三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)

合集下载

概率论与数理统计第六章统计量,样本及抽样分布

概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X

2



X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

大连理工大学软件学院概率论与数理统计精简版习题解答

大连理工大学软件学院概率论与数理统计精简版习题解答

大连理工大学软件学院概率论与数理统计精简版习题解答一、概率论部分1. 概率的基本概念(1)概率的定义:在随机试验中,某个事件发生的可能性大小,用0到1之间的实数表示。

(2)概率的加法原理:若A和B是两个互斥事件,则P(A或B) = P(A) + P(B)。

(3)概率的乘法原理:若A和B是两个独立事件,则P(A且B) = P(A) P(B)。

2. 概率分布(1)离散型随机变量:取值为有限个或可数无限个的随机变量。

(2)连续型随机变量:取值范围为实数集的随机变量。

3. 常见概率分布(1)二项分布:描述在n次独立重复试验中,成功次数的概率分布。

(2)泊松分布:描述在固定时间内,发生k次事件的概率分布。

(3)正态分布:描述随机变量在某一均值附近呈钟形分布的概率分布。

二、数理统计部分1. 统计量(1)样本均值:样本数据的平均值。

(2)样本方差:描述样本数据离散程度的度量。

(3)样本标准差:样本方差的平方根。

2. 参数估计(1)点估计:用样本统计量来估计总体参数的值。

(2)区间估计:用样本统计量来估计总体参数的取值范围。

3. 假设检验(1)原假设:关于总体参数的某种假设。

(2)备择假设:与原假设相对立的假设。

(3)显著性水平:用于判断假设检验结果是否显著的阈值。

(4)P值:在原假设成立的情况下,观察到样本统计量等于或大于实际观察值的概率。

(5)拒绝域:在假设检验中,当样本统计量落入该区域时,拒绝原假设。

大连理工大学软件学院概率论与数理统计精简版习题解答三、概率论部分4. 条件概率与独立性(1)条件概率:在已知某个事件发生的条件下,另一个事件发生的概率。

(2)独立性:若两个事件A和B满足P(A|B) = P(A),则称A和B相互独立。

5. 随机变量的数字特征(1)期望值:随机变量的平均值,表示随机变量的中心位置。

(2)方差:描述随机变量取值波动程度的度量。

(3)标准差:方差的平方根。

四、数理统计部分4. 抽样方法(1)简单随机抽样:从总体中随机抽取样本,每个个体被抽中的概率相等。

概率论与数理统计公式汇总

概率论与数理统计公式汇总

1 n
n i 1
X
k i
,
k
1,2
(5)样本 k
阶中心距: Bk

Mk

1 n
n
(Xi
i 1

X )k ,k
2,3
3、三大抽样分布
(1) 2 分布:设随机变量 X1, X 2 X n 相互独立,且都服从标准正态分布 N (0,1) ,
则随机变量

2

X
2 1

X
2 2


k
(
x1
,
x2
,
,
xn
)
4.估计量的评价标准


无偏性 设 (x1, x2,L , xn) 为未知参数 的估计量。若 E( )= ,


则称 为 的无偏估计量。






设 1 1(x1, x,2 ,L , xn) 和 2 2 (x1, x,2 ,L , xn) 是 未 知 参
7、协方差和相关系数的性质
(1) Cov( X , X ) D( X ) Cov( X ,Y ) Cov(Y , X )
(2) Cov( X1 X 2 ,Y ) Cov( X1,Y ) Cov( X 2 ,Y )
Cov(aX c,bY d ) abCov( X ,Y )
P(A∪B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A∪B)=P(A)+P(B) P(A-B)=P(A)-P(AB), B A 时 P(A-B)=P(A)-P(B)
条件概率公式 P(B A) P( AB) P( A)

概率论与数理统计习题(全)

概率论与数理统计习题(全)
0, x a, x F ( x) A B arcsin , a x a, a 1, x a.
其中,a 为正常数,求 (1)常数 A 和 B; (2) P
a x 2 a ; (3)X 的概率密度。 2
13.设随机变量 X 的概率密度为
概率论与数理统计习题全概率论与数理统计概率论与数理统计吧概率论和数理统计概率论与数理统计二概率论与数理统计c概率论习题概率论课后习题答案概率论习题集概率论与数理
第一章
1.写出下列试验的样本空间:
随机事件及其概率
(1)抛掷三颗质地均匀的骰子,观察三颗骰子出现的点数和的情况; (2)对一个目标进行射击,一旦击中便停止射击,观察射击的次数; (3)在单位圆内任取一点,记录它的坐标; (4)记录一个班一次概率考试的平均分数。
4
10.某建筑物按设计要求使用寿命超过 50 年的概率为 0.8,超过 60 年的概 率为 0.6,该建筑物经历了 50 年之后,它将在 10 年内倒塌的概率有多大?
11.袋中有 r 只红球,t 只白球,每次从袋中任取一只球,观察其颜色后放 回, 并再放入 a 只与所取的那只球同色的球。 若在袋中连续取球四次, 试求第一、 二次取到红球且第三、四次取到白球的概率。
第五章
大数定律与中心极限定理
1 n
1. 设X 1 , X2, …, X n 是独立同分布的随机变量, 设 X i ~ U (a, b) ,X 求 E ( X ) 与 D( X ) 。

i 1
n
Xi ,
2.设 X 服从(-1,1)的均匀分布,试用切比雪夫不等式估计 P{| X | 0.6} 的 下界。
7
第二章
随机变量及其分布

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

三大抽样分布及常用统计量的分布

三大抽样分布及常用统计量的分布
n1 n2
(n1
1) S12
2

2
(n1
1),
(n2
1)S
2 2
2

2

(n2
1)
且S12与S22相互独立,由 2分布的性质知
(n1 1)S12
2
(n2 1)S22
2
~ 2 (n1
n2
2)
再由定义3知
T
X
Y Sn
(1
1 n1
1
2
)
~t(n1
n2
n2
- 2)
t 分布的上侧分位点
对于给定的 (0< <1),称满足条件
X
2 i
.
i2
i4
解 (1) 因为Xi~N(0,1),i=1, 2, …, n. 所以
X1-X2 ~N(0, 2),
X
2 3
X
2 4
~
2(2),
X1
X2 2
~
N(0,1),

X1 X2
X
2 3
X
2 4
(X1
X
X 2)
2 3
X
2 4
2
~t(2).
2
例1 设总体X~N(0,1), X1,X2,…,Xn为简单
/2
/2
- t/2(n) O t/2(n) t
图5-8
在附表4 (P256)中给出了t分布的临界值表.
例如,当n=15,=0.05时,查t分布表得,
t0.05(15)= 1.753
t0.05/2(15)= 2.131
其中t0.05/2(15)由P{t(15)≥t0.025(15)}=0.025查得.

5-4三大抽样分布(1)概率论与数理统计习题和(历史上最好的概率论与数理统计)ppt课件

5-4三大抽样分布(1)概率论与数理统计习题和(历史上最好的概率论与数理统计)ppt课件

1
2(n)分布的概率密度为
f
(
y)
n 22
1 (n)
n1 y
y2 e 2
,
2
0
y0 其他.
证明 因为 2 (1) 分布即为 Ga 1 , 2 分布,
2
又因为 Xi ~ N (0, 1),
由定义
X
2 i
~
2 (1),

X
2 i
~
1, 2
2 ,
i 1, 2, , n.
2
因为 X1, X2, , Xn 相互独立,
2 1
(n)

2
(n)
分布的1
分位数.
对于不同的 , n,
可以通过查表求
得1 的分位数的值.
2 1
(n)
6
例1 设 X 服从标准正态分布N (0,1), N (0,1) 的1
分位数 u1- 满足 P{X u1 }
求 u1 的值, 可通过查表完成 .
1
u1
e
x2 2
dx
1
,

u10.05 u0.95 1.645, 附表2-1
-1.7531
t0.05 (15)
t0.95 (15)t0.95 (10)
13
例4 设r.v. X 与Y 相互独立,X ~ N(0,16), Y ~
N(0,9) , X1, X2 ,…, X9 与Y1, Y2 ,…, Y16 分别是取 自 X 与 Y 的简单随机样本, 求
统计量
Z X1 X2 L X9 Y12 Y22 L Y126
11
t 分布的分位数
对于给定的, 0 1, 称满足条件
P{t t1 (n)}

数理统计中的三大抽样分布理论系统与题型题法

数理统计中的三大抽样分布理论系统与题型题法

一、 三大抽样分布的分布函数综 述:)a 根据大数定理和中心极限定理,但样本容量n 较大时(数学上一般要求45n >),任何分布都依概率收敛于正态分布()2, N μσ,并可标准化为()0, 1N 。

)b 现实世界和工程技术中的任何数据样本流到目前为止,不外乎()0, 1N 的函数分布,集中表现为3大抽样分布规律。

)c 考研数学中规定:()0, 1N 的分位数定义为下分位数(从图形上看为左边面积),3 大抽样分布的分位数定义都为上分位数(从图形上看为右边面积)1. ()2n χ分布(分布函数不要求掌握)量纲模型:性 质:()1{}i X ()2 可加性212~()n n χ+++()3证 明()3:由于()()()~0,10; 1i i i X N E X D X ⇒==()()()()()2224421 1,2,,3i i i i x iE X E X E X D X i n E X x edx +∞--∞=-===⎡⎤⎣⎦==()()()()()()()()()224222211222113122iii n ni i i i n n i i i i D X E X E X E n E X E X n D n D X D X nχχ====⎡⎤=-=-=⎣⎦⎛⎫=== ⎪⎝⎭⎛⎫=== ⎪⎝⎭∑∑∑∑样本函数中的必需记住的数字特征()4 上分位点 α定义为()2n χ分布的分位数2. ()t n 分布(分布函数不要求掌握){}i X 独立同分布 2~(0,1), ~(); i X N Y n X Y χ和独立 性 质:()1 t 分布密度函数()()~(0,1)t n n f x N →∞⇒()2 上分位点 α定义为()t n 分布的分位数()3 ()0, 22nEX DX n n ==>- ()4 性质T 分布具有对称性, 1()(); 45t nt n n αα-=->时,()t n Z αα≈3.(), F m n 分布(分布函数不要求掌握)X 、Y 相互独立,2~(); ~()X m Y n χχ;量纲模型:例:假定()12, X X 来自正态整体()2~0, X N σ的一个样本,求()()2122124X X P X X ⎡⎤+<⎢⎥-⎢⎥⎣⎦。

概率论数理统计基础知识第五章

概率论数理统计基础知识第五章

C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}

Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1

考研数学三必背知识点概率论与数理统计

考研数学三必背知识点概率论与数理统计

概率论与数理统计必考知识点一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质bP=≤)FX(b)()P-aX≤b<=)F(()bF(a2、离散型随机变量3..连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布Λ2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j iΛ2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E ΛΛ+=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++8五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X Λ1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X Λ1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X Λ1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n Λ=η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X Λ的联合分布为)(),(121k nk n x F x x x F =∏=Λ2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距:Λ2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1Λ(6)次序统计量:设样本),(21n X X X Λ的观察值),(21n x x x Λ,将n x x x Λ21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤Λ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤Λ为样本),(21n X X X Λ的次序统计量。

Ch6.2 抽样分布

Ch6.2 抽样分布

的值, 当n > 45时,对于常用的α的值,可用正态近似 tα(n) ≈ zα
3. F分布 定义 设 U ~ χ 2 ( n1 ), V ~ χ 2 ( n2 ), 且U , V 独立, 则称
U / V / n2 布, 记为 F ~ F ( n1 , n2 ).
Lxn是一个样本的观察值,则g( x1, x2 ,Lxn )也是统 计量g(X1, X2 ,LXn )的观察值.
几个常见统计量 样本平均值 样本方差
它反映了总体 方差的信息 它反映了 1 总体均值 X = ∑Xi 的信息 n i=1 n 1 2 2 S = ∑( Xi − X) n −1 i=1
n
定义 经验分布函数为 1 Fn( x) = s( x) − ∞ < x < ∞ n 11 , 例 设总体F具有一个样本值 ,2 则经验分布函数 ,
F3( x)的观察值为 0, 若x < 1 2 F3( x) = , 若 ≤ x < 2 1 3 若x ≥ 2 1,
一般, n 一般,设x1, x2 ,L, xn是总体的一个容量为 的样本 如下: 值.将它们按大小次序排列 如下:x(1) ≤ x(2) ≤ L≤ x(n) 则经验分布函数Fn( x)的观察值为 0, k Fn( x) = , n 1, 若x < x(1) 若x(k) ≤ x < x(k+1) , (k = 1,2,L, n − 1) 若x ≥ x(n)
F分布的概率密度曲线如 图
F分 的 质 布 性
1. 若F ~ F ( n1 , n2 ),
1 则 ~ F ( n2 , n1 ). F
2.F分布的数学期望为: 2.F分布的数学期望为: 分布的数学期望为

概率论与数理统计+第六章+样本及抽样分布+练习题答案

概率论与数理统计+第六章+样本及抽样分布+练习题答案

Ⅲ、典型例题分析〖填空题〗例6.1(F 分布) 设随机变量X 服从自由度为),(21f f 的F 分布,则随机变量X Y 1=服从参数为 的 分布 .分析 因为服从自由度为),(21f f 的F 分布的随机变量X ,可以表示为222121f f X χχ=,1212221f f X Y χχ==, 其中2221 χχ和独立,分别服从自由度为21f f 和的2χ分布.由F 分布变量的典型模式,知Y 服从自由度为),(12f f 的F 分布.例6.2(2χ分布) 设4321,,,X X X X 是来自正态总体()22 ,0N 的简单随机样本,记()()243221432X X b X X a X -+-=,则当=a ,=b 时, 统计量X 服从2χ分布,其自由度为 .分析 由条件知4321,,,X X X X 相互独立且同正态分布()22 ,0N .因此()212X X -服从正态分布()20,0N ,而()4343X X -服从正态分布()100,0N ,并且相互独立.由2χ变量典型模式知()()10043202243221X X X X T -+-=服从自由度为2的2χ分布,从而a=1/20 , b= 1/100.例6.3(2χ分布) 设4321,,,X X X X 相互独立同服从标准正态分布,X 是算术平均值,则24X 服从参数为 的 分布.分析 熟知4321X X X X +++服从正态分布)4,0(N ,因此()44243212X X X X X +++=服从自由度为“1”的“2χ”分布.例6.4(t 分布) 假设总体)3,0(~2N X ,821,,,X X X 是来自总体X 的简单随机样本,则统计量282726254321X X X X X X X X Y ++++++=服从参数为 的 分布.分析 由于独立正态分布的随机变量的线性组合仍然服从正态分布,易见.)1,0(~6)(432143214321N X X X X X X X X X X X X U +++=++++++=D作为独立标准正态随机变量的平方和,99992822252X X X X +++=76χ服从2χ分布,自由度为4;随机变量2 χ和U 显然相互独立.随机变量Y 可以表示为()4496228222541χUX X X X X X X X Y =++++++=7632.由t 分布随机变量的典型模式,可见随机变量Y 服从自由度为4的t 分布.例6.5(F 分布) 设(1521,,,X X X )是来自正态总体()9,0N 的简单随机样本,则统计量2152122112102221 21X X X X X X Y ++++++= 的概率分布是参数为 的 分布 .分析 由2χ分布的典型模式,知99215211222102121X X X X ++=++= χχ和服从自由度相应为10和5的2χ分布,并且相互独立.从而,由F 变量的典型模式,知510 21222121521121021χχ=++++=X X X X Y 服从自由度为(10, 5)的F 分布.例6.6(F 分布) 设X 服从自由度为ν的t 分布,则2X Y =服从参数为 的 分布.分析 由自由度为ν的t 分布随机变量X 可以表示为νχν2UX =,其中2 ),1,0(~νχN U 服从自由度为ν的2χ分布,并且2νχ和U 独立.由2χ分布变量的典型模式,可见221U =χ服从自由度为1的2χ分布.因此,由F 分布变量的典型模式,可见随机变量νχχνχνν2212221===U X Y服从自由度为(1,ν)的F 分布.例6.7(F 分布) 设随机变量X 和Y 都服从标准正态分布并且相互独立,则22Y X Z =服从参数为 的 分布,.分析 由于X 和Y 都服从标准正态分布,可见2X 和2Y 都服从自由度为1的2χ分布.此外,由X 和Y 独立,可见2X 和2Y .从而,由服从F 分布的变量的典型模式,知22Y X Z =服从自由度为(1,1)的F 分布.例6.8(2χ分布) 设总体)2,(~)2,(~b N Y a N X ,并且独立;基于分别来自总体X 和Y的容量相应为n m 和的简单随机样本,得样本方差22yx S S 和,则统计量 []22)1()1(21y x S n S m T -+-=服从参数为 的 分布.分析 统计量T 服从自由度为2-+n m 的2χ分布.由(6.14)知2221)1(21 )1(21y x S n T S m T -=-=, 分别服从自由度为m -1和服从自由度为n -1的2χ分布,并且相互独立.从而,由2χ分布随m+n -2的2χ分布.机变量的可加性知,T 服从自由度为例6.9(经验分布函数) 设总体X 在区间[0,2]上服从均匀分布;()x F n 是基于来自X 的容量为n 的简单随机样本的经验分布函数,则对于任意[]2,0∈x ,()x F n E = .分析 总体X 的分布函数为()x F =x/2,若[]2,0∈x ;()x F =0,若[]2,0∉x .对于任意[]2,0∈x ,以)(x n ν表示n 次简单随机抽样事件}{x X ≤的出现的次数,则)(x n ν服从参数为()()x F n ,的二项分布,因此)()(E x nF x n =ν,从而()()2)(x x F nx x F n n ===νEE . 例6.10(经验分布函数) 设(2,1,5,2,1,3,1)是来自总体X 的简单随机样本值,则总体X 的经验分布函数()xF n = .分析 将各观测值按从小到大的顺序排列,得1,1,1, 2, 2, 3, 5,则经验分布函数为()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<≤<=.若;若;若;若若 5 , 1 53 , 76 3 2 , 75 21 , 73;1 , 08x x x x x x F例6.11 设Y X 和是两个样本均值,基于来自同一正态总体),(2σμN 的两个相互独立且容量相同的简单随机样本,则满足{}05.0≤>-σY X P 的最小样本容量≥n 8 .分析 由于总体服从正态分布),(2σμN ,可见{}.05.022≤⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>-=>-n YX n Y X σσP P 6832.796.1296.122≈⨯≥≥n n,.5.14 (1)3ln4(2)532(3))(12χ(4))5,10(F (5)23〖选择题〗例6.13(常用分布) 设随机变量)1,0(~),1,0(~N Y N X ,则 (A) Y X +服从正态分布. (B) 22Y X +服从2χ分布. (C) 22Y X 服从F 分布. (D) 22Y X 和服从2χ分布. [ D ]分析 因为标准正态分布变量的平方服从自由度为1的2χ分布.当随机变量Y X 和独立时可以保证选项(A),(B),(C)成立,但是题中并未要求随机变量Y X 和独立,选项(A),(B),(C)未必成立.6.14(F 分布) 设n X X X ,,,21 是来自正态总体),0(~2σN X 的简单随机样本,则服从F 分布的统计量是()()]D [ 2)D (2)C ()B ( )A (2925242322212925242322212726252424232221292524232221.. . . X X X X X X Y X X X X X X Y X X X X X X X X Y X X X X X X Y +++++=+++++=++++++=+++++=分析 本题可以直接选出正确的选项.事实上,选项(D )可以表示为636)(3)(2623292524232221χχ=+++++=X X X X X X Y . 因为随机变量,,)(1)(1292524226232221223X X X X X X +++=++=σχσχ分别服从自由度为3和6的2χ分布,并且相互独立.因此,由服从F 分布的随机变量典型模式,知随机变Y 量服从自由度为)6,3(的F 分布.例6.17(正态总体) 设总体X 的概率密度为)(x f ,而),,,(21n X X X 是来自总体X 的简单随机样本,)()1(n X X X 和,相应为n X X X ,,,21 的样本均值、最小观测值和最大观测值,则)(x f 是(A) )1(X 的概率密度. (B) )(n X 的概率密度.(C) 1X 的概率密度. (D) X 的概率密度. [C ] 分析 应选(C ).1X 作为总体X 的一个观测值,与总体X 有相同的概率密度)(x f .5.13 (1)C (2)D (3)D (4)C (5)A〖计算题〗例6.21(经验分布函数) 假设)(x F 是总体X 的分布函数,)(x F n 是基于来自总体X 的容量为n 的简单随机样本的经验分布函数.对于任意给定的)(∞<<-∞x x ,试求)(x F n 的概率分布、数学期望和方差.解 以n ν表示自总体X 的n 次简单随机抽样中,事件{}x X ≤出现的次数,则n ν服从参数为())(,x F n 的二项分布.经验分布函数)(x F n 可以表示为)()()(∞<<-∞=x nx x F n n ν.由此可见,)(x F n 的概率分布、数学期望和方差相应为:{}[][][][][].,;)(1)()()()(),,2,1,0()(1)(C )()(x F x nF x F x nF x F n k x F x F k x n k x F n n kn k k n n n -===-===⎭⎬⎫⎩⎨⎧=-D E P P νk m ki i k mi m 20C C C=∑=-.对于任意n>2,变量n X X X ,,,21 独立同服从参数为),(p m 的二项分布,则用数学归纳法容易证明n X X X +++ 21服从参数为),(p nm 的二项分布.从而,得X 的概率分布{}().mn k p p C k X X n k X k mn k kmn n ,,1,0)1(1 =-==++=⎭⎬⎫⎩⎨⎧=-P P例6.26(样本容量) 假设总体X服从正态分布)4,(μN ,由来自体X 的简单随机样本得样本均值X .试分别求满足下列各关系式的最小样本容量n :(1) {}95.010.0≥≤-μX P ; (2) 10.0≤X D ; (3) 10.0≤-μX E . 解 由于)4,(~μN X ,可见()n N X 4,~μ,从而)1,0(~2N nX U μ-=.(1) 由标准正态分布函数)(u Φ的数值表(附表1)或标准正态分布双侧分位数αu 表(附表2),可见()()()().96.196.195.005.005.0210.02--=≥--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-ΦΦΦΦμnn n n X P ; 由此,得96.105.0≥n .于是,为使{}10.010.0≤≤-μX P ,样本容量n 应满足153705.096.12≈⎪⎭⎫ ⎝⎛≥n .(2) 由于10.04≤=n X D ,可见40≥n . (3) 由于)1,0(~N U ,有. 22d e22d e21202222πππμ====⎪⎪⎭⎫⎝⎛-⎰⎰∞-∞∞--uu uu U n X u u E E由于10.0≤-μX E ,可见.,,255205.02210.022210.022≈⎪⎪⎭⎫ ⎝⎛≥≤≤⎪⎪⎭⎫ ⎝⎛-ππμn n n n X E 例6.23 假设总体X 服从正态分布)4,12(N ,而()521,,,X X X 是来自体X 的简单随机样本;X 的样本均值,)1(X 和)5(X 分别是最小观测值和最大观测值.试分别求事件{}13>X ,{}10)1(<X 和{}15)5(>X 的概率.解 设)(x Φ是标准正态分布函数.(1) 由于总体X~)4,12(N ,可见样本均值X ~()4,12N ,因此{}{}{}.1414.08686.01)12.1(112.1118.1255212521213521213=-=-=≤-=>=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧->-=>ΦU U X X X P P P P P (2) 为求事件{}10)1(<X 的概率,先求最小观测值)1(X 的概率分布.对于任意x ,有{}{}{}{}{};5515151521521)1(21211212212111],,,min[1],,,min[⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛---=⎭⎬⎫⎩⎨⎧-≤--=≤-=>-=>-=≤=≤∏∏∏===x x X x Xx Xx X X X x X X X x X i i i ii iΦP P P P P P{}()[]()[].4684.011111212101110555)1(=-=---=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=≤ΦΦΦX P (3) 为求事件{}15)5(>X 的概率,先求最大观测值)5(X 的概率分布.对于任意x ,有{}{}{}{}()[].; 2922.05.1121215115212212212],,,max[55)5(511521)5(=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=>⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-=⎭⎬⎫⎩⎨⎧-≤-=≤=≤=≤∏∏==ΦΦΦX x x X x Xx X X X x X i i i iP P P P P 55〖证明题〗例6.28 设总体()2,~σμN X ,而),,,,(121+n n X X X X 是来自正态总体X 的简单随机样本;X 和2S 相应为根据),,,(21n X X X 计算的样本均值和样本方差.利用正态总体的样本均值和样本方差的性质,证明统计量11+-=+n nS X X t n 服从自由度为1-=n ν的t 分布.证明 首先对所给统计量作变换,在统计量的表达式中将分子和分母同除以σ,得1)111222121-=-=+-==+-=++n S n n n XX U Un nS X X t n n νσχσνχ,(,,由于总体()2,~σμN X ,可见()21,~σμN X n +,()n N X 2,~σμ,从而()1,0~111,0~121N n nX X U n N X X n n +-=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+-++σσ,. 熟知,对于正态总体,X 和2S 独立,随机变量222)1(σχS n -=服从自由度为1-=n ν的2χ分布.现在证明,1+n X ,X 和2S 独立.首先它们显然两两独立;其次对于任意实数w v ,,u ,有{},,,, }{}{}{}{}{212121w v w v wv ≤≤≤=≤≤≤=≤≤≤+++S X u X S X u X S X u X n n n P P P P P P 其中第一个等式成立,因为n X X ,,1 和1+n X 独立;第二个等式成立,因为正态总体的样本均值和样本方差独立.从而1+n X -X 和2S 独立.于是,由服从t 分布的随机变量的典型模式,知统计量νχ2Ut =服从自由度为1-=n ν的t 分布.例6.29(样本均值和方差的独立性) 假设总体()2,1=i X i 服从正态分布()2,i i μN σ;1X 和2X 相互独立;由来自总体()2,1=i X i 的简单随机样本,得样本均值i X 和样本方差2i S .(1) 利用正态总体样本均值和样本方差的性质,证明4个随机变量1X ,21S ,2X ,22S 相互独立.(2) 假设μμμ==21,证明()μαα=+2211X X E ,其中i α是统计量:()2,1 22212=+=i S S S i i α. 证明 (1) 由于(1X ,21S )与(2X ,22S )分别依赖于两个相互独立的样本,可见它们相互独立;此外,由于正态总体的样本均值和样本方差相互独立,可见1X 和21S 以及2X 和22S 分别相互独立.因此,对于任意实数v ,,,u t s ,有{}{}{}{}{}{}{}.;v vv≤≤≤≤=≤≤≤≤=≤≤≤≤222211222211222211 , , , , S u Xt S s X S u X t S s XS u X t S s X P P P P P P P从而1X ,21S ,2X ,22S 相互独立.(2) 由于1X ,21S ,2X ,22S 相互独立,可见1α和1X 以及2α和2X 相互独立.从而,有()()().2121221122112211μααμααμαααααα=+=+=+=+=+E E E E E E E E E E X X X X X X 例6.30(F 分布分位数) 设),(21f f F α是自由度为),(21f f 的F 分布水平α上侧分位数,证明1),(),(12121=-f f F f f F αα.证明 设随机变量X 服从自由度为),(21f f 的F 分布,则随机变量X Y 1=服从自由度为),(12f f 的F 分布(例6.7).因此,有..,ααααα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤=⎭⎬⎫⎩⎨⎧≥=----),(1),(1),(11121121121f f F X f f F X f f F X P P P由此可见),(),(121121f f F f f F --=αα,即1),(),(12121=-f f F f f F αα.例5.15 设某商店一小时内到达的顾客数X 服从参数为2的Poisson 分布, 1021,,,X X X 是来自总体X 的简单随机样本.(1) 求),,,(1021X X X 的联合分布律; (2)求X 的分布律.解:),,,(1021X X X 的联合分律为(){}∏======101102211,,,i i in x XP x X x X x X P,!!!!21101101λλλλn n x i i xe x x x ex i ii-=-∑===∏n i x i ,2,1,10,,1,0==(2)先求21X X +的概率分布()()()∑===+===+mk K X m X X P k X P m X X P 0121121|()()()λλλλ-=--=∑∑-⋅=-===e k m ek k m X P k X P mk km km k 021!!() ,2,1,0,!2!202===-=-∑m e m Cem mmk k mkλλλλ即()λ2~21p X X +,从而可用数学归纳法证明()λ10~101P Xi i∑=即∑==1011i i X n X 的分布函数为() ,3,2,1,0,!1010101==⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛=-=∑k e k n k X P k X P ki i λλ例5.16 设总体X 和Y 同服从)3,0(2N 分布, 而921,,,X X X 和921,,,Y Y Y 分别是取自总体X 和Y 的两个独立简单随机样本, 试证:统计量)9(~292929921t YY Y X X X Z ++++++=解:)9(~292929921t YY Y X X X Z ++++++=()1,0~33921N X X X ⋅+++ ,()9~3332229222221χY Y Y +++故)9(~292929921t YY Y X X X Z ++++++=例5.17 设1+n 21,,,X X X 是正态总体的简单样本,设∑==n i i X n X 11和=2n S ()∑=-n i X i X n 121(1) 试求])([))(1(2221∑=---ni i X X n μμ的分布. (2) 试求111+n +--n n S X X n的分布. 解:1+n 21,,,X X X 设他们的方差为2σ,期望为μ(1)()()()()()1~)(,1~,1,0~2222211----∑=n X X N X ni i χσμχσμσμ()1,1~)()(1)1(])([))(1(2222212221----=---∑∑==n F X X n X X n ni i ni i σμσμμμ(2) 1+n 21,,,X X X 设他们的方差为2σ,期望为μ因为()()1~,1,0~12221+n -+-n nS N nn X X nχσ()1~111221+n 1+n -+-=+--n t nS n n X X n n S X X n nσ例5.18 设921,,,X X X 和921,,,Y Y Y 分别是取自两个独立的正态总体),(21σμN 和),(22σμN 的随机样本, α和β是两个实数, 试求nmn m S n S m Y X Z nm 222221212)1()1()()(βαμβμα+-+-+--+-=的概率分布. 其中21,m S X 和22,n S Y 分别是两个总体的样本均值和样本方差.解:由正态样本总体均值与样本方差的抽样分布定理知()(),1~,1~,,~,,~222222212221--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n mS m mS n N Y m N X χσχσσμσμ 得 ()()⎪⎪⎭⎫⎝⎛+-+-n m N Y X 2221,0~σσμβμα()2~222221-++n m mS mS χσ由t 分布的定义知()2~-+n m t Z例5.19 设 4321,,,X X X X 是来自正态总体)4,0(N 的简单样本, 记243221)43(1001)2(201X X X X Y -+-=求EY 和DX .解: ()()()()02,2044442212121=-=⨯+=+=-X X E X D X D X X D()()()()043,10016943212143=-=+=-X X E X D X D X X D()()()(),1,0~10043,1,0~2024321N X X N X X --()()()()()()1~1004310043,1~20220222432432221221χχX X X X X X X X -=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛- 由2χ分布的可加性,得()2~)43(1001)2(2012243221χX X X X Y -+-=故()()4,2==Y D Y E例5.20 设n X X X ,,,21 为取自总体),(~2σμN X 的一个样本,求样本的二阶原点矩的期望与方差.解:n X X X ,,,21 为独立同分布的随机变量,∑==n i i X n A 1221()()()()()()221212122111σμ+=+==⎪⎭⎫ ⎝⎛=∑∑∑===n i i i n i i n i i X E X D n X E n X n E A E()()241212211n X D n X n D A D n i i n i i σ==⎪⎭⎫ ⎝⎛=∑∑==例5.21 设2621,,,X X X 是总体),0(~2σN X 的一个样本,求概率))16((26112101αt XXP j ji i≤∑∑==解:()(),16~,1,0~102611222101∑∑==j ji iX N Xχσσ()16~16110261122101t X Xj ji i∑∑==σσ所以αα-=≤∑∑==1))16(104(26112101t XXP j ji i例5.22 设921,,,X X X 是总体),0(~2σN X 的一个样本,试确定σ的值,使)31(<<X P 为最大.例5.23 设n X X X ,,,21 为取自总体)2,(~2μN X 的一个样本,X 为样本均值,要使1.0)(2≤-μX E 成立,则样本容量n 至少应取多少?例5.24 设总体X 服从)4,(a N 分布,Y 服从)4,(b N 分布, 而921,,,X X X 和1621,,,Y Y Y 分别是来自X 和Y 的两个独立的随机样本, 记∑=-=9121)(i i X XW ,∑=-=16122)(j iY Y W ,其中∑==9191i i X X ,∑==161161i i X Y(1) 求常数C, 使9.0)||(2=<-C W b Y P ; (2) 求)038.6709.0(12<<W WP参考答案(样本与抽样分布部分)5.15 (1) ,1,0,!!!2),,,(20102110102211101=∑====-=j x x e x x x x X x X x X P i i(2) ,2,1,0,!10)10(10===-k k e k X P k 5.17 (1))1,1(-n F (2))1(-n t ,5.18 )2(-+n m t ,5.19 2; 45.20 n4222;σμσ+,5.21 α-1,5.223ln 6,5.23 40,5.24 (1) 0.1132; (2) 0.9。

概率论与数理统计知识点总结-互联网类

概率论与数理统计知识点总结-互联网类

概率论与数理统计知识点总结-互联网类关键信息项:1、随机事件与概率随机事件的定义与表示概率的定义与性质古典概型与几何概型条件概率与乘法公式全概率公式与贝叶斯公式2、随机变量及其分布随机变量的定义与分类离散型随机变量及其概率分布连续型随机变量及其概率密度常见的离散型分布(如二项分布、泊松分布)常见的连续型分布(如正态分布、均匀分布)3、多维随机变量及其分布多维随机变量的定义与联合分布边缘分布与条件分布随机变量的独立性多维随机变量函数的分布4、随机变量的数字特征数学期望与方差协方差与相关系数矩与中心矩5、大数定律与中心极限定理切比雪夫大数定律伯努利大数定律中心极限定理6、抽样分布总体与样本样本均值与样本方差的分布三大抽样分布(卡方分布、t 分布、F 分布)7、参数估计点估计的方法(矩估计、最大似然估计)估计量的评选标准(无偏性、有效性、一致性)区间估计8、假设检验假设检验的基本思想与步骤正态总体参数的假设检验非正态总体参数的假设检验(大样本情形)11 随机事件与概率111 随机事件的定义与表示随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

通常用大写字母 A、B、C 等来表示。

112 概率的定义与性质概率是对随机事件发生可能性大小的度量。

具有非负性、规范性和可加性等性质。

113 古典概型与几何概型古典概型是指试验结果有限且等可能的概率模型;几何概型则是基于几何区域的长度、面积或体积等来计算概率。

114 条件概率与乘法公式条件概率是在已知某事件发生的条件下,另一事件发生的概率。

乘法公式用于计算两个事件同时发生的概率。

115 全概率公式与贝叶斯公式全概率公式用于将复杂事件的概率分解为多个简单事件概率的和;贝叶斯公式则是在已知结果的情况下,反推原因的概率。

12 随机变量及其分布121 随机变量的定义与分类随机变量是将随机试验的结果数量化的变量,分为离散型和连续型。

122 离散型随机变量及其概率分布离散型随机变量的概率分布可以用概率质量函数来描述。

数理统计中的三大抽样分布理论系统与题型题法2009.

数理统计中的三大抽样分布理论系统与题型题法2009.

一、 三大抽样分布的分布函数综 述:)a 根据大数定理和中心极限定理,但样本容量n 较大时(数学上一般要求45n >),任何分布都依概率收敛于正态分布()2, N μσ,并可标准化为()0, 1N 。

)b 现实世界和工程技术中的任何数据样本流到目前为止,不外乎()0, 1N 的函数分布,集中表现为3大抽样分布规律。

)c 考研数学中规定:()0, 1N 的分位数定义为下分位数(从图形上看为左边面积),3 大抽样分布的分位数定义都为上分位数(从图形上看为右边面积)1. ()2n χ分布(分布函数不要求掌握)量纲模型:性 质:()1{}i X ()2 可加性 212~()n n χ+++()3证 明()3:由于()()()~0,10; 1i i i X N E X D X ⇒==()()()()()2224421 1,2,,3i i i i x i E X E X E X D X i n E X x edx +∞--∞=-===⎡⎤⎣⎦==()()()()()()()()()224222211222113122iii n ni i i i n n i i i i D X E X E X E n E X E X n D n D X D X nχχ====⎡⎤=-=-=⎣⎦⎛⎫=== ⎪⎝⎭⎛⎫=== ⎪⎝⎭∑∑∑∑样本函数中的必需记住的数字特征()4 上分位点 α定义为()2n χ分布的分位数2. ()t n 分布(分布函数不要求掌握){}i X 独立同分布 2~(0,1), ~();i X N Yn X Y χ和独立 性 质:()1 t 分布密度函数()()~(0,1)t n n f x N →∞⇒()2 上分位点 α定义为()t n 分布的分位数()3 ()0, 22nEX DX n n ==>- ()4 性质 T 分布具有对称性, 1()(); 45t n t n n αα-=->时,()t n Z αα≈3.(), F m n 分布(分布函数不要求掌握)X 、Y 相互独立,2~(); ~()X m Y n χχ;量纲模型:例:假定()12, X X 来自正态整体()2~0, X N σ的一个样本,求()()2122124X X P X X ⎡⎤+<⎢⎥-⎢⎥⎣⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


x2 x2

~ F (1,1)
4. 正态总体的样本均值与样本方差的分布
正态总体 N ( , 2 ) 的样本均值和样本方差
有以下两个重要定理.
定理一
设 X1, X 2, , X n 是来自正态总体N (, 2 )
的样本, X 是样本均值, 则有
(1) X ~ N (, 2 / n).即 X ~ N (0,1)
样本, X , S 2 分别是样本均值和样本方差, 则有
X ~ t(n 1).
S/ n
证明
因为 X ~ N (0,1), / n
(n 1)S 2
2
~ 2(n 1),
且两者独立, 由 t 分布的定义知
X (n 1)S 2 ~ t(n 1). / n 2(n 1)
n
2
πn

1
n 2


1

t2 n


n1 2


,
t
t 分布的概率密度曲线如图
显然图形是关于
t 0对称的.
当 n 充分大时, 其
图形类似于标准正
态变量概率密度的
图形. 因为lim h(t)
1
t2
e 2,
n

所以当 n 足够大时 t 分布近似于 N (0,1) 分布,
1,
因为 1 F
~ F (n2 , n1 ),
所以
P
1 F

F1
(n2
,
n1
)

1


,
比较后得
F1
(n2 ,
n1 )

F
1 (n1,
n2 )
.
即F (n1,
n2 )

1 F1 (n2 ,
. n1 )
用来求分布表中未列出的一些1 分位数.

F0.05 (12,9)
证明
F
(n1,
n2 )

F1-
1 (n2 ,
. n1 )
因为F ~ F (n1, n2 ),
所以 P{F F (n1, n2 )}

P

1 F

1 F (n1,

n2
)


1
P

1 F

1
F
(n1,
n2
)


P

1 F

1 F (n1,

n2
)

n
(Xi )2
/ n
(2) i1 2
~ 2 (n)
定理二
设 X1, X2 , , Xn 是总体 N ( , 2 ) 的样本,
X , S 2 分别是样本均值和样本方差, 则有
(1)
(n 1)S 2
2
~
2(n 1);
(2) X 与 S 2 独立.
推论1 设 X1, X2, , Xn 是总体 N ( , 2 ) 的
统计量
Z X1 X2 L X9 Y12 Y22 L Y126
所服从的分布。
解 X1 X 2 X 9 ~ N ( 0, 916 )
3
1
4
(
X1

X2


X9) ~
N ( 0, 1)
13Yi ~ N (0,1) ,i 1,2, ,16
16 i1
由分布的对称性知
t (n) t1 (n)
当 n 45 时, t1 (n) u1 .
t1 (n)
例3 已知 n 10, 0.05, 求t1-( 10), t1-( 15), t( 15)
解:t1-0.05 (10) t0.95 (10) 1.8125,
m
独立, 则

2 i
~
2(n1 n2

nm ).
i 1
性质2 ( 2分布的数学期望和方差)
若 2 ~ 2(n), 则 E( 2 ) n, D( 2 ) 2n.
证明 因为 Xi ~ N (0, 1), 所以 E( Xi2 ) D( Xi ) 1, D( Xi2 ) E( Xi4 ) [E( Xi2 )]2 3 2 1, i 1, 2, , n.

2 1
(n)}

12- (n) f ( y)dy 1

的点
2 1
(n)


2
(n)
分布的1

分位数.
对于不同的 , n,
可以通过查表求
得1 的分位数的值.
2 1
(n)
例1 设 X 服从标准正态分布N (0,1), N (0,1) 的1
分位数 u1- 满足 P{X u1 }
随机变量 F

U V
/ n1 / n2
服从自由度为( n1 ,
n2 ) 的
F

布, 记为 F ~ F (n1, n2 ).
F (n1, n2 )分布的概率密度为

(
y)









n1

n2

n1
n1
2
n1 1
y2
2 n2
n1 n2
n1 2

求 u1 的值, 可通过查表完成 .
1
u1

e
x2 2
dx

1
,

u10.05 u0.95 1.645, 附表2-1
u10.025 u0.975 1.96,
附表2-2
根据正态分布的对称性知
u u1 .
u u 0.95 0.975
例2 设 Z ~ 2 (n), 2 (n) 的1 分位数满足
推论2

X1,
X2,
,
X

n1
Y1
,
Y2
,

, Yn2
分别是
具有相同方差的两正态总体 N (1, 2 ), N (2 , 2 )
的样本, 且这两个样本互相独立,
设X

1 n1
n1 i 1
Xi
,
Y

1 n2
n2
Yi
i 1
分别是这两个样本的均值,
S12

1 n1 1
n1
~

2 (1),

X
2 i
~


1, 2
2 ,
i 1, 2, , n.
因为 X1, X2, , Xn 相互独立,
所以
X
2 1
,
X
2 2
,

,
X n2也相互独立,
根据 伽玛分布的可加性知
2

n i 1
X i 2~
Ga n , 2
2 .
2 (n)分布的概率密度曲线如图.

变量的个数.
随机数演示
分布函数与密度函数演示
2(n)分布的概率密度为
f
(
y)

n 22
1 (n)
n1 y
y2 e 2
,
2
0
y0 其他.
证明 因为 2 (1) 分布即为 Ga 1 , 2 分布,
2
又因为 Xi ~ N (0, 1),
由定义
X
2 i
U x1 x2 ~ N (0,1), V x1 x2 ~ N (0,1)
22
22
即有 (U / 2)2 ~ 2(1),(V / 2)2 ~ 2(1)
由F分布的定义得
2
U / 2 2 /1 ~ F (1,1) U / 2 /1
上式左边化简即得
2
Y


x1 x1
(25
)

2 0.9
(25)

34.382.
附表3只详列到 n=40 为止.

2 0.025
(10
)

2 0.975
(8)

2 0.9
(25)
费舍尔(R.A.Fisher)证明:
费舍尔资料

n
充分大时,
2 1
(n)

1 2
(u1

2n 1)2.
其中 u1 是标准正态分布的1 分位数.
13Yi
2
~
2 (16)
从而
X1 X2 X9 Y12 Y22 Y126

1 3 4
X1

X2


X9
~
t(16)
16
i 1

1 3
Yi
2
16
3. F分布
设U ~ 2(n1 ), V ~ 2(n2 ), 且U , V 独立, 则称
t1-0.05 (15) t0.95 (15) 1.7531
t0.05 (15) -t1-0.05 (15) -t0.95 (15)
-1.7531
t0.05 (15)
t0.95 (15)t0.95 (10)
例4 设r.v. X 与Y 相互独立,X ~ N(0,16), Y ~
N(0,9) , X1, X2 ,…, X9 与Y1, Y2 ,…, Y16 分别是取 自 X 与 Y 的简单随机样本, 求
相关文档
最新文档