二次函数实际应用问题

合集下载

二次函数的实际问题

二次函数的实际问题

二次函数的实际问题课首小测:1、某玩具店出售一种玩具,若这种玩具每天获利y(元)与销售单价x(元)满足关系y=﹣x2+80x﹣500,要想获得最大利润,则销售单价为()元,最大利润为()元。

2、如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,求点P的坐标.3、一自动喷灌设备的喷流情况如图所示,设水管AB在高出地面1.5米的B处有一自动旋转的喷水头,一瞬间流出的水流是抛物线状,喷头B与水流最高点C连线成45°角,水流最高点C比喷头高2米,求:(1)求点C的坐标;(2)求此抛物线解析式;(3)水流落点D到A点的距离.导学一:构建二次函数模型解决实际问题例题1:张大爷要围成一个矩形花圃,花圃的一边利用墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式及自变量x的取值范围;(2)当x为何值时,S有最大值?并求出最大值.(3)当墙的最大可利用长度为10米时,围成花圃的最大面积是多少?例题2:某建筑物的窗口如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m,当半圆的半径为多少时,窗户通过的光线最多?此时,窗户的面积是多少(结果精确到0.01m)?例题3:如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?例题4:如图,西游乐园景区内有一块矩形油菜花田地(单位:m),现在其中修建一条观花道(阴影所示),供游人赏花,设改造后观花道的面积为ym2.(1)求y与x的函数关系式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤x≤1,求改造后油菜花地所占面积的最大值.例题5:如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.我爱展示:1、用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;并写出x的取值范围.(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.2、杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端梯子B处,其身体(看成一点)的路线是抛物线y=x2+3x+1的一部分,如图所示(1)求演员弹跳离地面的最大高度:(2)已知人梯高BC=3.4,在一次表演中,人梯到起跳点A到水平距离是4米,问这次表演是否成功?请说明理由.3、某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?导学二:二次函数的最值问题例题1:某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?例题2:某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高2元,销售量相应减少40件.如何提高售价,才能在半个月内获得最大利润?我爱展示:1、商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大.2、某产品每件成本10元,试销阶段每件产品的销售价(元)与产品的日销售量(件)之间的关系如下表:若日销售量是销售价的一次函数.(1)求出日销售量(件)与销售价(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?导学三:几何图形中的面积最值例题1:如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是.例题2:如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;例题3:如图所示,在矩形ABCD中,AB=6cm,BC=12cm,点P从A点出发,沿AB边向B点以1cm/s的速度移动,同时点Q从点B出发,沿BC边向点C以2cm/s的速度移动,如果P、Q两点在分别达到B、C两点后就停止移动,回答下列问题:(1)运动开始后第T秒时,△PBQ的面积等于8cm2.(2)设运动开始后第T秒时,五边形PQCD的面积为Scm2,写出S与T的函数关系式,并指出自变量T的取值范围;(3)T为何值时S最小?求出S的最小值.例题4:在一块矩形ABCD的空地上划一块四边形MNPQ进行绿化.如图,四边形的顶点在矩形的边上,且AN=AM=CP=CQ=xcm,已知矩形的边BC=200m,边AB=am,a为大于200的常数,设四边形MNPQ的面积为sm²(1)求S 关于x 的函数关系式,并直接写出自变量x 的取值范围.(2)若a=400,求S的最大值,并求出此时x的值.我爱展示:1、一块三角形废料如图所示,=30°,=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D,E,F分别在AC,AB,BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?2、如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q 两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()3、如图,平面直角坐标系中,已知抛物线经过(,0)、(0,4)、(,0)三点.(1)求抛物线的解析式;(2)若点为抛物线上的一动点,且位于第一象限内,设的面积为,试求的最大值。

二次函数的实际应用(利润最值问题)附答案

二次函数的实际应用(利润最值问题)附答案

第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(20XX 年青岛市)在20XX 年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x 160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。

二次函数的实际应用问题解题技巧

二次函数的实际应用问题解题技巧

二次函数的实际应用问题解题技巧二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,比如物理、工程、经济学等等。

本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。

正文:1. 二次函数的实际应用问题二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。

在各个领域,二次函数都有广泛的应用,下面列举几个例子:- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。

- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。

- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。

例如,抛物线可以用来描述通货膨胀率的变化。

2. 二次函数的解题技巧在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列举一些常见的解题技巧:- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。

- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。

- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。

- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。

3. 拓展除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。

例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。

此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。

二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。

掌握这些技巧,可以帮助我们更好地理解和解决实际问题。

实际问题与二次函数

实际问题与二次函数

实际问题与二次函数引言:二次函数是高中数学中的重要内容,它在实际问题中有着广泛的应用。

本文将从几个实际问题入手,探讨二次函数在解决这些问题中的作用和应用。

第一部分:抛物线与物体运动问题一:一个物体从地面上以初速度v0竖直向上抛出,忽略空气阻力,求物体的运动轨迹。

解决方法:根据物体竖直上抛运动的运动方程,可以得到物体的高度y与时间t的关系为y=-gt^2/2+v0t,其中g是重力加速度。

这个运动方程正好是一个二次函数,它的图像是一个抛物线,描述了物体的运动轨迹。

问题二:一个人从桥上向下抛掷物体,求物体的最大高度和落地点。

解决方法:根据物体竖直抛体运动的运动方程,可以得到物体的高度与时间的关系为y=-gt^2/2+v0t,其中g是重力加速度,v0是初速度。

我们可以通过求解二次函数的顶点,得到物体的最大高度和落地点的位置。

第二部分:二次函数与开口方向问题三:一块矩形花坛,长边是20米,宽边是10米,现在要在花坛四周修建一圈高度为h的围墙,求围墙的最小高度h。

解决方法:假设围墙的高度为h,围墙的长度为L,围墙的宽度为W。

根据题意,可以得到L=2(20+2h),W=2(10+2h),围墙的面积为S=LW。

我们可以将围墙的面积S表示为关于h的二次函数,然后求解这个二次函数的最小值,即可得到围墙的最小高度h。

第三部分:二次函数与最值问题问题四:某公司生产某种产品,每生产x单位的产品需要花费C(x)=80x+2000元,售价为p(x)=0.1x^2+2000元,求使得利润最大的生产数量。

解决方法:利润等于售价减去成本,即P(x)=p(x)-C(x)=0.1x^2-80x。

我们可以求解二次函数P(x)的最大值,得到使得利润最大的生产数量。

问题五:某人在银行存款10000元,银行的年利率为r%,每年计息一次,求多少年后存款会翻倍。

解决方法:存款的本利和可以表示为S(t)=10000(1+r/100)^t,其中t为年数。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题【实用版】目录1.二次函数与实际问题的关系2.典型例题解析3.总结与建议正文二次函数与实际问题的关系二次函数是数学中的一个重要概念,它在实际问题中有着广泛的应用。

通过对二次函数的学习和理解,我们可以更好地解决实际问题,提高自己的数学素养。

典型例题解析例题 1:某商场在推出优惠活动,满 200 元打 8 折,满 300 元打7 折。

现在,小明想买一件价格为 x 元的商品,请问小明应该如何选择,才能使自己所花费的钱最少?解:将小明要购买的商品价格设为 x 元,那么他需要支付的金额可以表示为 f(x)=x+0.2(x-200)+0.3(x-300),其中 x>300。

通过求导,可以得到 f(x) 的最小值出现在 x=400,此时小明需要支付的金额为f(400)=360 元。

所以,小明应该选择购买价格为 400 元的商品,才能使自己所花费的钱最少。

例题 2:一个农民有一块形状为抛物线的土地,他想在土地上种植庄稼,使得种植的庄稼面积最大。

已知土地的顶点为 (1,2),抛物线方程为y=a(x-1)^2+2。

请问农民应该如何种植庄稼?解:由于 a<0,所以抛物线开口向下。

根据二次函数的性质,顶点是函数的最大值点。

所以,农民应该在土地的顶点处种植庄稼,即 x=1,此时庄稼的面积最大,为 2。

总结与建议通过对二次函数与实际问题的典型例题进行解析,我们可以发现数学知识在解决实际问题中的重要性。

为了更好地应对类似的问题,我们建议:1.加强对二次函数概念的学习,了解其性质和应用;2.多做练习题,提高自己对二次函数问题的解题能力;3.注重数学知识的实际应用,学会将理论知识运用到实际问题中。

二次函数的应用案例总结

二次函数的应用案例总结

二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。

在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。

本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。

案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。

设物体初始高度为H,加速度为g,时间为t。

根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。

这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。

案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。

二次函数可以用于建立销售收入与定价策略之间的模型。

设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。

我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。

案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。

二次函数可以用来描述桥梁的曲线形状。

设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。

通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。

案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。

设市场需求量为D,价格为p。

根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。

通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。

综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。

通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。

二次函数解决实际问题练习

二次函数解决实际问题练习

二次函数解决实际问题1、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第 x 年维修、保养费累计.为 y(万元),且 y=ax2+bx,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.2、如图,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大?3、用 6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?4、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件. ①设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式;②若商场每天要盈利 1200 元,每件应降价多少元?③每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?5、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m,跨度为 10m,如图所示,把它的图形放在直角坐标系中. ①求这条抛物线所对应的函数关系式. ②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?6、如图,某公园要设计一圆形喷水池,水流在各方向沿形状相同的抛物线落下.建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),如果不考虑其他因素,水池的半径至少要多少米,才能使喷出的水流不致落到池外。

7、一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落人篮圈,已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)假如该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问球出手时他跳离地面的高度是多少?。

二次函数的实际应用(典型例题分类)

二次函数的实际应用(典型例题分类)

二次函数与实际问题1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(求最值、最大利润、最大面积等)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等.例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值@变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式当x为多长时,花园面积最大·例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多设销售单价为x元,(0<x≤元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)@(4)所获利润可以表示为__________________;(5)当销售单价是________元时,可以获得最大利润,最大利润是__________。

~变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量其中自变量是_______,因变量是___________.(2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结_________个橙子.(3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

二次函数的实际问题

二次函数的实际问题

二次函数的实际问题二次函数是数学中的一个重要概念,在实际问题中有着广泛的应用。

通过二次函数可以描述并解决各种实际问题,例如物体的运动轨迹、金融领域的利润分析等。

本文将通过几个不同的实际问题,来说明二次函数在各个领域中的应用。

问题一:投掷运动考虑一个常见的物理问题,即投掷运动。

假设有一个物体从地面上以初始速度v₀竖直向上抛出,受到重力的作用下落。

我们希望能够描述物体的运动轨迹,并找到物体在空中的最高点和落地点。

首先,我们可以建立一个二次函数来表示物体的高度y与时间t之间的关系。

假设物体的初始高度为h₀,则物体的高度可以表示为:y(t) = -gt² + v₀t + h₀其中g表示重力加速度。

通过这个二次函数,我们可以计算出物体的运动轨迹,以及物体在空中的最高点和落地点的时间和高度。

问题二:利润分析在金融领域中,我们经常需要对企业的利润进行分析和预测。

假设一个企业的销售额与广告投入之间存在某种关系,我们可以建立一个二次函数来描述销售额与广告投入之间的关系。

假设销售额为P,广告投入为x,则二次函数可以表示为:P(x) = ax² + bx + c其中a、b、c为常数。

通过这个二次函数,我们可以分析销售额与广告投入之间的关系,并找到使得利润最大化的最优广告投入额。

问题三:物质衰变在化学领域中,物质的衰变速率也可以用二次函数来描述。

假设一个物质的衰变速率与时间的关系可以用二次函数表示:R(t) = -kt² + bt + c其中k、b、c为常数。

通过这个二次函数,我们可以分析物质的衰变速率与时间之间的关系,并预测物质的衰变情况。

总结:通过以上三个实际问题的例子,我们可以看到二次函数在不同领域中的应用之广泛。

二次函数可以方便地描述并解决各种实际问题,例如物体的运动轨迹、企业的利润分析以及物质的衰变情况等。

掌握二次函数的概念和应用,对我们理解和解决实际问题具有重要意义。

本文通过具体的实际问题,说明了二次函数的应用。

二次函数的实际应用题

二次函数的实际应用题

第三讲:二次函数大题之应用题题型一:利润问题例题1:某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?例题2:某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)求与之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?变式训练:1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?3、为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?4、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)5、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

二次函数的实际应用(典型例题分类)

二次函数的实际应用(典型例题分类)

二次函数与实际问题【1】1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(拱桥问题,求最值、最大利润、最大面积等)类型一:最大面积问题例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积(㎡)与路宽(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积(㎡)与它与墙平行的边的长(m)之间的函数关系式?当x为多长时,花园面积最大?类型二:利润问题例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0<x≤13.5)元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)所获利润可以表示为__________________;(4)当销售单价是________元时,可以获得最大利润,最大利润是__________变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?400 3060 70 O y (件)x (元) 变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y (万元)与销售时间x (月)之间的关系(即前x 个月的利润之和y 与x 之间的关系).(1)根据图上信息,求累积利润y (万元)与销售时间x (月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?变式训练4.某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量(件)与销售单价(元)的关系可以近似的看作一次函数(如图).()求与之间的函数关系式;()设公司获得的总利润(总利润=总销售额总成本)为P元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?类型三:实际抛物线问题 例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。

二次函数的实际应用总结

二次函数的实际应用总结

二次函数的实际应用总结二次函数是高中数学中重要的一类函数。

它具有形如y=ax^2+bx+c的特点,其中a、b、c是实数且a不等于0。

二次函数有许多实际应用,涉及到物理、经济和生活中的各种问题。

本文将总结几个二次函数的实际应用。

一、物体自由落体物体自由落体是一个常见的物理问题,可以用二次函数来描述。

当一物体从高处自由落下时,它的高度与时间之间的关系可以由二次函数表示。

设物体自由落下的高度为H(米),时间为t(秒),重力加速度为g(9.8米/秒²),则有公式H = -gt²/2。

其中负号表示高度的减小,因为物体向下运动。

通过这个二次函数,我们可以计算物体在不同时间下的高度,进而研究物体的运动规律。

例如,我们可以计算物体自由落地所需的时间,或者计算物体在某个时间点的高度。

这在工程设计和物理实验中具有重要意义,帮助我们预测和控制物体的运动。

二、开口向上/向下的抛物线二次函数的图像通常是一个抛物线,其开口的方向由二次项系数a的正负决定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

对于开口向上的抛物线,我们可以将其应用到生活中的一些情景。

比如,一个喷泉的水柱,水流高度与时间之间的变化可以用开口向上的二次函数来描述。

同样,开口向下的抛物线也有实际应用。

例如,一个弹簧的变形量与受力之间的关系常常是开口向下的二次函数。

通过了解抛物线的性质和方程,我们可以更好地理解和解决与之相关的问题。

三、经济学中的应用二次函数在经济学中也有广泛的应用。

例如,成本函数和收入函数常常是二次函数。

企业的成本与产量之间的关系可以用二次函数来刻画。

同样,市场需求和供给也可以用二次函数来表达。

在经济学中,研究成本、收入、需求和供给的函数对于决策和市场分析至关重要。

通过对二次函数的运用,我们可以计算某一产量下的成本和收入,并了解市场价格的影响因素。

这有助于企业决策和经济政策的制定。

四、其他实际应用除了以上提到的应用,二次函数还可以用于建模和预测其他实际问题。

二次函数在实际生活中的应用与实际问题分类整理

二次函数在实际生活中的应用与实际问题分类整理

二次函数在实际生活中的应用【经典母题】某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x,y=(x-9)(1 360-80x)=-80x2+2 080x-12 240(10≤x≤14).-b2a=-2 0802×(-80)=13,∵10≤13≤14,∴当x=13时,y取最大值,y最大=-80×132+2 080×13-12 240=1 280(元).答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元.【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论.【中考变形】1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示.(1)图中点P所表示的实际意义是__当售价定为35元/件时,销售量为300件__;销售单价每提高1元时,销售量相应减少__20__件;(2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1+1_000__;自变量x 的取值范围为__30≤x ≤50__;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 解:(1)图中点P 所表示的实际意义是:当售价定为35元/件时,销售量为300件;第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件).(2)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400),(35,300)代入,得⎩⎨⎧400=30k +b ,300=35k +b ,解得⎩⎨⎧k =-20,b =1 000,∴y 与x 之间的函数表达式为y =-20x +1 000. 当y =0时,x =50,∴自变量x 的取值范围为30≤x ≤50. (3)设第二个月的利润为W 元,由已知得W =(x -20)y =(x -20)(-20x +1 000)=-20x 2+1 400x -20 000 =-20(x -35)2+4 500,∵-20<0,∴当x =35时,W 取最大值4 500.答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4 500元.2.[2016·宁波一模]大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a 元,市场调查发现日销售量y (件)与销售价x (元/件)之间存在一次函数关系,如下表所示:若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?解:(1)由表可知,y 是关于x 的一次函数,设y =kx +b , 将x =110,y =50;x =115,y =45分别代入, 得⎩⎨⎧110k +b =50,115k +b =45,解得⎩⎨⎧k =-1,b =160, ∴y =-x +160(0<x ≤160);(2)由已知可得50×110=50a +3×100+200, 解得a =100.设每天的毛利润为W 元, 则W =(x -100)(-x +160)-2×100-200 =-x 2+260x -16 400 =-(x -130)2+500,∴当x =130时,W 取最大值500.答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;(3)设需t 天才能还清集资款, 则500t ≥50 000+0.000 2×50 000t , 解得t ≥102249.∵t 为整数,∴t 的最小值为103天. 答:该店最少需要103天才能还清集资款.3.[2017·青岛]青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨1.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变,经市场调查发现,如果豪华间仍旧实行去年旺季的价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?(注:上涨价格需为25的倍数)解:(1)设淡季每间的价格为x 元,依题意得 40 000x ⎝ ⎛⎭⎪⎫1+13=24 000x +10,解得x =600, ∴酒店豪华间有40 000x ⎝ ⎛⎭⎪⎫1+13=40 000600×⎝ ⎛⎭⎪⎫1+13=50(间), 旺季每间价格为x +13x =600+13×600=800(元). 答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间的价格上涨x 元,日总收入为y 元, y =(800+x )⎝ ⎛⎭⎪⎫50-x 25=-125(x -225)2+42 025, ∴当x =225时,y 取最大值42 025.答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42 025元.4.某公司经营杨梅业务,以3万元/t 的价格向农户收购杨梅后,分拣成A ,B 两类,A 类杨梅包装后直接销售,B 类杨梅深加工再销售.A 类杨梅的包装成本为1万元/t ,根据市场调查,它的平均销售价格y (万元/t)与销售数量x (x ≥2)(t)之间的函数关系式如图Z8-2,B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:t)之间的函数关系是s =12+3t ,平均销售价格为9万元/t.图Z8-2(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式; (2)第一次该公司收购了20 t 杨梅,其中A 类杨梅x t ,经营这批杨梅所获得的毛利润为W 万元(毛利润=销售总收入-经营总成本). ①求W 关于x 的函数关系式;②若该公司获得了30万元毛利润,问:用于直接销售的A 类杨梅有多少吨? (3)第二次该公司准备投人132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润. 解:(1)y =⎩⎨⎧-x +14(2≤x <8),6(x ≥8);(2)∵销售A 类杨梅x t ,则销售B 类杨梅(20-x )t. ①当2≤x <8时,W =x (-x +14)+9(20-x )-3×20-x -[12+3(20-x )]=-x 2+7x +48, 当x ≥8时,W =6x +9(20-x )-3×20-x -[12+3(20-x )]=-x +48,∴函数表达式为W =⎩⎨⎧-x 2+7x +48(2≤x <8),-x +48(x ≥8);②当2≤x <8时,-x 2+7x +48=30,解得x 1=9,x 2=-2,均不合题意, 当x ≥8时,-x +48=30,解得x =18.答:当毛利润达到30万元时,直接销售的A 类杨梅有18 t ; (3)设该公司用132万元共购买m t 杨梅,其中A 类 杨梅为x t ,B 类杨梅为(m -x )t ,购买费用为3m 万元. 由题意,得3m +x +[12+3(m -x )]=132, 化简,得3m =x +60.①当2≤x <8时,W =x (-x +14)+9(m -x )-132,把3m =x +60代入,得 W =-(x -4)2+64,当x =4时,有最大毛利润64万元. 此时,m =643,m -x =523;②当x ≥8时,W =6x +9(m -x )-132,由3m =x +60,得W =48,当x ≥8时,毛利润总为48万元.答:综上所述,购买杨梅共643 t ,且其中直销A 类杨梅4 t ,B 类杨梅523 t ,公司能获得最大毛利润64万元.【中考预测】某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(元)与售价x(元/件)之间的函数关系式;(2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.解:(1)由题意可得月销售利润y与售价之间的函数关系式为y=(x-30)[600-10(x-40)]=-10x2+1 300x-30 000;(2)当x=45时,600-10(x-40)=550(件),y=-10×452+1 300×45-30 000=8 250(元);(3)令y=10 000,代入(1)中函数关系式,得10 000=-10x2+1 300x-30 000,解得x1=50,x2=80.当x=80时,600-10(80-40)=200<300(不合题意,舍去),故销售价应定为50元;(4)y=-10x2+1 300x-30 000=-10(x-65)2+12 250,∴x=65时,y取最大值12 250.答:当销售价定为65元时会获得最大利润,最大利润为12 250元.二次函数与实际问题分类整理1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(拱桥问题,求最值、最大利润、最大面积等)类型一:最大面积问题例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?类型二:利润问题例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0<x≤13.5)元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)所获利润可以表示为__________________;(4)当销售单价是________元时,可以获得最大利润,最大利润是__________变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?变式训练4.某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).y (件)(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额 总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?类型三:实际抛物线问题例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。

二次函数实际案例分析

二次函数实际案例分析

二次函数实际案例分析对于数学学科而言,二次函数是一种常见的数学模型,被广泛应用于各种实际问题的求解中。

本文旨在通过实例分析,展示二次函数在实际案例中的应用和解决问题的能力。

案例一:物体自由落体运动首先,我们来分析物体自由落体运动的情况。

根据牛顿第二定律和重力加速度的关系,我们可以得到物体运动的方程为:高度 h 关于时间 t 的函数 h(t) = 1/2gt^2,其中 g 为重力加速度。

在这个例子中,二次函数 h(t) 描述了不断变化的高度与时间之间的关系。

我们可以使用这个二次函数来计算物体在任意时刻的高度,从而实现对自由落体运动的精确描述和预测。

案例二:汽车行驶距离其次,我们来分析汽车行驶距离与速度之间的关系。

根据物理学的运动学知识,我们知道汽车行驶的距离与速度之间存在着一定的函数关系。

假设某辆汽车以匀加速度a 行驶,在经过时间t 后,它的速度为v。

根据运动学公式,我们可以得到汽车行驶的距离与速度之间的二次函数关系:S(v) = (1/2)a(v^2)/a。

这个二次函数 S(v) 描述了汽车行驶距离与速度之间的非线性关系,通过对这个函数进行分析和求解,我们可以获得汽车在不同速度下的行驶距离,并根据这些数据做出相应的决策和规划。

案例三:抛体运动轨迹最后,我们来分析抛体运动的轨迹问题。

在物理学中,抛体运动是指物体在一个斜向平面上运动的情况,例如投掷物体等。

对于抛体运动的轨迹问题,我们可以通过二次函数来描述物体的运动轨迹。

设抛体的高度为 h,水平距离为 x,抛体的初速度为 v0,抛体的运动方程可以表示为:h(x) = -1/2g(x/v0)^2 + xtanα其中 g 为重力加速度,α 为抛体的抛出角度。

通过对这个二次函数的分析和求解,我们可以确定抛体的运动轨迹,并根据这个轨迹做出相应的决策和计算,例如调整抛出角度以达到特定的目标。

结论通过上述的实际案例分析,我们可以看到二次函数在各种实际问题中的广泛应用和重要性。

二次函数与实际问题典型例题

二次函数与实际问题典型例题

二次函数与实际问题典型例题二次函数是一种常见的数学函数形式,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。

它在实际问题中有许多应用,下面我将从多个角度给出一些典型例题,以展示二次函数与实际问题的关系。

1. 抛物线的高度问题,假设一个物体从地面上抛,忽略空气阻力,其高度与时间的关系可以用二次函数表示。

例如,一个抛物线的方程可以是h(t) = -5t^2 + 10t + 2,其中h表示高度,t表示时间。

通过解方程可以求得物体的最高点、飞行时间等信息。

2. 弹性问题,当一个弹簧的伸长或压缩距离与施加的力之间存在线性关系时,其运动可以由二次函数描述。

例如,弹簧的伸长或压缩距离与施加的力的关系可以表示为d(f) = af^2 + bf + c,其中d表示伸长或压缩距离,f表示施加的力。

3. 成本与产量问题,在某些生产过程中,成本与产量之间可能存在二次函数关系。

例如,一个公司的成本可以表示为C(x) =ax^2 + bx + c,其中C表示成本,x表示产量。

通过分析二次函数的图像,可以找到最小成本对应的产量。

4. 面积最大化问题,在某些几何问题中,要求找到一个形状的最大面积。

例如,给定一定长度的围墙,如何构造一个矩形花园使得其面积最大?通过建立二次函数模型,可以解决这类问题。

5. 轨迹问题,在物理学或工程学中,研究物体在一定条件下的轨迹是常见的问题。

例如,一个抛物线的轨迹可以由二次函数表示。

通过分析二次函数的性质,可以求解物体的轨迹方程。

总之,二次函数在实际问题中有广泛的应用,涉及到物理学、经济学、几何学等多个领域。

通过建立二次函数模型,可以解决许多实际问题,并对问题进行分析和预测。

二次函数解决实际问题(可用)

二次函数解决实际问题(可用)

利用二次函数解决实际问题类型一:利用二次函数解决面积最值(面积优化问题)(不含相似形知识点)1、某广告公司设计一幅周长为20 m的矩形广告牌,设矩形的一边长为x m,广告牌的面积为S m2.(1)写出广告牌的面积S与边长x的函数关系式; (2)当x为何值时,广告牌面积S最大?最大值为几?2、如图,有长为24 m的篱笆,一面利用墙(墙的最大可用长度a为10 m),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45 m2的花圃,AB的长是多少米?(2)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?4、明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?5、如图,已知正方形ABCD边长为8,E,F,P分别是AB,CD,AD上的点,(不与正方形顶点重合),且PE⊥PF,PE=PF,问当AE为多长时,五边形EBCFP面积最小?最小面积是多少?▲6、(探究)如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的x养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?x7、如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过几秒,四边形APQC 的面积最小,最小面积为多少?☆类型二、利用二次函数解决利润最值问题(利润优化问题)1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?利润最多为多少元?▲2、(讨论)某商店经营T 恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?最大利润为多少?3、某种粮大户去年种植优质水稻360亩,今年计划增加承租x (100≤x ≤150)亩。

二次函数的实际应用问题---曹永娥

二次函数的实际应用问题---曹永娥

st二次函数的实际应用问题曹永娥 二次函数的概念是由实际问题抽象而来,因而二次函数在解决实际问题中又有广泛的作用。

初中阶段二次函数的常见应用题有:抛物线形拱梁、抛物运动轨迹、营销方案问题等方面。

例1.某公司推出了一种高效环保型洗涤用品年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题: (1)求累积利润s (万元)与时间t (月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?解:(1)设s 与t 的函数关系式为s=at 2+bt+c由题意得 1.5422255 2.5a b c a b c a b c ++=-⎧⎪++=-⎨⎪++=⎩解得1220a b c ⎧=⎪⎪⎨=-⎪⎪=⎩ ∴s=2122t t -(2)把s=30代入s=2122t t -得30=2122t t -,解得t 1=10,t 2=-6(舍)答:截止到10月末公司累积利润可达到30万元(3)t=7时,s=212172710.522⨯-⨯== ,t=8时,s=21828162⨯-⨯=16-10.5=5.5答:第8个月公司获利润5.5万元.小结:本题根据图象中所给的信息判断出s 关于t 是二次函数关系,借助待定系数法建立二次函数模型,利用二次函数性质解题。

注意第8个月的利润并不是t=8时,s 的值。

解决实际问题,仔细审题很重要。

例2.某公司投资500万元,成功研制出一种新 产品,并投入资金1500万元进行批量生产,生 产每件产品的成本为40元,销售过程中发现: 当销售单价为100元时,年销售量为20万件; 销售单价每增加10元,年销售量将减少1万件, 设销售单价为x 元,年获利z 万元(年获利=年 销售额-生产成本-投资)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数应用问题
二次函数在各方面的应用比较广泛,本节中通过几个例题及几个练习题,举例说明它在一些问题中的应用.
例1 某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系:
1.写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润
是指所卖出服装的销售价与购进价的差);
2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定
为多少最为合适;最大销售利润为多少?
分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。

在这个问题中,每件服装的利润为(),而销售的件数是(+204),那么就能得到一个与
之间的函数关系,这个函数是二次函数.
要求销售的最大利润,就是要求这个二次函数的最大值.
解:(1)由题意,销售利润与每件的销售价之间的函数关系为
=(-42)(-3+204),即=-32+8568
(2)配方,得=-3(-55)2+507
∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.
例2 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).
在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
(1)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在
空中的运动路线是(1)中的抛物线,
且运动员在空中调整好入水姿势时,距
池边的水平距离为米,问此次跳水会不会失误?
并通过计算说明理由.
分析:(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),
入水点(2,-10),最高点的纵点标为.
(2)求出抛物线的解析式后,要判断此次跳水会不会失误,就是要看当该运动员在距池边水平距离为米.,
时,该运动员是不是距水面高度为5米. 解:(1)在给定的直角坐标系下,设最高点为A,入水点为
B,抛物线的解析式为.
由题意,知O(0,0),B(2,-10),且顶点A的纵坐标为.
解得或
∵抛物线对称轴在轴右侧,∴
又∵抛物线开口向下,∴.
∴抛物线的解析式为
(2)当运动员在空中距池边的水平距离为米时,
即时,
∴此时运动员距水面的高为
因此,此次跳水会失误.
本节练习题如下:
1、某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量(件)与每件的销售价(元)满足一次函数:
(1)写出商场卖这种商品每天的销售利润与每件的销售价间的函数数关系式.
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
2、如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形的边
米,面积为平方米.
(1)求:与之间的函数关系式,并求当米2时,的值;
(2)设矩形的边米,如果满足关系式即矩形成黄金矩形,求此黄金矩形的长和宽.
.
练习1答案:
当定价为42元时,最大销售利润为432元.
练习2答案:(1)
当时,
(2)当则①
又②
由①、②解得,
其中20不合题意,舍去,
当矩形成黄金矩形时,宽为,长为.
3、某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图所示,如图建立直角坐标系,水流喷出的高度与水平距离之间的
关系式是.
请回答下列问题:
1.柱子OA的高度为多少米?
2.喷出的水流距水平面的最大高度是多少
米?
若不计其它因素,水池的半径至少要多少米,才能喷出的水流不至于落在池外?
练习3答案:
(1)OA高度为米.
(2)当时,,即水流距水平面的最大高为米.
(3)当时,
其中不合题意,
答:水池的半径至少要2.5米,才能使喷出的水流不至于落在池外.
二次函数的图象是一条抛物线,抛物线又是一种常见的图形,在实际生活中用处广泛,因此结合实际问题学习抛物线的有关性质,可以更加深刻地认识事物的本质.
1.一男生掷铅球,铅球行进高度(m),与水平距离
(m)之间的关系是
1.在直角坐标系画出函数图象,并求出铅球掷出的距离;
2.在体育加试中,男生铅球的优秀成绩为11m,若上述抛物线顶点不变,开口方向不变,
试计算成绩优秀时,铅球出手的最低高度是多少?
分析:求铅球掷出的距离,就是求时,的值是多少.
当铅球掷出的距离为11m时,抛物线过点(11,0),并且抛物线的顶点不变,那么求
出这条抛物线的解析式,并且求出出手高度(抛物线与轴交点).
解:(1)当时,
,解得
.
不合题意,舍去. 铅球推出的距离为10米.
(2)抛物线配方成, 顶点坐标为(4,3)
如果抛物线过(11,0),顶点为(4,3),设抛物线为
,,.
.
因此出手高度最低为米.
例2某公园草坪的护栏是由50段形状相同的抛物线形组成的、为牢固起见,每段护拦需按间距0.4m加设不锈钢管(如图)作成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用如图所示的直角坐标计算.
1.求该抛物线的解析式;
2.计算所需不锈钢管立柱的总长度.
分析:为了求出抛物线的解析式,把抛物线放在直角坐
标系中,根据题意可知道,
C(1,0),A(-1,0),B(0,0.5),且B为抛物线
的顶点,从而可以求出抛物线的解析式.
要求不锈钢立柱的总长度,就要求出B1、B2、B3、B4的纵
坐标,而B3与C3的横坐标为0.2,则可求出B3的纵坐标,
同理,C4的横坐标为0.6,从而可求出所有立柱的长及
所需钢管的总长度.
解:(1)在直角坐标系中,设函数解析式为,B点坐标为(0,0.5),C点坐标为(1,0)
抛物线的解析式为
(2)分别过AC的五等分点C1、C2、C3、C4作轴的垂线,交抛物线于B1
B2、B3、B4点,则C1B1、C2B2、C3B3、C4B4的长就是一段护栏内的四条立柱的长,点C3、C4的坐标为(0.2,0)(0.6,0),则B3、B4的横坐标分别为
把分别代入,
得. 由对称性可求得B1、B2的纵坐标.
所以四条立柱的长为
C1 B1=C4 B4=0.32(m), C2 B2=C3 B3=0.48(m).
所需不锈钢立柱的总长为
答:所需不锈钢立柱的总为长80m.
为了更好的巩固与二次函数知识应用问题有关的知识,下面的练习同学们可自己完成.
1、已知:如图正方形ABCD的边长为,在对角线BD上有一动点K,过K作PQ∥AC并交正方形
的两边为P、Q,设BK=,=.
求:(1)关于的函数关系式;
(2)画出函数图像。

练习1答案
(1)设AC与BD相交于O,当K在OB上时,
∵O为AD中点,K为PQ中点,∴PQ=2BK=2
∵(0<<1)
当K在OD上运动时,KD=2-,∴PQ=2(2-),
(1≤<2)
∴所求的函数关系式为
(2)函数图象如图所示。

2、如图,这是某空防部队进行射击训练时在平面直角坐标系中的
示意图,在地面O、A两个观测点测得空中固定目标C的仰角分别为
,OA=1千米,,位于O
点正上方千米D点处的直升飞机向目标C发射防空导弹,该导
弹运动达到距地面最大高度3千米时,相应的水平距离为4千米
(即图中E点)。

(1)若导弹运行轨道为一抛物线,
求该抛物线的解析式;
(2)说明按(1)中轨道运动的导
弹能否击中目标C的理由。

练习题2答案
(1)D(0,),E是抛物线的顶点,坐标为(4,3)
设抛物线的解析式
(2)设C点坐标为,则
把代入抛物线解析式,得
∴C在抛物线上,即导弹能击中目标。

3、如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为轴,
横断面的对称轴为轴,桥拱的部分为一段抛物线,顶点G的高度为8米,AD和是两侧高
为5.5米的支柱,OA和为两个方向的汽车通行区,宽都为15米,线段CD和为两段对称的上桥斜坡,其坡度为1:4
(1)求桥拱所在抛物
线的解析式的长;
(2)BE和为支撑斜坡的
立柱,其高都为4米,相应
的AB和为两个方向的行
人及非机动车通行区,求AB和的宽.
(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,今有一大型货汽车,
装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米,它能否从OA(或)区域安通过?请说明理由.
练习3答案
(1)设DG所在的抛物线的解析式为
由题意得G(0,8),D(15,5.5)
∴DGDˊ所在的抛物线的解析式为.
(2).
(米).
答:AB和的宽都是6米.
(3)该大型货车可以从OA(或)区域安全通过
在中,当时,

∴该大型货车可以从OA(或)区域安全通过.。

相关文档
最新文档