遥感实验报告

合集下载

遥感影像镶嵌实验报告(3篇)

遥感影像镶嵌实验报告(3篇)

第1篇一、实验目的1. 理解遥感影像镶嵌的概念和意义。

2. 掌握遥感影像镶嵌的基本原理和方法。

3. 学会使用遥感图像处理软件进行影像镶嵌操作。

4. 分析影像镶嵌的效果,并探讨优化影像镶嵌的方法。

二、实验原理遥感影像镶嵌是将多幅遥感影像按照一定规则拼接成一幅大范围、连续的遥感影像,以展示更大范围的地理信息。

影像镶嵌的原理主要包括:1. 影像匹配:通过比较多幅影像之间的相似性,确定影像之间的对应关系。

2. 影像配准:根据影像匹配结果,对多幅影像进行几何校正,使其在空间上对齐。

3. 影像拼接:将配准后的影像按照一定规则拼接成一幅连续的遥感影像。

三、实验数据本实验使用的数据为我国某地区Landsat 8影像,包含全色波段和多个多光谱波段。

四、实验步骤1. 数据预处理(1)辐射定标:将原始影像的数字量转换为地物反射率或辐射亮度。

(2)大气校正:去除大气对影像的影响,提高影像质量。

(3)几何校正:纠正影像的几何畸变,使其符合实际地理坐标。

2. 影像匹配(1)选择匹配算法:本实验采用互信息匹配算法。

(2)设置匹配参数:根据影像特点,设置匹配窗口大小、匹配阈值等参数。

(3)进行匹配运算:将多幅影像进行匹配,得到匹配结果。

3. 影像配准(1)根据匹配结果,确定影像之间的对应关系。

(2)选择配准方法:本实验采用二次多项式配准方法。

(3)进行配准运算:将多幅影像进行配准,使其在空间上对齐。

4. 影像拼接(1)选择拼接方法:本实验采用线段拼接方法。

(2)设置拼接参数:根据影像特点,设置拼接线宽、重叠区域等参数。

(3)进行拼接运算:将配准后的影像进行拼接,得到一幅连续的遥感影像。

5. 结果分析(1)分析拼接效果:观察拼接后的影像,检查是否存在明显的拼接线、几何畸变等问题。

(2)优化拼接方法:根据分析结果,调整拼接参数,优化拼接效果。

五、实验结果与分析1. 拼接效果通过实验,成功将多幅Landsat 8影像拼接成一幅连续的遥感影像。

遥感ENVI实验报告

遥感ENVI实验报告

遥感ENVI实验报告一、实验目的本实验的目的是学习和掌握ENVI(Environment for Visualizing Images)软件在遥感图像处理方面的应用。

通过本次实验,我们将了解遥感图像的基本概念和原理,并学习使用ENVI软件进行图像预处理、分类和地物提取。

二、实验要求1.学习ENVI软件的基本操作和功能;2.能够对遥感图像进行预处理,如辐射校正和大气校正;3.能够对遥感图像进行分类,如最大似然分类和支持向量机分类;4.能够进行地物提取,如植被指数计算和特征提取。

三、实验步骤和结果1.图像预处理首先,我们导入了一幅Landsat 8卫星遥感图像,并进行了辐射校正和大气校正。

辐射校正是将图像中的DN(数字化值)转换为辐射度值,以便进行后续的大气校正和分类。

大气校正是根据大气传输模型对图像进行校正,以消除大气影响。

经过预处理后,我们得到了一幅处理后的图像。

2.图像分类接下来,我们使用ENVI软件进行了图像分类。

我们采用了最大似然分类和支持向量机分类两种方法进行分类。

最大似然分类是一种统计分类方法,通过最大化每类像素的似然度来划分不同类别,得到分类结果。

支持向量机分类是一种基于机器学习的分类方法,通过训练样本来构建分类模型,并用于对图像中的未分类像素进行分类。

3.地物提取最后,我们对图像进行了地物提取。

我们计算了该图像的植被指数,并使用阈值法将植被像素提取出来。

植被指数是通过计算不同波段之间的光谱差异来反映植被覆盖程度的指标。

我们还对植被像素进行了形状和纹理特征的提取,以获取更具有区分度的特征。

实验结果显示,经过图像预处理和分类,我们得到了一幅分类结果图。

通过该图像,我们可以清楚地看到不同地物类别的分布情况。

同时,通过地物提取,我们成功提取出了图像中的植被像素,并获得了植被的形状和纹理特征。

四、实验总结通过本次实验,我们学习和掌握了ENVI软件在遥感图像处理方面的应用。

我们了解了遥感图像的基本概念和原理,并学会了使用ENVI软件进行图像预处理、分类和地物提取。

遥感实验报告裁剪拼接(3篇)

遥感实验报告裁剪拼接(3篇)

第1篇一、实验目的本次实验旨在学习遥感影像处理中的裁剪与拼接技术,通过对遥感影像进行裁剪和拼接,提高遥感数据的可用性和分析效率。

二、实验背景遥感技术是获取地球表面信息的重要手段,广泛应用于资源调查、环境监测、灾害评估等领域。

遥感影像经过处理和提取后,才能为实际应用提供有价值的信息。

裁剪与拼接是遥感影像处理中的基本操作,通过对影像进行裁剪和拼接,可以去除无关信息,提高影像的可用性。

三、实验材料1. 遥感影像数据:包括多景遥感影像,如Landsat、Sentinel-2等;2. 裁剪与拼接软件:如ENVI、ArcGIS等;3. 实验环境:计算机、遥感数据处理软件等。

四、实验步骤1. 数据准备(1)选择遥感影像数据,确保影像质量良好、覆盖范围完整;(2)对遥感影像进行预处理,包括辐射校正、大气校正等,提高影像质量。

2. 裁剪操作(1)确定裁剪范围:根据实验需求,选择合适的裁剪范围,如行政区域、研究区域等;(2)使用裁剪工具对遥感影像进行裁剪,生成新的影像。

3. 拼接操作(1)选择拼接方式:根据实际情况,选择合适的拼接方式,如同名像元拼接、重叠区域拼接等;(2)使用拼接工具对遥感影像进行拼接,生成新的影像。

4. 质量评估(1)检查拼接后的影像是否完整,是否存在缝隙、错位等问题;(2)分析拼接区域的地物特征,确保拼接效果良好。

五、实验结果与分析1. 裁剪结果经过裁剪操作,生成了新的遥感影像,去除了无关信息,提高了影像的可用性。

2. 拼接结果经过拼接操作,生成了新的遥感影像,拼接区域地物特征良好,拼接效果满意。

3. 质量评估(1)拼接后的影像完整,无缝隙、错位等问题;(2)拼接区域地物特征良好,拼接效果满意。

六、实验结论通过本次实验,掌握了遥感影像的裁剪与拼接技术,提高了遥感数据的可用性和分析效率。

在实际应用中,可根据具体需求选择合适的裁剪与拼接方法,为遥感数据处理提供有力支持。

七、实验心得1. 裁剪与拼接是遥感影像处理中的基本操作,对于提高遥感数据的可用性具有重要意义;2. 在实际操作中,应根据具体需求选择合适的裁剪与拼接方法,确保拼接效果良好;3. 学习遥感影像处理技术,有助于提高遥感数据的分析和应用水平。

《遥感原理与应用》实验报告

《遥感原理与应用》实验报告

《遥感原理与应用》实验报告实验报告:遥感原理与应用一、实验目的通过实验了解遥感的基本原理,掌握遥感技术的基本应用方法。

二、实验仪器和材料1.遥感软件:ENVI、ERDAS、IDRISI等2.遥感数据:卫星遥感影像数据三、实验内容1.遥感影像地理信息提取通过遥感软件导入遥感影像数据,利用图像处理方法提取地理信息,如土地利用类型、植被覆盖度等。

2.遥感影像分类利用遥感影像数据进行分类分析,将影像中的不同对象或地物进行分类,如建筑物、农田、水域等。

3.遥感影像变化检测利用不同时间的遥感影像数据进行变化检测,观察地物变化的情况,如城市扩张、植被变化等。

四、实验步骤1.打开遥感软件,导入遥感影像数据。

2.使用图像处理方法提取地理信息,如选择适当的阈值进行植被覆盖度的提取。

3.利用分类分析方法将影像中的不同对象进行分类,可以使用最大似然分类方法或支持向量机分类方法等。

4.比较不同时间的遥感影像数据,通过图像差异分析方法进行变化检测。

五、实验结果通过实验,我们成功使用遥感软件导入遥感影像数据,并提取了植被覆盖度等地理信息。

同时,我们还使用分类分析方法将影像中的不同对象进行了分类,得到了建筑物、农田、水域等分类结果。

最后,我们通过比较不同时间的遥感影像数据,成功进行了变化检测,观察到了城市扩张和植被变化的情况。

六、实验感想通过这次实验,我们深入了解了遥感技术的基本原理和应用方法。

遥感技术具有非常广泛的应用领域,如环境监测、农业管理、城市规划等。

遥感影像数据可以提供大量的地理信息,通过图像处理和分类分析可以提取出有用的地理信息,同时通过变化检测可以观察到地物的变化情况。

掌握遥感技术对于我们理解地球变化、环境保护和资源利用具有重要意义。

总结:通过这次实验,我们不仅学习到了遥感技术的基本原理和应用方法,还亲自进行了实验操作,掌握了使用遥感软件进行遥感影像地理信息提取、分类分析和变化检测的基本技能。

希望今后能够将所学的遥感知识应用到实际工作中,为地球环境的保护和资源的利用做出贡献。

遥感实验报告实验成果

遥感实验报告实验成果

一、实验背景随着遥感技术的不断发展,遥感技术在环境监测、资源调查、灾害预警等领域得到了广泛应用。

本实验旨在通过遥感技术,对某地区进行地表覆盖分类,为该地区的环境监测和资源调查提供数据支持。

二、实验目的1. 熟悉遥感图像处理软件的基本操作;2. 掌握遥感图像分类方法;3. 对某地区进行地表覆盖分类,为该地区的环境监测和资源调查提供数据支持。

三、实验内容1. 数据准备本实验选用某地区Landsat 8卫星影像作为实验数据,该影像覆盖范围约为1000平方公里,分辨率为30米。

实验过程中,首先对影像进行预处理,包括辐射校正、几何校正和大气校正等。

2. 遥感图像分类(1)选择合适的分类器本实验选用支持向量机(SVM)作为分类器,因为SVM在处理小样本数据时具有较好的性能。

(2)训练样本选择为提高分类精度,需要选择具有代表性的训练样本。

本实验采用随机抽样方法,从预处理后的影像中随机选取1000个样本作为训练样本。

(3)分类结果分析将训练样本输入SVM分类器进行训练,得到分类模型。

然后,将测试样本输入分类模型进行分类,得到分类结果。

3. 分类结果验证为验证分类结果的准确性,采用混淆矩阵对分类结果进行评价。

混淆矩阵是一种用于评估分类结果的方法,它能够直观地反映分类精度、召回率和F1值等指标。

四、实验结果与分析1. 分类精度通过计算混淆矩阵,得到分类精度为90.5%。

这说明本实验采用SVM分类器对某地区进行地表覆盖分类的效果较好。

2. 分类结果分析(1)地表覆盖类型分布通过分析分类结果,可以看出该地区地表覆盖类型主要有耕地、林地、草地、水域、建筑用地和未利用地等。

(2)地表覆盖变化分析与历史影像对比,可以看出该地区耕地面积有所增加,林地和草地面积有所减少,建筑用地面积显著增加。

这可能与当地经济发展和城市化进程有关。

3. 分类结果应用(1)环境监测通过地表覆盖分类结果,可以监测该地区土地利用变化,为环境监测提供数据支持。

遥感实验报告几何校正

遥感实验报告几何校正

遥感实验报告几何校正1. 引言遥感技术在地球科学领域中起着至关重要的作用,可以提供大量的空间信息。

然而,由于地球曲率、地表高程、投影效果等原因,遥感图像中存在一定的几何失真。

为了解决这些问题,需要对遥感图像进行几何校正,以确保图像的精确度和准确性。

本实验旨在通过软件工具进行遥感图像的几何校正,以便更好地分析和解读遥感图像所提供的信息。

2. 实验目标本实验的主要目标是对给定的遥感图像进行几何校正,达到以下几个具体目标:1. 去除图像中的地理畸变,使图像上的物体形状和比例与现实世界相符合;2. 将图像从传感器坐标系转换到地理坐标系,使图像可以与其他地理数据进行叠加分析;3. 评估图像几何校正的效果,验证几何校正的有效性。

3. 实验步骤3.1 数据准备在实验开始前,我们需要准备一幅遥感图像和其对应的地理坐标信息。

安装并配置合适的遥感图像处理软件,以便进行后续的操作。

3.2 图像去畸变首先,需要对图像进行去畸变处理,以消除地理畸变对图像造成的影响。

根据实际情况选择适合的去畸变算法,对图像进行处理,并保存处理后的图像。

3.3 坐标系转换将处理后的图像从传感器坐标系转换到地理坐标系。

选择合适的坐标转换方法和参数,进行坐标系转换,并保存转换后的图像。

3.4 评估几何校正效果通过对比几何校正前后的图像,评估几何校正的效果。

可以采用多种指标进行评估,如虚拟控制点对比、图像配准精度等。

4. 实验结果经过上述实验步骤,我们成功实现了对遥感图像的几何校正。

通过图像去畸变和坐标系转换,我们得到了一幅与现实世界相符合的几何校正后的遥感图像。

评估几何校正效果时,通过与虚拟控制点对比和图像配准精度的测量,我们发现几何校正的效果符合预期,并且达到了较好的精度要求。

5. 结论与展望本实验通过对遥感图像进行几何校正,成功消除了图像中的地理畸变,实现了图像的空间精确定位。

几何校正的结果具有较高的精度和准确性,可以为后续的遥感图像分析和解读提供可靠的基础。

最新《遥感技术》实验报告

最新《遥感技术》实验报告

最新《遥感技术》实验报告实验目的:本实验旨在通过实际操作,加深对遥感技术基本原理的理解,并掌握遥感数据的获取、处理与分析方法。

通过实验,学习如何利用遥感技术进行地表覆盖分类、资源评估和环境监测。

实验内容:1. 遥感数据的获取与预处理- 从国家遥感中心或其他数据平台下载适用于实验的遥感影像数据。

- 对下载的遥感影像进行必要的预处理,包括辐射校正、大气校正和几何校正。

2. 遥感影像的解译与分类- 利用遥感影像解译软件,如ENVI或ERDAS IMAGINE,对预处理后的影像进行目视解译。

- 采用非监督分类和监督分类方法,对遥感影像中的地表覆盖类型进行分类。

3. 分类结果的精度评估- 通过实地调查或其他高精度数据,收集地面真实情况作为参考。

- 利用混淆矩阵等统计工具,对遥感分类结果进行精度评估。

4. 遥感技术在资源评估和环境监测中的应用- 选取特定区域,运用遥感技术进行植被覆盖度、土壤湿度等环境因子的监测。

- 分析遥感监测数据,评估资源状况和环境变化趋势。

实验结果:通过本次实验,成功获取并预处理了所需遥感影像数据。

在解译与分类阶段,非监督分类结果显示了地表覆盖的大致分布,而监督分类则提供了更为精确的分类结果。

精度评估表明,监督分类的总体精度达到了85%。

在资源评估和环境监测应用中,遥感技术能够有效地监测到植被覆盖度的季节性变化和土壤湿度的空间分布情况。

结论:实验验证了遥感技术在地表覆盖分类、资源评估和环境监测中的有效性和实用性。

通过本次实验,不仅提高了对遥感技术操作的熟练度,也为后续相关研究提供了实验基础和技术支持。

未来的工作可以进一步探索更先进的分类算法和数据分析方法,以提高遥感应用的精度和效率。

遥感实验报告(总24页)

遥感实验报告(总24页)

遥感实验报告(总24页)一、背景近年来,遥感技术的发展为人们研究地表环境提供了可靠的信息和丰富的空间数据,深化了人们对地表环境的理解。

近年来,有关耕地变化的空间数据分析研究得到了越来越多的关注。

使用遥感技术可以更加迅速、准确和有效地统计分析相关的数据,并能够从多个方面反映土地使用变化。

为了探索耕地变化的规律,对哈尔滨市某农村耕地变化进行遥感实验,利用遥感技术提取准确的空间数据,分析耕地变化的规律,评估农村耕地变化的影响因素,以维护农业的可持续发展。

二、实验目的就哈尔滨市某乡镇山区耕地变化进行遥感科学研究,包括遥感影像的处理、对耕地的提取、耕地变化的分析处理、影响因素分析等,以查找此区域耕地变化的一般规律和空间分布规律,研究该区域耕地变化的影响因素,为农业可持续发展提供参考意见。

三、实验材料本次实验使用的哈尔滨市某乡镇山区的遥感影像,已经完成影像的处理工作,影像的一致性检验完成,根据遥感原理和方法,利用遥感软件确定区域内植被覆盖率,用栅格数据处理技术提取耕地空间分布数据,运用面积、角点和中心点分析技术,进行耕地变化的空间分析,并根据时序差异更新岛,此外,还对耕地变化影响因素进行相关分析,以获得耕地变化的规律和机理。

四、实验方法(1)首先,利用遥感影像处理技术,对哈尔滨市某乡镇的遥感影像进行处理,包括图像校正、去燥、充色等处理。

(2)利用遥感原理和方法,结合多媒体航摄影图像,确定区域内植被覆盖率,并计算实时植被覆盖率,以识别土地利用情况;(3)采用栅格数据处理技术,提取区域内的耕地空间分布数据,采用面积、角点和中心点分析技术,进行耕地变化的空间分析,画出耕地变化图;(4)运用拟合技术,对耕地变化的时序差异进行检验,更新耕地空间分布,利用ArcGIS工具箱进行属性数据叠加,分析耕地变化影响因素;(5)最后分析耕地变化幅度,统计出耕地变换情况,绘制耕地变化临时图,分析出耕地变化规律和空间规律,找出耕地变化影响因素,从多个角度对耕地变化进行评价,以反映耕地变化的情况。

遥感概论实验报告envi 基础

遥感概论实验报告envi 基础

遥感概论实验报告envi 基础
一、引言
1.1 实验目的
1.2 实验原理
1.3 实验背景
二、envi 基础
2.1 什么是envi
2.2 envi的功能和特点
2.3 envi的应用领域
三、envi的安装和配置
3.1 envi的安装步骤
1.下载envi安装程序
2.双击安装程序并按照提示进行安装
3.完成安装后,打开envi软件
3.2 envi的配置
1.设置数据文件路径
2.设置显示界面样式
3.配置工具栏和快捷键
四、envi的基本操作
4.1 打开遥感影像文件
1.导入多光谱遥感影像
2.导入高光谱遥感影像
4.2 遥感影像的显示和增强
1.调整影像的亮度和对比度
2.使用伪彩色方案显示遥感影像
4.3 执行空间过滤和图像分类
1.应用滤波器对遥感影像进行平滑处理
2.使用图像分类算法对遥感影像进行分类
4.4 遥感影像的几何校正和地理配准
1.对遥感影像进行几何校正
2.进行地理配准操作
4.5 遥感影像的特征提取与分析
1.提取遥感影像的植被指数
2.进行土地利用/覆盖分类等分析
五、实验结果与讨论
5.1 打开遥感影像并进行显示和增强5.2 实施空间过滤和图像分类
5.3 进行影像的几何校正和地理配准
5.4 进行特征提取与分析
六、结论
七、参考文献
八、致谢。

遥感实验报告

遥感实验报告

遥感实验报告引言:遥感技术是利用卫星、飞机等遥感平台获取地球表面信息的一种技术手段。

通过对不同波段的电磁辐射进行探测和分析,遥感技术可以获取地表的空间分布、物质组成以及变化情况等信息。

本次实验旨在通过遥感图像的获取和解译,了解和掌握遥感技术的基本原理和应用。

一、遥感数据获取:1. 数据来源:本次实验使用的遥感数据来源于卫星遥感图像,通过开源的遥感数据平台获得。

2. 数据类型:本次实验使用的遥感数据为多光谱遥感图像,包含多个波段的信息。

通过不同波段的数据分析,可以获取地表的不同特征和信息。

二、遥感图像解译:1. 图像预处理:图像预处理是遥感图像解译的基础工作,包括图像几何校正、辐射校正和大气校正等过程。

这些预处理步骤可以提高图像质量,减少噪声和失真。

2. 地物分类:地物分类是遥感图像解译的关键环节。

通过对遥感图像中的像元进行分类,可以将地表物体分为不同的类别,如水体、植被、建筑等。

常用的分类方法包括监督分类和非监督分类。

3. 特征提取:特征提取是对地物进行进一步分析和描述的过程。

通过提取地物的形状、颜色、纹理等特征,可以对地物进行进一步分类和识别。

三、遥感技术应用:1. 土地利用与覆盖变化研究:通过遥感图像的获取和解译,可以对土地利用与覆盖变化进行研究。

通过对多时相的遥感数据进行对比分析,可以了解土地利用变化的趋势和驱动因素。

2. 自然资源调查与监测:遥感技术在自然资源调查与监测中有着广泛的应用。

通过遥感图像的获取和解译,可以对森林、湿地和土地等自然资源进行调查和监测,为资源管理和保护提供科学依据。

3. 灾害监测与评估:遥感技术在灾害监测与评估中具有重要作用。

通过遥感图像的获取和解译,可以实时监测和评估自然灾害的影响范围和程度,为灾害应对和救援提供决策支持。

结论:本次实验通过遥感图像的获取和解译,了解了遥感技术的基本原理和应用。

遥感技术在土地利用与覆盖变化研究、自然资源调查与监测和灾害监测与评估等方面具有广泛的应用前景。

遥感实验报告

遥感实验报告

一、实验背景随着科技的飞速发展,遥感技术作为一种获取地球表面信息的重要手段,在地理信息系统、资源调查、环境监测等领域发挥着越来越重要的作用。

为了更好地了解遥感技术的基本原理和应用,我们进行了本次遥感实验。

二、实验目的1. 掌握遥感图像的获取和处理方法;2. 熟悉遥感图像处理软件ENVI的基本操作;3. 学习遥感图像的分类和提取信息的方法;4. 培养团队合作精神和实际操作能力。

三、实验原理遥感技术是利用电磁波对地球表面进行探测和监测的技术。

通过遥感传感器获取的图像数据,可以反映地表物体的物理、化学和生物特性。

遥感图像处理主要包括图像校正、分类、提取信息等步骤。

四、实验内容1. 图像获取实验中,我们使用了ENVI软件,从美国地质调查局(USGS)的地球观测系统数据和信息(EOSDIS)中下载了北京市的Landsat 8卫星影像。

2. 图像校正首先,我们对下载的遥感图像进行了几何校正,以消除图像中的几何畸变。

通过选择地面控制点,将遥感图像与实际地理位置相对应。

3. 图像分类接着,我们进行了遥感图像的分类。

采用监督分类方法,利用ENVI软件中的分类器,对遥感图像进行分类。

分类过程中,我们选取了地物特征明显的区域作为训练样本,以指导分类器进行分类。

4. 信息提取最后,我们利用遥感图像提取了北京市的地物信息,包括水体、植被、建筑等。

通过对提取信息的分析,可以了解北京市的地表环境状况。

五、实验结果与分析1. 图像校正通过几何校正,我们成功地将遥感图像与实际地理位置相对应,消除了图像中的几何畸变。

校正后的图像可以更准确地反映地表物体的真实位置。

2. 图像分类在遥感图像分类过程中,我们共分为三个类别:水体、植被和建筑。

经过分类,我们得到了较为准确的分类结果。

通过分析分类结果,可以看出北京市的水体主要分布在北部地区,植被主要分布在山区和郊外,建筑主要集中在城市中心区域。

3. 信息提取通过对遥感图像提取的地物信息进行分析,我们可以了解到北京市的地表环境状况。

遥感影像处理实验报告(3篇)

遥感影像处理实验报告(3篇)

第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。

遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。

本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。

二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。

2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。

3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析:对分类结果进行分析,评估分类精度。

三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。

- 确保影像数据具有较好的质量和分辨率。

2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。

- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。

- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。

3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。

- 对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。

- 对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析- 对分类结果进行分析,评估分类精度。

- 分析分类结果中存在的问题,并提出改进措施。

四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。

2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。

3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。

遥感概论实验报告

遥感概论实验报告

遥感概论实验报告遥感概论实验报告导言:遥感技术是一种通过获取和解释地球表面的信息的方法,它使用传感器从遥远的地方获取数据,以帮助我们了解地球的变化和特征。

本实验旨在介绍遥感技术的基本原理和应用,并通过实际操作来加深对遥感技术的理解。

一、遥感技术的基本原理遥感技术的基本原理是利用传感器获取地球表面的电磁辐射,并将其转化为数字信号进行处理和分析。

地球表面的电磁辐射包括可见光、红外线、微波等不同波段的辐射。

不同波段的辐射可以提供不同的地表信息,如植被覆盖、土地利用、水体分布等。

二、遥感数据的获取与处理在实验中,我们使用了一台遥感卫星获取的遥感影像数据。

遥感影像数据是通过卫星传感器拍摄地球表面的图像,其中包含了丰富的地表信息。

我们首先需要对遥感影像进行预处理,包括辐射校正、大气校正等,以消除影像中的噪声和干扰。

然后,我们可以使用遥感软件对影像进行分类、变换等处理,以获取我们所需要的地表信息。

三、遥感技术的应用遥感技术在许多领域都有广泛的应用。

其中,环境监测是遥感技术的一个重要应用领域。

通过遥感技术,我们可以监测地表的植被覆盖情况、水体污染程度等环境指标,以评估环境质量和进行环境管理。

此外,遥感技术还可以应用于农业、城市规划、灾害监测等领域,为决策提供科学依据。

四、遥感技术的发展趋势随着科技的不断进步,遥感技术也在不断发展。

目前,高分辨率遥感影像的获取成为可能,这为地表信息的提取和分析提供了更多的细节和精度。

此外,遥感技术与人工智能的结合也成为一个研究热点。

通过利用机器学习和深度学习等技术,可以实现对大规模遥感数据的自动分析和解释,提高遥感技术的效率和准确性。

结论:通过本次实验,我们对遥感技术有了更深入的了解。

遥感技术作为一种获取地球表面信息的方法,具有广泛的应用前景。

在未来,随着技术的进一步发展,遥感技术将在环境监测、农业、城市规划等领域发挥更大的作用。

我们相信,通过不断的研究和应用,遥感技术将为我们揭示更多地球的奥秘。

遥感变化监测实验报告

遥感变化监测实验报告

一、实验目的本次实验旨在通过遥感技术对某区域进行变化监测,分析该区域在特定时间段内的变化情况,验证遥感技术在环境监测和资源调查中的应用价值。

二、实验原理遥感变化监测是利用遥感影像分析技术,通过对同一地区在不同时间获取的遥感影像进行比较,识别和分析区域内的变化信息。

实验主要采用以下原理:1. 光谱分析:遥感影像的光谱信息反映了地表物质的物理和化学特性,通过分析光谱变化可以识别地表物质的变化。

2. 图像处理:通过图像增强、滤波、分类等方法对遥感影像进行处理,提高图像质量和信息提取能力。

3. 变化检测:通过比较不同时间遥感影像的相似性,识别和分析区域内的变化信息。

三、实验数据实验数据包括以下内容:1. 遥感影像:选择不同时间段的遥感影像,如Landsat、Sentinel-2等。

2. 地理信息系统(GIS)数据:包括研究区域的行政区划、道路、水体等地理要素。

四、实验步骤1. 数据预处理:对遥感影像进行辐射校正、几何校正等预处理,确保影像质量。

2. 图像处理:对遥感影像进行增强、滤波等处理,提高图像质量和信息提取能力。

3. 变化检测:采用图像差异法、变化向量分析(CVA)等方法,识别和分析区域内的变化信息。

4. 结果分析:对变化信息进行分类、统计分析,揭示区域变化规律。

五、实验结果与分析1. 变化区域识别:通过变化检测,识别出研究区域内的变化区域,如城市扩张、土地退化、水体变化等。

2. 变化类型分析:对变化区域进行分类,分析不同类型变化的空间分布和时序变化规律。

3. 影响因素分析:结合GIS数据和社会经济数据,分析影响区域变化的主要因素。

六、结论1. 遥感变化监测技术可以有效识别和分析区域内的变化信息,为环境监测、资源调查等领域提供科学依据。

2. 实验结果表明,遥感技术在城市扩张、土地退化、水体变化等领域的监测具有显著优势。

3. 遥感变化监测技术具有广泛应用前景,可为政府部门、企业和科研机构提供决策支持。

遥感实验报告

遥感实验报告

遥感实验报告一、实验目的。

本实验旨在通过遥感技术对地球表面进行观测和数据获取,以探究遥感技术在环境监测、资源调查和自然灾害预警等方面的应用。

二、实验原理。

遥感技术是利用卫星、飞机等远距离传感器获取地球表面信息的一种技术手段。

通过接收地面反射、辐射或散射的电磁波,可以获取地表地貌、植被覆盖、土地利用等信息。

三、实验步骤。

1. 选择合适的遥感影像数据,包括多光谱影像、高光谱影像等。

2. 对影像数据进行预处理,包括辐射定标、大气校正等。

3. 利用遥感软件进行影像解译,提取地表信息。

4. 对提取的地表信息进行分析和应用,如环境监测、资源调查等。

四、实验结果与分析。

通过实验,我们成功获取了地表的多光谱影像数据,并对其进行了预处理和解译。

最终得到了地表的植被覆盖、土地利用等信息。

这些信息对于环境监测、资源调查等方面具有重要意义。

五、实验结论。

遥感技术在地球科学领域具有重要的应用价值,能够为环境保护、资源管理等提供有力支持。

通过本次实验,我们深入了解了遥感技术的原理和应用,对其在实际工作中的应用有了更深刻的认识。

六、实验总结。

本次实验不仅让我们掌握了遥感技术的基本原理和操作方法,还加深了我们对地球表面信息获取和分析的认识。

未来,我们将进一步学习遥感技术,探索其更广泛的应用领域,为地球科学研究和环境保护做出更大的贡献。

七、参考文献。

1. 《遥感原理与应用》,XXX,XXX出版社,2018年。

2. 《遥感技术在环境监测中的应用》,XXX,XXX期刊,2020年。

以上为本次遥感实验的报告内容,希望对大家有所帮助。

感谢各位的阅读和支持!。

遥感影像实验报告

遥感影像实验报告

一、实验目的本次实验旨在通过遥感影像处理软件ENVI,学习遥感影像的基本处理方法,掌握遥感影像的辐射校正、几何校正、分类和变化检测等关键技术,提高遥感影像处理能力,为后续遥感应用研究打下基础。

二、实验内容1. 辐射校正(1)实验原理:辐射校正是指消除遥感影像中由于传感器、大气、太阳等因素引起的辐射失真,使影像数据真实反映地物辐射特性。

(2)实验步骤:① 打开ENVI软件,导入遥感影像数据;② 选择“Radiometric Correction”模块;③ 选择“Flattening”方法进行辐射校正;④ 保存校正后的影像数据。

2. 几何校正(1)实验原理:几何校正是指消除遥感影像中由于传感器姿态、地球曲率等因素引起的几何失真,使影像数据真实反映地物空间位置。

(2)实验步骤:① 打开ENVI软件,导入遥感影像数据;② 选择“Geometric Correction”模块;③ 选择“Warp”方法进行几何校正;④ 输入校正参数,如坐标系统、校正方法等;⑤ 保存校正后的影像数据。

3. 分类(1)实验原理:遥感影像分类是指根据遥感影像数据中地物光谱和纹理信息,将影像分割为不同地物类别的过程。

(2)实验步骤:① 打开ENVI软件,导入遥感影像数据;② 选择“Classification”模块;③ 选择“Supervised Classification”方法进行监督分类;④ 输入训练样本,设置分类变量;⑤ 选择分类结果输出格式,如分类图层、分类报告等;⑥ 保存分类结果。

4. 变化检测(1)实验原理:遥感影像变化检测是指通过对比同一地区不同时期的遥感影像,分析地物变化信息的过程。

(2)实验步骤:① 打开ENVI软件,导入遥感影像数据;② 选择“Change Detection”模块;③ 选择“Image Difference”方法进行变化检测;④ 输入对比影像,设置变化阈值;⑤ 保存变化检测结果。

三、实验结果与分析1. 辐射校正:通过辐射校正,影像数据的光谱特性得到了有效恢复,地物辐射特性得到了真实反映。

遥感解译标志实验报告(3篇)

遥感解译标志实验报告(3篇)

第1篇一、引言遥感技术作为一种非接触式、远距离探测地球表面信息的手段,在现代地理信息科学、资源调查、环境监测等领域发挥着越来越重要的作用。

遥感解译标志作为遥感影像解译的重要依据,能够帮助我们快速、准确地识别和提取地物信息。

本实验旨在通过实践操作,掌握遥感解译标志的基本原理和方法,提高遥感影像解译能力。

二、实验目的1. 理解遥感解译标志的概念和作用。

2. 掌握遥感解译标志的类型和识别方法。

3. 提高遥感影像解译的准确性和效率。

三、实验材料1. 遥感影像数据:包括多时相、多波段、多分辨率遥感影像。

2. 遥感解译标志图谱:包括地物形状、大小、颜色、纹理等特征。

3. 实验软件:遥感图像处理软件(如ENVI、ArcGIS等)。

四、实验步骤1. 影像预处理:对遥感影像进行几何校正、辐射校正等预处理,以提高影像质量和解译精度。

2. 地物识别:根据遥感解译标志图谱,识别遥感影像中的地物类型,包括植被、水体、建筑、道路等。

3. 特征提取:提取地物的形状、大小、颜色、纹理等特征,为后续分类提供依据。

4. 分类与解译:利用遥感图像处理软件,对遥感影像进行分类和解译,提取地物信息。

5. 结果验证:对解译结果进行验证,确保解译的准确性和可靠性。

五、实验结果与分析1. 地物识别:通过实验,成功识别了遥感影像中的多种地物类型,如植被、水体、建筑、道路等。

2. 特征提取:提取的地物特征包括形状、大小、颜色、纹理等,为后续分类提供了丰富的信息。

3. 分类与解译:利用遥感图像处理软件,对遥感影像进行分类和解译,提取了地物信息。

4. 结果验证:通过对解译结果的实地调查和验证,发现解译结果具有较高的准确性和可靠性。

六、实验总结1. 本实验通过实践操作,掌握了遥感解译标志的基本原理和方法,提高了遥感影像解译能力。

2. 遥感解译标志在遥感影像解译中具有重要作用,能够帮助我们快速、准确地识别和提取地物信息。

3. 在实际应用中,应根据具体情况进行遥感解译标志的选择和调整,以提高解译精度。

遥感实验报告

遥感实验报告

遥感原理与应用
实验报告
(适用专业测绘工程)
此页不打印
姓名:田海燕
班级:测绘14-2班
实验报告(实验六)
[实验名称]
[实验目的与内容]
[实验数据处理及成果]
1、从哈尔滨市遥感影像图上截取某一部分影像,用K-mean和Isodata法对建设物、植被、水体等主要地物进行分类。

2、简述遥感图像Isodata分类的原理及在ENVI中的操作步骤
[体会及建议]
[实验成绩]
实验报告(实验四)
[实验名称]
[实验目的与内容]
[实验数据处理及成果]
1、以哈尔滨市TM影像为例,进行真、假彩色合成。

2、对哈尔滨市TM影像进行密度分割。

3、以TM7(R)、4(G)、1(B)组合进行HLS、HSV色彩变换。

4、简述密度分割、HLS色彩变换的原理及在ENVI中的操作步骤。

[体会及建议]
[实验成绩]
实验报告(实验五)
[实验名称]
[实验目的与内容]
[实验数据处理及成果]
1、以哈尔滨市TM影像为例,求出植被指数影像。

2、求哈尔滨市TM影像绿度分量及亮度分量影像图。

3、简述K—T变换的原理、意义及在ENVI中的操作步骤。

[体会及建议]
[实验成绩]。

遥感实验报告

遥感实验报告

遥感原理与应用实验报告姓名:班级:实验报告(实验一)[实验名称]ENVI窗口的基本操作[实验目的与内容]目的:熟悉ENVI软件的窗口操作方法,掌握影像信息、像元信息浏览方法,影像上距离和面积量算方法。

内容:1、熟悉遥感图像处理软件ENVI的窗口基本操作。

2、查看影像信息和像元信息。

3、距离测量与面积测量。

1、哈尔滨市TM影像成像的时间、分辨率 30m ,各波段的波长。

波段名称:波段:(um)Band 1 Coastal 0.433–0.453Band 2 Blue 0.450–0.515Band 3 Green 0.525–0.600Band 4 Red 0.630–0.680Band 5 NIR 0.845–0.885Band 6 SWIR 1 1.560–1.660Band 7 SWIR 2 2.100–2.300Band 8 Pan 0.500–0.680Band 9 Cirrus 1.360–1.390 Array 2、哈尔滨市TM影像使用的投影类型 UTM 、投影分带北52区。

3、哈尔滨市TM影像使用的坐标系,图像左上角的公里网坐标176685 5221815、地理坐标124º4′30"E,47º0′15"N 。

4、测量狗岛的周长 14233.5074 m面积 4635450 m2。

[体会及建议]通过本次实验我学会对于ENVI的使用,会加载遥感图像,能够用ENVI测量长度与距离,熟悉了ENVI的基本操作。

实验报告(实验二)[实验名称]遥感影像地理坐标定位和配准[实验目的与内容]目的:熟悉在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的配准和影像到地图的校正。

掌握使用ENVI生成影像地图的步骤,学会利用全色影像和多光谱影像进行HSV融合的步骤。

内容:本实验主要涉及遥感图像处理中影像校正、配准功能,通过实验进一步掌握这类处理的理论原理。

卫星海洋遥感实验报告(3篇)

卫星海洋遥感实验报告(3篇)

第1篇一、实验背景随着海洋资源的日益开发和海洋环境问题的日益突出,海洋遥感技术作为一项重要的探测手段,在海洋科学研究和海洋资源管理中发挥着越来越重要的作用。

本实验旨在通过卫星海洋遥感技术,对海洋环境进行观测和分析,为海洋科学研究和海洋资源管理提供数据支持。

二、实验目的1. 了解卫星海洋遥感的基本原理和方法。

2. 掌握卫星海洋遥感数据的获取和处理技术。

3. 分析卫星海洋遥感数据在海洋环境监测中的应用。

4. 提高对海洋环境变化的认识和应对能力。

三、实验内容1. 卫星海洋遥感基本原理- 卫星海洋遥感是利用卫星平台对海洋进行观测的技术,通过遥感传感器获取海洋表面的物理、化学和生物信息。

2. 卫星遥感数据获取- 利用遥感卫星获取海洋遥感数据,包括可见光、红外、微波等波段。

3. 卫星遥感数据处理- 对获取的遥感数据进行预处理,包括辐射校正、几何校正、大气校正等。

4. 海洋环境监测与分析- 利用处理后的遥感数据,对海洋环境进行监测和分析,包括海表温度、海洋污染、海洋动力环境等。

四、实验步骤1. 数据准备- 选择合适的遥感卫星数据,如Landsat、MODIS、SeaWiFS等。

2. 数据预处理- 对遥感数据进行辐射校正、几何校正、大气校正等预处理。

3. 数据处理- 利用遥感数据处理软件(如ENVI、ArcGIS等)进行数据处理。

4. 数据分析- 利用遥感数据分析软件(如IDL、Python等)对遥感数据进行统计分析。

5. 结果展示- 利用可视化工具(如图表、地图等)展示实验结果。

五、实验结果与分析1. 海表温度分析- 通过遥感数据获取的海表温度数据,分析海洋热力环境变化。

2. 海洋污染分析- 利用遥感数据监测海洋污染情况,如油膜、赤潮等。

3. 海洋动力环境分析- 分析海洋动力环境变化,如海流、波浪等。

六、实验结论1. 卫星海洋遥感技术在海洋环境监测中具有重要作用。

2. 通过遥感数据预处理和数据分析,可以获取海洋环境变化信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆交通大学学生实验报告实验课程名称遥感原理与应用开课实验室测量与空间信息处理实验室学院 2013 年级测绘工程专业 1班学生姓名刘文洋学号 631301040126 开课时间 2015 至 2016 学年第 1 学期目录实验一 ENVI 视窗的基本操作 (2)实验二遥感图像的几何校正 (4)实验三遥感图像的增强处理 (8)实验四遥感图像的变换 (12)实验五遥感信息的融合 (15)实验六遥感图像分类 --- 监督分类 (17)实验七遥感图像分类 --- 非监督分类 (19)实验八遥感图像分类后处理 (22)实验一ENVI 视窗的基本操作一、实验目的初步了解目前主流的遥感图象处理软件 ENVI 的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。

二、实验内容视窗功能介绍;文件菜单操作;显示数据;裁剪数据;合并波段三、实验步骤1、首先打开ENVI4.7软件,看见的只有菜单栏,如图所示:2、打开每个下拉菜单浏览其下拉栏中都有哪些功能,比如:我们如果需要打开遥感文件,则可以选择File下的打开功能open image file,打开遥感图像如下图:裁剪数据打开basic tools的resize data功能,如果需要对图像进行一系列处理,可以利用Transform,Classification等功能进行操作,在后续实验中我们也会用到其中的一些功能进行图像的一系列操作,到时候在详细叙述。

3、再熟悉了ENVI4.7的一些基本知识后我们可以简单地操作下,比如对一组数据分别用Gray Scale和Load RGB导入,看看两幅图的区别以及各自的优缺点。

四、实验结果分析在这次的实验中,我们简单的熟悉了下ENVI4.7的一些功能,发现它是可以对遥感图像进行图像几何纠正,直方图均衡,监督分类,非监督分类等一系列操作,为我们后续利用软件对遥感图像处理打下了基础。

实验二遥感图像的几何校正一、实验目的通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。

二、实验内容ENVI 软件中图像预处理模块下的图像几何校正。

利用控制点的选择和编辑来纠正影像。

三、实验步骤1、导入进行几何纠正的基础遥感影像和待纠正的遥感影像2、对两幅图像进行裁剪至需要几何纠正的区域。

应用Basic Tools中的Resize Data功能,将两幅图像裁剪至指定区域。

(注意:裁剪下来的两幅图的区域要大致一样才行。

如:3、选取控制点。

注意选取的控制点间的RMS最大不得大于0.5000,如在选取控制点的过程中遇到大于0.5000的情况,就对RMS最大的点进行调整,遵循原则:0X,<向左;0>Y,向下。

直至每个点的RMS都小于0.5000, X,向右;0Y,向上;0<>在完成了控制点的选取后,将控制点数据保存到制定位置,方便以后查看与修改,本次的控制点数据如下:4、进行图像纠正,并存盘。

四、实验结果分析实验结果:在此次的实验过程中,控制点的选取是至关重要的,如果不能较精确的选择控点校正后的图像有很大的误差,再出现误差后,尽可能的将RMS调到最小;而选择控制点是要图中均匀的选取,不能局部过于密集。

校正后的图像可以和参考图像进行关联对比。

实验三遥感图像的增强处理一、实验目的通过上机操作,了解空间增强、辐射增强几种遥感图象增强处理的过程和方法,加深对图象增强处理的理解。

二、实验内容直方图均衡化;灰度反转;直方图正态化。

三、实验步骤1、直方图均衡化处理(1)ENVI中打开12840-123457影像,Gray Scale模式加载第一波段的影像(2)选择Image窗口中Enhance选项下的Image Equalization来实现图像的均衡化处理。

2、直方图拉伸(1)选择Enhance菜单下的Interactive Stretching选项,单击Stretch Type 菜单,选择不同类型,单击Apply应用即可得到不同的拉伸效果。

(2)选择不同类型就可得到不同的效果图3、图像匹配(1)以波段6影像作为基准影像,波段1影像作为待匹配影像。

灰度模式加载第一波段的影像;右击第六波段选择Load Band to New Display。

(2)选择波段1影响下的Enhance—>Hitogrm Matching选项,在弹出的Hitogrm Matching对话框中选定Display #2,单击ok按钮,就可以完成两张影像的匹配。

(3)查看图像的直方图,打开第一张图像的enhance中的interctive strtching选项,显示出原始图像和匹配后图像的影像信息,1号窗口中红色是2号窗口的图像直方图,白色的是对1号窗口处理后的直方图。

四、实验结果分析1、直方图均衡化结果:2、直方图拉伸结果Stretch_Type LinearStretch_Type Gaussian 3、直方图匹配结果通过本次上机操作,了解辐射增强的过程和方法,加深了图象增强处理的理解。

学会了线性拉伸,直方图的均衡和直方图的匹配,将课本上的内容通过软件应用到实际操作中去,加深了对理论的认识,熟练了实际操作。

总的来说这次的实验相对来说比较简单,在完成了图像增强后,和原始图像比较发现图像更易判读了,这也与书本上学习到的知识相符合。

实验四遥感图像的变换一、实验目的通过上机操作,了解空间增强、辐射增强几种遥感图象增强处理的过程和方法,加深对图象增强处理的理解。

二、实验内容波段比值变换;主成分变换三、实验步骤1、波段比值变换(1)在ENVI中打开12840-123457影像,选择Trasform选项下的Band Rations 选项,弹出Band Rations Input Bands对话框。

在分子Numerator一栏里添加第一波顿,在分母Denomirator一栏里添加地理波顿,单击ok按钮,在Selected Ratrio Pairs中出现新增波段时再单击ok按钮即可。

(2)在弹出的Band ratio parameter对话框中选Memory,单击ok(3)比值是浮点数,影像越暗,两个波段的比值越小,越亮比值越大。

2、主成分分析法(1)在ENVI开发环境中打开12840-123457中的RGB为321波段的影像。

(2)选择Transform菜单下的Principal Component子菜单下的Forward PC Rotation下的Compute New Statistics and Rotate选项,在弹出的Principal Components Input File对话框中,在Select Input中选中Memory1,单击ok。

(3)在Forward PC Parameters对话框的choose选项设定输出路径,记的Seleted Output PC Bands对话框,将Number of Output PC Bands的参数改为5(生成新的主成分影像,主分量个数为5)单击ok。

(4)在二用的波段列表中,依次打开主分量影像。

其中PC1为第一主分量影像,信息量最丰富,噪声最少;其次是第二主分量PC2,以此类推。

四、实验结果分析1、波段比值变换结果2、主成分分析法结果PC Band 1PC Band 3本次实验对波段比值变换和主成分分析法进行了操作,可以看出这两种方法都可以增强地物间的差异,特别是波段比值变换,使得地物之间的差异显得更加明显,而主成分分析法可以减少噪声,使得图像更加清晰,使得提取图像上的信息变得容易了许多,在完成的实验后的五个波段里面,第一波段的噪声最少,越往后面的波段噪声就越来越多,图像变得模糊,从PC Eigenvalues图中的折线也能得出这样的事实。

实验五遥感信息的融合一、实验目的通过上机操作,初步掌握遥感信息复合的方法,深入理解遥感信息复合在信息解译中的意义。

二、实验内容多光谱数据与高分辨率全色数据的融合。

分辨率融合是遥感信息融合的一个主要方法,它使得融合后的遥感图象既具有较好的空间分辨率,又具有多光谱特征,从而达到增强图象质量的目的。

三、实验步骤(1)加载12840-8高分辨率影像(2)导入12480-123457数据的真彩色影像。

(3)单击Transform—>ImageSharpening—>HSV,选中12840-8图像高分辨率图像,选中真彩色影像为多光谱影像。

(4)输入处理结果路径,选择重采样方法,打开融合后影像#2.可以看出结果既有光谱信息,色彩丰富,又有高空间分辨率的特点。

四、实验结果分析实验结果:完成这次试验后,我们清楚地知道了可以应用这种办法使得一张图像既具有全色图像的高分辨率的特点,又可以使其拥有多光谱影像的色调和饱和度。

若使得一张图像拥有上述两种特点,那么我们就可以从这张图像上获取更多的有用的信息,补充了单一传感器的不足。

实验六遥感图像分类 --- 监督分类一、实验目的理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的。

二、实验内容ENVI 遥感图像监督分类:1.最小距离法;2.最大似然法三、实验步骤1、首先打开实验二所裁剪过后的12840-123457文件,打开RGB图像。

2、通过#1下的菜单栏中的overlay → region of interest→zoom,在ROI_Type 中输入民称水体。

然后选择new regin,分别按照上面步骤输入植被、裸地、居民地,然后对这四项的颜色进行选择。

3、然后对水体,植被、裸地、居民地四项进行编辑,选择zoom选项,然后用鼠标左键进行划线,划线完成后,点击右键,闭合。

再点击一次右键,则系统自动进行填充。

4、完成第三步后,选择options→compete ROI separability→原始图像→select all items→ok。

5、点击classification→supervised→minimum distance→选择原始图像→ok →select all items→保存→ok。

6、最后来计算混淆矩阵:classification→post classification→confusion matrix→using ground truth ROIS。

四、实验结果分析监督分类后图像:混淆矩阵:完成这次实验后,使得我们熟悉了监督分类的操作步骤,在这次的实验中,可以看出监督分类的步骤也不算太复杂,只需要在对水体、植被、居民地等进行勾勒是需要比较小心才行,而且在完成了监督分类后,若对完成后的图像的颜色不是很满意是,可以在zoom的color栏里进行调整。

总之在完成一次实验的过程中,细心和耐心非常重要。

相关文档
最新文档