数学物理方程习题解谷超豪第二章热传导方程
数学物理方程2热传导方程
对未来研究的展望
深入研究热传导方程的数学性质
尽管热传导方程已有广泛的研究和应用,但对其数学性质的理解仍不够深入。未来可以进一步研究热传导方程解的唯 一性、稳定性、渐近性等数学问题,以推动数学理论的发展。
拓展热传导方程的应用领域
随着科技的发展,热传导方程的应用领域也在不断拓展。例如,在新能源领域,热传导方程可以用于研究太阳能电池 板的工作原理和优化设计;在环保领域,热传导方程可用于研究污染物在环境中的扩散和迁移规律。
交换。
热传导方程是偏微分方程的一种形式,通常采用傅里叶级数或
03
有限元方法进行求解。
热传导现象的重要性
1
热传导现象在自然界和工程领域中广泛存在,如 气候变化、能源利用、材料科学等。
2
热传导方程的应用有助于深入理解热量传递的机 制,为相关领域的研究提供理论基础。
3
通过求解热传导方程,可以预测温度分布、热量 传递速率等关键参数,为实际问题的解决提供指 导。
04 热传导方程的数值解法
有限元法
有限元法是一种将连续的求解域离散化为有限个小的、互连 的子域(或单元)的方法。在每个单元内,选择合适的基函 数,将待求的解表示为这些基函数的线性组合。通过求解一 系列线性方程组,可以得到原问题的近似解。
有限元法在求解热传导方程时,可以将复杂的几何形状离散 化为有限个简单的几何形状,从而简化计算过程。同时,有 限元法能够处理复杂的边界条件和初始条件,适用于各种类 型的热传导问题。
有限差分法
总结词
有限差分法是一种数值求解偏微分方程的方法,通过将连续的偏微分方程离散化为差分 方程来求解。
详细描述
有限差分法的基本步骤是将偏微分方程中的空间变量离散化为有限个点,然后将偏微分 方程转化为差分方程,最后通过迭代求解差分方程得到原方程的近似解。这种方法适用
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程第二版谷超豪主编的课本的课后答案
1、一个偏微分方程所含有的未知函数最高阶导数的阶数称为这个偏微分方程的阶。
2、如果方程对未知函数及其各阶导数总体来说是线性的,则称这个方程是线性方程,否则称这个方程是非线性方程。
3、几种不同原因的综合所产生的效果等于这些不同原因单独产生的效果(即假设其他原因不存在时,该原因所产生的效果)的累加。
这个原理称为叠加原理。
4、I 【22222//0u t a u x ∂∂-∂∂=0:(),/()t u x u t x ϕψ==∂∂=】初值问题I 的解为(,)[()()]/2(1/2)()x atx atu x t x at x at a d ϕϕψαα+-=-+-+⎰此公式称为达朗贝尔公式5、依赖区间(x-at,x+at )第一章课后题2.8求解222200{//sin |0,/|sin }t t u t u x t x u u t x ==∂∂-∂∂==∂∂= 解:()0()11(,)sin sin sin 22x t x tt x tx t u x t d d t xττξξτξξ+-+---=+=⎰⎰⎰sin(1,2,...)k k C x k lπ=为常微分方程()()0X x X x λ''+=满足边界条件(0)0,()0X X l ==的固有函数(或特征函数)而222k lπλ=称为相应的固有值。
2222200:(),()0,:0uu atxu t u x x tx x l u ϕψ∂∂-=∂∂∂===∂===初值问题,的解是(,)cos sin sin k k k a k a k a u x t A t B t xl l l πππ⎛⎫=+ ⎪⎝⎭又可以写成(,)c o s ()s ink kk k k u x t N t xlπωθ=+其中,cos sin K K k k K a N lπωθθ====KN 称为波的振幅,Kω称为圆频率,k θ称为波的初位相。
弦上位于m l x k=(m=0,1,..k )处的点在振动过程中保持不动,称为节点。
数学物理方程第三版(谷超豪)答案
2u
t 2 u
xa
t0
a2 2u x 2
(x)
u xat0 (x).
(0) (0)
数学物理方程答案
解:u(x,t)=F(x-at)+G(x+at)
令 x-at=0 得 (x) =F(0)+G(2x)
令 x+at=0 得 (x) =F(2x)+G(0)
所以 且
F(x)= ( x ) -G(0). 2
于是得 所以
CLa2 1 0
2CLt CR LGt 0 CLt CR LGt GRt 0
1 CL
a2
u t ut
a2 2
CR
LG
a2 CRLG t
u t c0e 2
数学物理方程答案
代入以上方程组中最后一个方程,得
CL a4 CR LG2 a2 CR LG2 GR 0
的通解可以写成
u Fx at Gx at
hx
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
t 0 : u x, u x.
t
解:令 h xu v 则
h x u u v ,h x2 u h xu v
x
x
x
x
[(h x)2 u (u v) (h x) u (h x)2 u (h x)(u 2v )
G(x)= ( x ) -F(0). 2
F(0)+G(0)=(0) (0).
所以
u(x,t)= ( x at ) + ( x at ) -(0).
2
2
即为古尔沙问题的解。
4.对非齐次波动方程的初值问题
证明:
2u
t
热传导方程的导出及其定解问题的导出
热传导方程的导出及其定解问题的导出1. 热传导方程的导出考察空间某物体G 的热传导问题。
以函数u (x ,y ,z ,t )表示物体G 在位置(x ,y ,z )及时刻t 的温度。
依据传热学中的Fourier 实验定律,物体在无穷小时段dt 内沿法线方向n 流过一个无穷小面积dS 的热量dQ 与物体温度沿曲面dS 法线方向的方向导数学成正比,即o n d udQ =-k (x ,y ,z )dSdt (1-1)o n 其中k (x ,y ,z )称为物体在点(x ,y ,z )处的热传导系数,它应取正值。
(1-1)式中负号的出 o u现是由于热量总是从温度高的一侧流向低的一侧,因此dQ 应和异号。
o n在物体G 内任取一闭曲面r ,它所包围的区域记为0,由(1-1)式,从时刻t 到t 流进12此闭曲面的全部热量为Q =f t 2仙k (x ,y ,z)—dS\dt (1-2)4I r O nJ这里表示u沿r 上单位外法线方向n 的方向导数。
o n流入的热量使物体内部的温度发生变化,在实践间隔(t ,t )中物体温度从u (x ,y ,z ,t )121变化到u (x‘y ,z ,t2),它所应该吸收的热量是JU c (x ,y ,z )P (x ,y ,z )[u (x ,y ,z ,t )一u (x ,y ,z ,t )]dxdydz其中c 为比热,P 为密度。
因此就成立 >dt=JfJ C (x ,y ,z )P (x,y ,z)[u (x,y ,z ,12)一U (x ,y ,z ,t i )]dxdydz(1-3)假设函数u 关于变量x ,y ,z 具有二阶连续偏导数,关于t 具有一阶连续偏导数,利用格林公式,可以把(1-3)化为交换积分次序,就得到J t t 12仰(x ,y ,z )护t10O x{k 譽'O x 丿(一O u 、 +—k 二+—°y°y 丿 O z (O u 、k 一>dxdydzdt =c P JI o 丿J 「E O u dtdxdydztO t 丿dxdydzdt =0(1-4)训c P '0、由于t i,t2,0都是任意的,我们得到(1-5)式称为非均匀的各向同性体得热传导方程。
数学物理方程第三版答案谷超豪
数学物理方程第三版答案谷超豪【篇一:数学物理方程_答案_谷超豪】/p> 1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x点处的点在时刻t离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明u(x,t)满足方程???u????u????x????e? ?t??t??x??x?其中?为杆的密度,e为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x与x??x。
现在计算这段杆在时刻t的相对伸长。
在时刻t这段杆两端的坐标分别为:x?u(x,t);x??x?u(x??x,t)其相对伸长等于令?x?[x??x?u(x??x,t)]?[x?u(x,t)]??x?x?ux(x???x,t),取极限得在点x的相对伸长为ux(x,t)。
由虎克定律,张力t(x,t)等于t(x,t)?e(x)ux(x,t)其中e(x)是在点x的杨氏模量。
设杆的横截面面积为s(x),则作用在杆段(x,x??x)两端的力分别为e(x)s(x)ux(x,t);e(x??x)s(x??x)ux(x??x,t).于是得运动方程 ?(x)s(x)??x?utt(x,t)?esu利用微分中值定理,消去?x,再令?x?0得??(x)s(x)u?(esux)?x若s(x)?常量,则得?u?t22x(x??x)|x??x?esux(x)|x?(x)即得所证。
=(e(x)?u?x)2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在x?0,x?l两点则相应的边界条件为u(0,t)?0,u(l,t)?0.(2)若x?l为自由端,则杆在x?l的张力t(l,t)?e(x)的边界条件为?u?x?u?x|x?l等于零,因此相应|x?l=0?u同理,若x?0为自由端,则相应的边界条件为?x(3)若x?l端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的∣x?0?0偏移由函数v(t)给出,则在x?l端支承的伸长为u(l,t)?v(t)。
数学物理方程_答案_谷超豪
(3)若 x = l 端固定在弹性支承上, 而弹性支承固定于某点, 且该点离开原来位置的 偏移由函数 v(t ) 给出,则在 x = l 端支承的伸长为 u (l , t ) − v(t ) 。由虎克定律有
E
∂u ∣ x =l = − k[u (l , t ) − v(t )] ∂x ∂u + σu ) ∣ x =l = f (t ) ∂x
=
1 ∂ 2v ( ) h − x a2 ∂t 2
∂ 2v 1 ∂ 2v = ∂x 2 a 2 ∂t 2
由波动方程通解表达式得
v( x, t ) = F ( x − at ) + G ( x + at )
所以 为原方程的通解。 由初始条件得
u=
F (x − at ) + G (x + at ) (h − x )
其中 ρ 为杆的密度, E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 x + ∆x 。现在计算这段杆 在时刻 t 的相对伸长。在时刻 t 这段杆两端的坐标分别为:
x + u ( x, t ); x + ∆x + u ( x + ∆x, t )
其相对伸长等于 令
[ x + ∆x + u ( x + ∆x, t )] − [ x + u ( x, t )] − ∆x = u x ( x + θ∆x, t ) ∆x
第一章.
波动方程
§1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以 u(x,t)表示静止时在 x 点处的点 在时刻 t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 u ( x, t ) 满足 方程
数学物理方程答案谷超豪
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
数学物理方法-热传导方程
E u 代入方程式(*)中,即得静电势满足的方程
由 u i u j u k u 和 a ax ay az
x y z
x y z
可得: 2u /
它称为泊松方程,是非齐次的。
对于不存在电荷的区域, 0 ,静电势满足方程 2u 0 此方程称为拉普拉斯方程。是齐次的。
2. 稳定温度场
,称为齐次边界条件,否则称
5.自然边界条件和周期边界条件 自然边界条件:只要求边界上保持有限值 u 有限值
周期边界条件:如圆柱系统。取柱坐标 (,, z)
对坐标 而言,相差2 的整数倍,仍表示同一点。由
于要求解有唯一性,自然要满足:
u(,0, z) u(, 2 , z) 对坐标 而言,这就是一种周期边界条件。
3. 稳定分布问题
对于稳定分布的问题,例如稳定温度场,静电场等,不随时间而变 化,因此不需要给出初始条件。
如静电场方程 3u /
4. 有源问题
在周期性外源引起的传导和周期性外力作用下的振动问题中,经过 很多周期后,初始条件引起的自由传导或自由振动可以认为已经消 失。这时的传导或振动可以认为完全是由周期性外源或外力引起的。 处理这类问题时,完全可以忽略初始条件的影响,将其当作无初始 条件问题。
Kux |xL H (u |xL )
令 h K / H,上式化为: (u hux ) |xL
第三类边界条件(混合边界条件)又称为Robin条件。
4.齐次边界条件
上面三类边界条件,可用统一的线性关系式表示:
u n
u
f (,t)
如果 f (,t) 0,则: 为非齐次边界条件。
u n
u
0
§1.3 定解问题的提法
推导了三种不同类型偏微分方程
数学物理方程谷超豪版第二章课后规范标准答案
,.第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-=又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kts xu k t s xukdQ xx xx ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l k xu k t u c --∂∂=∂∂ρ 或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数学物理方程第二版(谷超豪)答案
sin tg
u x.
x
2u u u [l ( x x)] ∣ x x g [l x] ∣ x g 2 x x t
利用微分中值定理,消去 x ,再令 x 0 得
x u( x, t ); x x u( x x, t )
其相对伸长等于 令
[ x x u ( x x, t )] [ x u ( x, t )] x u x ( x x, t ) x
x 0 ,取极限得在点 x 的相对伸长为 u x ( x, t ) 。由虎克定律,张力 T ( x, t ) 等于
t有
G(x+at) 常数.
即对任何 x, G(x) C 0 又 G(x)=
1 1 x C ( x) ( )d 2 2a x0 2a
所以 ( x), ( x) 应满足
或
1 x ( )d C1 (常数) a x0 1 ' (x)+ ( x) =0 a
( x)
即得所证。
2u u ( E ( x) ) = 2 x x t
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由, (3)端点固定在弹性支承上,试 分别导出这三种情况下所对应的边界条件。
数学物理方程答案
解:(1)杆的两端被固定在 x 0, x l 两点则相应的边界条件为
于是得运动方程
( x)s( x) x utt ( x, t ) ESu x ( x x) | x x ESu x ( x) | x
利用微分中值定理,消去 x ,再令 x 0 得
( x)s( x)utt
热传导动方程
数学物理方程
第二章 热传导方程
分析:(两个物理定律) 1、热量守恒定律: 温度变 化吸收 的热量
通过边 界流入 的热量
热源放 出的热 量
2、傅里叶(Fourier)热传导定律:
u dQ k ( x , y , z ) dS dt , n k ( x , y, z ) 为热传导系数。
[ F ( x , y, z , t )dV ]dt
t1
t2
由 及 t1 , t 2 的任意性知 u u u u c (k ) (k ) (k ) F ( x, y, z, t ).(1.4) t x x y y z z
数学物理方程
数学物理方程
上述定解问题可分解为下面两个混合问题:
第二章 热传导方程
(I )
ut a 2 uxx 0, 0 x l , t 0, 0 x l, t 0 : u ( x ), x 0 : u 0, x l : u hu 0, t 0; x
第二章 热传导方程
三维有热源的热传导方程: (均匀且各向同性物 体,即 c , , k 都为常数的物体)
2 2 2 u u u u 2 a 2 2 2 f ( x , y , z , t ), t y z x
(1.5)
k , 其中 a c
和
( II ) ut a 2 uxx f ( x , t ), 0 x l , t 0, t 0 : u 0, 0 x l , x 0 : u 0, x l : u hu 0, t 0. x
t
则(II)的解为: u( x , t ) 0 w ( x , t ; )d ,
第二章热传导方程习题解答
齐海涛
(SDU)
数学物理方程
2015-11-27
9 / 51
热传导方程及其定解问题的导出
解: 与第1题类似, 取导线轴为 x 轴, 在时刻 t1 到 t2 介于 [x1 , x2 ] 的导线段 的热量增加为: 从导线的其它部分流入的热量, 从侧面流入的热量以及电流通 过 [x1 , x2 ] 这段产生的热量之和, 即 ( ) ∫ t2 ∫ x 2 ∫ t2 ∫ x 2 ∫ x2 ∫ t2 ∂ ∂u i2 r k ωdxdt − k1 P(u − u0 )dxdt + 0.24 dxdt. ∂x ω t1 x1 ∂x t1 x1 x1 t1 因此根据热量平衡就可得导线温度满足的方程为 ∂u k ∂2 u k1 P 0.24i2 r = − (u − u0 ) + . 2 ∂t cρ ∂x cρω cρω
Example 1.4
设一均匀的导线处在周围为常数温度 u0 的介质中, 试证: 在常电流作用下导 线的温度满足微分方程 ∂u k ∂2 u k1 P 0.24i2 r = − (u − u0 ) + , 2 ∂t cρ ∂x cρω cρω 其中 i 及 r 分别表示导体的电流及电阻, P 表示横截面的周长, ω 表示横截 面的面积, 而 k1 表示导线对于介质的热交换系数.
Ω Ω t2 t1
∂N dtdxdydz. ∂t
根据质量守恒, 并注意到 Ω, t1 , t2 的任意性, 得所求方程为 ( ) ( ) ( ) ∂N ∂ ∂N ∂ ∂N ∂ ∂N = D + D + D . ∂t ∂x ∂x ∂y ∂y ∂z ∂z
齐海涛
(SDU)
数学物理方程
2015-11-27
6 / 51
数学物理方程谷超豪版第二章课后答案.doc
第二章热传导方程§ 1热传导方程及其定解问题的提1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dQ k 1(u u 1 )dsdt又假设杆的密度为,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度u u( x,t) 。
记杆的截面面积 l 2为 S 。
t 到 tt 内流入截面坐标为 x 到 xx 一小段细杆的热量为 4由假设,在任意时刻dQu s t k u2u s x tkxs t k1x x x xx 2 xt 到 tt 在截面为杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻x 到 xx 一小段中产生的热量为4k 1dQ2k 1 u u l x tu u s x t1l1又在时刻 t 到 tt 在截面为 x 到 xx 这一小段内由于温度变化所需的热量为dQc u x,tt u x,t s x c u s x t由热量守恒原理得:3t tcu s x t k2us x t4k 1u u s x tt tx2 xl1消去 sx t ,再令x 0 , t 2 u 0 得精确的关系:cuk 4k 1 u ut x 2 l1u k 2u 4ka 22 u4k或t cx2c 1u u 1x2c 1u u 1ll其中a2kc2. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为 ,则从时刻 t 1 到 t 2 流入此闭曲面的溶 质,由 dMDudsdt ,其中 D 为扩散系数,得nt 2D udsdtMt 1 snt 2t 2C udvdtM 1C u x, y, z, t 2 u x, y, z, t 1 dxdydzCudtdvt 1tt 1t两者应该相等,由奥、高公式得:t 2uuut 2C udvdtMD D D dvdt M 1t 1xx y y z zt 1t其中 C 叫做孔积系数 =孔隙体积。
数学物理方程 第二章练习题
Example 1.3
齐海涛
(SDU)
数学物理方程
2012-10-3
7 / 49
热传导方程及其定解问题的导出
. . 砼(混泥土)内部储藏着热量, 称为水化热, 在它浇筑后逐渐放出, 放热速度和 它所储藏的水化热成正比. 以 Q(t) 表示它在单位体积中所储的热量, Q0 为 初始时刻所储的热量, 则 ddQ t = −βQ, 其中 β 为正常数. 又假设砼的比热为 c, 密度为 ρ, 热传导系数为 k, 求它在浇筑后温度 u 满足的方程. . 解: 设砼内点 (x, y, z) 在时刻 t 的温度为 u(x, y, z, t), 显然 dQ = −βQ, dt Q(0) = Q0 , ⇒ Q(t) = Q0 e−βt .
2012-10-3 3 / 49
Example 1.1
齐海涛
(SDU)
数学物理方程
热传导方程及其定解问题的导出
故单位时间流入 (x, x + ∆x) 的热量为 ( ) ∂u πl2 ∂ k(x) · ∆x − k1 (u − u1 )πl∆x. dQ = dQ1 + dQ2 + dQ3 = ∂x ∂x x∗ 4 综上, 从时刻 t1 到 t2 流入位于 [x1 , x2 ] 杆段的热量为 ) ] ∫ t2 ∫ x2 [ ( ∂u πl2 ∂ k(x) − k1 (u − u1 )πl dxdt. ∂x ∂x 4 t1 x1 而在这段时间内 [x1 , x2 ] 杆段内各点温度从 u(x, t1 ) 变到 u(x, t2 ), 其吸收热量 为 ∫ t2 ∫ x2 2 ∫ x2 πl ∂u πl2 cρ dxdt. cρ(u(x, t2 ) − u(x, t1 )) dx = 4 4 ∂t t1 x1 x1 根据热量守恒, 并注意到 x1 , x2 , t1 , t2 的任意性, 得所求方程为 ( ) 1 ∂ ∂u ∂u 4k1 = (u − u 1 ). k(x) − ∂t cρ ∂x ∂x cρl
数学物理方程_答案_谷超豪
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+ 利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为.0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xux E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu∂∂|l x ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
数理方法第二版前三章习题-谷超豪
-3-
1.2 习题选讲
因此, 根据达朗贝尔公式, v (x, t)的通解可写为 v (x, t) = F (x − at) + G(x + at),从而 F (x − at) + G(x + at) u(x, t) = h−x
(2) 根据上述变换, v (x, t)所满足的初始条件为 t = 0 : v = (h − x)ϕ(x), ∂v = (h − x)ψ (x) ∂t
其中σ = k /ES . 类似的,对x = l 端,有
− ∂u + σu ∂x
2
= 0.
x= l
3. 试证:圆锥形枢轴的纵振动方程为 ∂ x E 1− ∂x h
∂u ∂x
=ρ 1−
x h
2
∂2u , ∂t2
其中h 为圆锥的高. 证明: 此时S (x) = S0 1 −
x h
2
,其中S0 为圆锥枢轴的底面积.根据第1题的推导,即得所证.
1. 证明方程 ∂ ∂x 1− x h
2
∂u ∂x
=
1 x 1− 2 a h
2
∂2u , ∂t2
的通解可以写成
u(x, t) =
F (x − at) + G(x + at) h−x
其中h > 0为常数, F , G为任意的具有二阶连续导数的单变量函数,并由此求解它的初值问题: ∂v t = 0 : v = (h − x)ϕ(x), = (h − x)ψ (x) ∂t 解: (1) 令v (x, t) = (h − x)u(x, t),则 v (x, t) 满足方程 2 ∂2v 2∂ v = a ∂t2 ∂x2
证明:
(1) 根据非齐次问题解的表达式可知,影响区域为 {(x, t) |t 0, x1 − at x x2 + at }