a2 b2bA端点,且△ ABD 为钝角三角形,则此双曲线离心率的取值范围为______________________ .答案 (1, 2)∪( 2+ 2,+∞ )分析 设双曲线 x2 y2a2 - = 1( a >0, b >0) 的左焦点 F 1( - c, 0) ,b2 令 x=- ,可得y =±bc2 - 1=± b 2,ca2a2b2 b2设 A - c , a , B - c ,- a , D (0 ,b ) ,→b2可得 AD = c , b - a ,→ 2b2 →b2 AB =0,-, DB =- c ,- b -,a a 若∠ DAB 为钝角,则→ →AD · AB<0,2b2 b2即 0- a · b - a <0, 化为 a >b ,即有 a 2>b 2=c 2- a 2,22c可得 c <2a ,即 e = a < 2,又 e >1,可得 1<e < 2;→ →若∠ ADB 为钝角,则 DA · DB<0,2b2b2即 c - a+ b a - b <0,化为 c 4- 4a 2c 2+2a 4>0,由 e = c,可得 e 4- 4e 2+2>0, a又 e >1,可得 e > 2+ 2;→ → 2b2b2又 AB · DB = a b + a >0,∴∠ DBA 不行能为钝角.综上可得, e 的取值范围为 (1 , 2) ∪(2+ 2,+∞ ) .5.已知直线 MN 过椭圆x2+y 2=1 的左焦点 F ,与椭圆交于 M ,N 两点,直线 PQ 过原点 O 与 MN 平行,且与椭2|PQ|2圆交于 P ,Q 两点,则 |MN| = ________.3答案 2 2分析 方法一 特别化,设 MN ⊥ x 轴,则 | | = 2b2 = 2= 2,| |2 = 4, |PQ|2= 4 =2 2.MN a PQ|MN| 222b2|PQ|2方法二 由题意知 F ( - 1,0) ,当直线 MN 的斜率不存在时, | MN |= a = 2,| PQ | = 2b = 2,则 |MN| =2 2;当直线的斜率存在时,设直线 的斜率为 k ,MNMN则 MN 的方程为 y =k ( x + 1) , M ( x 1, y 1) ,N ( x 2, y 2) ,联立方程 错误 !整理得 (2 k 2+ 1) x 2+ 4k 2 x +2k 2- 2= 0,= 8k 2+ 8>0.由根与系数 的关系,得x1+ 4k2,12= 2k2 - 22=-,x2k2+ 1 x x2k2 + 1则 | MN |= 1+ k2错误 != 2 2+ .2k2 + 1直线 PQ 的方程为 y = kx , P ( x, y ) , Q ( x ,y ) ,3344y = kx ,22k222 则 x2解得 x = 1+ 2k2 , y = 1+2k2, 2 + y2 =1,则 | OP | 2= x 23+ y 32=错误 !,又| PQ | =2| OP | ,因此 | PQ | 2= 4| OP |2=错误 !,4|PQ|2因此 |MN| = 2 2.|PQ|2综上, |MN| = 2 2.6.已知抛物线 C :y 2= 2px ( p >0) 的焦点为 F ,过点 F 的直线 l 与抛物 线 C 交于 A ,B 两点,且直线l 与圆 x 223 2- px +y- 4p = 0 交于 C , D 两点,若 | AB | = 3| CD |,则直线 l 的斜率为 ________.2答案 ± 2p2232 p222分析 由题意得 F 2, 0 ,由 x - px + y -4p = 0,配方得 x - 2 + y = p , 因此直线 l 过圆心 p ,可得 | CD | =2p ,2,p若直线 l 的斜率不存在,则 l : x = 2, | AB | = 2p , | CD | =2p ,不切合题意,∴直线 l 的斜率存在.p∴可设直线 l 的方程为 y = k x - 2 , A ( x 1, y 1) , B ( x 2, y 2) ,p联立 y =k x - 2 ,y2= 2px ,化为 x 2-p +2p x +p2= 0,k24因此 x 122p+x=p + k2,因此 | AB | =x 1+ x 2+ p = 2p + k22p ,2p由 | AB | = 3| CD | ,因此 2p +k2= 6p ,21 2可得 k = 2,因此 k =± 2 .7.已知 A , B 是椭圆 C 上对于原点对称的两点,若椭圆C 上存在点 P ,使得直线 PA , PB 斜率的绝对值之和5为 1,则椭圆 C 的离心率的取值范围是 ________.答案23, 12b由题意得 a≤ 1,因此 a 2≥ 4b 2= 4a 2- 4c 2,即 3a 2≤ 4c 2,23 因此 e ≥ 4,又由于 0< <1,因此3 ≤ <1.e 2 ex2 y21 38.已知椭圆 C :a2+ b2= 1( a >b >0)的离心率为 2,且点1,2 在该椭圆上.(1) 求椭圆 C 的方程;6 2(2) 过椭圆 C 的左焦点 F 1 的直线 l 与椭圆 C 订交于 A ,B 两点,若△ AOB 的面积为 7 ,求圆心在原点 O 且与直线 l 相切的圆的方程.(2) 由 (1) 知 F 1( - 1,0) ,设直线 l 的方程为 x = ty - 1,x = ty - 1,由 x2 y222消去 x ,得 (4 + 3t ) y - 6t y - 9=0,4 +3 = 1,明显 >0 恒建立,设 A ( x 1,y 1 ) , B ( x 2,y 2) ,则 y 1+ y 2=6t9, y 1y 2=-,4+ 3t24+ 3t2因此 | y 1- y 2| =错误 != 错误 !=错误 !,6高考数学考纲解读与热门难点打破专题17圆锥曲线热门难点打破理含分析 11 / 11 1因此 S △AOB = 2·|F 1O | ·|y 1- y 2|6 t2 + 1 6 2= = ,4+ 3t2 7化简得 18t 4- t 2- 17=0,即 (18 t 2+ 17)( t 2- 1) =0,17解得 t 21= 1, t 2=- 18( 舍去 ) .|0 -t ×0+ 1| = 1又圆 O 的半径 r = ,1+ t2 1+ t22 2 2 1因此 r = 2 ,故圆 O 的方程为 x + y = 2.7。
高考数学140分难点突破训练――圆锥曲线(含详解)概要
![高考数学140分难点突破训练――圆锥曲线(含详解)概要](https://img.taocdn.com/s3/m/670b6e5100f69e3143323968011ca300a6c3f67c.png)
高考数学140分难点突破训练――圆锥曲线(含详解)概要高考数学140分难点突破训练——圆锥曲线1. 已知椭圆C的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率为。
w.w.w.k.s.5.u.c.o.m(1)求椭圆C的方程;(2)设A、B为椭圆上的两个动点,,过原点O作直线AB的垂线OD,垂足为D,求点D的轨迹方程.2. 设直线与双曲线相交于A,B两点,O为坐标原点.(I)为何值时,以AB为直径的圆过原点.(II)是否存在实数,使且,若存在,求的值,若不存在,说明理由.3. (理)设双曲线C:(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.(1)求双曲线C的离心率e的值;(2)若双曲线C被直线y=ax+b截得的弦长为求双曲线c的方程.(文)在△ABC中,A点的坐标为(3,0),BC边长为2,且BC 在y轴上的区间[-3,3]上滑动.(1)求△ABC外心的轨迹方程;(2)设直线l∶y=3x+b与(1)的轨迹交于E,F两点,原点到直线l的距离为d,求的最大值.并求出此时b的值.4. 已知点N(1,2),过点N的直线交双曲线于A、B两点,且(1)求直线AB的方程;(2)若过N的直线l交双曲线于C、D两点,且,那么A、B、C、D四点是否共圆?为什么?5. 设(为常数),若,且只有唯一实数根(1)求的解析式(2)令求数列的通项公式。
6. 已知点C(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足(1)当点P在y轴上运动时,求点M的轨迹C的方程;(2)是否存在一个点H,使得以过H点的动直线L被轨迹C截得的线段AB为直径的圆始终过原点O。
若存在,求出这个点的坐标,若不存在说明理由。
7. 设为直角坐标平面内x,y轴正方向上的单位向量,若向量.(1求点M(x,y)的轨迹C的方程;(2过点(0,3作直线与曲线C 的交于A、B两点,设,是否存在这样的直线,使得四边形OAPB为矩形?若存在,求出直线的方程;若不存在,说明理由.8. 已知倾斜角为的直线过点和点,点在第一象限,。
第09讲 高考难点突破一:圆锥曲线的综合问题(定点问题) (精讲)(含答案解析)
![第09讲 高考难点突破一:圆锥曲线的综合问题(定点问题) (精讲)(含答案解析)](https://img.taocdn.com/s3/m/151ad6104a35eefdc8d376eeaeaad1f347931151.png)
第09讲高考难点突破一:圆锥曲线的综合问题(定点问题)(精讲)-2第09讲高考难点突破一:圆锥曲线的综合问题(定点问题)(精讲)题型三:抛物线中的定点问题角度1:抛物线中的直线过定点问题典型例题例题1.(2022·辽宁·建平县实验中学模拟预测)1.已知点()1,M p p -在抛物线()2:20C y px p =>上.(1)求抛物线C 的方程;(2)过点M 作斜率分别为12,k k 的两条直线12,l l ,若12,l l 与抛物线C 的另一个交点分别为,A B ,且有122k k +=,探究:直线AB 是否恒过定点?若是,求出该定点;若否,说明理由.例题2.(2022·陕西西安·三模(理))2.已知抛物线()2:20C y px p =>上的点()()4,0G t t >到其准线的距离为5.不过原点的动直线交抛物线C 于A ,B 两点,M 是线段AB 的中点,点M 在准线l 上的射影为N .(1)求抛物线C 的方程;(2)当1NA NB ⋅=时,求证:直线AB 过定点.例题3.(2022·全国·高三专题练习)3.已知线段AB 是抛物线24y x =的弦,且过抛物线焦点F .(1)过点B 作直线与抛物线对称轴平行,交抛物线的准线于点E ,求证:A O E 、、三点共线(O 为坐标原点);(2)设M 是抛物线准线上一点,过M 作抛物线的切线,切点为11A B 、.求证:(i )两切线互相垂直;(ii )直线11A B 过定点,请求出该定点坐标.同类题型归类练(2022·湖南·长沙一中高三开学考试)4.已知抛物线C :22y px =(0p >),直线1x =+交抛物线C 于A ,B 两点,且三角形OAB 的面积为O 为坐标原点).(1)求实数p 的值;(2)过点D (2,0)作直线L 交抛物线C 于P ,Q 两点,点P 关于x 轴的对称点为P '.证明:直线P 'Q 经过定点,并求出定点坐标.(2022·湖北武汉·高二期末)5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.(2022·江西景德镇·高二期末(文))6.已知抛物线C :()220y px p =>的焦点为F ,过焦点F 且垂直于x 轴的直线交C 于H ,I 两点,O 为坐标原点,OHI 的周长为8.(1)求抛物线C 的方程;(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点?若过定点.求出其坐标;若不过定点,请说明理由.(2022·江西·上饶市第一中学模拟预测(文))7.已知抛物线()220y px p =>的焦点为F ,过焦点FA 、B 两点(点A 在第一象限),交抛物线准线于G ,且满足83BG =.(1)求抛物线的标准方程;(2)已知C ,D 为抛物线上的动点,且OC OD ⊥,求证直线CD 过定点P ,并求出P 点坐标;(3)在(2)的条件下,求PC PD ⋅的最大值.角度2:抛物线存在定点满足某条件问题典型例题例题1.(2022·内蒙古赤峰·高二期末(文))8.已知抛物线()2:20C y px p =>的焦点为F ,过点()2,0A 的直线l 交C 于M ,N 两点,当l 与x 轴垂直时,4MN =.(1)求C 的方程:(2)在x 轴上是否存在点P ,使得OPM OPN ∠=∠恒成立(O 为坐标原点)?若存在求出坐标,若不存在说明理由.例题2.(2022·河南·开封市东信学校模拟预测(文))9.已知直线:10l x ky --=与抛物线2:2(0)N y px p =>交于A ,B 两点,当直线l x ⊥轴时,||4AB =.(1)求抛物线N 的标准方程;(2)在x 轴上求一定点C ,使得点(2,0)M p 到直线AC 和BC 的距离相等.例题3.(2022·贵州铜仁·高二期末(理))10.已知F 为抛物线2:2(0)C y px p =>的焦点,过F 的动直线交抛物线C 于,A B 两点.当直线与x 轴垂直时,||4AB =.(1)求抛物线C 的方程;(2)设直线AB 的斜率为1且与抛物线的准线l 相交于点M ,抛物线C 上存在点P 使得直线,,PA PM PB 的斜率成等差数列,求点P 的坐标.同类题型归类练(2022·湖北·鄂南高中模拟预测)11.已知曲线2:2(0)C y px p =>的焦点为F ,曲线C 上有一点()0,Q x p 满足2QF =.(1)求抛物线C 的方程;(2)过原点作两条相互垂直的直线交曲线C 于异于原点的两点,A B ,直线AB 与x 轴相交于N ,试探究x 轴上存在一点是否存在异于N 的定点M 满足AM AN BMBN=恒成立.若存在,请求出M 点坐标;若不存在,请说明理由.(2022·全国·高三专题练习(理))12.已知抛物线2:2(0)E x py p =>的焦点为F ,过F 的直线交抛物线E 于1122(,),(,)A x y B x y 两点,11AF y =+.(1)求抛物线E 的标准方程;(2)在x 轴的正半轴上是否存在点P ,连接PA ,PB 分别交抛物线E 于另外两点C ,D ,使得4AB CD =?并说明理由.(2022·江苏省苏州实验中学高二阶段练习)13.已知抛物线2:8C y x =,点()(),00M a a >,直线l 过点M 且与抛物线C 相交于,A B 两点.(1)当a 为变量时,P 为抛物线C 上的一个动点,当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,请指出此时M 点运动的轨迹;(2)当a 为定值时,在x 轴上是否存在异于点M 的点N ,对任意的直线l ,都满足直线,AN BN 关于x 轴对称?若存在,指出点N 的位置并证明,若不存在请说明理由.(2022·重庆市育才中学高三阶段练习)14.已知抛物线2:4E x y =的焦点为F ,过F 的直线交抛物线E 于A 、B 两点.(1)当直线AB 的斜率为1时,求弦AB 的长度AB ;(2)在x 轴的正半轴上是否存在一点P ,连接PA ,PB 分别交抛物线E 于另外两点C 、D ,使得//AB CD 且4AB CD =?若存在,请求出点P 的坐标,若不存在,请说明理由.(2022·全国·高考真题(文))15.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.参考答案:1.(1)24y x=(2)直线AB 恒过定点()1,0-【分析】(1)将M 点坐标代入抛物线方程即可构造方程求得结果;(2)设()11,A x y ,()22,B x y ,利用斜率公式表示出122k k +=,得到124y y =;设:AB x my t =+,与抛物线方程联立可得韦达定理的形式,由此可得1t =-,可得:1AB x my =-,由此可得定点坐标.(1)()1,M p p - 在抛物线上,()221p p p ∴=-,解得:2p =,∴抛物线C 的方程为:24y x =.(2)由(1)得:()1,2M ;设()11,A x y ,()22,B x y ,则11121112241214y y k y x y --===-+-;同理可得:2242k y =+;122k k += ,1244222y y ∴+=++,整理可得:124y y =;当直线AB 斜率为0时,其与抛物线C 只有一个公共点,不合题意;当直线AB 斜率不为0时,设:AB x my t =+,由24y x x my t ⎧=⎨=+⎩得:2440y my t --=,则124y y t =-,44t ∴-=,解得:1t =-;:1AB x my ∴=-,则直线AB 过定点()1,0-;综上所述:直线AB 恒过定点()1,0-.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.2.(1)24y x =(2)证明见解析【分析】(1)由抛物线的定义可求解;(2)设直线AB ,并与抛物线联立,运用韦达定理、向量的数量积可求解.【详解】(1)由抛物线C 的方程可得其准线方程2p x =-,依抛物线的性质得452p+=,解得2p =.∴抛物线C 的方程为24y x =.(2)当直线AB 的斜率为0时,显然不符合题意;当直线AB 的斜率不为0时,设直线:(0)AB x my n n =+≠,211,4y A y ⎛⎫⎪⎝⎭、222,4y B y ⎛⎫ ⎪⎝⎭、()00,M x y ,由24y x x my n ⎧=⎨=+⎩化简得2440y my n --=,()2160m n ∆=+>,124y y m +=,124y y n =-,12022y y y m +==,所以()1,2N m -,所以2111,24y NA y m ⎛⎫=+- ⎪⎝⎭ ,2221,24y NB y m ⎛⎫=+- ⎪⎝⎭ ,所以()()222121112244y y NA NB y m y m ⎛⎫⎛⎫⋅=+++-- ⎪⎪⎝⎭⎝⎭()()222121221212122124164y y y y y y y y m y y m +-=+++-++()22222216814842114m n n n m m n n n +=++--+=-+=-若1NA NB ⋅= ,即()211n -=,解得2n =或0n =(舍去),所以直线AB 过定点()2,0.3.(1)证明见解析(2)证明见解析.【分析】(1)由题知抛物线24y x =的焦点()1,0F ,准线为=1x -,故设直线AB 的方程为:1x my =+,()()1122,,,A x y B x y ,进而得()21,E y -,再结合韦达定理证明OA OE k k =即可;(2)(i)设()01,M y -,过()01,M y -作抛物线的切线,斜率为()0k k ≠,则方程为()01y y k x -=+,切线11,MA MB 的切线斜率分别为12,k k ,进而结合韦达定理即可得121k k =-,进而证明;(ii )结合(i )得221121211212,,A k k B k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、,进而得1102A B k y =,直线11A B 的方程为2202221y x k y k ⎛⎫-=- ⎪⎝⎭,整理即可得()021y x y =-,进而得定点坐标.(1)解:由题知抛物线24y x =的焦点()1,0F ,准线为=1x -,所以,设直线AB 的方程为:1x my =+,所以,联立方程214x my y x=+⎧⎨=⎩得2440y my --=,设()()1122,,,A x y B x y ,则12124,4y y m y y +==-,因为过点B 作直线与抛物线对称轴平行,交抛物线的准线于点E ,所以()21,E y -因为2114y x =,故2114y x =所以112211214444OA y y y y y x y k =====--,221OE k y y ==--,所以,OA OE k k =,即A O E 、、三点共线.(2)解:(i )设()01,M y -,所以,设过()01,M y -作抛物线的切线,斜率为()0k k ≠,则方程为()01y y k x -=+,所以,()0214y y k x y x⎧-=+⎨=⎩得204440ky y y k -++=,所以,()0164440k y k ∆=-+=,即2010k ky +-=,设切线11,MA MB 的切线斜率分别为12,k k ,则12,k k 为方程2010k ky +-=的实数根,所以121k k =-,120k k y +=-,所以,两切线互相垂直.(ii)由(i )知204440ky y y k -++=,2010k ky +-=,所以,22204440k y ky ky k -++=,即()2224420k y ky ky -+=-=,所以221121211212,,A k k B k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、,所以,1121121222210221122A B k k k k k k y k k k =+==--,所以,直线11A B 的方程为2202221y x k y k ⎛⎫-=- ⎪⎝⎭,整理得()2022222020200200202222222221y k k y x x x y k y k y y k y y k y --=+-=+=+=-,即()021y x y =-所以,直线11A B 过定点()1,0.4.(1)2p =;(2)证明见解析,定点()2,0-.【分析】(1)设()()1122,,,A x y B x y ,联立直线和抛物线方程得到韦达定理,求出12y y -即得解;(2)设()()3344,,,P x y Q x y ,不妨令43y y >,设直线L 的方程为2x ty =+,联立直线和抛物线的方程得到韦达定理,求出直线P Q '的方程即得解.(1)解:由题得直线1x =+过点()1,0,.设()()1122,,,A x y B x y ,联立21,2,x y px ⎧=+⎪⎨=⎪⎩得220y p --=,所以1212,2y y y y p +==-,所以122y y -=所以三角形OAB的面积12112S y y =⨯⨯-==又0p >,解得2p =(30p =-<舍去).所以2p =.(2)证明:由(1)抛物线C 的方程为24y x =,设()()3344,,,P x y Q x y ,不妨令43y y >,则()33,P x y '-,设直线L 的方程为2x ty =+,联立22,4,x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则34344,8y y t y y +==-,则直线P Q '的方程为()()433343y y y y x x x x +--=--,即()()43434343x x y x y y y x y x -+=+-,则()()()()4343434322ty ty y ty y y y x y ty -++=+-+,即()()()4343433422t y y y y y x ty y y y -=+--+,即()()43433422y y y x ty y y y =+--+,所以()42824y tx t t =-⨯--⨯,即()2y t x =+,令20,0,x y +=⎧⎨=⎩解得2,0,x y =-⎧⎨=⎩所以直线P Q '恒过定点()2,0-5.(1)24y x=(2)证明见解析,定点110,33⎛⎫- ⎪⎝⎭;【分析】(1)设圆心(),C x y ,圆的半径为R ,依题意得到方程,整理即可;(2)设200,4y D y ⎛⎫ ⎪⎝⎭,121,4y E y ⎛⎫ ⎪⎝⎭,222,4y F y ⎛⎫⎪⎝⎭,即可得到直线EF 的方程,同理可得直线DE与直线DF 的方程,再根据直线DE 过点()3,2B --,直线DF 过点()2,1C ,即可消去0y ,从而求出EF 过定点坐标;(1)解:设圆心(),C x y ,圆的半径为R ,则()()22222220R x x y =+=-+-,整理得24y x =.所以动圆圆心的轨迹方程为24y x =.(2)证明:抛物线的方程为24y x =,设200,4y D y ⎛⎫ ⎪⎝⎭,121,4y E y ⎛⎫ ⎪⎝⎭,222,4y F y ⎛⎫⎪⎝⎭,则直线EF 的方程为()1211221244y y y y x x y y --=--,得2111211121212124444x y y y x x x y y y y y y y y y y +-=-+=+++++,又2114y x =,所以直线EF 的方程为1212124y y xy y y y y =+++.同理可得直线DE 的方程为1010104y y xy y y y y =+++,直线DF 的方程为0022024y y xy y y y y =+++因为直线DE 过点()3,2B --,所以()1101222y y y -=+;因为直线DF 过点()2,1C ,所以()22081y y y -=-.消去0y ,得()121210433y y y y =++.代入EF 的方程,得12411033y x y y ⎛⎫=++ ⎪+⎝⎭,所以直线EF 恒过一个定点110,33⎛⎫- ⎪⎝⎭.6.(1)28y x=(2)直线PQ 过定点()6,0【分析】(1)将2px =代入抛物线22y px =中,得出HI 的长度,再由勾股定理得出OH ,结合条件建立关于p 的方程,得出答案.(2)由题意设直线AB 的方程为2x my =+,()11,A x y ,()22,B x y ,联立直线AB 的方程与抛物线的方程,由韦达定理得出P 点坐标,同理得出Q 点坐标,从而得出直线PQ 方程,得出答案.(1)由题意,02p F ⎛⎫⎪⎝⎭,在22y px =中代入2p x=,得222p y p =⋅,解得y p =±,所以2HI p =.由勾股定理得|OH OI p ===,则OHI 的周长为2822p p p ++=,解得4p =,故抛物线C 的方程为28y x =.(2)由题意可知()2,0F ,直线AB 的斜率存在,且不为0.设直线AB 的方程为2x my =+,()11,A x y ,()22,B x y .联立22,8,x my y x =+⎧⎨=⎩消去x ,得28160y my --=,264640m ∆=+>,则128y y m +=,从而()21212484x x m y y m +=++=+.因为P 是弦AB 的中点,所以()242,4P m m +,同理可得2442,Q mm ⎛⎫+- ⎪⎝⎭.当21m ≠,即1m ≠±时,直线PQ 的斜率2224441422PQm m m k m m m ⎛⎫-- ⎪⎝⎭==-⎛⎫+-+ ⎪⎝⎭,则直线PQ 的方程为()224421my m x m m -=---,即()()216m y m x -=-.故直线PQ 过定点()6,0;当21m =,即1m ≠±时,直线PQ 的方程为6x =,也过点()6,0.综上所述,直线PQ 过定点()6,0.7.(1)24y x=(2)证明见解析;P 点坐标为(4,0)(3)16-【分析】(1)过点B 作准线的垂线,垂足为H ,设准线与x 轴相交于点M ,由直线的斜率得出倾斜角,利用三角函数及抛物线的定义求出||MF 即可得解;(2)设直线CD 的方程为:x my t =+,211,4y C y ⎛⎫ ⎪⎝⎭,222,4y D y ⎛⎫⎪⎝⎭,联立方程组,由根与系数的关系求出12y y ,再由OC OD ⊥建立斜率的方程即可得解;(3)由向量的数量积坐标运算化简,利用二次函数求最值.(1)过点B 作准线的垂线,垂足为H ,设准线与x 轴相交于点M,如图,由题知,直线l 的倾斜角为π3.∴在R t BGH 中,π3GBH ∠=,又∵83BG =,∴43BH =,∴43BF =.∴4GF BG BF =+=,∴在R t GFM 中,又3MFG π∠=,∴2MF =,∴2p =,∴抛物线的标准方程为24y x =.(2)由(1)可知,抛物线方程为24y x =,设直线CD 的方程为:x my t =+,211,4y C y ⎛⎫ ⎪⎝⎭,222,4y D y ⎛⎫⎪⎝⎭,直线与抛物线联立:24x my ty x=+⎧⎨=⎩,得:2440y my t --=,则124y y m +=,124y y t =-,∵14OC k y =,24OD k y =且OC OD ⊥,∴12161614OC OD k k y y t ⋅===--则4t =,∴直线CD 过定点(4,0),即P 点坐标为(4,0),(3)由(2)可知P 点坐标为(4,0),∴()2222212121216161616y y PC PD y y y y m ⋅=-+++=-- ,∴PC PD ⋅的最大值为16-.8.(1)22y x =(2)存在,()2,0-【分析】(1)易知||4MN ==,求出p 即可;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设: 2l x m y =+,代入抛物线方程22y x =消去x ,得2240y my --=,由OPM OPN ∠=∠可得0MP NP k k +=,利用斜率公式,根与系数的关系求解即可【详解】(1)当l 与x轴垂直时,由题意易得||MN =,从而4=,解得p =1,所以C 的方程为22y x =;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设: 2l x m y =+,代入抛物线方程22y x =消去x ,得2240y my --=,从而122y y m +=,124y y =-,①由OPM OPN ∠=∠可得0MP NP k k +=12121020102022MP NP y y y y k k x x x x my x my x +=+=+--+-+-()()()()1201210202222my y x y y my x my x +-+=+-+-将①代入上式,得()()102042022m mx my x my x --=+-+-恒成立,所以02x =-,因此存在点P ,且满足题意,P 点坐标为()2,0-.9.(1)24y x =(2)(1,0),(1,0),(4,0)-【分析】(1)直线l x ⊥轴时,将1x =代入抛物线方程求得,A B 纵坐标,得出AB ,从而可得p 值,得抛物线方程;(2)设()()(),,,,,0A A B B C A x y B x y C x ,直线方程与抛物线方程联立,消元后应用韦达定理得A B y y +,A B y y ,题意即为0AC BC k k +=,代入韦达定理的结论可求得C x ,同时注意,,A B C 共线或C 与M 重合的情形,从而得出结论.(1)当直线l x ⊥轴时,方程为1x =,代入抛物线方程得22y p =,y =,∴||4AB ==,解得2p =.∴抛物线N 的标准方程为24y x =;(2)设()()(),,,,,0A A B B C A x y B x y C x .联立210,4,x ky y x --=⎧⎨=⎩得2440y ky --=.∴4,4A B A B y y k y y +=⋅=-.①由题意可知()()()()0A B C B A C A BAC BC A C B C A C B C y x x y x x y y k k x x x x x x x x -+-+=+==----,∴()()0A B C B A C y x x y x x -+-=,即()B A A B C A B x y x y x y y +=+.∴()()()11B A A B C A B ky y ky y x y y +++=+,即()()2A B A B C A B ky y y y x y y ++=+.∴844C k k kx -+=.∵0k ≠,可知1C x =-.∴点C 的坐标由抛物线的图象可知,还有点(1,0),(4,0)满足题意,故这样的点有3个,坐标分别为(1,0),(1,0),(4,0)-.10.(1)24y x =(2)(1,2)P ±【分析】(1)求出抛物线的焦点坐标,根据题意,令2px =,求出纵坐标的值,再根据AB 4=进行求解即可;(2)设直线AB 的方程,与抛物线方程联立,求出直线PA ,PM ,PB 的斜率表达式,结合等差数列和一元二次方程根与系数关系,得到一个等式,根据等式成立进行求解即可.(1)因为(,0)2pF ,在抛物线方程22y px =中,令2p x =,可得y p =±,所以当直线与x 轴垂直时24AB p ==,解得2p =,抛物线的方程为24y x =.(2)(2)因为抛物线24y x =的准线方程为=1x -,由题意可知直线AB 的方程为1x y =+,所以(1,2)M --.联立241y x x y ⎧=⎨=+⎩消去x ,得2440y y --=,设11(,)A x y ,22(,)B x y ,则124y y +=,124y y =-,若存在定点00(,)P x y 满足条件,则2PM PA PB k k k =+,即0010200102221y y y y y x x x x x +--⋅=++--,因为点,,P A B 均在抛物线上,所以222012012,444y y y x x x ===.代入化简可得00122200120122(2)24()y y y yy y y y y y y +++=++++,将124y y +=,124y y =-代入整理可得002200022444y y y y y ++=++-,即202(4)0y -=,所以2040y -=,解得02y =±,将02y =±代入抛物线方程,可得01x =,于是点(1,2)P ±即为满足题意的定点.11.(1)24y x =(2)存在,()4,0M -【分析】(1)由焦半径公式代入求解p ,从而得抛物线方程;(2)设直线方程,联立方程组,将韦达定理代入所给条件求解.(1)Q 在曲线C 上,则202p px =,则02px =,而022pQF x p ==+=,故抛物线C 的方程为24y x =.(2)易知直线AB 的斜率不为0,故设()()()1122:,,,,,,0AB l x ty n A x y B x y M m =+联立:224404x ty ny ty n y x=+⎧⇒--=⎨=⎩,故12124,4y y t y y n +==-.222121244y y x x n =⋅=,因为OA OB ⊥,则2121240OA OB x x y y n n ⋅=+=-=则4n =或0n =(舍),故()4,0N .因为,M N 都在x 轴上,要使得AM AN BMBN=,则x 轴为AMB ∠的角平分线,若1m x =,则AM 垂直于x 轴,x 轴平分AMB ∠,则BM 垂直于x 轴,则直线AB 的方程为4x =,此时4m n ==,而,M N 相异,故1m x ≠,同理2m x ≠故AM 与BM 的斜率互为相反数,即12122112120y y x y x y m x m x m y y ++=⇒=--+()()1221121212442324444ty y ty y ty y t m y y y y t+++-⇒==+=+=-++为定值.故当()4,0M -时,有AM AN BMBN=恒成立.【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.12.(1)24x y =(2)见解析【分析】(1)根据点A 到点F 的距离等于点A 到直线1y =-,结合抛物线的定义得出抛物线E 的标准方程;(2)设()()330,,,0C x y P x ,由4PA PC = 结合抛物线方程得出12,x x 是方程2200230x x x x --=的两根,设直线AB 的方程为1y kx =+,并与抛物线方程24x y =联立结合韦达定理得出点P 坐标.(1)因为点F 是抛物线2:2(0)E x py p =>的焦点,且11AF y =+所以点A 到点F 的距离等于点A 到直线1y =-所以由抛物线的定义可知1,22pp ==所以抛物线E 的标准方程为24x y =(2)设()()330,,,0C x y P x 由4AB CD = 得://AB CD ,且4AB CD =,得4PA PC= 即()()101303,4,x x y x x y -=-,所以101333,44x x yx y +==代入抛物线方程24x y =,得221011344x x x y +⎛⎫==⎪⎝⎭整理得221010230x x x x --=,同理可得222020230x x x x --=故12,x x 是方程2200230x x x x --=的两根,20160x ∆=>由韦达定理可得21201202,3x x x x x x +==-①由题意,直线AB 的斜率一定存在,故设直线AB 的方程为1y kx =+与抛物线方程24x y =联立可得2440x kx --=由韦达定理可得12124,4x x k x x +==-②由①②可得033x k ==故在x 轴的正半轴上存在一点,03P ⎛⎫⎪ ⎪⎝⎭满足条件.13.(1)M 点的运动轨迹是x 轴的(]0,4部分的线段;(2)存在点(),0N a -,证明见解析.【分析】(1)设2,8y P y ⎛⎫ ⎪⎝⎭,可表示出2MP ,根据线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处可确定对称轴位置,由此可得轨迹;(2)当l 斜率不存在时知x 轴上任意异于点M 的点N 均满足题意;当l 斜率存在时,假设l 方程,与抛物线方程联立后可得韦达定理的形式,代入0AN BN k k +=中整理可得定点;综合两种情况可得结论.(1)设2,8y P y ⎛⎫ ⎪⎝⎭,则224222218644y y a MP a y y a ⎛⎫⎛⎫=-+=+-+ ⎪ ⎪⎝⎭⎝⎭, 当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,即当0y =时,线段MP 的长度取最小值a ;140132a-∴-≤,解得:4a ≤,04a ∴<≤;M ∴点的运动轨迹是x 轴的(]0,4部分的线段.(2)①当直线l 斜率不存在时,对于x 轴上任意异于点M 的点N ,都满足直线,AN BN 关于x 轴对称;②当直线l 斜率存在时,设:l x ty a =+,()11,A x y ,()22,B x y ,由28x ty a y x=+⎧⎨=⎩得:2880y ty a --=,则,设(),0N n ,直线,AN BN 关于x 轴对称,0AN BN k k ∴+=,()()()()2212121221121212221212121212880y y y y n y y x y n y y x y y y x n x n x x n x x n x x n x x n -++-++∴+===---+--+-,即()()()12121288808y y y y n y y at nt n a t +-+=--=-+=,∴当n a =-时,0AN BN k k +=恒成立,即(),0N a -;综上所述:存在点(),0N a -,对任意的直线l ,都满足直线,AN BN 关于x 轴对称.【点睛】思路点睛:本题考查直线与抛物线综合应用中的定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程或得到恒成立的式子;④求解定点得到结果.14.(1)8(2)存在,,03P ⎛⎫ ⎪ ⎪⎝⎭【分析】(1)由题意得到直线AB 的方程10x y -+=,与抛物线2:4E x y =联立,再利用抛物线的定义求解;(2)由//AB CD 且4AB CD =,得到4PA PC =,表示点C 的坐标,代入抛物线方程,整理得到221010230x x x x --=,同理得到222020230x x x x --=,12,x x 是方程2200230x x x x --=的两根,设直线AB 的方程为1y kx =+,与抛物线2:4E x y =联立,由韦达定理求解.(1)解:设()11,A x y ,()22,B x y ,()33,C x y ,()0,0P x ,由题意知,点F 的坐标为()0,1,直线AB 的方程为10x y -+=.与抛物线2:4E x y =联立可得2610y y -+=.由韦达定理有126y y +=,故1228AB y y =++=.(2)设()11,A x y ,()22,B x y ,()33,C x y ,()0,0P x .由//AB CD 且4AB CD =,得4PA PC = ,即()()101303,4,x x y x x y -=-.所以10334x x x +=,134y y =.代入抛物线2:4E x y =,得221011344x x x y +⎛⎫== ⎪⎝⎭,整理可得221010230x x x x --=,同理可得222020230x x x x --=,故12,x x 是方程2200230x x x x --=的两根,20120x ∆=>,由韦达定理有1202x x x +=,21203x x x =-,①由题意,直线AB 的斜率一定存在,故设直线AB 的方程为1y kx =+,与抛物线2:4E x y =联立可得2440x kx --=,由韦达定理有124x x k +=,124x x =-,②由①②可得0x =,3k =,故x轴的正半轴上存在一点3P ⎛⎫ ⎪ ⎪⎝⎭满足条件.15.(1)22143y x +=(2)(0,2)-【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解.【详解】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M ,N ,代入AB 方程223y x =-,可得(3,T -,由MT TH = 得到(5,H -.求得HN 方程:(2)23y x =+-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34k x y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总(学生版)
![重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总(学生版)](https://img.taocdn.com/s3/m/aea3be6fe3bd960590c69ec3d5bbfd0a7956d5c3.png)
重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总题型1直接型题型2二级结论之通径型题型3双曲线渐近线相关题型4坐标法题型5二级结论之焦点弦定比分点题型6二级结论之焦点已知底角题型7焦点三角形已知顶角型题型8焦点三角形双余弦定理题型9利用图形求离心率题型10利用椭圆双曲线的对称性求离心率题型11点差法题型12二级结论之中点弦问题题型13角平分线相关题型14圆锥曲线与圆相关题型15内切圆相关题型16与立体几何相关题型17二级结论之切线方程题型18正切公式的运用题型19圆锥曲与内心结合题型1直接型椭圆与双曲线的离心率公式为:e =ca,注意椭圆的离心率范围(0,1),双曲线的离心率范围(1,+♾)1(2021·江西南昌·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 的右支于A ,B 两点,且AB ⋅AF 1 =0,12|AB |=5|AF 1|,则C 的离心率为1(2021·全国·高三开学考试)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为.2(2021·河北秦皇岛·统考二模)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆C 于A ,B 两点,已知AF 2 +F 1F 2 ⋅AF 1 =0,AF 1 =43F 1B,则椭圆C 的离心率为()A.57B.22C.53D.133(2023·江西九江·二模)青花瓷又称白地青花瓷,常简称青花,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.如图为青花瓷大盘,盘子的边缘有一定的宽度且与桌面水平,可以近似看成由大小两个椭圆围成.经测量发现两椭圆的长轴长之比与短轴长之比相等.现不慎掉落一根质地均匀的长筷子在盘面上,恰巧与小椭圆相切,设切点为P ,盘子的中心为O ,筷子与大椭圆的两交点为A 、B ,点A 关于O 的对称点为C .给出下列四个命题:①两椭圆的焦距长相等;②两椭圆的离心率相等;③PA =PB ;④BC 与小椭圆相切.其中正确的个数是()A.1B.2C.3D.44(22·23下·恩施·模拟预测)已知F 1,F 2分别为双曲线C :x 24-y 2b2=1b >0 的左右焦点,且F 1到渐近线的距离为1,过F 2的直线l 与C 的左、右两支曲线分别交于A ,B 两点,且l ⊥AF 1,则下列说法正确的为()A.△AF 1F 2的面积为2B.双曲线C 的离心率为2C.AF 1 ⋅BF 1=10+46D.1AF 2 +1BF 2=6+2题型2二级结论之通径型椭圆与双曲线的半通径是b 2a , 通径是2b 2a1(2023·重庆·模拟预测)如图,椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ ⊥y 轴,四边形F 1APQ 是等腰梯形,直线F 1P 与y 轴交于点N 0,34b,则椭圆的离心率为( ).A.14B.32C.22D.121(23·24高三上·湖北·阶段练习)已知A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)的左右顶点,P 是双曲线x 2a 2-y 2b 2=1在第一象限上的一点,直线PA ,PB 分别交椭圆于另外的点M ,N .若直线MN 过椭圆的右焦点F ,且tan ∠AMN =3,则椭圆的离心率为.2(2023·湖北武汉·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,点A ,B 分别为椭圆C 的左右顶点,点F 为椭圆C 的右焦点,Р为椭圆上一点,且PF 垂直于x 轴.过原点О作直线PA 的垂线,垂足为M ,过原点О作直线PB 的垂线,垂足为N ,记S 1,S 2分别为△MON ,△PAB 的面积.若S 2S 1=409,则椭圆C 的离心率为.3(22·23·赣州·二模)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,点P 在E 上,满足△F 1PF 2为直角三角形,作OM ⊥PF 1于点M (其中O 为坐标原点),且有PM =2MF1,则E 的离心率为.4(2023·河北保定·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,B 为虚轴上端点,M 是BF 中点,O 为坐标原点,OM 交双曲线右支于N ,若FN 垂直于x 轴,则双曲线C 的离心率为() A.2B.2C.3D.233题型3双曲线渐近线相关双曲线的渐近线求离心率可以直接使用公式:e =1+b 2a2,1(2023·山东潍坊·二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,O 为坐标原点,过F 1作C 的一条浙近线的垂线,垂足为D ,且DF 2 =22OD ,则C 的离心率为()A.2B.2C.5D.31(2022·贵州毕节·统考模拟预测)已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A 是C 的左顶点,过点F 2作C 的一条渐近线的垂线,垂足为P ,过点P 作x 轴的垂线,垂足为M ,O 为坐标原点,且PO 平分∠APM ,则C 的离心率为()A.2B.2C.3D.32(多选)(2023·山东潍坊·三模)函数y =ax +bx(ab >0)的图象是双曲线,且直线x =0和y =ax 是它的渐近线.已知函数y =33x +1x,则下列说法正确的是()A.x ≠0,y ≥243B.对称轴方程是y =3x ,y =-33x C.实轴长为23D.离心率为2333(2020上·广西桂林·高三广西师范大学附属中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,左顶点为A ,过F 作C 的一条渐近线的垂线,垂足为M ,若tan ∠MAF =12,则C 的离心率为.4(2022·陕西咸阳·统考二模)已知双曲线C :(a >0,b >0)的左焦点为F ,过F 且与双曲线C 的一条渐近线垂直的直线l 与另一条渐近线交于点P ,交y 轴于点A ,若A 为PF 的中点,则双曲线C 的离心率为 .5(多选)(2023·河北唐山·模拟预测)已知双曲线C :x 2a2-y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 2作直线y =2a x 的垂线,垂足为P ,O 为坐标原点,且∠F 1PO =π6,过P 作C 的切线交直线y =-2ax 于点Q ,则()A.C 的离心率为213B.C 的离心率为133C.△OPQ 的面积为23D.△OPQ 的面积为43题型4坐标法相对运算较麻烦的一种方法,可以通过联立方程,求出点的坐标,构造等式求出离心率1(2023·河南·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左顶点为A ,P 为C 的一条渐近线上一点,AP 与C 的另一条渐近线交于点Q ,若直线AP 的斜率为1,且A 为PQ 的三等分点,则C 的离心率为.1(2023·山东潍坊·模拟预测)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 的直线交E 的左支于点P ,交E 的渐近线于点M ,N ,且P ,M 恰为线段FN 的三等分点,则双曲线E 的离心率为()A.2B.52C.5D.32(24·25高三上·浙江·开学考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 作倾斜角为π4的直线交椭圆C 于A 、B 两点,弦AB 的垂直平分线交x 轴于点P ,若PF AB=14,则椭圆C 的离心率e =.3(2023·湖北襄阳·模拟预测)如图,已知有公共焦点P 1(-c ,0)、P 2(c ,0)的椭圆C 1和双曲线C 2相交于A 、B 、C 、D 四个点,且满足OA =OB =OC =OD =c ,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若k 1⋅k 2=2,则椭圆C 1的离心率为.4(22·23高三上·河南洛阳·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,过点F 1的直线l 与双曲线C 的左支交于点A ,与双曲线C 的一条渐近线在第一象限交于点B ,且F 1F 2 =2OB (O 为坐标原点).下列四个结论正确的是()①BF 1 =4c 2-BF 2 2;②若AB =2F 1A ,则双曲线C 的离心率1+102;③BF 1 -BF 2 >2a ;④c -a <AF 1 <2c -a .A.①②B.①③C.①②④D.①③④5(22·23高三上·河北石家庄·期中)椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 1的直线交C 于A ,B 两点,若3OF 1 =OA +2OB ,AB =BF 2,其中O 为坐标原点,则椭圆的离心率为题型5二级结论之焦点弦定比分点1.点F 是椭圆的焦点,过F 的弦AB 与椭圆焦点所在轴的夹角为θ,θϵ0,π2,k 为直线AB 的斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1注:λ=AF BF 或者λ=BF AF ,而不是AF AB 或者BFAB点F 是双曲线焦点,2.过F 弦AB 与双曲线焦点所在轴夹角为θ,θϵ0,π2,k 为直线AB 斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1 1(23·24高三上·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2且倾斜角为60°的直线l 与C 交于A ,B 两点.若△AF 1F 2的面积是△BF 1F 2面积的2倍,则C 的离心率为.1(2022上·辽宁鞍山·高三鞍山一中校考期中)已知椭圆C :x 2a 2+y 2b2=1的左焦点为F ,过F 斜率为3的直线l 与椭圆C 相交于A 、B 两点,若AF BF =32,则椭圆C 的离心率e =.2(2022·全国·高三专题练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F ,过F 且斜率为3的直线交C 于A 、B 两点,若AF =4FB,则C 的离心率为()A.58B.65C.75D.953(2023·浙江温州·乐清市知临中学校考二模)已知椭圆x 2a 2+y 2b2=1的右焦点为F 2,过右焦点作倾斜角为π3的直线交椭圆于G ,H 两点,且GF 2 =2F 2H ,则椭圆的离心率为()A.12B.22C.23D.324(2023·贵州·统考模拟预测)椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为A ,F 是C 的一个焦点,点B 在C 上,若3AF +5BF =0,则C 的离心率为()A.12B.35C.22D.32题型6二级结论之焦点已知底角1. 已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =c a =sin (α+β)sin α+sin β2. 已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0)两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则e =ca =sin α+sin β|sin α-sin β|,1(2008·全国·高考真题)设△ABC 是等腰三角形,∠ABC =120°,则以A ,B 为焦点,且过点C 的双曲线的离心率为()A.1+22 B.1+32C.1+2D.1+31(2022秋·山东青岛·高二山东省青岛第五十八中学校考期中)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于()A.3-1B.2-1C.32D.222(2020秋·贵州贵阳·高二统考期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c .若直线y =33x +c 与椭圆的一个交点M 满足∠MF 2F 1=2∠MF 1F 2,则该椭圆的离心率等于()A.3-5B.5-3C.3+1D.3-13(2023·全国·高二专题练习)已知椭圆E 的两个焦点分别为F 1,F 2,点Р为椭圆上一点,且tan ∠PF 1F 2=23,tan ∠PF 2F 1=2,则椭圆E 的离心率为 .4(2023秋·江西吉安·高三吉安一中校考开学考试)点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1,F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为.5(2023秋·湖南衡阳·高三衡阳市八中校考阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点A 是双曲线C 的右顶点,点P 在过点A 且斜率为334的直线上,△PF 1F 2为等腰三角形,∠PF 2F 1=120°,则双曲线的离心率为.题型7焦点三角形已知顶角型可以通过焦点三角形的特征进行解决1(20·21高二上·吉林白城·阶段练习)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,椭圆的离心率为e 1,双曲线的离心率e 2,则1e 21+3e 22=.1(2021·重庆·校联考三模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左右焦点分别为F 1,F 2,过F 1的直线交双曲线C 的左支于P ,Q 两点,若PF 2 2=PF 2 ⋅QF 2,且△PQF 2的周长为12a ,则双曲线C 的离心率为() A.102B.3C.5D.222(2021·山东烟台·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若F 2A ⋅F 2B =0,且|F 2A |=|F 2B|,则C 的离心率为()A.2B.3C.6D.73(2021·浙江·模拟预测)已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,直线y =kx 与E 交于A ,B 两点,且∠F 1AF 2=60°,四边形F 1AF 2B 的周长C 与面积S 满足163S =C 2,则E 的离心率为()A.62B.52C.32D.34(2023·上海崇明·一模)已知椭圆Γ1与双曲线Γ2的离心率互为倒数,且它们有共同的焦点F 1、F 2,P是Γ1与Γ2在第一象限的交点,当∠F 1PF 2=π6时,双曲线Γ2的离心率等于 .5(2022上·江苏南京·高三南京师大附中校考期中)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点,过点F 2且斜率为1的直线l 与双曲线C 的右支交于P ,Q 两点,若△F 1PQ 是等腰三角形,则双曲线C 的离心率为.题型8焦点三角形双余弦定理1(22·23高二下·河南安阳·开学考试)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,过F 1的直线与椭圆C 交于M ,N 两点,MF 2 -MF 1 =a ,MF 1 +NF 1 =NF 2 ,则椭圆C 的离心率为()A.25B.105C.155D.641(22·23上·河南·模拟预测)双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,过F 2的直线与C 交于A ,B 两点,且AF 2 =2F 2B,∠ABF 1=60°,则双曲线C 的离心率为()A.73B.2C.53D.432(2023·浙江·一模)已知双曲线C :x 2a 2-y 2b2=1的左右焦点分别为F 1,F 2,O 为坐标原点,A ,B 为C 上位于x 轴上方的两点,且AF 1⎳BF 2,∠AF 1F 2=60°.记AF 2,BF 1交点为P ,过点P 作PQ ⎳AF 1,交x 轴于点Q .若OQ =2PQ ,则双曲线C 的离心率是.3(23·24高三上·江苏淮安·开学考试)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,直线AF 1与椭圆C 交于另一点B ,若∠AF 2B =120°,则椭圆C 的离心率为.4(22·23高三下·山东菏泽·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左右焦点分别为F 1,F 2,点A 在C 上,点B 在y 轴上,F 1A ⋅F 1B =0,BF 2 =35BA,则C 的离心率为.5(2023·湖南株洲·一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点为F 1,F 2,过F 1的直线交椭圆C 于P ,Q 两点,若PF 1 =43F 1Q ,且PF 2 =F 1F 2,则椭圆C 的离心率为.题型9利用图形求离心率1(2023·安徽安庆·二模)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线C 的右支相交于点P ,过点O ,F 2作ON ⊥PF 1,F 2M ⊥PF 1,垂足分别为N ,M ,且M 为线段PN 的中点,ON =a ,则双曲线C 的离心率为()A.2B.5+12C.3+12D.1321(22·23·包头·二模)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1-c ,0 ,F 2c ,0 ,以C 的虚轴为直径的圆记为D ,过F 1作D 的切线与C 的渐近线y =-b a x 交于点H ,若△F 1HO 的面积为24ac ,则C 的离心率为.2(2023秋·江西宜春·高三江西省宜丰中学校考阶段练习)双曲线C :x 2a 2-y 2b2=1a ,b >0 的左焦点为F ,直线FD 与双曲线C 的右支交于点D ,A ,B 为线段FD 的两个三等分点,且OA =OB =22a (O为坐标原点),则双曲线C 的离心率为.3(2023·湖南邵阳·邵阳市第二中学校考模拟预测)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,A 是C 的上顶点,点P 在过A 且斜率为23的直线上,△PF 1F 2为等腰三角形,∠PF 1F 2=120°,则C 的离心率为()A.1010B.714C.39D.144(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知椭圆T :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,上顶点为B ,点P 是椭圆上位于第一象限内的点,且△ABO ∼△F 1PF 2,O 为坐标原点,则椭圆的离心率为.题型10利用椭圆双曲线的对称性求离心率1(22·23高二下·湖南·期末)如图,已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1的左、右焦点,P ,Q 为双曲线C 上两点,满足F 1P ∥F 2Q ,且F 2Q =F 2P =3F 1P ,则双曲线C 的离心率为()A.105B.52C.153D.1021(2023·河南商丘·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M ,N 是C 的一条渐近线上的两点,且MN =2MO(O 为坐标原点),MN =F 1F 2 .若P 为C 的左顶点,且∠MPN =135°,则双曲线C 的离心率为()A.3B.2C.5D.72(2023·福建宁德·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点是F ,直线y =kx 交椭圆于A ,B 两点﹐直线AF 与椭圆的另一个交点为C ,若OA OF=AF2CF =1,则椭圆的离心率为.3(23·24高三上·山西大同·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点P (3c ,0)作直线l 交椭圆C 于M ,N 两点,若PM =2NM ,F 2M =4F 2N则椭圆C 的离心率为4(2022·全国·校联考模拟预测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别是F 1,F 2,过F 2的直线l 交双曲线C 于P ,Q 两点且使得PF 2 =λF 2Q 0<λ<1 .A 为左支上一点且满足F 1A +F 2P=0 ,F 1F 2 =23AF 2 +13AQ ,△AF 2P 的面积为b 2,则双曲线C 的离心率为()A.33B.2C.102D.35(2021下·山西·高三校联考阶段练习)如图,O 是坐标原点,P 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且|QF |=2|FR |,则E 的离心率为()A.174B.173C.214D.213题型11点差法1.根与系数关系法:联立直线方程和椭圆(或双曲线)方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2.点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆(或双曲线)方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点M (x 0,y 0)是线段AB 的中点,x 21a 2+y 21b 2=1,=1\*GB 3\*MERGEFORMAT ①x 22a 2+y 22b 2=1,=2\*GB 3\*MERGEFORMAT ② 由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,(x 1-x 2≠0,x 1+x 2≠0)1(22·23·吉安·一模)椭圆E :x 2a 2+y 2b2=1a >b >0 的内接四边形ABCD 的对角线AC ,BD 交于点P 1,1 ,满足AP =2PC ,BP =2PD ,若直线AB 的斜率为-14,则椭圆的离心率等于()A.14B.32C.12D.131(2023·湖北·模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y 轴于点D .已知AB =2BD ,则e =.2(2022下·云南昭通·高二校联考期末)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)斜率为-18的直线与E 的左右两支分别交于A ,B 两点,P 点的坐标为(-1,2),直线AP 交E 于另一点C ,直线BP 交E 于另一点D ,如图1.若直线CD 的斜率为-18,则E 的离心率为()A.2B.72C.62D.523(22·23·河北·模拟预测)已知斜率为-2的直线l 1与双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右两支分别交于点A ,B ,l 2⎳l 1,直线l 2与E 的左、右两支分别交于点D ,C ,AC 交BD 于点P ,若点P 恒在直线l :y =-3x 上,则E 的离心率为.4(2023·云南·统考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (c ,0)(b >c )和上顶点B ,若斜率为65的直线l 交椭圆C 于P ,Q 两点,且满足FB +FP +FQ =0 ,则椭圆的离心率为.5(2020上·重庆沙坪坝·高三重庆八中校考阶段练习)如图,过原点O 的直线AB 交椭圆C :x 2a 2+y 2b2=1(a >b >0)于A ,B 两点,过点A 分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若AM =34AP,则椭圆C 的离心率是.题型12二级结论之中点弦问题1.椭圆或者双曲线,已知中点时,当椭圆或双曲线的焦点在x 轴,K AB ∙K OM =e 2-12.P 为椭圆上一点,e 为离心率,①A 1,A 2为两个顶点,则k PA 1⋅k PA 2=e 2-1;②A 1,A 2为关于原点对称的两点,则k PA 1⋅k PA 2=e 2-1;以上结论也适用于双曲线.1(22·23上·徐州·期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,经过原点O 的直线交C 于A ,B 两点.P 是C 上一点(异于点A ,B ),直线BP 交x 轴于点D .若直线AP ,BP 的斜率之积为49,且∠BDO =∠BOD ,则椭圆C 的离心率为.1(22·23下·安徽·一模)已知直线l 与椭圆E :x 2a 2+y 2b2=1(a >b >0)交于M ,N 两点,线段MN 中点P 在直线x =-1上,且线段MN 的垂直平分线交x 轴于点Q -34,0 ,则椭圆E 的离心率是 .2(2023·贵州·模拟预测)设О为坐标原点,A 为椭圆C :x 2a 2+y 2b2=1a >b >0 上一个动点,过点A 作椭圆C 内部的圆E :x 2-2mx +y 2=0m >0 的一条切线,切点为D ,与椭圆C 的另一个交点为B ,D 为AB 的中点,若OD 的斜率与DE 的斜率之积为2,则C 的离心率为.3(2021·全国·模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为4,上顶点为B ,O 为坐标原点,点D 为OB 的中点,双曲线E :x 2m 2-y 2n2=1(m >0,n >0)的左、右焦点分别与椭圆C 的左、右顶点A 1,A 2重合,点P 是双曲线E 与椭圆C 在第一象限的交点,且A 1,P ,D 三点共线,直线PA 2的斜率k PA 2=-43,则双曲线E 的离心率为()A.355B.32C.810-105D.5+41094(22·23下·南通·阶段练习)已知两点A ,M 在双曲C :x 2a 2-y 2b2=1(a >0,b >0)的右支上,点A 与点B 关于原点对称,BM 交y 轴于点N ,若AB ⊥AM ,且ON 2+8OA ⋅ON=0,则双曲线C 的离心率为()A.5B.6C.7D.22题型13角平分线相关1.角平分线“拆”面积:S △ABC =S △ACD +S △ABD2.角平分线定理性质:AB BD =ACCD1(22·23下·山西·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 是双曲线E 上一点,PF 2⊥F 1F 2,∠F 1PF 2的平分线与x 轴交于点Q ,S △PF 1Q S △PF 2Q=53,则双曲线E 的离心率为()A.2B.2C.52D.31(22·23下·湖北·模拟预测)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB =3F 2A,BF 2平分∠F 1BC ,则双曲线Γ的离心率为()A.7B.5C.3D.22(22·23高三·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为A ,B ,右焦点为F ,P 为椭圆上一点,直线AP 与直线x =a 交于点M ,∠PFB 的角平分线与直线x =a 交于点N ,若PF ⊥AB ,△MAB 的面积是△NFB 面积的6倍,则椭圆C 的离心率是.3(2023·山东烟台·校考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点为F 1-c ,0 ,F 2c ,0 ,点P 是C 与圆x 2+y 2=c 2的交点,∠PF 1F 2的平分线交PF 2于Q ,若PQ =12QF 2 ,则椭圆C 的离心率为()A.33B.2-1C.22D.3-14(2023春·江西赣州·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2.椭圆C 在第一象限存在点M ,使得MF 1 =F 1F 2 ,直线F 1M 与y 轴交于点A ,且F 2A 是∠MF 2F 1的角平分线,则椭圆C 的离心率为()A.6-12B.5-12C.12D.3-12题型14圆锥曲线与圆相关1(2023·福建漳州·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM 与C 的焦距的比值为313,则C 的离心率为()A.3-12B.12C.3+14D.7-121(23·24高三上·福建福州·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM与C 的焦距的比值为313,则C 的离心率为()A.3+12B.32C.5+12D.7+122(2023·全国·二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点分别是A 1,A 2,圆x 2+y 2=a 2与C 的渐近线在第一象限的交点为M ,直线A 1M 交C 的右支于点P .设△MPA 2的内切圆圆心为I ,A 2I ⊥x 轴,则C 的离心率为()A.2B.2C.3D.53(22·23·马鞍山·三模)已知F 1 , F 2分别是双曲线C :x 2a 2-y 2b2=1 (a >0 , b >0)的左,右焦点,点M 在双曲线上,MF 1⊥MF 2,圆O :x 2+y 2=32(a 2+b 2),直线MF 1与圆O 相交于A ,B 两点,直线MF 2与圆O 相交于P ,Q 两点,若四边形APBQ 的面积为27b 2,则C 的离心率为()A.62B.324C.32D.984(22·23上·全国·阶段练习)已知圆C 1:x 2+y -2332=163过双曲线C 2:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点F 1,F 2,曲线C 1与曲线C 2在第一象限的交点为M ,若MF 1 ⋅MF 2 =12,则双曲线C 2的离心率为()A.2B.3C.2D.3题型15内切圆相关1(22·23高三下·江西·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点P 在C 上且位于第一象限,圆O 1与线段F 1P 的延长线,线段PF 2以及x 轴均相切,△PF 1F 2的内切圆为圆O 2.若圆O 1与圆O 2外切,且圆O 1与圆O 2的面积之比为9,则C 的离心率为()A.12B.35C.22D.321(2023·山东潍坊·模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.742(22·23下·宁波·阶段练习)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上不与顶点重合的任意一点,I 为△PF 1F 2的内心,记直线OP ,OI 的斜率分别为k 1,k 2,若k 1=32k 2,则椭圆E 的离心率为() A.13B.12C.33D.223(23·24高三上·云南昆明·期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1-c ,0 ,F 2c ,0(c >0),过F 1作倾斜角为π4的直线交椭圆于A ,B 两点,若△ABF 2的内切圆半径r =26c ,则该椭圆的离心率为.4(2023·山西·二模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点M x 0,y 0 x 0>c 是C 上一点,点A 是直线MF 2与y 轴的交点,△AMF 1的内切圆与MF 1相切于点N ,若|MN |=2F 1F 2 ,则椭圆C 的离心率e =.5(22·23·红河·一模)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若E 上存在点P ,满足OP =12F 1F 2 ,(O 为坐标原点),且△PF 1F 2的内切圆的半径等于a ,则E 的离心率为.题型16与立体几何相关1(2023·安徽安庆·一模).如图是数学家Ger min al Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O 1,球O 2的半径分别为4和1,球心距O 1O 2 =6,截面分别与球O 1,球O 2切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于()A.339B.63C.22D.161(22·23高三下·河北衡水·阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 2作直线AB ⊥F 1F 2交C 于A ,B 两点. 现将C 所在平面沿直线F 1F 2折成平面角为锐角α的二面角,如图,翻折后A ,B 两点的对应点分别为A ,B ,且∠A F 1B =β⋅若1-cos α1-cos β=2516,则C 的离心率为()A.3B.22C.3D.322(2023·云南大理·模拟预测)某同学所在的课外兴趣小组计划用纸板制作一个简易潜望镜模型(图甲),该模型由两个相同的部件拼接粘连制成,每个部件由长方形纸板NCEM (图乙)沿虚线裁剪后卷一周形成,其中长方形OCEF 卷后为圆柱O 1O 2的侧面.为准确画出裁剪曲线,建立如图所示的以O 为坐标原点的平面直角坐标系,设P x ,y 为裁剪曲线上的点,作PH ⊥x 轴,垂足为H .图乙中线段OH 卷后形成的圆弧OH (图甲),通过同学们的计算发现y 与x 之间满足关系式y =3-3cos x3(0≤x <6π),现在另外一个纸板上画出曲线y =1-cos x2(0≤x <4π),如图丙所示,把沿虚线裁剪后的长方形纸板卷一周,求该裁剪曲线围成的椭圆的离心率为()A.255B.55C.12D.533(2022·辽宁沈阳·一模)如图,在底面半径为1,高为6的圆柱内放置两个球,使得两个球与圆柱侧面相切,且分别与圆柱的上下底面相切.一个与两球均相切的平面斜截圆柱侧面,得到的截线是一个椭圆.则该椭圆的离心率为.4(22·23下·辽宁·阶段练习)如图所示圆锥,C 为母线SB 的中点,点O 为底面圆心,AB 为底面圆的直径,且SC ,OB ,SB 的长度成等比数列,一个平面过A ,C ,与圆锥面相交的曲线为椭圆,若该椭圆的短轴与圆锥底面平行,则该椭圆的离心率为.5(多选)(2023·江苏南通·模拟预测)如图,已知圆锥PO 的轴PO 与母线所成的角为α,过A 1的平面与圆锥的轴所成的角为ββ>α ,该平面截这个圆锥所得的截面为椭圆,椭圆的长轴为A 1A 2,短轴为B 1B 2,长半轴长为a ,短半轴长为b ,椭圆的中心为N ,再以B 1B 2为弦且垂直于PO 的圆截面,记该圆与直线PA 1交于C 1,与直线PA 2交于C 2,则下列说法正确的是()A.当β<α时,平面截这个圆锥所得的截面也为椭圆B.|NC 1|⋅|NC 2|=a 2sin β+α sin β-αcos 2αC.平面截这个圆锥所得椭圆的离心率e =cos βcos αD.平面截这个圆锥所得椭圆的离心率e =sin αsin β题型17二级结论之切线方程圆锥曲线切线方程的常用结论【结论1】(1)经过圆x 2+y 2=r 2上一点M x 0,y 0 的切线方程为x 0x +y 0y =r 2.(2)当M x 0,y 0 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为x 0x +y 0y =r 2.【结论2】(1)若圆心不在原点,圆的方程:x -a 2+y -b 2=r 2,若M x 0,y 0 为圆上一点,则过M x 0,y 0 切线方程:x 0-a x -a +y 0-b y -b =r2(2)若M x 0,y 0 在圆外,过M 点切线有两条:切点弦所在直线方程:x 0-a x -a +y 0-b y -b =r2方便记忆,求切线和切点弦的方法,统一称为“代一留一”.【结论3】(1)过圆x 2a 2+y 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为x 0x a 2+y 0y b2=1;(2)当M x 0,y 0 在椭圆x 2a 2+y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为x 0x a2+y 0yb 2=1.(3)设过椭圆x 2a 2+y 2b2=1a >b >0 外一点M x 0 , y 0 引两条切线,切点分别为A x 1,y 1 ,B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2+y 1yb 2=1,x 2x a 2+y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2+y 1y 0b 2=1,x 2x 0a 2+y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2+y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0xa 2+y 0yb 2=1.同理可得焦点在y 轴上的情形.【结论4】(1)过圆y 2a 2+x 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为y 0y a 2+x 0x b2=1;(2)当M x 0,y 0 在椭圆y 2a 2+x 2b2=1a >b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为y 0y a 2+x 0xb2=1.【结论5】(1)过双曲线x 2a 2-y 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为x 0x a 2-y 0y b2=1;(2)当M x 0,y 0 在双曲线x 2a 2-y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:x 0x a2-y 0yb2=1.(3)设过双曲线x 2a 2-y 2b2=1a >0,b >0 外一点M x 0,y 0 引两条切线,切点分别为A x 1,y 1 、B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2-y 1yb 2=1 , x 2x a 2-y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2-y 1y 0b 2=1 , x 2x 0a 2-y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2-y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0x a 2-y 0y b 2=1.同理可得焦点在y 轴上的情形.【结论6】(1)过双曲线y 2a 2-x 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为y 0y a 2-x 0x b2=1;(2)当M x 0,y 0 在双曲线y 2a 2-x 2b2=1a >0,b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:y 0y a 2-x 0xb2=1.1(2023·重庆·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A x 1,y 1 为双曲线C 在第一象限的右支上一点,以A 为切点作双曲线C 的切线交x 轴于点B ,若cos ∠F 1AF 2=12,且F 1B =2BF 2 ,则双曲线C 的离心率为()A.22B.5C.2D.31(22·23高三上·全国·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 上的一点M (异于顶点),过点M 作双曲线C 的一条切线l .若双曲线C 的离心率e =233,O 为坐标原点,则直线OM 与l 的斜率之积为()A.13B.23C.32D.32(2022·全国·统考二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 与椭圆x 24+y 23=1.过椭圆上一点P -1,32作椭圆的切线l ,l 与x 轴交于M 点,l 与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ的中点,则双曲线C 的离心率为()。
高考数学圆锥曲线专题练习及答案解析
![高考数学圆锥曲线专题练习及答案解析](https://img.taocdn.com/s3/m/95f8c3e316fc700aba68fca1.png)
X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I
高考重难点突破圆锥曲线50道题(4)含详细解析
![高考重难点突破圆锥曲线50道题(4)含详细解析](https://img.taocdn.com/s3/m/cb58e5bda0116c175f0e48b7.png)
高考重难点突破圆锥曲线50道题(4)含详细解析1.平面直角坐标系xOy 中,已知抛物线22(0)y px p =>及点(2,0)M ,动直线l 过点M 交抛物线于A ,B 两点,当l 垂直于x 轴时,4AB =. (1)求p 的值;(2)若l 与x 轴不垂直,设线段AB 中点为C ,直线1l 经过点C 且垂直于y 轴,直线2l 经过点M 且垂直于直线l ,记1l ,2l 相交于点P ,求证:点P 在定直线上.2.已知抛物线2:2(0)C y px p =>的焦点与双曲线2213x y -=的右焦点重合.(1)求抛物线C 的方程及焦点到准线的距离; (2)若直线112y x =+与C 交于1(A x ,1)y ,2(B x ,2)y 两点,求12y y 的值. 3.已知抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,点A C ∈,A 在l 上的射影为B ,且ABF ∆是边长为4的正三角形. (1)求p ;(2)过点F 作两条相互垂直的直线1l ,2l ,1l 与C 交于P ,Q 两点,2l 与C 交于M ,N 两点,设POQ ∆的面积为1S ,MON ∆的面积为2(S O 为坐标原点),求2212S S +的最小值.4.已知抛物线22(0)y px p =>上一点0(M x ,到焦点F 的距离03||2x MF =,倾斜角为α的直线经过焦点F ,且与抛物线交于两点A 、B . (1)求抛物线的标准方程及准线方程;(2)若α为锐角,作线段AB 的中垂线m 交x 轴于点P .证明:2||sin 2FP α=5.已知F 是椭圆22184x y +=的右焦点,过F 的直线!与椭圆相交于1(A x ,22)(x B x ,2)y 两点. (1)若1285x x =,求弦AB 的长;(2)O 为坐标原点,AOB θ∠=,满足tan OA OB θ=l 的方程. 6.已知椭圆222:22(0)C x y b b +=>. (1)求椭圆C 的离心率e ;(2)若1b =,斜率为1的直线与椭圆交于A 、B 两点,且||3AB =,求A O B ∆的面积.7.已知中心在原点,一焦点为0)的双曲线被点线47y x =-被得弦中点的横坐标为2,求此双曲线的方程8.已知抛物线2:8C y x =,焦点为F ,准线为l ,线段OF 的中点为G .点P 是C 上在x 轴上方的一点,且点P 到l 的距离等于它到原点O 的距离 (1)求P 点的坐标;(2)过点(1,0)Q -作一条斜率为正数的直线L 与抛物线C 从左向右依次交于A ,B 两点,求证:2AGB AGP ∠=∠.9.已知椭圆2222:1(0)x y C a b a b+=>>,1(,0)F c -,2(,0)F c 分别为椭圆的左、右焦点,点4(,)3c 在椭圆上.(1)求C 的方程;(2)若直线(1)y k x =-与椭圆C 相交于A ,B 两点,试问:在x 轴上是否在点D ,当k 变化时,总有ODA ODB ∠=∠?若存在求出点D 的坐标,若不存在,请说明理由.10.已知以椭圆2222:(0)x y E l a b a b+=>>的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆E 的方程;(2)若(,)x y 是椭圆E 上的动点,求2x y +的取值范围;(3)直线:(0)l y kx m km =+≠与椭圆E 交于异于椭圆顶点的A ,B 两点,O 为坐标原点,直线AO 与椭圆E 的另一个交点为C 点,直线l 和直线AO 的斜率之积为1,直线BC 与x 轴交于点M ,若直线BC ,AM 的斜率分别为1k ,2k ,试判断122k k +是否为定值,若是,求出该定值;若不是,说明理由.11.已知椭圆C 的对称中心为原点O ,焦点在x 轴上,焦距为(2,1)在该椭圆上. (1)求椭C 的方程;(2)直线2x =与椭圆交于P ,Q 两点,P 点位于第一象限,A ,B 是椭圆上位于直线2x =两侧的动点.当点A ,B 运动时,满足APQ BPQ ∠=∠,问直线AB 的斜率是否为定值,请说明理由.12.已知抛物线2:2(0)C y px p =>与圆222:()2pM x y R -+=的一个公共点为(2,2)A .(1)求圆M 的方程;(2)已知过点A 的直线l 与抛物线C 交于另一点B ,若抛物线C 在点A 处的切线与直线OB 垂直,求直线l 的方程.13.已知椭圆2222:1(0)x y C a b a b +=>>,且过点1)2-.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线:(0,0)l y kx m k m =+≠≠与椭圆C 相交于A 、B 两点,且直线OA ,AB ,OB 的斜率依次成等比数列,求直线l 的斜率.14.已知椭圆2222:1(0)x y a b a bΓ+=>>,Γ的四个顶点围成的四边形面积为(1)求Γ的方程;(2)过Γ的右焦点F ,且斜率不为0的直线l 与P 交于A ,B 两点线段AB 的垂直平分线经过点(0,M ,求MAB ∆的面积.15.已知椭圆2222:1(0)x y E a b a b+=>>(0,1)P 作斜率为k 的直线l 交椭圆E 于A ,B 两点,当直线垂直于y 轴时,||AB =. (Ⅰ)求椭圆E 的方程(Ⅱ)当k 变化时,在x 轴上是否存在点(,0)M m ,使得AMB ∆是以AB 为底的等腰三角形?若存在,求出m 的取值范围;若不存在,说明理由.16.已知抛物线22(0)y px p =>上点(2,)P t 到焦点的距离是3. (Ⅰ)求抛物线的标准方程及P 点坐标;(Ⅱ)设抛物线准线与x 轴交于点Q ,过抛物线焦点F 的直线l 与抛物线交于A ,B 两点,证明:直线QA ,QB 关于x 轴对称.17.椭圆:22221(0)x y a b a b +=>>离心率为12,P是椭圆上一点.(1)求椭圆方程;(2)1F ,2F 是椭圆左右焦点,过焦点1F 的弦AB 中点为1(2E -,)t ,求线段2EF 长.18.设椭圆2222:1x y C a b+=的左、右顶点分别为(,0)A a -,(,0)B a ,焦点为(,0)F c .(Ⅰ)若有一正方形的四个顶点都在椭圆C 上,且焦点在正方形内部,求椭圆离心率e 的取值范围;(Ⅱ)若1c =,过F 作直线l 与椭圆C 交于P ,Q 两点,记直线AP ,BQ 的斜率分别为1k ,2k .①若l 与x 轴重合,且||||3FP FQ =,求椭圆C 的方程; ②若直线l 不平行于x 轴,证明:12k k 为定值,并求此定值(用a 表示). 19.已知1F ,2F 分别为椭圆2222:1(0x y C a b a b +=>>的左焦点、右焦点,椭圆上的点与1F 的最大距离等于4,离心率等于13,过左焦点F 的直线l 交椭圆于M ,N 两点,圆E 内切于三角形2F MN ;(1)求椭圆的标准方程 (2)求圆E 半径的最大值20.已知椭圆22:1(1)x E y m m+=>,过点(1,0)P 的直线与椭圆E 交于A ,B不同的两点,直线0AA 垂直于直线4x =,垂足为0A . (Ⅰ)求m 的值;(Ⅱ)求证:直线0A B 恒过定点.21.椭圆22221(0)x y a b a b+=>>,左、右焦点分别为1F 、2F ,B 是椭圆上的一点,且三角形12BF F的面积最大值为(1)求椭圆的方程及其长轴长;(2)过右焦点2F 且不与x 轴重合的直线交椭圆于P 、Q 两点,记PQ 的中点为N ,直线ON 交直线3x =于M ,求证:以QM 为直径的圆一定经过右焦点2F .22.已知椭圆2212:1(0)8x y C a a +=>与抛物线22:2(0)C y px p =>有公共的焦点F ,且公共弦长为 (1)求a ,p 的值(2)过F 的直线交1C 于A ,B 两点,交2C 于M ,N 两点,且AM BN =,求||AB 23.已知抛物线2:2(0)E y px p =>上任意一点P 到直线2x =-的距离比到焦点F 距离大1. (1)求抛物线E 方程;(2)若A ,B ,C 是抛物线上不同的三点,点(M m ,11)()4m >是AB 中点,且焦点F 是ABC ∆重心,求证:||||2||FA FB FC +=.24.已知椭圆2222:1(0)x y E a b a b +=>>上的点到椭圆一个焦点的距离的最大值是最小值的3倍,且点3(1,)2P 在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点(1,1)M 任作一条直线l ,l 与椭圆E 交于不同于P 点的A 、B 两点,l 与直线:34120m x y +-=交于C 点,记直线PA 、PB 、PC 的斜率分别为1k 、2k 、3k .试探究12k k +与3k 的关系,并证明你的结论.25.已知抛物线24x y =,过点(0,2)M 的动直线1l 交抛物线予A ,B 两点,点A 关于y 轴的对称点为C ,连接CB ,直线CB 与y 轴交于点N . (1)求证:N 为定点;(2)过点N 作y 轴的垂线2l ,是否存在直线1l ,使得在直线3l 上在在点P 满足PAB ∆为等边三角形,若存在,求出直线方程1l ;若不存在,说明理由.26.已知椭圆2222:1(0)x y C a b a b+=>>的实轴长为4,焦距为(1)求椭圆C 的标准方程;(2)设直线经过点(2,1)P -且与椭圆C 交于不同的两点M ,N (异于椭圆的左顶点)设点Q 是x 轴上的一个动点,直线QM ,QN 的斜率分别为1k ,2k ,试问:是否存在点Q ,使得1211k k +为定值?若存在,求出点Q 的坐标及定值;若不存在,请说明理由, 27.已知椭圆2222:1(0)x y E a b a b +=>>的上顶点为P ,右顶点为Q ,直线PQ 与圆2245x y +=相切于点2(5M ,4)5.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)设椭圆E 的左、右焦点分别为1F 、2F ,过1F 且斜率存在的直线L 与椭E 相交于A 点,且22||||2||AF BF AB +=,求直线L 的方程28.如图,已知椭圆2222:1(0)x y C a b a b+=>>,一条准线方程为2x =.过点(0,2)T 且不与x 轴垂直的直线l 与椭圆C 相交于A ,B 两点线段AB 的垂直平分线分别交AB 和y 轴于点M ,N 两点.(1)求椭圆C 的方程;(2)求证:线段MN 的中点在定直线上;(3)若ABN ∆为等腰直角三角形,求直线l 的方程.29.已如椭圆2222:1(0)x y C a b a b+=>>,点在椭圆C 上.(1)求椭圆C 的方程;(2)动直线:(0)l y t t =+≠交椭圆C 于A 、B 两点,交y 轴于点T ,点T 关于坐标原点O 的对称点为D ,以D 为圆心,||DO 为半径的圆记作D ,过线段AB 的中点M 作D 的两条切线,切点分别为P 、Q ,证明:cos PMQ ∠为定值.30.已知圆C 经过椭圆221164x y +=的右顶点2A 、下顶点1B 、上顶点2B 三点.(Ⅰ)求圆C 的标准方程;(Ⅱ)直线l 经过点(1,1)与10x y ++=垂直,求圆C 被直线l 截得的弦长.31.已知抛物线2:4C x y =,焦点为F ,设A 为C 上的一动点,以A 为切点作C 的切线,与y 轴交于点B ,以FA ,FB 为邻边作平行四边形FANB .(1)证明:点N 在一条定直线上;(2)设直线NF 与C 交于P ,Q 两点.若直线NF的斜率k ∈,求OPN OQN S S ∆∆的最小值.32.如图,在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>过点,A ,B 分别为椭圆C 的右、下顶点,且2OA OB =.(1)求椭圆C 的方程; (2)设点P 在椭圆C 内,满足直线PA ,PB 的斜率乘积为14-,且直线PA ,PB 分别交椭圆C 于点M ,N .①若M ,N 关于y 轴对称,求直线PA 的斜率; ②若PMN ∆和PAB ∆的面积分别为1S ,2S ,求12S S .33.已知A 、B 是双曲线22122:1(0,0)x y C a b a b-=>>的两个顶点,点P 是双曲线上异于A 、B 的一点,O 为坐标原点,射线OP 交椭圆22222:1x y C a b+=于点Q ,设直线PA 、PB 、QA 、QB 的斜率分别为1k 、2k 、3k 、4k .(1)若双曲线1C 的渐近线方程是12y x =±,且过点1)2,求1C 的方程;(2)在(1)的条件下,如果12158k k +=,求ABQ ∆的面积; (3)试问:1234k k k k +++是否为定值?如果是,请求出此定值;如果不是,请说明理由. 34.已知抛物线2:(0)y ax a Γ=>的焦点为F ,若过F 且倾斜角为4π的直线交Γ于M ,N 两点满足||4MN =. (1)求抛物线Γ的方程;(2)若P 为Γ上动点,BC 在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.35.双曲线22221(,0)x y a b a b-=>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线交于A .B两点.(1)若l 的倾斜角为2π,a =1F AB 是等腰直角三角形,求双曲线的标准方程. (2)a b l =.若l 的斜率存在,且12()0F A F B AB +=,求l 的斜率.(3)证明:点P 到已知双曲线的两条渐近线的距离的乘积为定值2222a b a b +是该点在已知双曲线上的必要非充分条件.36.已知曲线22:143x y C +=的左右顶点是A 、B ,点M 是曲线C 上异于A 、B 两点的动点且M 关于x 轴的对称点是N .(1)若直线AM 、BN 的斜率分别为1k 、2k ,求证:1234k k =. (2)若曲线2:2C y px '=的焦点F 是曲线C 的右焦点,过点F 的直线l 分别交曲线C 和曲线C '于P 、Q 和R 、H ,APQ ∆与ARH ∆面积分别为1S ,2S ,求12S S 的最大值.37.已知椭圆2222:1(0)x y C a b a b+=>>的焦距与短轴长相等,椭圆上一点Q 到两焦点距离之差的最大值为4. (1)求椭圆的标准方程;(2)若点P 为椭圆上异于左右顶点A ,B 的任意一点,过原点O 作AP 的垂线交BP 的延长线于点M ,求M 的轨迹方程.38.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为点A 若△12AF F是面积为 (1)求椭圆C 的标准方程;(2)已知M ,N 是椭圆C 上的两点,且|MN =,求使OMN ∆的面积最大时直线MN 的方程(O 为坐标原点)39.已知椭圆C 的中心在坐标原点,左焦点为1(1,0)F -,点(1,B 在椭圆C 上, (Ⅰ)求椭圆C 的方程;(Ⅱ)设过点2(1,0)F 的斜率为(0)k k ≠的直线l 与椭圆C 交于不同的两点M ,N ,点P 在y 轴上,且||||PM PN =,求点P 纵坐标的取值范围.40.在平面直角坐标系中,椭圆2222:(0x y C l a b a b+=>>,右焦点2F 为(,0)c .(1)若其长半轴长为2,焦距为2,求其标准方程.(2)证明该椭圆上一动点P 到点2F 的距离d 的最大值是a c +.41.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点.(1)求椭圆C 的方程(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M 、N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程;若不存在,说明理由.42.已知椭圆2222:1(0)x y E a b a b+=>>,焦距为2.(1)求椭圆E 的方程;(2)设O 为坐标原点,过左焦点F 的直线l 与椭圆E 交于A ,B 两点,若OAB ∆的面积为23,求直线l 的方程.43.已知斜率为1的直线l 与椭圆2222:1(0)x y C a b a b+=>>交于P ,Q 两点,且线段PQ 的中点为3(1,)4A -,椭圆C 的上顶点为B .(1)求椭圆C 的离心率;(2)设直线:(l y kx m m '=+≠与椭圆C 交于M ,N 两点,若直线BM 与BN 的斜率之和为2,证明:l '过定点.44.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的焦距为,且过点1)2. (1)求椭圆C 的方程;(2)斜率大于0且过椭圆右焦点2F 的直线l 与椭圆C 交于M 、N 两点,若223MF F N =,求直线l 的方程.45.已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(Ⅰ)求C 的方程,并说明C 是什么曲线;(Ⅱ)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G ,P 点关于x 轴的对称点为P '. ①证明:PQG ∆是直角三角形;②求直线PQ 与直线P G '的斜率的积的最小值,并写出此时直线PG 的方程.46.已知椭圆2222:1(0)x y C a b a b+=>>过点,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN =-恒成立?若存在求出点Q 的坐标:若不存在,说明理由.47.已知椭圆2222:1(0)x y E a b a b +=>>经过点P ,1)2,且离心率e =.(1)求椭圆E 的标准方程;(2)过椭圆E 的右焦点F 的直线l 与椭圆E 交于A ,B 两点,当(AOB O ∆为坐标原点)的时,求直线l 的方程.48.已知椭圆2222:1(0)x y C a b a b+=>>的离心率e =且圆222x y +=过椭圆C 的上、下顶点(1)求椭圆C 的方程; (2)若直线l 的斜率为12,且直线l 与椭圆C 相交于P ,Q 两点,点P 关于原点的对称点为E ,点(2,1)A -是椭圆C 上一点,若直线AE 与AQ 的斜率分别为AE k ,AQ k ,证明:0AE AQ k k +=.49.如图,过抛物线2:2(0)C y px p =>的焦点F 的直线与抛物线C 交于A 、B 两点,过AB 中点M 且与AB 垂直的直线与x 轴交于点N . (1)求||||FN AB 的值; (2)若2p =,求NA NB 的取值范围.50.已知抛物线2:2(0)M y px p =>.(1)设R 为抛物线M 上横坐标为1的定点,S 为圆221:()24p N x y -+=的一个动点,若M ,N 无公共点,且||RS 的最小值为65128,求p 的值; (2)已知AC ,BD 分别是抛物线的一条弦,且都不与x 轴垂直,AC 与BD 相交于点(,0)2p,2OA OB p =-,若四边形ABCD 的四条边都存在斜率且0CD k ≠,求证:12AB CD k k =.高考重难点突破圆锥曲线50道题(4)含详细解析参考答案与试题解析1.平面直角坐标系xOy 中,已知抛物线22(0)y px p =>及点(2,0)M ,动直线l 过点M 交抛物线于A ,B 两点,当l 垂直于x 轴时,4AB =. (1)求p 的值;(2)若l 与x 轴不垂直,设线段AB 中点为C ,直线1l 经过点C 且垂直于y 轴,直线2l 经过点M 且垂直于直线l ,记1l ,2l 相交于点P ,求证:点P 在定直线上.【解答】(1)解:当直线l 过点(2,0)M ,且垂直于x 轴时, 由4AB =,知抛物线22(0)y px p =>过点(2,2), 代入抛物线方程,得422p =⨯,解得1p =;(2)证明:由题意设直线l 的方程为:(2)y k x =-,且0k ≠, 点1(A x ,1)y ,2(B x ,2)y ,联立22(2)y x y k x ⎧=⎨=-⎩,消去x ,化简得2240ky y k --=,由根与系数的关系得122y y k+=,124y y =-; 又点C 在直线AB 上,则1212C y y y k+==,所以直线1l 的方程为1y k =;又直线2l 过点M 且与直线l 垂直,则直线2l 的方程为1(2)y x k =--;联立11(2)y k y x k ⎧=⎪⎪⎨⎪=--⎪⎩,解得11x y k =⎧⎪⎨=⎪⎩,所以点1(1,)P k ,所以点P 在定直线1x =上.2.已知抛物线2:2(0)C y px p =>的焦点与双曲线2213x y -=的右焦点重合.(1)求抛物线C 的方程及焦点到准线的距离; (2)若直线112y x =+与C 交于1(A x ,1)y ,2(B x ,2)y 两点,求12y y 的值. 【解答】解:(1)双曲线2213x y -=的右焦点为(2,0),可得22p=,即4p =,可得抛物线的方程为28y x =,焦点到准线的距离为4; (2)直线112y x =+与抛物线28y x =联立,消去x 可得 216160y y -+=,则1216y y =.3.已知抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,点A C ∈,A 在l 上的射影为B ,且ABF ∆是边长为4的正三角形. (1)求p ;(2)过点F 作两条相互垂直的直线1l ,2l ,1l 与C 交于P ,Q 两点,2l 与C 交于M ,N 两点,设POQ ∆的面积为1S ,MON ∆的面积为2(S O 为坐标原点),求2212S S +的最小值. 【解答】解:(1)设准线与y 轴的交点为点H ,连结AF ,AB ,BF , 因为ABF ∆是正三角形,且4BA AF BF ===, 在BHF ∆中,90BHF ∠=︒,30FBH ∠=︒,4BF =, 所以2HF p ==.(2)设1(P x ,1)y ,2(Q x ,2)y ,由(0,1)F ,。
高考数学难点突破_难点25__圆锥曲线综合题
![高考数学难点突破_难点25__圆锥曲线综合题](https://img.taocdn.com/s3/m/8bc1bc7502020740bf1e9b5d.png)
a2
∴ | MN|=2
2
R
2
x0
2
2 x0
2
a
2
x0 =2a( 定值 )
∴弦 MN的长不随圆心 k 的运动而变化 .
(2)
设
M(0,
y1) 、 N(0,
y2) 在圆
k:(
x-
x 0)
2
+(
y-
y0)
2=x 02+a2
中,
令 x=0,得 y2- 2y0y+y02-a2=0
∴ y1y2=y02- a2
∵ | OA| 是 | OM| 与 | ON| 的等差中项 .
∴ || AB| -| CD||=| xB+xC| · 2 =| 2m | · 2 = 2 2m (2 ≤ m≤5)
1 2m
2m
故 f ( m)= 2 2m , m∈[ 2,5 ] . 2m
(2) 由 f ( m)= 2 2m ,可知 f ( m)= 2 2
2m
1 2
m
又 2- 1 ≤ 2- 1 ≤ 2- 1
据已知两点的斜率公式,得 的方位角应是北偏东 30° .
kPA= 3 , 所以直线 PA的倾斜角为 60° , 于是舰 A 发射炮弹
设发射炮弹的仰角是 θ,初速度 v0= 20 3g ,则 2v0 sin
3
g
10 , v0 cos
∴ sin2
10g θ= 2
v0
3 , ∴仰角 θ=30° . 2
●锦囊妙计
.
错解分析:在判断 d 与 R的关系时, x0 的范围是学生容易忽略的 .
技巧与方法:对第 (2) 问,需将目标转化为判断 解: (1) 设圆心 k( x0, y0), 且 y02=2ax0,
高考数学专题十九圆锥曲线综合练习题
![高考数学专题十九圆锥曲线综合练习题](https://img.taocdn.com/s3/m/b86a5e7dec3a87c24128c45a.png)
培优点十九圆锥曲线综合1.直线过定点2xxF轴的离心率为且垂直于,过左焦点例1:已知中心在原点,焦点在轴上的椭圆C2P两点,且,的直线交椭圆于.Q2?2PQ C(1)求的方程;C??22MM作椭是直线处的切线,点(2)若直线是圆上任一点,过点上的点2,28??yx ll ABMAMBAB过定点,,切点分别为,设切线的斜率都存在.求证:直线圆的切线,,C并求出该定点的坐标.22yx??.2)证明见解析,;【答案】(1)(2,11??8422yx??, 1)由已知,设椭圆的方程为【解析】(0?b??1?a C ??,不妨设点,代入椭圆方程得因为,1??22PQ?2?c,P22ba22ab22cc212222,,,所以,又因为,所以8ba??b2?4?e?cb?1??2a22b22yx所以的方程为.1??C 84??,即,(2)依题设,得直线的方程为2x???y?204?x?y?l??????,,,设yxABx,y,Mx,y210120??MA,由切线的斜率存在,设其方程为xxk?y?y?11??xxy?k??y?11???2????22,联立得,0?28y?xkx?4ky?kx?x?2k1??22yx1111?1??48???22??????22?0?8k2y?1?Δ?16kkx?ykx4?,由相切得??1111??2??2222,即,化简得4?8?y?kxk04yk?y?x?8?kx?2111111xyxyx11111MA???k?的方程为因为方程只有一解,所以,所以切线??1xx?yy???,11y21xx?2yy?8xx?2yy?8MB,同理,切线即的222yyx2?8?111x方程为,2211.8y??2yxx???0011AB的方程为,所以直线,所以又因为两切线都经过点yx,M?008y??2yxx?02208y??2yxx,00??4y??xAB的方程可化为,所以直线,又82y4?x?xx?00000??2yx2?x????,,令即,得08y?x8x?2y????00?y?881?y????AB所以直线.恒过定点2,1.面积问题222yxb??FF直线,焦距为、4例2:已知椭圆,的左、右焦点分别为0a?b?1??x?:yl 21122baclFlEAB1?与线段两点,的直线关于直线与椭圆相交于、在椭圆上.斜率为的对称点221PABD相交于点两点.,与椭圆相交于、C1)求椭圆的标准方程;()求四边形面积的取值范围.(2ACBD223232yx??,;.2)【答案】(1)(1????3948?????????EFFEF【解析】(1)由椭圆焦距为4,设,连结,,,设2,0F?2,0F21121bcb222???c??ab,,又,得则,?tan?cos?sin aacFF2csin90?1ac21,??????e???bc??b?|?|EFsin?sin??ca90EF2a?21aa22yx222a?bc?c?b?c?2a?8,所以椭圆方程为解得.,1??84????m+?y?xlyx,D,Cxy方程:、2()设直线,,22211.4?m??xx22?yx?213???1?22,所以,由,得08?x3?4mx?2m??48?28m?2??m?y??x?xx??213?222238????x?y?A6,66,?6Bl,,得:,代入椭圆得由(,1)知直线?AB????133333????44???6m?6,lPAB,得由直线相交于点与线段,??233??????2,28m4?22416m2xx?2??m?+12x2CD?x???8xx2?211221393116321??1kk?l?l,,,知与而+12mAB??S?CD??12ACBD ll291232443232163??????22?m???,06,6?m,+12m??由,得,,所以??????333993??????3232??,?.面积的取值范围四边形ACBD??93??3.参数的值与范围??????20?2px?pC:yF的上,过焦点3例:已知抛物线的焦点在抛物线,点1,2F1,0A C M,两点.交抛物线于直线NCl(1)求抛物线的方程以及的值;AF C22??xFNMF?B(2)记抛物线的准线与的值.轴交于点,,若,求40BN?BM?C2?3??2(),;1【答案】(.)22AF?x?y4????20p??2:Cypx,的焦点【解析】(1)抛物线1,0F p2;,则,抛物线方程为42p?xy4?1??2p??1,2A.点在抛物线上,C2???AF?12??????,设)依题意,(2、,设,y,MxyF1,0Nx,1?xl:my?2211.2?x4?y2x,得联立方程,消去.0my?4?y?4?1my?x??1my?4mx?y?y???1112①,且,所以??1my??4x?yy???2212???????y?y?FNMF?,即,则又,y1?x,?y,??1x2121122??4???y1?????m4y?1???2??????,则,,22?y得,代入①得,消去2?4m???21,0B?yBN?,BM?xx?1,y?121122222????2222y?x?1y?1?BM?|BN?|x?BM?BN?则2121??2222yy??2?x??2?xx?x??????2228?y?y???m4?1myy2112????4222,222111??2222y??2??2my?my?(?my?1)2?(my?1)y21112216m?16m??16m40?84?4m?m?m??18124?2?2?3.当,解得,故40?m?16?40m16?m2.弦长类问题4222xyx??2的顶点,的左右顶点是双曲线4:已知椭圆且椭圆例1?ya?b?0?:?C:?1C 2122ab33CC.的上顶点到双曲线的渐近线的距离为212C(1)求椭圆的方程;1QMCMCQ5?OQ?OQ?,求,两点,与相交于两点,且与(2)若直线,相交于l22111221的取值范围.MM??2.;(2)【答案】(1)212x1??y100,?3??2C3a?b0,)由题意可知:1(【解析】,,又椭圆的上顶点为1.3C,双曲线的渐近线为:0y?x?x?y??323?3b23x2.由点到直线的距离公式有:,∴椭圆方程1??b?1??y2232x2y并整理,代入)易知直线,消去的斜率存在,设直线(2的方程为m??kxy1?y?3得:??222,033mx???6kmx?k1?32?1?3k?02?1?3k?0??C相交于两点,则应有:,要与? ??????22222220m?3??41?3k?336k?mm?1?3k????????,设,yQxx,yQ,2112122?m3?36km则有:,.?xx???xx212122k?31k?31????????22.又m?km?m??x1?k?x?OQOQ??xx?yy?xxxkx?mxkx211121*********????????2222225?OQ?OQ?,又:,所以有:?k?5?6km?m1?331?k?m?3??212k?3122k?1?9m?,②??2222y,将,代入并整理得:,2x消去my?kx?1??y0m??x3?6kmx?1?3k33????222222.③要有两交点,则m?1?04??1?3k3k3m??Δ?36k3m12.由①②③有?0?k92?33m?6km????.有,设,、yxMMx,y,??xx??xx????2222k3413m??36k3m?414332434322k31?k31???22k31???22k?3m9??432?MM?1k?21??22k1?312k2k14422222.?k?1?kMM???1?k1?MM?k??19m代入有将.2112??22k3?12k3?1.??11??2t?0,,,,令kt?12??MM??21??29??2k1?3??t1t?1?t1??????t?0,?'tf?tf?.,令??32????9??t1t?331?11????????t??0,0,t内单调递增,内恒成立,故函数在所以在t0tff'?????99????5??????10M?0,?0,?Mft.故???2172??5.存在性问题??222yx??????A1,点例5:已知椭圆,,的左、右焦点分别为1,0?1,0FF0C:??1?ab?????21222ab??在椭圆上.C(1)求椭圆的标准方程;C M,有两个不同交点时,能在,使得当直线)是否存在斜率为2的直线与椭圆(2NCll5PM?NQP?若存在,求出直线,在椭圆上找到一点直线,满足上找到一点的Q Cl?y3方程;若不存在,说明理由.2x2;(2))不存在,见解析.【答案】(11?y?2【解析】(1)设椭圆的焦距为,则,1?cCc2??A1,,在椭圆∵上,∴??1???221AF2a??AF C 2????2222????????21222????2x22222a?1c?b?a?.的方程为,故椭圆,∴1?y?C2(2)假设这样的直线存在,设直线的方程为,t2x??y l5??????????,Pxy,xyD,xQ,x,MxyNy,,,,的中点为设,MN??3004242113??y?2x?t?22x,得由,消去,0?8?tty?9y2??22x?2y?2?yy?tt2??22,且∴,,故且123t??3??y?y?y?0t?36?Δ?4t8?012929NQ?PM为平行四边形,由,知四边形PMQNDD的中点,因此的中点,而为线段为线段PQ MN5y?t15?2t43?y?,,得∴?y 049297不在椭圆上,,可得,∴点又Q3?t??31?y???43.故不存在满足题意的直线l对点增分集训一、解答题2????2PP过点相外切,动圆圆心并且与圆1.已知动圆.的轨迹为2,0F4??x?2F:y C21的轨迹方程;(1)求曲线C1????lBA,直线、,设点与轨迹交于(2)过点两点,设直线的直线1,0F2,0?D C?xl:122ADBMM于,求证:直线经过定点.交l2y??2;(1)(2)见解析.【答案】0?1x??x3,1)由已知,【解析】(2??|PF ?|PF ?2PF| |PF2211P,,轨迹为双曲线的右支,,42c??|FF 2C2a?2?a?1c212y??2?.标准方程曲线0x???1x C3xBM必过)由对称性可知,直线(2轴的定点,31????????,MlBM1,02,?2,33BPA经过点,的斜率不存在时,,,,知直线当直线??122????????ly,By,2ky:l?x?Axx的斜率存在时,不妨设直线当直线,,,122111. ??y3y31y1??111y?,M1?AD:y?x时,,,当,直线?x????????M1?x1x?212x?22??111??2?x?y?k22k?43?4k?????2222,得,,?xx??xx0k?33?kx?4kx??4???21k?kBM,经过点,即下面证明直线,即证?1,0P 2121223k?k3?223x?y?3???3yyPBPM x?1x?121?3yx?3y?xy?yy?kx?2ky?kx?2k,即,,由2121122211??234?k22k3k4?4??4???0?5?,即整理得,045xx???4xx?????BMBM.经过点过定点即证,直线1,0P1,0223yx????1,AB分别为椭圆的左顶2211222?3?3kk?3k点、下顶点,在椭圆,上,设2.已知点0bE:??1?a???222ba??221AB.原点到直线的距离为O7E1)求椭圆的方程;(yxEPDPBPA两点,求分别交轴于在第一象限内一点,直线轴、,,(2)设为椭圆C的面积.四边形ABCD22yx23.2);)【答案】(1(1?? 4392231yx??4??1,1??)因为椭圆,有经过点,【解析】(10E:a??1b????22222baba??221ab?AB,的距离为由等面积法,可得原点到直线O722a?b22yx b?3E的方程为联立两方程解得,.,所以椭圆1??E:2a?4322xy????2200?1?0?x?P0,x,yy.,则(,即2)设点12??4x3y00000043y2y??00?2y?yPA:?x.直线,令,得0x?D x?2x?20032?x2y?2232yx?y?3300000从而有.,同理,可得?BD???AC32x?x2?y3?000.x110000所以四边形的面积为??AC?BD?2?22x3?y0022x383y3xy?12x?xy?12x?83y12?12?4?4y?12?43110000000000????223y?2y?3x?2?xy?3x?2y23x00000000 y?433xy?6x12?20000.32??3y?2xy?3x?2000032所以四边形的面积为.ABCD2??2P上,且有点的圆心,在圆的半径3.已知点为圆是圆上的动点,点Q8??yx?1CPC??0?MQ?APAPM,满足.和,上的点1,0AAM2AP?P在圆上运动时,判断(1)当点点的轨迹是什么?并求出其方程;Q22F,1)若斜率为的直线与圆中所求点的轨迹交于不同的两点相切,与((2)Q1yx??kl43H的取值范围.(其中是坐标原点),且,求kO??OFOF?542x222A)2;,长轴长为(2【答案】(1)是以点,的椭圆,为焦点,焦距为1??y C2????2233,?,?.????3223????AP的垂直平分线,)由题意是线段【解析】(1MQ所以,2?22?CAQC?QP?QC?QA?CP?22A的椭圆,为焦点,焦距为2所以点的轨迹是以点,,长轴长为Q C222a?,∴,,1ab???c1c?2x2.故点的轨迹方程是Q1??y2????,,,)设直线(2:yHy,xF,xbkx??y l2112b22221??1b?k与圆直线,,即相切,得1?xy?l21?k ??222y得:联立,消去,0?4kbx?2b??1?2k2x2??b?kx?y???????2222222,得,2?x21?y??0k?02b1?1??8?2k8??Δ16kbbk?4?1?2k22?2bkb4,,?xx?x?x?????22??2k?2b1?kb4?????222b?kb?OF?OH?xx?yy?1?kb?xx?kb?x?x∴212122k21?k21?2121212122k1?21?2k????22221k41?kk2k?2k?12?1???k?,222k1k?2k?121?22431?k112,所以,得???k?25k241?23322233,∴,解得或?k????kk???322323????2332,??,故所求范围为.????2323????22yx1??222AA,的焦距为,离心率为已知椭圆,圆,.4c??O:xy0bC:??1?a?c22122ba2ABA△AB.是椭圆的左右顶点,面积的最大值为是圆的任意一条直径,2O1的方程;1)求椭圆及圆(OC PE,求,)若为圆的任意一条切线,与椭圆的取值范围.交于两点(2PQQ Oll??2264yx223,,).;1【答案】()(21?yx?1????334??1xABB,易知当线段轴距离为,(【解析】1)设则点到h h?a2??AO??h??S2S1AAAB△OB△211?a?c??S2ycBO??h,,轴时,在AB△Amax1c1b?3,,,,,1?a?c2c?2?a??e?a222yx22.,圆的方程为所以椭圆方程为1x?y?1??432b2LL的方程为,此时)当直线2;的斜率不存在时,直线(3PQ??1x??a m221d???L,,直线为圆的切线,设直线,方程为:1?k?m?mkx?y?2k?1y?kx?m????222直线与椭圆联立,,得,0?4m?4k??3x12?8kmx22?yx??1? 43??8km?x?x??21234k????2,由韦达定理得:,判别式0?k?Δ?4823?24m?12??x?x ?212?34k?22?23?kk?43?122,,令所以弦长3?3?t?4k??xxPQ?1?k2123k?42??1624??所以;3,???3PQ?3???????t3t??????64PQ?3,,综上,??3??22yx????FF经、.如图,己知的左、右焦点,直线是椭圆51xy?k?:l01a?b?G:??2122ab 43ABF△FBA.过左焦点交,且与椭圆,的周长为两点,G21(1)求椭圆的标准方程;G △ABFI为等腰直角三角形?若存在,求出直线)是否存在直线的方程;若不,使得(2l2存在,请说明理由.??xc,故与,因为直线.轴的交点为22yx;2(1))不存在,见解析.(【答案】1??23【解析】(1)设椭圆的半焦距为1,0?1?Gcl ABF△34a?3,所以,的周长为,即又,故3?AFAB??BF4a?4222222?3?1ab??c?2.22yx因此,椭圆的标准方程为.1??G32(2)不存在.理由如下:AB不可能为底边,即.先用反证法证明BFAF?22??????,假设,,设,则由题意知BFB?x,Fy1,0,yAAFx222121222????22?1x?1?y?yx?,????222112.又得:,,代入上式,消去,?1???10?6x?x?x?xyy21122222xyxy2121213322xx?xx?x?6.轴,所以,故因为直线斜率存在,所以直线不垂直于ll2211?3xx?x?2x3?3?6矛盾)与,,(2211??2222,所以矛联立方程,得:6?x??x?0?6?3k?26x?kx?3k23?22?yx?1?2k6???1?xy?k?盾.2123k?2?故.BF?AF22AB不可能为等腰直角三角形的直角腰.再证明△ABFA为直角顶点.为等腰直角三角形,不妨设假设2??22F△AF,此方设,在中,由勾股定理得:,则m?AF m?2?AF343m?2??m2112程无解.故不存在这样的等腰直角三角形.。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题
![【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题](https://img.taocdn.com/s3/m/b62636ff284ac850ac02423a.png)
解几综合题1.如图,()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-,O 为坐标原点,动点P 满足OP OA OB =+.(Ⅰ)求m n ⋅的值;(Ⅱ)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(Ⅲ)若直线l 过点E (2,0)交(Ⅱ)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程.2. 如图,在平面直角坐标系中,已知动点()y x P ,,y PM ⊥轴,垂足为M ,点N 与点P 关于x 轴对称, 4=⋅MN OP(1)求动点P 的轨迹W 的方程(2)若点Q 的坐标为()0,2,A 、B 为W 上的两个动点,且满足QB QA ⊥,点Q 到直线AB 的距离为d ,求d 的最大值3. 已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点. ① 设1()2OR OP OQ =+(O 为原点),求点R 的轨迹方程;② 若直线l 的倾斜角为060,求1||PF4. 在双曲线1131222=-x y 的上半支有三点A ,B ,C ,其中B 是第一象限的点,F 为双曲的上焦点.若线段AC 的中点D 在直线y=6上,且|AF|,|BF|,|CF|构成等差数列. (Ⅰ)求点B 的坐标;(Ⅱ)若直线l 经过点D ,且在l 上任取一点P (不同于D 点),都存在实数λ,使得 ||||(CP AP +=λ证明:直线l 必过定点,并求出该定点的坐标。
5. 如图,椭圆两焦点F 1、F 2与短轴两端B 1、B 2正好是正方形的四个顶点,且焦点到椭圆上一点最近距离为.12-(I )求椭圆的标准方程;(II )过D(0,2)的直线与椭圆交于不同的两点M 、N ,且M 在D 、N 之间,设λ=||DN DM ,求λ的取值范围.6. 已知F 1、F 2分别是椭圆)0,0(12222>>=+b a by a x 的左、右焦点,其左准线与x 轴相交于点N ,并且满足,.2||,221121==F F NF F F (1)求此椭圆的方程;(2)设A 、B 是这个椭圆上的两点,并且满足]31,51[,∈=λλ当NB NA 时,求直线AB 的斜率的取值范围.7. 已知O 为坐标原点,点E 、F 的坐标分别为(-1,0)、(1,0),动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .(Ⅰ)求点M 的轨迹W 的方程; (Ⅱ)点0(,)2mP y 在轨迹W 上,直线PF 交轨迹W 于点Q ,且PF FQ λ=,若12λ≤≤,求实数m 的范围.8. 已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l 交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图.(I )若△POM 的面积为25,求向量OM 与OP 的夹角; (II )试探求点O 到直线PQ 的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.9. 设不等式组⎩⎨⎧x +y >0,x -y >0表示的平面区域为D .区域D 内的动点P 到直线x +y =0和直线x -y =0的距离之积为1.记点P 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点F (2,0)的直线与曲线C 交于A ,B 两点.若以线段AB 为直径的圆与y 轴相切,求线段AB 的长.10. 如图,在△OSF 中,c OF a OS OSF ==︒=∠,,90(c a ,均为正常数),E 、P 是平面OSF内的动点,且满足0=⋅OF SE ,),(R ∈=λλ向量PE c PF a +与PE c PF a -垂 直。
专题15 圆锥曲线综合-2023年高考数学真题题源解密(新高考)(解析版)
![专题15 圆锥曲线综合-2023年高考数学真题题源解密(新高考)(解析版)](https://img.taocdn.com/s3/m/1828b73b7ed5360cba1aa8114431b90d6c858982.png)
专题15 圆锥曲线综合目录一览2023真题展现考向一 直线与双曲线综合考向二 直线与抛物线综合真题考查解读近年真题对比考向一 直线与双曲线综合考向二 直线与圆锥曲线综合命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 直线与双曲线综合1.(2023•新高考Ⅱ•第21题)已知双曲线C 中心为坐标原点,左焦点为(﹣0(1)求C 的方程;(2)记C 的左、右顶点分别为A 1,A 2,过点(﹣4,0)的直线与C 的左支交于M ,N 两点,M 在第二象限,直线MA 1与NA 2交于P ,证明P 在定直线上.解:(1)双曲线C 中心为原点,左焦点为(﹣0则c 222c =e =,解得a =2b =4,故双曲线C 的方程为x 24−y 216=1;(2)证明:过点(﹣4,0)的直线与C 的左支交于M ,N 两点,则可设直线MN 的方程为x =my ﹣4,M (x 1,y 1),N (x 2,y 2),记C 的左,右顶点分别为A 1,A 2,则A 1(﹣2,0),A 2(2,0),联立x =my −44x 2−y 2=16,化简整理可得,(4m 2﹣1)y 2﹣32my +48=0,故Δ=(﹣32m )2﹣4×48×(4m 2﹣1)=264m 2+192>0且4m 2﹣1≠0,y 1+y 2=32m 4m 2−1,y 1y 2=484m 2−1,直线MA 1的方程为y =y 1x 12(x +2),直线NA 2方程y =y 2x 2−2(x−2),故x 2x−2=y 2(x 12)y 1(x 2−2)=y 2(my 1−2)y 1(my 2−6)=my 1y 2−2(y 1y 2)2y 1my 1y 2−6y 1 =m⋅484m 2−132m 4m 2−1y 1m⋅484m 2−1−6y 1=−16m4m 2−1y 148m4m 2−1−6y 1=−13,故x 2x−2=−13,解得x =﹣1,所以x P =﹣1,故点P 在定直线x =﹣1上运动.考向二 直线与抛物线综合2.(2023•新高考Ⅰ•第22题)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点(0,)的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于3.解:(1)设点P 点坐标为(x ,y ),由题意得|y |=,两边平方可得:y 2=x 2+y 2﹣y +,化简得:y =x 2+,符合题意.故W 的方程为y =x 2+.(2)解法一:不妨设A ,B ,C 三点在W 上,且AB ⊥BC .设A (a ,a 2),B (b ,),C (c ,),则,.由题意,=0,即(b ﹣a )(c ﹣b )+(b 2﹣a 2)(c 2﹣b 2)=0,显然(b ﹣a )(c ﹣b )≠0,于是1+(b +a )(c +b )=0.此时,|b +a |.|c +b |=1.于是min {|b +a |,|c +b |}≤1.不妨设|c +b |≤1,则a =﹣b ﹣,则|AB|+|BC|=|b﹣a|+|c﹣b|=|b﹣a|+|c﹣b|≥|b﹣a|+|c﹣b|≥|c﹣a|=|b+c+|.设x=|b+c|,则f(x)=(x+),即f(x)=,又f′(x)==.显然,x=为最小值点.故f(x)≥f()=,故矩形ABCD的周长为2(|AB|+|BC|)≥2f(x)≥3.注意这里有两个取等条件,一个是|b+c|=1,另一个是|b+c|=,这显然是无法同时取到的,所以等号不成立,命题得证.解法二:不妨设A,B,D在抛物线W上,C不在抛物线W上,欲证命题为|AB|+|AD|>.由图象的平移可知,将抛物线W y=x2不影响问题的证明.设A(a,a2)(a≥0),平移坐标系使A为坐标原点,则新抛物线方程为y′=x′2+2ax′,写为极坐标方程,即ρsinθ=ρ2cos2θ+2aρcosθ,即ρ=.欲证明的结论为||+||>,也即|﹣|+|+|>.不妨设||≥||,将不等式左边看成关于a的函数,根据绝对值函数的性质,其最小值当即a=时取得,因此欲证不等式为||>,即||>,根据均值不等式,有|cos θsin 2θ|=.≤.=,由题意,等号不成立,故原命题得证.【命题意图】考查圆锥曲线的定义、标准方程、几何性质,直线与圆锥曲线相交等.【考查要点】圆锥曲线综合是高考必考的解答题,难度较大.考查圆锥曲线标准方程的求解,考查直线与圆锥曲线的位置关系,考查定值、定直线、面积最值、存在性与恒成立等问题.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【得分要点】1.圆锥曲线的定义(1)椭圆定义:12||||2PF PF a +=.(2)双曲线定义:12|||-|||2PF PF a =.(3)抛物线定义:|PF|=d .2.圆锥曲线的标准方程及几何性质(1)椭圆的标准方程与几何性质标准方程x2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)图形范围−a ≤x ≤a ,−b ≤y ≤b −b ≤x ≤b ,−a ≤y ≤a对称性对称轴: x 轴、y 轴 .对称中心:原点 .焦点F 1(−c,0) ,F 2(c,0) .F 1(0,−c) ,F 2(0,c) .顶点A 1(−a,0) ,A 2(a,0) ,B 1(0,−b) ,B 2(0,b) .A 1(0,−a) ,A 2(0,a) ,B 1(−b,0) ,B 2(b,0) .轴线段A 1A 2,B 1B 2分别是椭圆的长轴和短轴,长轴长为2a ,短轴长为2b .几何性质焦距|F 1F 2|=2c .(2)F (﹣c ,0),F(c,0)F (0,﹣c ),F (0,c )(3标准方程y 2=2px(p >0)y 2=−2px (p >0)x 2=2py (p >0)x 2=−2py (p >0)图形对称轴x 轴y 轴顶点O(0,0)焦点F(p 2,0)F(−p 2,0)F(0,p 2)F(0,−p 2)准线方程x =−p 2x =p 2y =−p 2y =p 2范围x ≥0 ,y ∈Rx ≤0 ,y ∈Ry ≥0 ,x ∈R y ≤0 ,x ∈R 离心率e =1几何性质焦半径(P(x 0,y 0)为抛物线上一点)p2+x 0p 2−x 0p2+y 0p 2−y 03.圆锥曲线中最值与范围的求解方法几何法若题目的条件和结论明显能体现几何特征及意义,则考虑利用图形性质来解决.代数法若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等.4.求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y−y0=k(x−x0),则直线必过定点(x0 ,y0);若得到了直线方程的斜截式y=kx+m,则直线必过定点(0,m).(3)从特殊情况入手,先探究定点,再证明该定点与变量无关.5.求解定值问题的常用方法(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.6.求解定线问题的常用方法定线问题是指因图形的变化或点的移动而产生的动点在定线上的问题.这类问题的本质是求点的轨迹方程,一般先求出点的坐标,看横、纵坐标是否为定值,或者找出横、纵坐标之间的关系.7.有关证明问题的解题策略圆锥曲线中的证明问题多涉及几何量的证明,比如涉及线段或角相等以及位置关系的证明,证明时,常把几何量用坐标表示,建立某个变量的函数,用代数方法证明.8.探索性问题的解题策略此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.考向一直线与双曲线综合3.(2022•新高考Ⅱ)已知双曲线C:﹣=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为﹣的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立.①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.【解答】解:(1)由题意可得=,=2,解得a=1,b=,因此C的方程为x2﹣=1,(2)解法一:设直线PQ的方程为y=kx+m,(k≠0),将直线PQ的方程代入x2﹣=1可得(3﹣k2)x2﹣2kmx﹣m2﹣3=0,Δ=12(m2+3﹣k2)>0,∵x1>x2>0∴x1+x2=>0,x1x2=﹣>0,∴3﹣k2<0,∴x1﹣x2==,设点M的坐标为(x M,y M),则,两式相减可得y1﹣y2=2x M﹣(x1+x2),∵y1﹣y2=k(x1﹣x2),∴2x M=(x1+x2)+k(x1﹣x2),解得X M=,两式相加可得2y M﹣(y1+y2)=(x1﹣x2),∵y1+y2=k(x1+x2)+2m,∴2y M=(x1﹣x2)+k(x1+x2)+2m,解得y M=,∴y M=x M,其中k为直线PQ的斜率;若选择①②:设直线AB的方程为y=k(x﹣2),并设A的坐标为(x3,y3),B的坐标为(x4,y4),则,解得x3=,y3=,同理可得x4=,y4=﹣,∴x3+x4=,y3+y4=,此时点M的坐标满足,解得X M==(x3+x4),y M==(y3+y4),∴M为AB的中点,即|MA|=|MB|;若选择①③:当直线AB的斜率不存在时,点M即为点F(2,0),此时不在直线y=x上,矛盾,当直线AB的斜率存在时,设直线AB的方程为y=m(x﹣2)(m≠0),并设A的坐标为(x3,y3),B 的坐标为(x4,y4),则,解得x3=,y3=,同理可得x4=,y4=﹣,此时x M=(x3+x4)=,∴y M=(y3+y4)=,由于点M同时在直线y=x上,故6m=•2m2,解得k=m,因此PQ∥AB.若选择②③,设直线AB的方程为y=k(x﹣2),并设A的坐标为(x3,y3),B的坐标为(x4,y4),则,解得x3=,y3=,同理可得x4=,y4=﹣,设AB的中点C(x C,y C),则x C=(x3+x4)=,y C=(y3+y4)=,由于|MA|=|MB|,故M在AB的垂直平分线上,即点M在直线y﹣y C=﹣(x﹣x C)上,将该直线y=x联立,解得x M==x C,y M==y C,即点M恰为AB中点,故点M在直线AB上.(2)解法二:由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②⇒③,或选由②③⇒①:由②成立可知直线AB的斜率存在且不为0.若选①③⇒②,则M为线段AB的中点,假设AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,从而x1=x2,已知不符.综上,直线AB的斜率存在且不为0,直线AB的斜率为k,直线AB的方程为y=k(x﹣2).则条件①M在直线AB上,等价于y0=k(x0﹣2)⇔ky0=k2(x0﹣2),两渐近线的方程合并为3x2﹣y2=0,联立方程组,消去y并化简得:(k2﹣3)x2﹣4k2x+4k2=0,设A(x3,y3),B(x4,y4),线段中点为N(x N,y N),则x N==.y N=k(x N﹣2)=,设M(x0,y0),则条件③|AM|=|BM|等价于(x0﹣x3)2+(y0﹣y3)2=(x0﹣x4)2+(y0﹣y4)2,移项并利用平方差公式整理得:(x3﹣x4)[2x0﹣(x3+x4)]+(y3﹣y4)[(2y0﹣(y3+y4)]=0,[2x0﹣(x3+x4)]+[2y0﹣(y3+y4)]=0,∴x0﹣x N+k(y0﹣y N)=0,[2x0﹣(x3+x4)]+[2y0﹣(y3+y4)]=0,∴x0﹣x N+k(y0﹣y N)=0,∴,由题意知直线PM的斜率为﹣,直线QM的斜率为,∴由(x1﹣x0),y2﹣y0=(x2﹣x0),∴y1﹣y2=﹣(x1+x2﹣2x0),∴直线PQ的斜率m==﹣,直线PM:y=﹣(x﹣x 0)+y0,即y=,代入双曲线的方程为3x2﹣y2﹣3=0,即()()=3中,得()[2﹣()]=3,解得P的横坐标为(+)]=3,同理,x2=﹣(),x1+x2﹣2x0=﹣﹣x0,∴m=,∴条件②PQ∥AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上等价于m=k⇔ky0=k2(x0﹣2),条件②PQ∥AB等价于ky0=3x0,条件③|AM|=|BM|等价于.选①②⇒③:由①②解得∴,∴③成立;选①③⇒②:由①③解得:,ky0=,∴ky0=3x0,∴②成立;选②③⇒①:由②③解得:,ky0=,∴,∴①成立.4.(2022•新高考Ⅰ)已知点A(2,1)在双曲线C:﹣=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2,求△PAQ的面积.【解答】解:(1)将点A代入双曲线方程得,化简得a4﹣4a2+4=0,∴a2=2,故双曲线方程为,由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1)Q(x2,y2),则联立双曲线得:(2k2﹣1)x2+4kmx+2m2+2=0,故,,,化简得:2kx1x2+(m﹣1﹣2k)(x1+x2)﹣4(m﹣1)=0,故,即(k+1)(m+2k﹣1)=0,而直线l不过A点,故k=﹣1;(2)设直线AP的倾斜角为α,由,∴,得由2α+∠PAQ=π,∴,得,即,联立,及得,同理,故,而,由,得,故S=|AP||AQ|sin∠PAQ=|x1x2﹣2(x1+x2)+4|=.△PAQ5.(2021•新高考Ⅰ)在平面直角坐标系xOy中,已知点F1(﹣,0),F2(,0),点M满足|MF1|﹣|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|•|TB|=|TP|•|TQ|,求直线AB的斜率与直线PQ的斜率之和.【解答】解:(1)由双曲线的定义可知,M的轨迹C是双曲线的右支,设C的方程为,根据题意,解得,∴C的方程为;(2)(法一)设,直线AB的参数方程为,将其代入C的方程并整理可得,(16cos2θ﹣sin2θ)t2+(16cosθ﹣2m sinθ)t﹣(m2+12)=0,由参数的几何意义可知,|TA|=t1,|TB|=t2,则,设直线PQ的参数方程为,|TP|=λ1,|TQ|=λ2,同理可得,,依题意,,则cos2θ=cos2β,又θ≠β,故cosθ=﹣cosβ,则cosθ+cosβ=0,即直线AB的斜率与直线PQ的斜率之和为0.(法二)设,直线AB的方程为,A(x1,y1),B(x2,y2),设,将直线AB方程代入C的方程化简并整理可得,,由韦达定理有,,又由可得,同理可得,∴=,设直线PQ的方程为,设,同理可得,又|AT||BT|=|PT||QT|,则,化简可得,又k1≠k2,则k1=﹣k2,即k1+k2=0,即直线AB的斜率与直线PQ的斜率之和为0.考向二直线与圆锥曲线综合6.(2021•新高考Ⅱ)已知椭圆C的方程为+=1(a>b>0),右焦点为F(,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设M,N是椭圆C上的两点,直线MN与曲线x2+y2=b2(x>0)相切.证明:M,N,F三点共线的充要条件是|MN|=.【解答】(Ⅰ)解:由题意可得,椭圆的离心率=,又,所以a=,则b2=a2﹣c2=1,故椭圆的标准方程为;(Ⅱ)证明:先证明充分性,当|MN|=时,设直线MN的方程为x=ty+s,此时圆心O(0,0)到直线MN的距离,则s2﹣t2=1,联立方程组,可得(t2+3)y2+2tsy+s2﹣3=0,则Δ=4t2s2﹣4(t2+3)(s2﹣3)=12(t2﹣s2+3)=24,因为,所以t2=1,s2=2,因为直线MN与曲线x2+y2=b2(x>0)相切,所以s>0,则,则直线MN的方程为恒过焦点F(),故M,N,F三点共线,所以充分性得证.若M,N,F三点共线时,设直线MN的方程为x=my+,则圆心O(0,0)到直线MN的距离为,解得m2=1,联立方程组,可得,即,所以;所以必要性成立;综上所述,M,N,F三点共线的充要条件是|MN|=.根据近几年真题推测主要考查直线与圆锥曲线的位置关系,涉及弦长、弦中点、定点、定值和取值范围等问题,常与函数、不等式等知识综合考查。
高考数学140分难点突破训练(圆锥曲线2答案)
![高考数学140分难点突破训练(圆锥曲线2答案)](https://img.taocdn.com/s3/m/c47a2f79ff00bed5b8f31d01.png)
答案:1. (1)设椭圆C 的方程为()222210x y a b a b+=>>.由题意可得:1,c b a ==a ∴=2215x y ∴+= (2)(1)当直线AB 的斜率k 存在时,设直线AB 的方程为()()122,,,,y kx m x y B x y =+1设A2215x y y kx m ⎧+=⎪⎨⎪=+⎩,()2225110550k x kmx m ∴+++-= 1221051kmx x k ∴+=-+()()()2212121212y y kx m kx m k x x km x x m ∴=++=+++ 0OA OB =,12120x x y y ∴+=即()()22121210k x x km x x m ++++=,()()22222221551005151k m k m m k k +--+=++ 226550m k ∴--= ①又(),,OD AB D x y ⊥设,xk y∴=-② 又点(),D x y 在直线AB 上,y kx m ∴=+2x m y kx y y∴=-=+ ③把②③代入①得22226550x x y y y ⎛⎫+--= ⎪⎝⎭,()22222650x y x y y +⎡⎤∴+-=⎣⎦ ∴点D 的轨迹方程为()22506x y y +=≠ (2)当直线AB的斜率不存在时,,06D ⎛⎫± ⎪ ⎪⎝⎭,满足2256x y += ∴点D 的轨迹方程为2256x y +=2. 解(I )设1122(,),(,)A x y B x y由22221(3)22031y ax a x ax x y =+⎧⇒---=⎨-=⎩22212212248(3)0302323a a a a x x a x x a ⎧∆=+->⎪-≠⎪⎪∴⎨+=-⎪⎪⋅=⎪-⎩26a <且23a ≠,又以AB 为直径的圆过原点.既2121212120(1)()10x x y y a x x a x x ⋅+⋅=⇒+⋅+++=1a ∴=± (II )1212y y a x x -=- 121212121(2,1)(,)(2,1)2y y OA OB x x y y x x λλ++=⇒++=⇒=+2222112212121212()()()()0OA OB x y x y x x x x y y y y =⇒+=+⇒+⋅-++⋅-=111022a a ∴+⋅=⇒=- 右准线l 的方程为:x =c a 2,两条渐近线方程为:x aby ±=.∴ 两交点坐标为 c a P 2(,)c ab 、c a Q 2(,)cab-.∵ △PFQ 为等边三角形,则有||23||PQ MF =(如图). ∴ )(232c ab c ab c a c +=-⋅,即cab c a c 322=-. 解得 a b 3=,c =2a .∴ 2==ace . (2)由(1)得双曲线C 的方程为把132222=-ay a x .把a ax y 3+=代入得0632)3(2222=++-a x a x a .依题意 ⎪⎩⎪⎨⎧>--=∆≠-0)3(2412032242,a a a a ∴ 62<a ,且32≠a .∴ 双曲线C 被直线y =ax +b 截得的弦长为 ]4))[(1())(1()()(2122122212221221x x x x a x x a y y x x l -++=-+=-+-=222242)3()1(2412)1(---+=a a a a a ∵ a ac b l 1222==. ∴ 224222)3(1272)1(144--+=⋅a a a a a .整理得 010*******=+-a a . ∴ 22=a 或13512=a . ∴ 双曲线C 的方程为:16222=-y x 或115313511322=-y x . (文)(1)设B 点的坐标为(0,0y ),则C 点坐标为(0,0y +2)(-3≤0y ≤1), 则BC 边的垂直平分线为y =0y +1 ① )23(3200-=+x y y y ② 由①②消去0y ,得862-=x y .∵ 130≤≤-y ,∴ 2120≤+=≤-y y .故所求的△ABC 外心的轨迹方程为:)22(862≤≤--=y x y . (2)将b x y +=3代入862-=x y 得08)1(6922=++-+b x b x . 由862-=x y 及22≤≤-y ,得234≤≤x . 所以方程①在区间34[,2]有两个实根.设8)1(69)(22++-+=b x b x x f ,则方程③在34[,2]上有两个不等实根的充要条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-+=≥++-+=>+--=∆⋅⋅⋅⋅⋅⋅.,,,292)1(634082)1(629)2(0834)1(6)34(9)34(0)8(94)]1(6[222222b b b f b b f b b 之得34-≤≤-b .∵ 7232984)]1(32[4)(||222122121--=+--=-+=-⋅b b b x x x x x x∴ 由弦长公式,得721032||1||212--=-+=⋅b x x k EF 又原点到直线l 的距离为10||b d =, ∴71)711(73202732072320||222++-=--=--=b b b b b d EF ∵ 34-≤≤-b ,∴ 41131-≤≤-b . ∴ 当411-=b ,即4-=b 时,35||max =d EF .4. (1)设直线AB :2)1(+-=x k y 代入1222=-y x 得02)2()2(2)2(222=------k x k k x k (*) 令A (x 1,y 1),B (x 2,y 2),则x 1、x 2是方程的两根∴ 022≠-k 且 2212)2(2kk k x x --=+ ∵ )(21+= ∴ N 是AB 的中点 ∴1221=+xx∴ 2)2(2+-=-k k k k = 1 ∴AB 方程为:y = x + 1 (2)将k = 1代入方程(*)得0322=--x x 1-=x 或3=x由1+=x y 得01=y ,42=y ∴ )0,1(-A ,)4,3(B∵ 0=⋅AB CD ∴ CD 垂直平分AB ∴ CD 所在直线方程为 2)1(+--=x y 即x y -=3代入双曲线方程整理得01162=-+x x 令),(33y x C ,),(44y x D 及CD 中点),(00y x M则643-=+x x ,1143-=⋅x x , ∴32430-=+=x x x , 60=y|CD | =104,102||21||||===CD MD MC102||||==MB MA ,即A 、B 、C 、D 到M 距离相等 ∴ A 、B 、C 、D 四点共圆 12分5. (1)直线l 方程为c x y -=代入)0(12222>>=+b a b y a x 得02)(22222222=-+-+b a c a cx a x b a ,设),(),,(2211y x B y x A 则22221222212,2b a cb y y b ac a x x +-=++=+ += C ∴点的坐标为)2,2(222222b a cb b ac a +-+ C 在椭圆上1)(4)(42222422224=+++∴b a c b b a c a 即222222414b a c b a c +=∴=+2225a c =∴510=∴e (2)ab a ac a b a ca a c a x x e a ex a ex a BF AF AB 232222)(2)()(2222222121=+-=+⋅-=+-=-+-=+=已知60,102,510,1015232=∴===∴=b a e a a∴椭圆方程为16010022=+y x 22.(1)b c c b f 242122)2(-=∴=+= ,又cbx bx c x x x f 22)2(2)(+--=-令02)(=-xx f 得0)2(=--bx c x 当0≠b 时得方程的实数根0=x 和bcx -=2 于是1,2==b c 当0=b 时4=c 方程有唯一实数根0=xx x x f +=∴2)(或4)(x x f = (2)当xxx f +=2)(时,211+=--n n n a a a ,令,1n n a b =则121+=-n n b b , )1(211+=+∴-n n b b12112-=∴-=∴nn n n a b当4)(x x f =时,141-=n n a a {}n a ∴为等比数列,1)41(-=n n a 121-=∴nn a 或nn a -=146. (1)设M(x,y), P(0, t), Q(s, 0) 则),(),,3(t s PQ t CP -==由0=⋅PQ CP 得3s —t 2=0……………………………………………………①又由MQ PM 21=得),(21),(y x s t y x --=- ⎪⎪⎩⎪⎪⎨⎧-=--=∴)(21)(21y t y x s x , ⎪⎩⎪⎨⎧==∴y t x s 233……………………………………②把②代入①得2)23(9y x -=0,即y 2=4x ,又x ≠0 ∴点M 的轨迹方程为:y 2=4x (x ≠0)(2)如图示,假设存在点H ,满足题意,则0=⋅⊥OB OA OB OA 即设),4(),,4(222121y yB y y A ,则由0=⋅OB OA 可得016212221=+y y y y 解得1621-=y y 又21212212444y y y y y y k AB +=--=则直线AB 的方程为:)4(421211yx y y y y -+=-即212121214)(y x y y y y y y -=--+把1621-=y y 代入,化简得0)()164(1=+--y y y x令y=0代入得x=4,∴动直线AB 过定点(4,0)答,存在点H (4,0),满足题意。
高考数学压轴题突破训练——圆锥曲线(含详解)
![高考数学压轴题突破训练——圆锥曲线(含详解)](https://img.taocdn.com/s3/m/6e0df7115fbfc77da369b1bc.png)
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①
,
而
由方程①知 > <
, < < , .
7.解:解:令
则 即
即
又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为
则
∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点25 圆锥曲线综合题
圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.
●难点磁场
(★★★★)若椭圆2222b y a x =1(a >b >0)与直线l :x +y =1在第一象
限内有两个不同的交点,求a 、b 所满足的条件,并画出点P (a ,b )的存在区域.
●案例探究
[例1]已知圆k 过定点A (a ,0)(a >0),圆心k 在抛物线C :y 2=2ax 上运动,MN 为圆k 在y 轴上截得的弦.
(1)试问MN 的长是否随圆心k 的运动而变化?
(2)当|OA |是|OM |与|ON |的等差中项时,抛物线C 的准线与圆k 有怎样的位置关系?
命题意图:本题考查圆锥曲线科内综合的知识及学生综合、灵活处理问题的能力,属
★★★★★级题目.
知识依托:弦长公式,韦达定理,等差中项,绝对值不等式,一元二次不等式等知识.
错解分析:在判断d 与R 的关系时,x 0的范围是学生容易忽略的. 技巧与方法:对第(2)问,需将目标转化为判断d =x 0+2a 与
R =a x +20的大小. 解:(1)设圆心k (x 0,y 0),且y 02=2ax 0,
圆k 的半径R =|AK |=
2202020)(a x y a x +=+- ∴|MN |=2202202022x a x x R -+=-=2a (定值)
∴弦MN 的长不随圆心k 的运动而变化.
(2)设M (0,y 1)、N (0,y 2)在圆k :(x -x 0)2+(y -y 0)2=x 02+a 2中, 令x =0,得y 2-2y 0y +y 02-a 2=0
∴y 1y 2=y 02-a 2
∵|OA |是|OM |与|ON |的等差中项.
∴|OM |+|ON |=|y 1|+|y 2|=2|OA |=2a .
又|MN |=|y 1-y 2|=2a
∴|y 1|+|y 2|=|y 1-y 2|
∴y 1y 2≤0,因此y 02-a 2≤0,即2ax 0-a 2≤0.
∴0≤x 0≤2
a . 圆心k 到抛物线准线距离d =x 0+2a ≤a ,而圆k 半径R =220a x +≥a . 且上两式不能同时取等号,故圆k 必与准线相交.
[例2]如图,已知椭圆1
2
2-+m y m x =1(2≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A 、B 、C 、D ,设f (m )=||AB |-|CD ||
(1)求f (m )的解析式;
(2)求f (m )的最值
.
命题意图:本题主要考查利用解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合.属★★★★★级题目.
知识依托:直线与圆锥曲线的交点,韦达定理,根的判别式,利用单调性求函数的最值.
错解分析:在第(1)问中,要注意验证当2≤m ≤5时,直线与椭圆恒有交点.
技巧与方法:第(1)问中,若注意到x A ,x D 为一对相反数,则可迅速将||AB |-|CD ||化简.第(2)问,利用函数的单调性求最值是常用方法.
解:(1)设椭圆的半长轴、半短轴及半焦距依次为a 、b 、c ,则a 2=m ,b 2=m -1,c 2=a 2-b 2=1
∴椭圆的焦点为F 1(-1,0),F 2(1,0).
故直线的方程为y =x +1,又椭圆的准线方程为
x =±c a 2,即x =±m . ∴A (-m ,-m +1),D (m ,m +1) 考虑方程组⎪⎩⎪⎨⎧=-++=111
2
2m y m x x y ,消去y 得:(m -1)x 2+m (x +1)2=m (m -1)
整理得:(2m -1)x 2+2mx +2m -m 2=0
Δ=4m 2-4(2m -1)(2m -m 2)=8m (m -1)2
∵2≤m ≤5,∴Δ>0恒成立,x B +x C =1
22--m m . 又∵A 、B 、C 、D 都在直线y =x +1上
∴|AB |=|x B -x A |=
2=(x B -x A )·2,|CD |=2(x D -x C ) ∴||AB |-|CD ||=2|x B -x A +x D -x C |=2|(x B +x C )-(x A +x D )|
又∵x A =-m ,x D =m ,∴x A +x D =0
∴||AB |-|CD ||=|x B +x C |·
2=|m m 212--|·2=m m 222 (2≤m ≤5) 故f (m )=m m
222,m ∈[2,5].
(2)由f (m )=m m 222,可知f (m )=m 122
2-
又2-21≤2-m
1≤2-51 ∴f (m )∈[324,9210]
故f (m )的最大值为32
4
,此时m =2;f (m )的最小值为9210,此时
m =5. [例3]舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是3320g
千米/
秒,其中g 为重力加速度,若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?
命题意图:考查圆锥曲线在实际问题中的应用,及将实际问题转化成数学问题的能力,属★★★★★级题目.
知识依托:线段垂直平分线的性质,双曲线的定义,两点间的距
离公式,斜抛运动的曲线方程.
错解分析:答好本题,除要准确地把握好点P 的位置(既在线段BC 的垂直平分线上,又在以A 、B 为焦点的抛物线上),还应对方位角的概念掌握清楚.
技巧与方法:通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解.对空间物体的定位,一般可利用声音传播的时间差来建立方程.
解:取AB 所在直线为x 轴,以AB 的中点为原点,建立如图所示的直角坐标系.由题意可知,A 、B 、C 舰的坐标为(3,0)、(-3,0)、(-5,23).
由于B 、C 同时发现动物信号,记动物所在位置为P ,则|PB |=|PC |.于是P 在线段BC 的中垂线上,易求得其方程为3x -3y +73=0.
又由A 、B 两舰发现动物信号的时间差为4秒,知|PB |-|P A |=4,故知P 在双曲线542
2y x -=1的右支上.
直线与双曲线的交点为(8,5
3),此即为动物P 的位置,利用两
点间距离公式,可得|P A |=10. 据已知两点的斜率公式,得k P A =3,所以直线P A 的倾斜角为60°,于是舰A 发射炮弹的方位角应是北偏东30°.
设发射炮弹的仰角是θ,初速度v 0=3320g
,则θθc o s 10sin 200⋅=⋅v g v ,
∴sin2θ=231020=v g ,∴仰角θ=30°.
●锦囊妙计
解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.
(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.
(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.
●歼灭难点训练
一、选择题
1.(★★★★)已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC 的面积最大时,m 等于( )
A.3
B.49
C.25
D.23 2.(★★★★★)设u ,v ∈R ,且|u |≤
2,v >0,则(u -v )2+(v u 922--)2的最小值为( )
A.4
B.2
C.8
D.22
二、填空题
3.(★★★★★)A 是椭圆长轴的一个端点,O 是椭圆的中心,若。