高考数学专题:空间向量与立体几何(含解析)

合集下载

高考数学专题:空间向量与立体几何(含解析)

高考数学专题:空间向量与立体几何(含解析)

立体几何中的向量方法1.(2012 年高考(重庆理))设四面体的六条棱的长分别为1,1,1,1, 2 和a , 且长为a 的棱与长为 2 的棱异面, 则a的取值范围是()A.(0, 2) B.(0, 3) C.(1, 2) D.(1, 3)[ 解析] 以O为原点, 分别以OB、OC、OA所在直线为x、y、z 轴,则cos AOP A O PO2R242 2 1 3,A ( R,0, R), P ( R,R ,0)2 2 2 22AOP arccos ,4 AP R arccos242.(2012 年高考(陕西理))如图, 在空间直角坐标系中有直三棱柱ABC A B C , CA CC1 2CB , 则直线BC1 与直线AB1 夹角的余弦值为()1 1 1A.55B.53C.2 55D.35解析: 不妨设CA CC1 2CB 2 ,AB1 = (- 2,2,1), C1B = (0,- 2,1) ,AB ×C B (- 2)? 0 2? ( 2) + 1? 1 51 1cos < AB ,C B > = = = -1 19 5 5AB C B ′1 1 , 直线B C 与直线1AB 夹角为锐角, 所以余弦值为155, 选A.3.(2012 年高考(天津理))如图, 在四棱锥P ABCD 中, PA 丄平面ABCD , AC 丄AD , AB 丄BC, 0ABC =45 , PA=AD =2 , AC=1.( Ⅰ) 证明P C 丄AD ;( Ⅱ) 求二面角A PC D 的正弦值;( Ⅲ) 设E 为棱PA上的点, 满足异面直线BE与CD所成的角为030 , 求AE的长.P【命题意图】本小题主要考查空间两条直线的位置关系, 二面角、异面直线所成的角, 直线与平面垂直等基础知识, 考查用空间向量解决立体几何问题的方法, 考查空间想象能力、运算能力和推理论证能力.方法一: (1)以AD, AC, AP 为x, y, z正半轴方向,建立空间直角左边系 A xyz则1 1D (2,0,0), C(0,1,0), B( , ,0), P(0,0,2)2 2PC (0,1, 2), AD (2,0,0) PC AD 0 PC AD(2)PC (0,1, 2), CD (2, 1,0) ,设平面PCD 的法向量n (x, y, z)则n PC 0 y 2z 0 y 2z2x y 0 x zn CD 0取z 1 n (1,2,1)AD 是平面PAC 的法向量(2,0,0)AD n 6 30 cos AD,n sin AD, n6 6AD n得:二面角A PC D 的正弦值为30 6(3)设AE h [0,2] ;则AE (0,0, 2) ,(1,1,), (2, 1,0)BE h CD2 2BE CD 3 3 10 cos BE ,CD h22 10BE CD 10 20h 即AE1010方法二:(1) 证明, 由P A 平面ABCD , 可得PA AD, 又由AD AC, PA AC A, 故AD 平面PAC , 又PC 平面PAC , 所以PC AD .(2) 解: 如图, 作AH PC 于点H , 连接DH , 由PC AD ,PC AH , 可得PC 平面ADH . 因此, DH PC , 从而AHD 为二面角A PC D 的平面角.在Rt PAC 中,PA 2, AC 1 , 由此得2AH , 由(1) 知AD AH , 故在5R t D AH 中,2 2 2 30DH AD AH , 因此5sin AHDADDH306, 所以二面角A PC D 的正弦值为306 .14.(2012 年高考(新课标理))如图, 直三棱柱ABC A1B1C1 中, AC BC AA1 , D 是2 棱A A 的中点, DC1 BD1(1) 证明: DC BC1(2) 求二面角A1 BD C1 的大小.第一问省略第二问:如图建系:A(0,0,0 ), P(0,0, 2 6 ), M( 32 ,32,0),N( 3 ,0, 0), C( 3 ,3,0).设Q( x, y, z), 则CQ ( x 3,y 3,z),CP ( 3,3,2 6) .∵CQ CP ( 3 , 3 ,2 6 ) , ∴Q( 3 3 ,3 3 ,2 6 ) .由OQ CP OQ CP 0 , 得: 13. 即 :2 3 2 6Q( ,2,) .3 3对于平面AMN: 设其法向量为n (a,b,c).∵3 3AM ( ,,0),AN =( 3,0,0) .2 2则33a3 3AM n 0 a b 0 12 2 b3AN n 03a 0 c 0. ∴3 1n ( ,,0) .3 3同理对于平面AMN得其法向量为v ( 3,1,6) . 记所求二面角A—MN—Q的平面角大小为,则cosn vn v 10 5.∴所求二面角A—MN—Q的平面角的余弦值为105.5.(2011 年安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,OA 1,OD 2,△OAB ,,△OAC ,△O DE ,△O DF 都是正三角形。

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析1.长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为空间原点,DA为x轴,D为z轴,DC为y轴,建立空间直角坐标系则=(-1,2,0),=(-1,-2,3)||=,|'|=,·=-3cos<,>==,即为所求。

【考点】本题主要考查空间向量的应用,向量的数量积,向量的坐标运算。

点评:简单题,通过建立空间直角坐标系,将求异面直线的夹角余弦问题,转化成向量的坐标运算。

2.正方体的棱长为1,是底面的中心,则到平面的距离为.【答案】【解析】因为O是A1C1的中点,求O到平面ABC1D1的距离,就是A1到平面ABC1D1的距离的一半,就是A1到AD1的距离的一半.所以,连接A1D与AD1的交点为P,则A1P的距离是:O到平面ABC1D1的距离的2倍O到平面ABC1D1的距离【考点】本题主要考查空间距离的计算。

点评:本题也可以通过建立空间直角坐标系,将求角、求距离问题,转化成向量的坐标运算,是高考典型题目。

3.已知={-4,3,0},则与垂直的单位向量为= .【答案】(,,0)【解析】设与垂直的向量与垂直的向量=(x,y,0),则-4x+3y=0,,解得x= ,y=,所以=(,,0)。

【考点】本题主要考查向量的坐标运算、向量垂直的充要条件、单位向量的概念。

点评:利用向量垂直的充要条件及单位向量的概念。

4.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。

【考点】本题主要考查平行向量及向量的坐标运算。

点评:简单题,按向量平行的充要条件计算。

5.已知点,为线段上一点,且,则的坐标为()A.B.C.D.【答案】C【解析】设C的坐标为(x,y,z)则向量=(x-4,y-1,z-3)向量=(-2,-6,-2),而即=所以x-4=-,y-1=-2,Z-3=-所以x=,y=-1,z=,C的坐标为,选C。

高考数学-向量与立体几何试题及详解

高考数学-向量与立体几何试题及详解

1.1~1.3 习题课1.【多选题】下列命题中,是真命题的是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等 答案 ABC解析 对于A ,向量是有向线段,不能比较大小,故A 为真命题;对于B ,两向量相等说明它们的方向相同,模长相等,若起点相同,则终点也相同,故B 为真命题;对于C ,零向量为模长为0的向量,故C 为真命题;对于D ,共线的单位向量是相等向量或相反向量,故D 为假命题.2.若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1+e 2,d =e 1+2e 2+3e 3({e 1,e 2,e 3}为空间的一个基底)且d =x a +y b +z c ,则x ,y ,z 的值分别为( ) A.52,-12,-1 B.52,12,1 C .-52,12,1 D.52,-12,1答案 A解析 d =x a +y b +z c =(x +y +z )e 1+(x -y +z )e 2+(x -y )e 3.又因为d =e 1+2e 2+3e 3,所以⎩⎪⎨⎪⎧x +y +z =1,x -y +z =2,x -y =3,解得⎩⎨⎧x =52,y =-12,z =-1.3.设x ,y ∈R ,向量a =(x ,1,1),b =(1,y ,1),c =(2,-4,2),且a ⊥b ,b ∥c ,则|a +b |=( ) A .2 2 B.10 C .3 D .4 答案 C解析 因为b ∥c ,所以2y =-4×1,所以y =-2,所以b =(1,-2,1).因为a ⊥b ,所以a ·b =x +1×(-2)+1=0,所以x =1,所以a =(1,1,1),a +b =(2,-1,2).所以|a +b |=22+(-1)2+22=3.4.在四面体ABCD 中,AB ,BC ,BD 两两垂直,且AB =BC =1,点E 是AC 的中点,异面直线AD 与BE 所成角为θ,且cos θ=1010,则该四面体的体积为( )A.13B.23C.43D.83 答案 A5.【多选题】已知向量AB →=(1,1,1),AC →=(1,2,-1),AD →=(3,y ,1),下列结论正确的是( )A .若A ,B ,C ,D 四点共面,则∃λ,μ∈R ,使得AD →=λAB →+μAC →,λ=2B .若A ,B ,C ,D 四点共面,则∃λ,μ∈R ,使得AD →=λAB →+μAC →,μ=2 C .若A ,B ,C ,D 四点共面,则y =4 D .当AD ⊥AC 时,y =1 答案 AC解析 由A ,B ,C ,D 四点共面,得∃λ,μ∈R ,使得AD →=λAB →+μAC →,所以λ(1,1,1)+μ(1,2,-1)=(3,y ,1),所以⎩⎪⎨⎪⎧λ+μ=3,λ+2μ=y ,λ-μ=1,解得⎩⎪⎨⎪⎧λ=2,μ=1,y =4,故A 、C 正确,B 不正确.由AD ⊥AC ,得AD →⊥AC →,所以AD →·AC →=0.所以3+2y -1=0,解得y =-1,D 不正确.6.【多选题】如图,已知空间四边形ABCD 的各边和对角线的长都为a ,点M ,N ,E ,F 分别是AB ,CD ,BC ,AD 的中点,则( )A .MN ⊥AB B .MN ⊥CDC .向量AN →与CM →所成角的余弦值为23D .四边形MENF 为正方形 答案 ABD解析 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),所以MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.所以MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD ,A 、B 正确.设向量AN →与MC →的夹角为θ,因为AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,所以AN →·MC →=12(q +r )·⎝⎛⎭⎫q -12p =12(q 2-12q ·p +r ·q -12r ·p )=12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°)=12⎝⎛⎭⎫a 2-a 24+a 22-a 24=a 22.又因为|AN →|=|MC →|=32a ,所以AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.所以cos θ=23.从而向量AN →与CM →所成角的余弦值为-23,C 错误.因为ME →=12AC →,FN →=12AC →,所以ME →=FN →.所以四边形MENF 为平行四边形.因为EN →=12BD →=12(AD →-AB →),所以EN →·ME →=12(AD →-AB →)·12AC →=0.所以EN →⊥ME →,|EN →|=|ME →|=12a .所以四边形MENF 为正方形.D 正确.7.从点P (1,2,3)出发,沿着向量v =(-4,-1,8)的方向取点Q ,使|PQ |=18,则Q 点的坐标为( )A .(-1,-2,3)B .(9,4,-13)C .(-7,0,19)D .(1,-2,-3) 答案 C8.【多选题】如图,在三棱锥P -ABC 中,△ABC 为等边三角形,△P AC 为等腰直角三角形,P A =PC =4,平面P AC ⊥平面ABC ,D 为AB 的中点,则( )A .AP ⊥BCB .异面直线AC 与PD 所成角的余弦值为24 C .异面直线PC 与AB 所成角的余弦值为24D .三棱锥P -ABC 的体积为1663答案 BCD解析 取AC 的中点O ,连接OP ,OB .因为P A =PC ,所以AC ⊥OP ,因为平面P AC ⊥平面ABC ,平面P AC ∩平面ABC =AC ,所以OP ⊥平面ABC ,又因为AB =BC ,所以AC ⊥OB .以O 为坐标原点,建立如图所示的空间直角坐标系.因为△P AC 是等腰直角三角形,P A =PC =4,△ABC 为等边三角形,所以A (0,-22,0),B (26,0,0),C (0,22,0),P (0,0,22),D (6,-2,0),所以AP →=(0,22,22),BC →=(-26,22,0),AP →·BC →=8≠0,A 不正确;因为AC →=(0,42,0),PD →=(6,-2,-22),所以cos 〈AC →,PD →〉=AC →·PD →|AC →||PD →|=-842×4=-24,则异面直线AC 与PD 所成角的余弦值为24,B 正确;因为PC →=(0,22,-22),AB →=(26,22,0),所以cos 〈PC →,AB →〉=PC →·AB →|PC →||AB →|=84×42=24,所以异面直线PC 与AB 所成角的余弦值为24,C 正确;三棱锥P -ABC 的体积V P -ABC =13S △ABC ·PO =13×34×(42)2×22=1663,D 正确. 9.在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC的重心,则OG →·(OA →+OB →+OC →)=________.答案 14310.已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,有|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1,x 0,y 0∈R ,则|b |=________. 答案 2 2解析 问题等价于|b -(x e 1+y e 2)|当且仅当x =x 0,y =y 0时取到最小值1,平方即|b |2+x 2+y 2-2b ·e 1x -2b ·e 2y +2e 1·e 2xy =|b |2+x 2+y 2-4x -5y +xy .已知上式在x =x 0,y =y 0时取到最小值1,x 2+y 2+(y -4)x -5y +|b |2=⎝⎛⎭⎪⎫x +y -422+34(y -2)2-7+|b |2,所以⎩⎨⎧x 0+y 0-42=0,y 0-2=0,-7+|b |2=1.解得⎩⎪⎨⎪⎧x 0=1,y 0=2,|b |=2 2.11.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,M ,E ,F 分别为PQ ,AB ,BC 的中点,则异面直线EM 与AF 所成角的余弦值是________.答案303012.如图,已知棱长为a 的正方体ABCD -A 1B 1C 1D 1中,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,过点B 作BM ⊥AC 1于点M ,则点M 的坐标为________.答案 ⎝⎛⎭⎫2a 3,a 3,a 3解析 由题意,知A (a ,0,0),B (a ,a ,0),C 1(0,a ,a ),设M (x ,y ,z ), 则AC 1→=(-a ,a ,a ),AM →=(x -a ,y ,z ),BM →=(x -a ,y -a ,z ).因为BM →⊥AC 1→,所以BM →·AC 1→=0. 所以-a (x -a )+a (y -a )+az =0,即x -y -z =0.①因为AC 1→∥AM →,所以设AM →=λAC 1→,则x -a =-λa ,y =λa ,z =λa (λ∈R ),即x =a -λa ,y =λa ,z =λa .②由①②,得x =2a 3,y =a 3,z =a3.所以点M 的坐标为⎝⎛⎭⎫2a 3,a 3,a 3. 13.如图,已知ABCD -A 1B 1C 1D 1是四棱柱,底面ABCD 是正方形,AA 1=3,AB =2,且∠C 1CB=∠C 1CD =60°,设CD →=a ,CB →=b ,CC 1→=c .(1)试用a ,b ,c 表示A 1C →;(2)已知O 为对角线A 1C 的中点,求CO 的长.解析 (1)A 1C →=A 1A →+AD →+DC →=-AA 1→+BC →-CD →=-CC 1→-CB →-CD →=-c -b -a =-a -b -c .(2)由题意知|a |=2,|b |=2,|c |=3,a ·b =0,a ·c =2×3×12=3,b ·c =2×3×12=3,∵CO →=12CA 1→=12(a +b +c ),∴|CO →|=14(a +b +c )2=14(a 2+b 2+c 2+2a ·b +2a ·c +2b ·c )=14×(22+22+32+0+2×3+2×3)=294=292.14.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若点D 在直线AC 上,且BD →⊥AC →,求点D 的坐标; (2)求以BA ,BC 为邻边的平行四边形的面积.解析 (1)由题意知,AC →=(1,-3,2),点D 在直线AC 上, 设AD →=λAC →=λ(1,-3,2)=(λ,-3λ,2λ), ∴D (λ,2-3λ,2λ+3), BD →=(λ,2-3λ,3+2λ)-(-2,1,6) =(λ+2,1-3λ,2λ-3), ∵BD →⊥AC →, ∴AC →·BD →=(1,-3,2)·(λ+2,1-3λ,2λ-3)=λ+2-3+9λ+4λ-6=14λ-7=0,∴λ=12,∴D ⎝⎛⎭⎫12,12,4. (2)∵BA →=(2,1,-3),BC →=(3,-2,-1), ∴|BA →|=22+12+(-3)2=14, |BC →|=32+(-2)2+(-1)2=14, ∴BA →·BC →=2×3+1×(-2)+(-3)×(-1)=7,∴cos B =cos 〈BA →,BC →〉=BA →·BC →|BA →||BC →|=714×14=12,∴sin B =32,∴S =14×14×32=73,∴以BA ,BC 为邻边的平行四边形的面积为7 3.15.正方体ABCD -A 1B 1C 1D 1的棱长为1,以D 为原点,DA →,DC →,DD 1→所在直线为x ,y ,z 轴建立直角坐标系Dxyz ,点M 在线段AB 1上,点N 在线段BC 1上,且MN ⊥AB 1,MN ⊥BC 1.求:(1)〈AB 1→,BC 1→〉; (2)MN →的坐标.解析 (1)由题意可知D (0,0,0),A (1,0,0),B (1,1,0),B 1(1,1,1),C 1(0,1,1),所以AB 1→=(0,1,1),BC 1→=(-1,0,1), AB 1→·BC 1→=0×(-1)+1×0+1×1=1, |AB 1→|=02+12+12=2, |BC 1→|=(-1)2+02+12=2,所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=12×2=12.所以〈AB 1→,BC 1→〉=π3.(2)设点M (1,x ,x ),N (y ,1,1-y ), 则MN →=(y -1,1-x ,1-x -y ).因为MN →·AB 1→=0,MN →·BC 1→=0,即⎩⎪⎨⎪⎧(y -1,1-x ,1-x -y )·(0,1,1)=0,(y -1,1-x ,1-x -y )·(-1,0,1)=0,化简得⎩⎪⎨⎪⎧2-2x -y =0,2-x -2y =0,解得⎩⎨⎧x =23,y =23,所以MN →的坐标为⎝⎛⎭⎫-13,13,-13.1.【多选题】已知向量a =(1,1,0),则与a 共线的单位向量e 等于( ) A.⎝⎛⎭⎫-22,-22,0B .(0,1,0) C.⎝⎛⎭⎫22,22,0D .(1,1,1)答案 AC 2.在四面体OABC 中,空间的一点M 满足OM →=14OA →+16OB →+λOC →,若M ,A ,B ,C 四点共面,则λ等于( ) A.712 B.13 C.512 D.12 答案 A3.在正四面体ABCD 中,E 是BC 的中点,那么( ) A.AE →·BC →<AE →·CD → B.AE →·BC →=AE →·CD → C.AE →·BC →>AE →·CD → D.AE →·BC →与AE →·CD →不能比较大小 答案 C解析 因为AE →·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=0,AE →·CD →=(AB →+BE →)·CD →=AB →·(BD →-BC →)+12BC →·CD →=|AB →|·|BD →|·cos 120°-|AB →|·|BC →|·cos 120°+12|BC →|·|CD →|cos 120°<0.所以AE →·BC →>AE →·CD →.4.已知a =(1,-2,3),b =(-1,1,-4),c =(1,-3,m ),则“m =1”是“{a ,b ,c }构成空间的一个基底”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A解析 当m =1时,c =(1,-3,1),易得a ,b ,c 不共面,即{a ,b ,c }能构成空间的一个基底,即“m =1”是“{a ,b ,c }构成空间的一个基底”的充分条件;当{a ,b ,c }能构成空间的一个基底时,则a ,b ,c 不共面,设a ,b ,c 共面,即c =x a +y b ,解得⎩⎪⎨⎪⎧x -y =1,y -2x =-3,3x -4y =m ,即⎩⎪⎨⎪⎧x =2,y =1,m =2,即当{a ,b ,c }能构成空间的一个基底时,m ≠2,即当{a ,b ,c }能构成空间的一个基底时,不能推出m =1,即“m =1”是“{a ,b ,c }构成空间的一个基底”的不必要条件.综上所述,“m =1”是“{a ,b ,c }构成空间的一个基底”的充分不必要条件.5.已知P (3cos α,3sin α,1)和Q (2cos β,2sin β,1),则|PQ →|的取值范围是( ) A .[0,5] B .[1,25] C .[1,5] D .(1,5) 答案 C6.在四面体O -ABC 中,G 是底面△ABC 的重心,且OG →=xOA →+yOB →+zOC →,则log 3|xyz |等于________. 答案 -37.已知空间三点A (2,1,0),B (2,2,1),C (0,1,2).(1)求AB →·AC →的值;(2)若(AB →+kAC →)⊥(AB →+AC →),求k 的值.解析 (1)因为A (2,1,0),B (2,2,1),所以AB →=(0,1,1).又C (0,1,2),所以AC →=(-2,0,2),所以AB →·AC →=0×(-2)+1×0+1×2=2.(2)由(1)可知AB →=(0,1,1),AC →=(-2,0,2),所以AB →+kAC →=(-2k ,1,2k +1),AB →+AC →=(-2,1,3).因为(AB →+kAC →)⊥(AB →+AC →),所以4k +1+3(2k +1)=0,解得k =-25.8.如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB =3,BC =1,P A =2,E 为PD 的中点.(1)求AC 与PB 所成角的余弦值;(2)在侧面P AB 内找一点N ,使NE ⊥平面P AC ,求N 点的坐标. 解析 (1)由题意,建立如图所示的空间直角坐标系,则A (0,0,0),B (3,0,0),C (3,1,0),D (0,1,0),P (0,0,2),E ⎝⎛⎭⎫0,12,1, 从而AC →=(3,1,0),PB →=(3,0,-2). 设AC 与PB 的夹角为θ,则cos θ=|AC →·PB →||AC →|·|PB →|=327=3714.∴AC 与PB 所成角的余弦值为3714.(2)由于N 点在侧面P AB 内,故可设N 点坐标为(x ,0,z ),则NE →=⎝⎛⎭⎫-x ,12,1-z , 由NE ⊥平面P AC 可得,⎩⎪⎨⎪⎧NE →·AP →=0,NE →·AC →=0,即⎩⎨⎧⎝⎛⎭⎫-x ,12,1-z ·(0,0,2)=0,⎝⎛⎭⎫-x ,12,1-z ·(3,1,0)=0,化简得⎩⎪⎨⎪⎧z -1=0,-3x +12=0,∴⎩⎪⎨⎪⎧x =36,z =1,即N 点的坐标为⎝⎛⎭⎫36,0,1时,NE ⊥平面P AC .。

空间向量与立体几何知识点和知识题(含答案解析)

空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。

高考复习专题10 空间向量与立体几何选择填空题(含解析)三年高考试题

高考复习专题10  空间向量与立体几何选择填空题(含解析)三年高考试题

1.【2019年新课标3理科08】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线2.【2019年全国新课标2理科07】设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面3.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O 的体积为()A.8πB.4πC.2πD.π4.【2019年浙江04】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.3245.【2019年浙江08】设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β6.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.27.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.8.【2018年新课标2理科09】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.9.【2018年新课标3理科03】中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.10.【2018年新课标3理科10】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.【2018年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.812.【2018年浙江06】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件13.【2018年浙江08】已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ114.【2018年上海15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.1615.【2018年北京理科05】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.416.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.1617.【2017年新课标2理科04】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π18.【2017年新课标2理科10】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.19.【2017年新课标3理科08】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.20.【2017年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.1B.3C.1D.321.【2017年浙江09】如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α22.【2017年北京理科07】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.223.【2019年天津理科11】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.24.【2019年新课标3理科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.25.【2019年北京理科11】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.26.【2019年北京理科12】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.27.【2019年江苏09】如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.28.【2018年江苏10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.29.【2018年新课标2理科16】已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.30.【2018年天津理科11】已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.31.【2017年江苏06】如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.32.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.33.【2017年新课标3理科16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)34.【2017年上海04】已知球的体积为36π,则该球主视图的面积等于.35.【2017年上海07】如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.36.【2017年天津理科10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.1.【2019年新课标3理科08】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解答】解:∵点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,∴BM⊂平面BDE,EN⊂平面BDE,∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,∴直线BM,EN是相交直线,设DE=a,则BD,BE,∴BM a,EN a,∴BM≠EN,故选:B.2.【2019年全国新课标2理科07】设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【解答】解:对于A,α内有无数条直线与β平行,α∩β或α∥β;对于B,α内有两条相交直线与β平行,α∥β;对于C,α,β平行于同一条直线,α∩β或α∥β;对于D,α,β垂直于同一平面,α∩β或α∥β.故选:B.3.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由P A=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是P A,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面P AC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.4.【2019年浙江04】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324【解答】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即27,高为6,则该柱体的体积是V=27×6=162.故选:B.5.【2019年浙江08】设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【解答】解:方法线段AO上,作DE⊥AC于E,易得PE∥VG,过P作PF∥AC于F,过D作DH∥AC,交BG于H,则α=∠BPF,β=∠PBD,γ=∠PED,则cosαcosβ,可得β<α;tanγtanβ,可得β<γ,方法由最大角定理可得β<γ'=γ;方法易得cosα,可得sinα,sinβ,sinγ,故选:B.6.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.7.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.8.【2018年新课标2理科09】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1,∴A(1,0,0),D1(0,0,),D(0,0,0),B1(1,1,),(﹣1,0,),(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ,∴异面直线AD1与DB1所成角的余弦值为.故选:C.9.【2018年新课标3理科03】中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.10.【2018年新课标3理科10】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC的外心为O′,显然D在O′O的延长线与球的交点如图:O′C,OO′2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:18.故选:B.11.【2018年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V.故选:C.12.【2018年浙江06】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.13.【2018年浙江08】已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取AB中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1,tanθ3,SN≥SO,∴θ1≥θ3,又sinθ3,sinθ2,SE≥SM,∴θ3≥θ2.故选:D.14.【2018年上海15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.15.【2018年北京理科05】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4【解答】解:四棱锥的三视图对应的直观图为:P A⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△P AB,△PBC,△P AD.故选:C.16.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.17.【2017年新课标2理科04】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10•π•32×6=63π,故选:B.18.【2017年新课标2理科10】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC =CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN AB1,NP BC1;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×()=7,∴AC,∴MQ;在△MQP中,MP;在△PMN中,由余弦定理得cos∠MNP;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1,BD,C1D,∴BD2,∴∠DBC1=90°,∴cos∠BC1D.故选:C.19.【2017年新课标3理科08】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r,∴该圆柱的体积:V=Sh.故选:B.20.【2017年浙江03】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.1B.3C.1D.3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为π×12×331,故选:A.21.【2017年浙江09】如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,,(0,3,6),(,6,0),,.设平面PDR的法向量为(x,y,z),则,可得,可得,取平面ABC的法向量(0,0,1).则cos,取α=arccos.同理可得:β=arccos.γ=arccos.∵.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα.同理可得:tanβ,tanγ.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.22.【2017年北京理科07】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.2【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为P A,即P A=2,故选:B.23.【2019年天津理科11】已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v=sh=π()2×1;故答案为:24.【2019年新课标3理科16】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.【解答】解:该模型为长方体ABCD﹣A1B1C1D1,挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,∴该模型体积为:V O﹣EFGH=6×6×4=144﹣12=132(cm3),∵3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g).故答案为:118.8.25.【2019年北京理科11】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.26.【2019年北京理科12】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.27.【2019年江苏09】如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCDAB×BC×DD1=10.故答案为:10.28.【2018年江苏10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2.故答案为:.29.【2018年新课标2理科16】已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠ASB.△SAB的面积为5,可得sin∠ASB=5,即5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:2.则该圆锥的侧面积:π=40π.故答案为:40π.30.【2018年天津理科11】已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.【解答】解:正方体的棱长为1,M﹣EFGH的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为,四棱锥M﹣EFGH的体积:.故答案为:.31.【2017年江苏06】如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则.故答案为:.32.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h,3,则V,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG,∴FG=SG=5,SO=h,∴三棱锥的体积V,令b(x)=5x4,则,令b′(x)=0,则4x30,解得x=4,∴(cm3).故答案为:4cm3.33.【2017年新课标3理科16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是.(填写所有正确结论的编号)【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量(0,1,0),||=1,直线b的方向单位向量(1,0,0),||=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,(cosθ,sinθ,﹣1),||,设与所成夹角为α∈[0,],则cosα|sinθ|∈[0,],∴α∈[,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ|cosθ|,当与夹角为60°时,即α,|sinθ|,∵cos2θ+sin2θ=1,∴cosβ|cosθ|,∵β∈[0,],∴β,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.34.【2017年上海04】已知球的体积为36π,则该球主视图的面积等于.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.35.【2017年上海07】如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.【解答】解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(﹣4,3,2).36.【2017年天津理科10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R,则球的体积Vπ•()3;故答案为:.。

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》技巧及练习题附解析

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》技巧及练习题附解析

【最新】高考数学《空间向量与立体几何》专题解析一、选择题1.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面. 【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确; ④:1AM DD 、不共面,所以是异面直线,故正确; 故选C. 【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r ,利用公式222PA R r ⎛⎫=+⎪⎝⎭可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为232sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此,三棱锥P ABC -的外接球的表面积为222128443R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.3.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】 【分析】先还原几何体,再根据锥体体积公式求结果. 【详解】几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V ⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.4.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为11117 11132228⎛⎫-⨯⨯+⨯⨯=⎪⎝⎭故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.5.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .34 B .234C .517D .317【答案】D 【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.6.在以下命题中:①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r共线;③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r,则P ,A ,B ,C 四点共面④若a r ,b r是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底;其中真命题的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据空间向量的运算法则,逐一判断即可得到结论. 【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r,c r共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r与任何一个向量都不能构成空间的一个基底,则a r ,b r共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误;⑤利用反证法:若{},,a b b c c a +++r r r r r r不构成空间的一个基底, 设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r能构成空间的一个基底,故⑤正确.综上:①②⑤正确. 故选:D. 【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.7.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D 【解析】 【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解 【详解】 如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M = ,16C M =,1'41C N =,得21122''N M M C N C =+,即1'90N MC ∠=︒故选D 【点睛】本题考查异面直线的求法,属于基础题8.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B 6C 3D 3 【答案】B 【解析】 【分析】设1AA c=u u u v v ,AB a =u u u v v ,AC b =u u u v v,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v,即可得所求角的余弦值. 【详解】设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v又1AB ===u u u v1BC ===u u u u v111111cos ,AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u vu u u v u u u u v u u u v u u u u v即异面直线1AB 与1BC 所成角的余弦值为:6本题正确选项:B 【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130 B .140C .150D .160【答案】D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A=,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8,因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.10.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8π B .12πC .83πD .3π【答案】B 【解析】 【分析】依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =【详解】依据题意作出图形如下:设四面体P ABC -的外接球的半径为R , 因为球心O 在AB 上,所以AB 为球的直径, 所以2AB R =,且AC BC ⊥ 由23AC AB =可得:3AC R =, BC R =所以四面体P ABC -的体积为111333322ABC V S PO R R R ∆=⋅=⨯⨯⨯⨯= 解得:3R =所以球的表面积2412S R ππ== 故选:B 【点睛】本题主要考查了锥体体积公式及方程思想,还考查了球的表面积公式及计算能力,考查了空间思维能力,属于中档题。

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。

高考数学冲刺专题3.6 空间向量与立体几何(新高考)(解析版)

高考数学冲刺专题3.6 空间向量与立体几何(新高考)(解析版)

专题3.6 空间向量与立体几何1.利用向量求异面直线所成的角的方法: 设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2.利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 3.求二面角的方法通常有两个思路:(1)利用空间向量,建立坐标系,求得对应平面的法向量之间夹角的余弦值,再判断锐二面角或钝二面角,确定结果,这种方法优点是思路清晰、方法明确,但是计算量较大;(2)传统方法,利用垂直关系和二面角的定义,找到二面角对应的平面角,再求出二面角平面角的大小,这种解法的关键是找到平面角. (3)要注意结合实际图形判断所求角是锐角还是钝角. 4.利用空间向量计算二面角的常用方法:(1)法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小;(2)方向向量法:分别在二面角的两个半平面内找到与棱垂直且垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【预测题1】如图,在多面体ABCDEF 中,四边形ABCD 是等腰梯形,1AB BC ==,2AD =,四边形ADEF 是直角梯形,且1AF =,2DE =,AF AD ⊥,//AF DE ,平面ABCD ⊥平面ADEF .(1)证明:平面BDE ⊥平面ABE .(2)线段EF 上是否存在一点P ,使平面PAB 与平面CDE 所成锐二面角的余弦值为4?若存在,请说明P 点的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,P 为EF 的中点.【解析】(1)证明:在等腰梯形ABCD 中,1AB BC ==,2AD =,可得60BAD ∠=︒.在ABD △中,由余弦定理可得BD =所以222AB BD AD +=,所以AB BD ⊥.因为平面ABCD ⊥平面ADEF 且交于AD ,DE AD ⊥,所以DE ⊥平面ABCD . 因为AB平面ABCD ,所以AB DE ⊥.因为BD DE D ⋂=,所以AB ⊥平面BDE . 因为AB平面ABE ,所以平面BDE ⊥平面ABE .(2)解:如图,过B 作AD 的垂线交AD 于O ,过O 在平面ADEF 内作AD 的垂线Ox ,建立空间直角坐标系O xyz -,则10,,02A ⎛⎫- ⎪⎝⎭,B ⎛ ⎝⎭,0,1,2C ⎛⎫ ⎪ ⎪⎝⎭,30,,02D ⎛⎫ ⎪⎝⎭,32,,02E ⎛⎫ ⎪⎝⎭,11,,02F ⎛⎫- ⎪⎝⎭, ()1,2,0FE =,设FP FE λ=,则11,2,02P λλ⎛⎫+- ⎪⎝⎭.()2,0,0DE =,10,2DC ⎛=- ⎝⎭,10,2AB ⎛= ⎝⎭,()1,2,0AP λλ=+.设平面CDE 的法向量为()111,,m x y z =,则11120102m DE x m DC y z ⎧⋅==⎪⎨⋅=-=⎪⎩,令11z =,得()0,3,1m =. 设平面PAB 的法向量为()222,,n x y z =,则22221022(1)20n AB y z n AP x y λλ⎧⋅=+=⎪⎨⎪⋅=++=⎩,令21z =,得23n λ⎛⎫= ⎪ ⎪⎝⎭.所以cos ,m n m n m n⋅===⎛,解得12λ=,即当P 为EF 的中点时满足题意. 【预测题2】如图,在水平桌面上放置一块边长为1的正方形薄木板ABCD .先以木板的AD边为轴,将木板向上缓慢转动,得到平面11AB C D ,此时1B AB ∠的大小为π(0)2θθ<<.再以木板的1AB 边为轴,将木板向上缓慢转动,得到平面121AB C D ,此时211C B C ∠的大小也为θ.(1)求整个转动过程木板扫过的体积;(2)求平面121AB C D 与平面ABCD 所成锐二面角的余弦值.【答案】(1)θ;(2)2cos θ.【解析】(1)整个转动过程木板扫过的几何体由两个底面为圆心角为θ,半径为1的扇形,高为1的直棱柱组成,故其体积22(π11)2πV θθ=⨯⨯⨯⨯=.(2)以A 为坐标原点,DA 方向为x 轴正方向,1AB 方向为y 轴正方向,建立如图所示的 空间直角坐标系A xyz -,则(000)A,,,(0cos sin )B θθ-,,,(100)D -,,,1(010)B,,,1(cos 0sin )D θθ-,,,(0cos sin )AB θθ=-,,,(100)AD =-,,,1(010)AB = ,,,1(cos 0sin )AD θθ=-,,,设()x y z =,,n 是平面ABCD 的一个法向量,则00n AB n AD ⎧⋅=⎨⋅=⎩,即cos sin 0y z x θθ-=⎧⎨-=⎩,不妨令sin y θ=,可取(0sin cos )θθ=,,n ,同理平面121AB C D 的一个法向量(sin 0cos )θθ=,,m ,设平面121AB C D 与平面ABCD 所成锐二面角为ϕ,则2cos cos cos ϕθ=<>==,n m ,所以平面121AB C D 与平面ABCD 所成锐二面角的余弦值为2cos θ.【预测题3】如图所示,在四棱锥P ABCD -中,//AB CD ,12AD AB CD ==,60DAB ∠=,点,E F 分别为CD AP ,的中点.(1)证明://PC 面BEF ;(2)若PA PD ⊥,且PA PD =,面PAD ⊥面ABCD ,求二面角C BE F --的余弦值.【答案】(1)证明见解析;(2). 【解析】(1)连接AC ,交BE 于点H ,连接FH ,因为,,AB CE HAB HCE BHA CHE ∠∠∠∠===, 所以,,//ABH CEH AH CH FH PC ≅∴=∴△, 因为FH⊂面FBE ,PC ⊄平面FBE ,所以//PC 面FBE .(2)取AD 中点O ,连接, PO OB ,由,PA PD PO AD =∴⊥, 因为面PAD ⊥面ABCD ,所以PO ⊥面ABCD , 由60,,DAB AD AB OB AD ∠==∴⊥,以,,OA OB OP 分别为,,x y z 轴,建立空间直角坐标系,设2AD =,则11(1,0,0),(1,0,0),(0,0,1),,0,22A B D P F ⎛⎫- ⎪⎝⎭,11(2,0,0),,22EB DA BF ⎛⎫=== ⎪⎝⎭,(0,0,1)n =为面BEC 的一个法向量,设面FBE 的法向量为(,,)m x y z =,则201122EBm x BF m x z +⎧⋅==⎪⎨⋅=-=⎪⎩,取y =(0,3,6)m =, cos ,||||39m n m n m n ⋅<>===⋅, 因为二面角C BE F --为钝角,所以二面角C BE F --的余弦值为13-.【预测题4】如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PD ⊥底面,ABCD M 为线段PC 的中点,2,PD AD N ==为线段BC 上的动点.(1)证明:MD PN ⊥;(2)当N 为线段BC 的中点时,求直线PA 与平面MND 所成角的正弦值.【答案】(1)证明见解析;(2)6.【解析】(1)证明:PD ⊥平面,ABCD BC 平面ABCD ,BC PD ∴⊥, 又,,BC DC PD DC D PD DC ⊥⋂=、 平面PDC ,BC ∴⊥平面PDC ,又MD 平面PDC ,MD BC ∴⊥,Rt PDC 中,,,PD DC PD DC M ⊥=为PC 的中点,MD PC ∴⊥,,PC BC C PC BC ⋂=、 PBC ,MD ∴⊥面PBC ,PN 平面,PBC MD PN ∴⊥,(2)以D 为原点,DA DC DP 、、分别为,,x y z 轴建立空间直角坐标系D xyz -, 则()()0,1,1,1,2,0DM DN ==,设(),,n x y z =为平面MND 的法向量,则()()()(),,0,1,10,0,0,,,1,2,00,20,0,x y z y z n DM x y z x y n DN ⎧⎧⋅=+=⎧⋅=⎪⎪⇒⇒⎨⎨⎨⋅=+=⋅=⎪⎩⎪⎩⎩令2x =,则1,1y z =-=,故()2,1,1n =-,()2,0,2AP =-,记直线PA 与平面MND 所成角为θ,则3sin cos ,6n AP n AP n APθ⋅===⋅. 【预测题5】如图,在四棱锥S ABCD -中,底面四边形ABCD 是正方形,SD DB ⊥,SB AC ⊥,点E 是棱SD 上的点.(1)证明:SD ⊥平面ABCD ; (2)已知2SD ==,点E 是SD 上的点,()01DE DS λλ=<<,设二面角C AED --的大小为θ,直线BE 与平面ABCD 所成的角为ϕ,若sin cos ϕθ=,求λ的值.【答案】(1)证明见解析;(2)λ=. 【解析】(1)因为底面四边形ABCD 是正方形,所以AC BD ⊥, 又SB AC ⊥,SB BD B ⋂=,所以AC ⊥平面SBD , 又AC ⊂平面ABCD ,所以平面SBD ⊥平面ABCD , 因为SD BD ⊥,SD ⊂平面SBD ,平面SBD 平面ABCD BD =,所以SD ⊥平面ABCD .(2)由已知及(1)可知SD AD ⊥,SD CD ⊥,AD CD ⊥,以D 为原点,DA ,DC ,DS 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为2SD ==,所以()0,0,0D,)A,)B,()C ,()0,0,2S,()0,0,2E λ,得()2,0,2EA λ=-,()2EC λ=-,()2,2EB λ=-,设平面ACE 的法向量为(),,n x y z =,则由n EA ⊥,n EC ⊥得00n EA n EC ⎧⋅=⎨⋅=⎩,即2020z z λλ-=-=,取z =,得(2,2n λλ=. 易知平面ABCD 和平面ADE 的一个法向量分别为()0,0,2DS =和()0,DC =.所以2sin BE DS BE DSϕ⋅==⋅=⨯,8cos n DC n DCθλ⋅⋅===,由sin cos ϕθ=1)λ=<<,解得λ=.【预测题6】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,2BC AD =,2AP AB AD CD ====.(1)求证:平面PAC ⊥平面PAB ;(2)若E 为棱PB 上一点(不与P,B 重合),二面角E CD P --,求PE PB的值.【答案】(1)证明见解析;(2)13. 【解析】(1)证明:取BC 的中点M ,连接AM .因为//AD BC ,2BC AD =,所以//AD MC ,AD MC =, 从而四边形AMCD 为平行四边形,所以2AM DC ==, 于是12AM BC =,所以AB AC ⊥. 因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AC ⊥. 又AB ,PA ⊂平面PAB ,AB PA A ⋂=,所以AC ⊥平面PAB . 又AC ⊂平面PAC ,所以平面PAC ⊥平面PAB .(2)由(1)知AB ,AC ,AP 两两垂直,建立如图所示的空间直角坐标系A xyz -,所以 (2,0,0)B ,(0,C ,(D -,(0,0,2)P .设PE PB λ=,01λ<<,则(1,DC =,(0,2)PC =-,(2,0,2)PE PB λλλ==-,于是(2,22)EC PC PE λλ=-=--+.设平面PCD 的一个法向量为()1111,,n x y z =,则110,0,n DC n PC ⎧⋅=⎪⎨⋅=⎪⎩即11110,20.x z ⎧+=⎪⎨-=⎪⎩ 令11y =,得1(3,1n =-.设平面ECD 的一个法向量为()2222,,n x y z =则2200n DC n EC ⎧⋅=⎪⎨⋅=⎪⎩即222220,2(22)0.x x z λλ⎧+=⎪⎨-++-=⎪⎩ 令21y=,得211n λλ+⎛⎫=- ⎪-⎝⎭. 令11t λλ+=-,则1t >.因为二面角E CD P --,所以121212cos ,147n n n n n n ⋅===⋅, 化简得21332120t t -+=,即(2)(136)0t t --=, 解得 2t =或613t =(舍去),所以121t λλ+==-,解得13λ=,因此PEPB 值为13.【预测题7】如图所示,△ABC 是等边三角形,DE //AC ,DF //BC ,二面角D ﹣AC ﹣B 为直二面角,AC =CD =AD =DE =2DF =2.(1)求证:EF ⊥BC ;(2)求平面ACDE 与平面BEF 所成锐二面角的正切值.【答案】(1)证明见解析;(2)23.【解析】(1)因为DE//AC,DF//BC,△ABC是等边三角形,所以∠EDF=∠ACB=60°,又AC=DE=BC=2DF=2,在△EDF中,由余弦定理可得,EF所以EF2+DF2=DE2,故EF⊥DF,所以EF⊥BC;(2)设线段AC的中点为O,连结BO,DO,因为△ABC和△ACD都是等边三角形,所以BO⊥AC,DO⊥AC,故∠BOD即为二面角D﹣AC﹣B的平面角,由于二面角D﹣AC﹣B是直二面角,所以∠BOD=90°,建立空间直角坐标系如图所示,则1(0,1,0),(0,,,022A B E G⎛⎫-- ⎪⎪⎝⎭,所以33(3,2,3),,022BE EF AG⎛⎫=--== ⎪⎪⎝⎭,设平面BEF的法向量为(,,)nx y z=,则有n BEnEF⎧⋅=⎨⋅=⎩,即232yxy⎧-=+=,令x=1,y z=-=,所以33,1,3n⎛⎫=-⎪⎪⎭,又(3,0,0)OB=,且OB是平面ACDE的一个法向量,所以cos ,||||3n OB n OB n OB ⋅<>===则sin ,1n OB <>==sin ,2tan ,3cos ,n OB n OB n OB <><>==<>, 故平面ACDE 与平面BEF 所成锐二面角的正切值为23. 【预测题8】如图所示,已知在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,侧棱3PA PC ==,PB PD =,过点A 的平面与侧棱PB ,PD ,PC 相交于点E ,F ,M ,且满足PE PF =,1PM =.(1)求证:直线PC ⊥平面AEMF ;(2)求平面MDB 与平面AEMF 所成二面角的正弦值.【答案】(1)证明见解析;(2 【解析】(1)联结AM ,AC ,AC DB O ⋂=,因为PB PD =,所以PO BD ⊥,因为ABCD 是菱形,所以BD AC ⊥,所以BD⊥平面PAC ,所以BD PC ⊥,又PE PF =,所以//EF BD ,所以EF PC ⊥,由已知条件得,2BD =,AC =由余弦定理得(222222331cos 22333PA PC AC APC PA PC +-+-∠===⋅⨯⨯,22212cos 9123183PA PM PA PM AP AM C =+-⋅⋅∠=+-⨯⨯⨯=, 所以222PM P M A A =+,所以PC AM ⊥,因为直线AM ,EF 相交,且AM ,EF 都在平面AEMF 内,所以直线PC ⊥平面AEMF .(2)取N 为MC 的中点,联结ON ,BN ,DN ,则//ON AM ,又//EF BD ,所以平面//AEMF 平面BND ,因为直线BD ⊥平面PAC ,联结MO ,所以MO BD ⊥,NO BD ⊥,所以MON ∠为平面MDB 与平面AEMF 所成二面角的平面角,由已知可得,ON ==OM =所以sin 3MON ∠==,所以平面MDB 与AEMF【名师点睛】求二面角所成角三角函数值的方法:①找出与已知平面平行的平面(有时可以直接到第②步);②作出二面角的平面角;③解二面角的平面角所在三角形.【预测题9】如图,在三棱锥A BCD -中,ABC 是边长为3的等边三角形,CD CB =,CD ⊥平面ABC ,点M 、N 分别为AC 、CD 的中点,点P 为线段BD 上一点,且//BM 平面APN .(1)求证:BM AN ⊥;(2)求平面APN 与平面ABC 所成角的正弦值.【答案】(1)证明见解析;(2. 【解析】(1)因为CD ⊥面ABC ,BM ⊂面ABC ,所以CD BM ⊥.因为正ABC 中,AM MC BM AC =⇒⊥,所以BM CD BM AC BM CD AC C ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭面ACD ,所以BM AN ⊥.(2)连接MD 交AN 于G 点,连接PG ,因为//BM 平面APN ,所以//BM PG ,由重心性质知P 为靠近B 点的三等分点.所以()0,0,0C,30,,22A ⎛ ⎝⎭,()0,3,0B ,()1,2,0P ,3,0,02N ⎛⎫ ⎪⎝⎭, 设面APN 的法向量为(),,n x y z =,0AP n ⋅=,0AN n ⋅=,所以10233022x y z x y z ⎧+=⎪⎪⎨⎪-=⎪⎩,令4x =,则1,y z ==,所以(4,1,3n =,平面ABC 的法向量为()1,0,0u =,cos ,5u v ==,所以平面APN 与平面ABC【预测题10】如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA CD ⊥,1PA =,PD =E 为PD 上一点,且2PE ED =.(1)求证:平面PAC ⊥平面ABCD ;(2)求二面角P CE B --的余弦值.【答案】(1)证明见解析;(2)10. 【解析】(1)在PAD ∆中,1PA AD ==,PD =222PD PA AD ∴=+,PA AD ∴⊥,又PA CD ⊥,CD AD D =,CD ,AD ⊂平面ABCD ,PA ∴⊥平面ABCD , 又PA ⊂平面PAC ,∴平面PAC ⊥平面ABCD ,(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,0,0B ,()1,1,0C ,210,,33E ⎛⎫ ⎪⎝⎭,()0,0,1P , (0,1,0)BC ∴=,111,,33CE ⎛⎫=-- ⎪⎝⎭,(1,1,1)PC =-, 设平面PCE 的一个法向量为()111,,m x y z =,则00m CE m PC ⎧⋅=⎨⋅=⎩,1111110330y z x x y z ⎧--+=⎪∴⎨⎪+-=⎩,令11y =,解得1101x z =⎧⎨=⎩,()0,1,1m ∴=,设平面BCE 的一个法向量为()222,,n x y z =,则00n CE n BC ⎧⋅=⎨⋅=⎩, 22220330y z x y ⎧--+=⎪∴⎨⎪=⎩,令21x =,解得2203y z =⎧⎨=⎩,()1,0,3n ∴=,cos ,||||2m n m n mn ⋅∴〈〉===⨯, ∴二面角P CE B --.【预测题11】如图,已知斜三棱柱111ABC A B C -底面是边长2的正三角形,D 为ABC 所在平面上一点且四边形ABCD 是菱形,ACBD O =,四边形11ACC A 为正方形,平面11A DC ⊥平面111A B C .(1)证明:1BO ⊥平面ABCD ;(2)求平面1CDC 与平面11A DC 所成二面角的正弦值.【答案】(1)证明见解析;(2)7.【解析】(1)取11A C 中点M ,连接MD 、1MB 、MO ,因为1111A B B C =,所以111B M A C ⊥,因为四边形11ACC A 为正方形,所以11OM AC ⊥,而1B M 与OM 相交于平面1B MDO , 所以11A C ⊥平面1B MDO ,因为MD ⊂平面1B MDO ,所以11A C DM ⊥,因为平面11A DC ⊥平面111A B C ,交线为11A C ,所以DM ⊥平面111A B C ,因为平面//ABCD 平面111A B C ,所以DM ⊥平面ABCD ,因为1//B M OD 且1B M OD =,所以四边形1B MDO 是平行四边形,故1//B O DM , 所以1B O ⊥平面ABCD ;(2)以D 为原点,BD 、DM 所在的直线方向为y 、z 轴,垂直BD 的直线方向为x 轴,建立如图空间直角坐标系,则()()()()0,0,0,1,,0,,0,D C B O -.在1Rt B BO中,11B O ===,则()10,B ,则()CD =-,()11BB CC ==,设平面1CDC 的法向量为(,,)m x y z =, 由13030CD m x CC m y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1y =,(3,1,m =,易见,平面11A DC 的法向量为(0,1,0)n =,所以7cos ,m nm n m n ⋅===⋅⋅,故平面1CDC 与平面11A DC 2,17m n ==. 【预测题12】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,60ABC ∠=︒.点E ,F 分别在棱BC ,PD 上(不包含端点),且::PF DF BE CE =.(1)证明://EF 平面PAB ;(2)若PA =,求二面角B PC D --的余弦值.【答案】(1)证明见解析;(2)711-. 【解析】(1)过点F 作//HF AD ,HF PA H ⋂=,连接BH . 因为//HF AD ,所以HF PF AD PD=. 因为::PF DF BE CE =,所以PF BE PD BC =,所以HF BE AD BC =. 因为四边形ABCD 是菱形,所以//BC AD ,且BC AD =,所以//HF BE ,且HF BE =,所以四边形BEFH 是平行四边形,则//EF BH . 因为BH ⊂平面PAB ,EF ⊄平面PAB ,所以//EF 平面PAB .(2)解:以A 为原点,过A 作垂直AD 的直线为x 轴,AD ,AP 的方向分别为y ,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -.设2AB =,则1,0)B -,C ,(0,2,0)D ,(0,0,P ,从而(0,2,0)BC =,(3,1,PC =-,(CD =-.设平面PBC 的法向量为()111,,n x y z =,则11113020,n PC x y n BC y ⎧⋅=+-=⎪⎨⋅==⎪⎩,令1x =(22,0,n=. 设平面PCD 的法向量为()222,,m x y z =,则222223030,m PC x y m CD x y ⎧⋅=+-=⎪⎨⋅=-+=⎪⎩,令22x =,得(2,23,m =. 设二面角B PC D --为θ,由图可知θ为钝角,故cos |cos ,|||||n mn m n m θ⋅=-〈〉=-711==-.【名师点睛】此题考查线面平行的判定,考查二面角的求法,解题的关键是正确的建立空间直角坐标系,利用空间向量求解,考查计算能力,属于中档题【预测题13】如图,四棱锥E ABCD -,底面ABCD 为直角梯形,//AD BC ,AD ⊥面ABE ,2AE AD BE BC ===,23AEB π∠=,O 为AB 中点.(1)证明:面EOC ⊥面ABCD ;(2)点F 是点E 关于面ABCD 对称的点,求二面角O CD F--的余弦值.【答案】(1)证明见解析;(2. 【解析】(1)AE BE =,O 为AB 中点,所以EO AB ⊥.因为AD ⊥面ABE , EO ⊂面ABE ,所以AD EO ⊥,又AB AD A ⋂=,所以EO ⊥面ABCD ,又EO ⊂面EOC ,所以面EOC ⊥面ABCD .(2)连AF ,BF ,点F 与点E 关于面ABCD 对称,而EO ⊥面ABCD .故E ,O ,F 三点共线.在平面AEBF 内,过点A 作Ay AF ⊥.以A 为坐标原点,AF ,Ay ,AD 所在直线分别为x ,y ,z 轴,建立如图所示空间直角坐标系,设1BC =,则()0,0,0A ,()0,0,2D,()E ,()2,0,0F,()B,()C ,则32O ⎛⎫ ⎪ ⎪⎝⎭,所以1,2EO ⎛⎫= ⎪ ⎪⎝⎭,()2,0,2DF =-,()1,FC =, 因为EO ⊥面ABCD ,所以面OCD的一个法向量为1,22EO ⎛⎫=- ⎪ ⎪⎝⎭, 设面CDF 的一个法向量为(),,n x y z =,则22030n DF x z n FC x y z ⎧⋅=-=⎪⎨⋅=++=⎪⎩,取1x =,得21,n ⎛⎫=- ⎪ ⎪⎝⎭,330cos ,20n EO n EO n EO ⋅<>==⋅, 二面角O CD F --为锐角,故二面角O CD F --. 【预测题14】如图,在四棱锥E ABCD -中,四边形ABCD 为平行四边形,BCE 为等边三角形,点O 为BE 的中点,且22AC BC OA ===.(1)证明:平面ABE ⊥平面BCE ;(2)若AB AE =,求二面角B CE D --的正弦值.【答案】(1)证明见解析;(2. 【解析】(1)证明:连接OC ,因为BCE 为等边三角形,所以OC BE ⊥,因为2AC =,1OA =,22OC =⨯= 所以222AC AO OC =+,所以OC OA ⊥, 因为OABE O =,所以OC ⊥平面ABE ,因为OC ⊂平面BCE ,所以平面BCE ⊥平面ABE ,故平面ABE ⊥平面BCE . (2)因为AB AE =,所以OA BE ⊥,所以OE 、OC 、OA 两两垂直, 建立如图所示的空间直角坐标系,()1,0,0E ,()1,0,0B -,()0,0,1A ,()C ,()EC =-,()1,0,1CD BA ==,设平面ECD 的法向量为(),,m x y z =,30EC m xCD m x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令x =1y =,z =(3,1,m =,平面BEC 的法向量为()0,0,1n =,设二面角B CE D --的大小为θ, 则3cos 71m n m nθ⋅===⋅⋅,sin 7θ==,所以二面角B CE D --的正弦值为7. 【名师点睛】掌握直线与平面垂直的判定定理、平面与平面垂直的判定定理、利用空间向量求二面角是解题关键.【预测题15】如图,直三棱柱111ABC A B C -中,90ACB ∠=,1AC =,12BC CC ==,D ,E ,F ,G 分别是棱111,,,AB BC B C BB 的中点.(1)求证:平面 CDG⊥平面1A DE ;(2)求平面1A BF 与平面1A DE 所成的锐二面角的余弦值. 【答案】(1)证明见解析;(2)3【解析】(1)以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立如图所示的空间直角坐标系,则11(0,0,0),,1,0,(0,2,1),(1,0,2)2C D G A ⎛⎫⎪⎝⎭, (0,2,0),(0,1,0),(0,1,2)B E F ,1111,1,0,(0,2,1),,1,2,,0,0222CD CG DA DE →→→→⎛⎫⎛⎫⎛⎫===-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面CDG 的一个法向量为(,,)m x y z =,由10220m CD x y m CG y z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1y =,得(2,1,2)m =--; 设平面1A DE 的一个法向量为()1111,,n x y z →=,由11111111202102n DA x y z n DE x ⎧⋅=-+=⎪⎪⎨⎪⋅=-=⎪⎩,取11z =,得1(0,2,1)n →=.因为10m n →⋅=,所以1m n →⊥,所以平面CDG ⊥平面1A DE ;(2)由(1)可得,平面1A DE 的一个法向量为得1(0,2,1)n →=,1(1,2,2)A B →=--,1(1,1,0)A F →=-,设平面1A BF 的一个法向量为()2222,,n x y z →=,由2122221222200n A B x y z n A F x y ⎧⋅=-+-=⎪⎨⋅=-+=⎪⎩,取21y =,得211,1,2n →⎛⎫= ⎪⎝⎭.121212122cos ,32n n n n nn →→→→→→+⋅∴<>===, 所以平面1A BF 与平面1A DE【名师点睛】建立空间直角坐标系,把线面,面面关系转化为向量之间的关系,从而求得线面角,距离,二面角等.【预测题16】如图,四棱台ABCD ﹣A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,底面ABCD 是平行四边形,∠ABC =4π,BC AB ,A 1B 1=A 1A =1.(1)证明:DD 1//平面ACB 1; (2)求面角A ﹣B 1C ﹣D 1的余弦值.【答案】(1)证明见解析;(2)7. 【解析】(1)连接BD ,交AC 于O ,连接B 1O , 因为四边形ABCD 是平行四边形,所以OD =12BD ,由棱台的性质可得B 1D 1//OD ,由BC AB =2,又A 1B 1=1,可得111112A B B D AB BD ==,则B 1D 1=OD , 所以四边形B 1ODD 1是平行四边形,则B 1O //DD 1,因为B 1O ⊂平面B 1AC ,DD 1⊄ 平面B 1AC ,所以DD 1//平面ACB 1; (2)因为A 1A ⊥平面ABCD ,且AC ⊂平面ABCD ,AB ⊂平面ABCD ,所以A 1A ⊥AC ,A 1A ⊥AB ,又4ABC π∠=,BC =,AB =2,所以AC =2,则AB 2+AC 2=BC 2,故AB ⊥AC ,即AB ,AC ,AA 1两两互相垂直, 以A 为坐标原点,分别以AB ,AD ,AA 1所在直线为x ,y ,z 轴建立空间直角坐标系, 则A (0,0,0),C (0,2,0),B 1(1,0,1),D 1(﹣1,1,1), 所以1(1,2,1)CB =-,(0,2,0)AC =,1(1,1,1)CD =--. 设平面AB 1C 的一个法向量为(,,)x m y z =,由12020m AC y m CB x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,取z =1,得(1,0,1)m =-; 设平面B 1CD 1的一个法向量为()111,,n x y z =,由11111111020n CD x y z n CB x y z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,取z 1=3,得(1,2,3)n =.设二面角A ﹣B 1C ﹣D 1为θ,由图可知,θ为锐角, 则cos θ=|cos<,m n>|=2||||||1m n m n⋅==+. 又由图示知二面角A ﹣B 1C ﹣D 1为锐角, 故二面角A ﹣B 1C ﹣D 1.【预测题17】已知矩形ABCD 中,AB =2,AD =5.E ,F 分别在AD ,BC 上.且AE =1,BF =3,沿EF 将四边形AEFB 折成四边形A ′EFB ′,使点B ′在平面CDEF 上的射影H 在直线DE 上.(1)求证:A ′D //平面B ′FC ; (2)求二面角A ′﹣DE ﹣F 的大小.【答案】(1)证明见解析;(2)135°.【解析】(1)证明:因为A ′E //B ′F ,A ′E ⊄平面B ′FC ,B ′F ⊂平面B ′F C . 所以A ′E //平面B ′FC ,由DE //FC ,同理可得DE //平面B ′FC , 因为A ′E ∩DE =E .所以平面A ′ED //平面B ′FC , 所以A ′D //平面B ′F C .(2)如图,过E 作ER //DC ,过E 作ES ⊥平面EFCD , 分别以ER ,ED ,ES 所在直线为x ,y ,z 轴建立空间直角坐标系. 因为B ′在平面CDEF 上的射影H 在直线DE 上,设B ′(0,y ,z )(y ,z ∈R +).()2,2,0,3F B E B F =''=,222254(2)9y z y z ⎧+=∴⎨+-+=⎩,解得12y z =⎧⎨=⎩, ()0,1,2B ∴',()2,1,2FB '∴=--,1212,,3333EA FB ⎛⎫''∴==-- ⎪⎝⎭,设平面A DE 的法向量为(),,n x y z =,又有()0,4,0.ED =00n EA n ED ⎧⋅=∴=⎩'⎨⋅得212033340x y z y ⎧--+=⎪⎨⎪=⎩,令1x =,则1,0z y ==,得到(1,0,1)n =. 又平面CDEF 的法向量为()0,0,1.m =设二面角A DE F '--的大小为θ,显然θ为钝角,cos cos ,2n m θ∴=-=-,所以135θ=︒.【预测题18】如图:PD ⊥平面ABCD ,四边形ABCD 为直角梯形,//,2AB CD ADC π∠=,222PD CD AD AB ====,(1)求证:平面BDP ⊥平面PBC ; (2)求二面角B PC D --的余弦值;(3)在棱PA 上是否存在点Q ,使得//DQ 平面PBC ?若存在,求PQPA的值,若不存在,请说明理由.【答案】(1)证明见解析(2(3)不存在,理由见解析【解析】(1)在BDC 中,BD ==2CD =,4BDC π∠=,所以BC === 所以222BD BC CD +=,所以BD BC ⊥, 因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD BC ⊥,因为PD BD D ⋂=,所以BC ⊥平面BDP ,因为BC ⊂平面PBC ,所以平面BDP ⊥平面PBC . (2)因为PD ⊥平面ABCD ,所以,PD AD PD DC ⊥⊥,又AD DC ⊥, 所以以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系: 则(0,0,0)D ,(1,0,0)A ,(1,1,0)B ,(0,2,0)C ,(0,0,2)P , 则(0,2,2)PC=-,(1,1,0)BC =-,(0,0,2)DP =,(1,0,2)PA =-,设平面PBC 的法向量为(,,)n x y z =,则2200n PC y z n BC x y ⎧⋅=-=⎨⋅=-+=⎩,取1x =,得1y =,1z =,得(1,1,1)n =, 取平面PDC 的法向量为(1,0,0)DA =,设二面角B PC D --的大小为θ,由图形知,θ为锐角,所以||cos||||n DA n DA θ⋅=3==,所以二面角B PC D -- (3)假设在棱PA 上是否存在点Q ,使得//DQ 平面PBC ,则DQ n ⊥,0DQ n ⋅=, 设PQ PA λ=(01)λ≤≤,则DQ DP PA λ-=,DQ DP PA λ=+(0,0,2)(1,0,2)λ=+-(,0,22)λλ=-, 所以()DQ n DP PA n λ⋅=+⋅=(,0,22)(1,1,1)λλ-⋅2220λλλ=+-=-=, 解得2λ=,不符合01λ≤≤,故在棱PA 上不存在点Q ,使得//DQ 平面PBC ,【名师点睛】(1)中,利用面面垂直的判定定理证明是解题关键;(2)和(3)中,利用空间向量求解是解题关键.【预测题19】如图所示,在多面体ABCDEF 中,四边形ADEF 为正方形,//AD BC ,AD AB ⊥,21AD BC ==.2AB BF ==.(1)证明:平面ADEF ⊥平面ABCD .(2)若三棱锥A BDF -的外接球的球心为O ,求二面角A CD O --的余弦值.【答案】(1)证明见解析;(2 【解析】(1)因为四边形ADEF 为正方形,所以,//,1,2AD AF AD BC AD AF AB BF ⊥====,所以222AF AB BF +=,所以,,AF AB ABBD A AF ⊥=⊥平面ABCD ,平面ADEF ⊥平面ABCD .(2)因为AB AD ⊥,由①知,AB 、AD 、AF 两两垂直,以A 为坐标原点建立空间直角坐标系A xyz -,如图所示,则1(0,1,0),,0,(0,0,1),(0,1,1)2D C F BE ⎫⎪⎭.因为三棱锥A BDF -的外接球的球心为O ,所以O 为线段BE 的中点,则O 的坐标为11311,,,0,,3,,0222222OC CD ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 设平面OCD 的法向量为(),,n x y z =,则0n OC n CD ⋅=⋅=,即10,210,2x z y -=⎨⎪+=⎪⎩令1x =,得(1,23,n =. 易知平面ACD 的一个法向量为()0,0,1m =,则3cos ,16m n ==⨯. 由图可知,二面角A CD O--为锐角,故二面角A CD O --余弦值为4. 【预测题20】如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由; (2)求二面角A MN B --的正弦值.【答案】条件选择见解析,(1)MN ⊥平面ABD ,理由见解析;(2)7. 【解析】(1)若选①:AD =在Rt BCD中,2BC =,1CD =,BD =,2AB =,可得222AB BD AD +=,所以AB BD ⊥, 又由AB BC ⊥,且BCBD B =,,BC BD ⊂平面CBD ,所以AB ⊥平面CBD ,因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD .若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,可得CD AD ⊥, 又由CD BD ⊥,且AD BD D =,,AD BD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选③:平面ABC ⊥平面BCD ,平面ABC平面BCD BC =, 因为AB BC ⊥,且AB 平面ABC ,所以AB ⊥平面CBD ,因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . (2)以D 为原点,射线OB 为y 轴建立如图直角坐标系,则()A,()B ,()1,0,0C -,1,22M ⎛⎫- ⎪ ⎪⎝⎭,0,2N ⎛⎫ ⎪ ⎪⎝⎭ 可得1,0,02MN ⎛⎫= ⎪⎝⎭,0,12AN ⎛⎫=-- ⎪ ⎪⎝⎭,0,2BN ⎛⎫=- ⎪ ⎪⎝⎭ 设平面AMN 的法向量为()111,,m x y z =,则11110230m MN x m AN yz ⎧⋅==⎪⎪⎨⎪⋅=--=⎪⎩, 取1y =1130,2x z ==-,所以30,2m ⎛⎫=- ⎪⎝⎭设平面BMN 的法向量为()222,,n x y z =,则22210230n MN x n BNy z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩, 取2y 30,3,2n ⎛⎫= ⎪⎝⎭,所以9314cos ,9734m n mn m n -⋅===⋅+, 故二面角A MN B --.。

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》基础测试题含答案解析

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》基础测试题含答案解析

新数学高考《空间向量与立体几何》复习资料一、选择题1.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的体积为( ) A .39B .33C .13D .3【答案】B 【解析】根据题意画出如图所示的几何体:∴三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体为三棱锥F ABC - ∵ABC 为正三角形,2AB = ∴132232ABC S ∆=⨯⨯⨯= ∵CD ⊥底面ABC ,//AE CD ,2CD AE == ∴四边形AEDC 为矩形,则F 为EC 与AD 的中点 ∴三棱锥F ABC -的高为112CD = ∴三棱锥F ABC -的体积为13313V =⨯⨯=故选B.2.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6623)+B .6(8823)+C .8(632)+D .6(8832)+ 【答案】A【解析】 【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可. 【详解】由题图可知,该鲁班锁玩具可以看成是一个棱长为222+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为2,则该几何体的表面积为2116(222)42282322S ⎡⎤=⨯+-⨯⨯⨯+⨯⨯⨯⎢⎥⎣⎦8(6623)=++.故选:A. 【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.3.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2πB .3π C .4π D .6π 【答案】C 【解析】 【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点,方法一:连接A E',AF,则352A E'=,352AF=,2292A F AA AF''=+=,13222EF AC==,因为//EF AC,所以A FE'∠即为异面直线A F'与AC所成的角,由余弦定理得222819452424cos93222222A F EF A EA FEA F EF+-''+-'∠==='⋅⋅⨯⨯,∴4A FEπ'∠=.方法二:以B为坐标原点,以BC、BA、BB'分别为x轴、y轴、z轴建立空间直角坐标系,则()0,3,0A,()3,0,0C,()0,3,3A',3,0,02F⎛⎫⎪⎝⎭,∴3,3,32A F⎛⎫'=--⎪⎝⎭u u u u r,()3,3,0AC=-u u u r,所以9922cos,92322A F ACA F ACA F AC+'⋅'==='⋅⨯u u u u r u u u ru u u u r u u u ru u u u r u u u r,所以异面直线A F'与AC所成的角为4π.故选:C【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.4.如图,棱长为1的正方体1111ABCD A B C D-,O是底面1111DCBA的中心,则O到平面11ABC D的距离是()A .12B .24C .22D .32【答案】B 【解析】 【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA u u u u r,利用点到平面距离的向量公式即得解.【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=--u u u u r由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD I1A D ∴⊥平面11ABC D故平面11ABC D 的一个法向量为:1(1,0,1)DA =u u u u rO ∴到平面11ABC D 的距离为: 1111||224||2OD DA d DA ⋅===u u u u r u u u u ru u u u r 故选:B 【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.5.已知ABC V 的三个顶点在以O 为球心的球面上,且22cos A =,1BC =,3AC =,三棱锥O ABC -的体积为146,则球O 的表面积为( ) A .36π B .16πC .12πD .163π【答案】B 【解析】 【分析】根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积. 【详解】由余弦定理得22229122cos 26AB AC BC AB A AB AC AB +-+-===g ,解得22AB =, 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点, 11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=. 2416O S OA ππ∴=⋅=球.故选:B .【点睛】本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.6.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A .64B .62C .3 D .3 【答案】A 【解析】 【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且1136222BDE S BD OE ∆==⨯⨯=g , 即α截该正方体所得截面图形的面积为64. 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.7.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .3 B .13C .58 D .387【答案】C 【解析】 【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值. 【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得224442AB =+=,所以2242AC BC CD AB ⋅===. 由勾股定理得2222115229CF CC C F =+=+=,2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得())()22229222958cos 22922CDF +-∠==⨯⨯.故选:C. 【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.8.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163【答案】D 【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.9.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与1A B 所成角的余弦值为( )A .1144B 11C .1144D .1111【答案】B 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值. 【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B,()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r,设异面直线AE 与1A B 所成角为θ, 则异面直线AE 与1A B 所成角的余弦值为:1111cos 222218AE A B AE A Bθ⋅===⋅⋅u u u r u u u r u u u r u u u r .故选:B .【点睛】本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r,2l 的方向向量为b r,则异面直线12,l l 所成角的余弦值为a b a b⋅⋅r r r r .10.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件. 【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B. 【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.11.如图是正方体的平面展开图,则在这个正方体中: ①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60︒角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确.∴正确命题的个数是2个.故选:B .【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.12.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB 3C .4πD 3 【答案】A【解析】【分析】 设BC 的中点是E ,连接DE ,由四面体A′­BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E ,因为AB =AD =1,BD 2由勾股定理得:BA ⊥AD又因为BD ⊥CD ,即三角形BCD 为直角三角形所以DE 为球体的半径32DE = 23432S ππ== 故选A【点睛】 求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.13.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .12π+B .136π+C .12π+D .1233π+ 【答案】B【解析】【分析】根据三视图知该几何体是三棱锥与14圆锥体的所得组合体,结合图中数据计算该组合体的体积即可.【详解】解:根据三视图知,该几何体是三棱锥与14圆锥体的组合体, 如图所示;则该组合体的体积为21111111212323436V ππ=⨯⨯⨯⨯+⨯⨯⨯=+; 所以对应不规则几何体的体积为136π+. 故选B .【点睛】本题考查了简单组合体的体积计算问题,也考查了三视图转化为几何体直观图的应用问题,是基础题.14.某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A.22B.23C.4 D.26【答案】B【解析】解:如图所示,该几何体是棱长为2的正方体中的三棱锥P ABC-,其中面积最大的面为:1232232PACSV=⨯⨯= .本题选择B选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.15.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A点为长方体的一个顶点,B点为其所在棱的中点,则沿着长方体的表面从A点到B点的最短距离为()A 29B .35C 41D .213【答案】C【解析】【分析】 由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离.【详解】由长方体的侧面展开图可得:(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为()22461101++=()2241661++=()2246165++= (2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为()22226213++=()22262217++=()22262217++= (3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为()2223441++=()2224335++=()2223453++= 综上所述,沿着长方体的表面从A 点到B 41.故选:C .【点睛】本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.16.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,23AB AC ==P ABC -的外接球的表面积为( ) A .32πB .48πC .64πD .72π 【答案】C【解析】【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可.【详解】在ABC V 中,23AB AC ==,23BAC π∠=,可得6ACB π∠=, 则ABC V 的外接圆的半径2323π2sin 2sin 6AB r ACB ===,取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心,则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.17.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .160【答案】D【解析】 设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得221156AC AC A A =-= 同理可得2211200102BD D B D D =-==,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以2211()()1450822AB AC BD =+=+=,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.18.在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,15AA =,垂直于1AA 的截面分别与面对角线1D A ,1B A ,1B C ,1D C 相交于四个不同的点E ,F ,G ,H ,则四棱锥1A EFGH -体积的最大值为( ).A .83B .1258C .12825D .64081【答案】D【解析】【分析】由直棱柱的特点和底面为正方形可证得四边形EFGH 为矩形,设点1A 到平面EFGH 的距离为()501t t <<,可表示出,EF FG ,根据四棱锥体积公式将所求体积表示为关于t 的函数,利用导数可求得所求的最大值.【详解】Q 四棱柱1111ABCD A B C D -为直四棱柱,1AA ∴⊥平面ABCD ,1AA ⊥平面1111D C B A ∴平面//EFGH 平面ABCD ,平面//EFGH 平面1111D C B A ,由面面平行性质得:11EF //B D //GH ,EH //AC//FG ,又11B D AC ⊥,EF FG ∴⊥,∴四边形EFGH 为矩形.设点1A 到平面EFGH 的距离为()501t t <<,11AC B D ==Q )1EF t ∴=-,FG =,∴四棱锥1A EFGH -的体积()()231160532133V t t t t t =⨯⨯-=-, ()2160233V t t '∴=-,∴当20,3t ⎛⎫∈ ⎪⎝⎭时,0V '>,当2,13t ⎛⎫∈ ⎪⎝⎭时,0V '<, ∴当23t =时,max 16048640392781V ⎛⎫=⨯-= ⎪⎝⎭. 故选:D .【点睛】本题考查立体几何中的体积最值的求解问题,关键是能够将所求四棱锥的体积表示为关于某一变量的函数的形式,进而利用导数来求解函数最值,从而得到所求体积的最值.19.在空间中,下列命题为真命题的是( ).A .对于直线,,a b c ,若,a c b c ⊥⊥则//a bB .对任意直线a ,在平面α中必存在一条直线b 与之垂直C .若直线a ,b 与平面α所成的角相等,则a ∥bD .若直线a ,b 与平面α所成的角互余,则a ⊥b【答案】B【解析】【分析】通过空间直线与直线的位置关系判断选项的正误即可。

高二数学 专题 空间向量与立体几何(六个混淆易错点)(解析版)

高二数学 专题 空间向量与立体几何(六个混淆易错点)(解析版)

专题空间向量与立体几何(六个混淆易错点)易错点1对空间向量的运算理解不清1.在棱长为1的正四面体A BCD -中,点M 满足()1AM xAB y AC x y AD =++--,点N 满足()1DN DB DC λλ=-- ,当线段AM 、DN 的长度均最短时,AM AN ⋅= ()A .23B .23-C .43D .43-【答案】A【分析】根据题意得到M ∈平面BCD ,N ∈直线BC ,从而求得,AM DN 最短时,得到M 为BCD △的中心,N 为BC 的中点,求得AM 的长,结合向量的运算公式,即可求得AM AN ⋅的值.【详解】解:如图所示,因为(1)AM x AB y AC x y AD =++-- ,()1DN DB DC λλ=--,可得M ∈平面BCD ,N ∈直线BC ,当,AM DN 最短时,AM ⊥平面BCD ,且DN BC ⊥,所以M 为BCD △的中心,N 为BC 的中点,如图所示,又由正四面体的棱长为1,所以13NM DN ==AN =所以3AM =,因为AM ⊥平面BCD ,所以AM MN ⊥,所以Rt ANM △中,6223cos 332AM MAN AN ∠===,所以326222cos 333AM AN AM AN MAN ⋅=⋅∠=⨯=⨯ 故选:A2.下列命题中正确的个数是().①若a 与b 共线,b 与c 共线,则a 与c共线.②向量a ,b ,c共面,即它们所在的直线共面.③如果三个向量a ,b ,c不共面,那么对于空间任意一个向量p ,存在有序实数组(),,x y z ,使得p xa yb zc =++.④若a ,b 是两个不共线的向量,而c a b λμ=+(,λμ∈R 且0λμ≠),则{},,a b c 是空间向量的一组基底.A .0B .1C .2D .3【答案】B【分析】举例0b =,判断①,由向量共面的定义判断②,由空间向量基本定理判断③,由共面向量定理和空间向量基本定理判断④.【详解】①当0b = 时,a 与c不一定共线,故①错误;②当a ,b ,c共面时,它们所在的直线平行于同一平面,或在同一平面内,故②错误;由空间向量基本定理知③正确;④当a ,b 不共线且c a b λμ=+时,a ,b ,c 共面,故④错误.故选:B .3.以下命题:①若//a b r r ,则存在唯一的实数λ,使得λa b = ;②若a b b c ⋅=⋅r r r r,则a c = 或0b = ;③若{},,a b c为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底;④()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ 一定成立.则其中真命题的个数为()A .4B .3C .2D .1【答案】C【分析】由共线向量的基本定理判断①;由数量积判断②;由基底的概念判断③;由数量积的性质判断④【详解】对于①:根据共线向量的基本定理,//a b r r 的充要条件是存在唯一的实数λ,使得λa b = ,其中0b ≠r r;这里没有限制b,所以①错误;对于②:cos ,,cos ,a b a b a b b c b c b c ⋅=⋅⋅=⋅r r r r r r r r r r r r ,若a b b c ⋅=⋅r r r r ,则cos ,cos ,a a b c b c ⋅=r r r r r r ,即只要a 在b 上的投影与c 在b 上的投影相等即可,故②错误;对于③:若{},,a b c 为空间的一个基底,则,,a b c不共面,则,,a b b c c a +++ 也不共面,则{},,a b b c c a +++构成空间的另一个基底,故③正确;对于④:因为,a b b a c d d c ⋅=⋅⋅=⋅,所以()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ ,故④正确;所以正确的有2个,故选:C4.下面四个结论正确的个数是()①空间向量(),0,0a b a b ≠≠ ,若a b ⊥ ,则0a b ⋅=;②若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线;③已知向量(1,1,)a x = ,(3,,9)b x =- ,若310x <,则,a b 〈〉为钝角;④任意向量,,a b c 满足()()a b c a b c ⋅⋅=⋅⋅.A .4B .3C .2D .1【答案】C【分析】根据空间向量的线性运算、向量平行的意义及坐标表示、数量积的定义、性质对各命题逐一判断即可.【详解】对于①,因0,0a b ≠≠ ,a b ⊥ ,则·0a b =,①正确;对于②,因1344PC PA PB =+ ,则1144PC PA - =3344PB PC -,即3AC CB = ,即A 、B 、C 三点共线,②正确;对于③,a b ⋅ =10x -3,若,a b 〈〉 为钝角,则0a b ⋅< ,且a 与b 不共线,由0a b ⋅<得310x <,当//a b 时,1139xx ==-,即3x =-,由a 与b 不共线得3x ≠-,于是得当310x <且3x ≠-时,,a b 〈〉为钝角,③错误;对于④,()a b c ⋅⋅ 是c 的共线向量,而()a b c ⋅⋅是a 的共线向量,④错误,综上可知,①②正确.故选:C5.(多选)给出下列命题,其中正确的是()A .若{},,a b c是空间的一个基底,则{},,a b b c +r r r r 也是空间的一个基底B .在空间直角坐标系中,点()2,4,3P -关于坐标平面yOz 的对称点是()2,4,3---C .若空间四个点P ,A ,B ,C 满足1344PC PA PB =+,则A ,B ,C 三点共线D .平面α的一个法向量为()1,3,4m =-u r ,平面β的一个法向量为()2,6,n k =--r.若//αβ,则8k =【答案】ACD【分析】根据三个向量是否共面判断A ,由点关于坐标面的对称判断B ,由向量的运算确定三点共线可判断C ,根据向量共线求参数可判断D 。

高考数学必做题--立体几何与空间向量 (后附参考答案与详解)

高考数学必做题--立体几何与空间向量 (后附参考答案与详解)

立体几何与空间向量-高考必做题123平行的截面,则截得的三;截得的平面图形中,面积最大的值是.4的中点,为线段上的动点,过点,,则下列命题正确的是.5与四棱锥的表面的交线,并写出作图的步骤.7是正方体棱上一点(不包括棱的端点),.,则的取值范围是.8的最大值为满足9的中点,沿将矩形折起使得分别为中点.10C.3个D.4个分别为棱,上的点. 已知下列判断:上的正投影是面积为定值的三角形;平行的直线;所成的二面角(锐角)的大小与点的位置有关,与点的位置无关.11,,,与平面所12的位置,使得平面,并证明你的13,坐标平面上的一组正投影图像如.14如图是圆的直径,垂直圆所在的平面,是圆上的点.求证:平面平面.(1)15 16 17 18椭圆的一部分 D.抛物线的一部分19 D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(20分别是棱的中点,是侧面长度的取值范围是().21D.D.③④分别是棱,的中点,过直线,,给出以下四个命题:22为正方形,,则三棱锥2324 2526 272829 30A. B.C. D.立体几何与空间向量-高考必做题123为边长为的等边三角形,面积为截得的平面图形中,正六边形如图所示分别为各边中点,边长为,面积为.故答案为;.立体几何与空间向量立体几何初步空间几何体4如图,在棱长为的正方体的中点,点在线段上.点到直线的距离的最小值为.∵,底面,∴四边形是矩形.∴,又平面,平面∴平面.∴直线上任一点到平面的距离是两条异面直线∵平面平面.5当时,为中点,此时可得截面为等腰梯形;当点向移动时,满足即可得截面为四边形,①正确;对于②,当时,如图所示,延长至,使,连接交于,连接可证,由可得故可得,∴截面对于③,由②知当此时的截面形状仍然为上图所示的五边形对于④,当时,与可证,且,可知截面故答案为:①②④.立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系6与四棱锥的表面的交线,并写出作图的步骤.为平面与四棱锥的表面的交线.分别是线段,上的,的菱形,,,,,,所以,设平面的法向量为,则由可得令因为,所以直线与平面的成角的正弦值为法1:延长,分别交,延长线于,,连接,,则四边形为平面法2:记平面与直线的交点为,设由.所以即为点.所以连接,,则四边形为平面平面向量平面向量的基本概念向量的加法与减法平面向量的数量积数量积立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间向量空间直角坐标系空间向量的应用789的最大值为满足,所以,所以.,接下来研究这个二次函数的性质可函数函数的概念与表示最值单调性对称性二次函数立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系空间中的垂直10,,则中位线且又且,所以且所以四边形是平行四边形,所以,又平面,法二:如图,延长因为且,所以为中点,所以中位线,又平面,面,所以法一:如图,因为,所以又.所以∴,∴,又∵,,∴平面,面,∴又,所以平面,又为中点,所以所以平面,,所以中,,,∴二面角的余弦值为法二:如图,∵,∴∴,∴∴,∴,,又∵,,∴平面,面,∴,又,所以平面,面,∴则,,,而是平面的一个法向量,设平面的法向量为则令,则,面的一个法向量为所以所以,二面角的余弦值为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用11中,,分别为棱D.4个平面,而两个平面面与面上的正投影是面积为定值的三角形,此是一个正确的结点在面上的投影到此棱的距离是定平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;所成的二面角(锐角)的大小与点的位置有关,与点的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如与重重合时的情况就不一样,故此命题不正点、直线、平面间的位置关系空间中的平行空间中的垂直12的位置,使得平面,并证明你的,∵与平面所成角为,即,∴,由,知,,则,,,∴,,设平面的法向量为,则,即,令,则,∵平面,∴为平面的法向量,∴又∵二面角为锐角,∴二面角的余弦值为.点是线段上一个动点,设,则,∵平面,∴,即,解得:,此时,点坐标为,.平面向量平面向量的基本定理及坐标表示平面向量的坐标运算用坐标表示平面向量共线的条件立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间向量及其运算空间向量的应用答案解析该几何体还原如图所示,易得体积为.立体几何与空间向量立体几何初步空间几何体体积和表面积的计算三视图14是圆的直径,垂直圆所在的平面,是圆上的点.求证:平面平面.,,,求:二面角的余弦值.(1)答案见解析.(2)答案见解析.(1)由是圆的直径,得.由平面,平面,得.在中,∵,,∴立体几何初步空间中的垂直空间向量空间向量的应用1516三角函数与解三角形解三角形立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系17动点从到,再到,到再回到,,则经过的最短路径为:一个半圆和一个即.立体几何与空间向量立体几何初步空间几何体18如图,三棱锥的顶点、、等边三角形,点,分别为线段体积的最大值为19椭圆的一部分 D.抛物线的一部分的交线的距离分别为和.,D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(2021D.连结,可以证明平面,所以点位于线段上,把三角形拿到平面上,则有,所以当点位于时,最大,当位于中点时,最小,此时所以,即所以线段长度的取值范围是22D.③④在正方体中,平面,∴平面平面,①正确;②连接,∵平面,四边形的对角线是固定的,要使面积最小,只需的长度最小即可,此时为棱中点,,长度最小,对应四边形②正确;③∵,∴四边形是菱形,当时,长度由大变小,当时,长度由小变大,∴函数不是单调函数,③错误;④连接,,,四棱锥分割成两个小三棱锥,以为底,分别以、为顶点,∵面积是个常数,、到平面的距离是个常数,2324函数图象的交点函数的零点三角函数与解三角形三角函数任意角与弧度制三角函数的定义立体几何与空间向量立体几何初步空间几何体解析几何曲线与方程25)成。

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。

直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。

注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。

平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。

二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。

一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析1.在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为()A.60°B.90°C.105°D.75°【答案】B【解析】用立体几何方法。

作BC中点D,连AD, D,易得AD垂直于BC,AD垂直于平面BC, D为A在平面BC上的射影,易证D垂直于B,所以A垂直于B,A与B所成角为90度,故选B。

【考点】本题主要考查正三棱柱的几何性质及异面直线所成角的求法。

点评:根据题目特点,可灵活采用不同方法,这里运用几何方法,使问题得解,体现解题的灵活性。

2.正四棱锥的高,底边长,则异面直线和之间的距离()A.B.C.D.【答案】C【解析】建立如图所示的直角坐标系,则,,,,.,.令向量,且,则,,,,.异面直线和之间的距离为:.【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。

点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.3.已知是各条棱长均等于的正三棱柱,是侧棱的中点.点到平面的距离()A.B.C.D.【答案】A【解析】为正方形,,又平面平面,面,是平面的一个法向量,设点到平面的距离为,则===.【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。

点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.4.在三棱锥P-ABC中,AB⊥BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥底面ABC,则直线OD与平面PBC所成角的正弦值()A. B. C. D.【答案】D【解析】题目中给出了建立空间直角坐标系的条件。

以O为原点,射线OP为非负z轴,建立空间直角坐标系(如图),利用向量知识可计算得到直线OD与平面PBC所成角的正弦值为,故选D。

【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。

点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.5.已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值.【答案】【解析】解:如图建立空间直角坐标系,=(0,1,0),=(-1,0,1),=(0,,1)设平面ABC1D1的法向量为=(x,y,z),由可解得=(1,0,1)设直线AE与平面ABC1D1所成的角为θ,则,【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的向量方法1.(2012年高考(重庆理))设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是 ( )A .(0,2)B .(0,3)C .(1,2)D .(1,3)[解析] 以O 为原点,分别以OB 、OC 、OA 所在直线为x 、y 、z 轴, 则22cos 4AO PO AOP R •∴∠==,A)0,23,21(),22,0,22(R R P R R 42arccos =∠∴AOP ,42arccos ⋅=∴R P A2. (2012年高考(陕西理))如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( )A .55B .53C .255D .35解析:不妨设122CA CC CB ===,11(2,2,1),(0,2,1)AB C B,111111(2)02(2)115cos,595AB C B AB C BAB C B,直线1BC 与直线1AB 夹角为锐角,所以余弦值为55,选A. 3.(2012年高考(天津理))如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,0=45ABC ∠,==2PA AD ,=1AC .(Ⅰ)证明PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长.P【命题意图】本小题主要考查空间两条直线的位置关系,二面角、异面直线所成的角,直线与平面垂直等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.方法一:(1)以,,AD AC AP 为,,x y z 正半轴方向,建立空间直角左边系A xyz - 则11(2,0,0),(0,1,0),(,,0),(0,0,2)22D C B P -(0,1,2),(2,0,0)0PC AD PC AD PC AD =-=⇒=⇔⊥(2)(0,1,2),(2,1,0)PC CD =-=-,设平面PCD 的法向量(,,)n x y z =则0202200n PC y z y z x y x z n CD ⎧=-==⎧⎧⎪⇔⇔⎨⎨⎨-===⎩⎩⎪⎩ 取1(1,2,1)z n =⇒= (2,0,0)AD =是平面PAC 的法向量630cos ,sin ,66AD n AD n AD n AD n<>==⇒<>= 得:二面角A PC D --的正弦值为306(3)设[0,2]AE h =∈;则(0,0,2)AE =,11(,,),(2,1,0)22BE h CD =-=-23310cos ,2101020BE CD BE CD h BE CDh <>=⇔=⇔=+ 即1010AE =方法二:(1)证明,由PA ⊥平面ABCD ,可得PA AD ⊥,又由,AD AC PA AC A ⊥⋂=,故AD ⊥平面PAC ,又PC ⊂平面PAC ,所以PC AD ⊥.(2)解:如图,作AH PC ⊥于点H ,连接DH ,由,PC AD PC AH ⊥⊥,可得PC ⊥平面ADH .因此,DH PC ⊥,从而AHD ∠为二面角A PC D --的平面角.在Rt PAC ∆中,2,1PA AC ==,由此得25AH =,由(1)知AD AH ⊥,故在Rt DAH ∆中,222305DH AD AH =+=,因此30sin 6AD AHD DH ∠==,所以二面角A PC D --的正弦值为306.4.(2012年高考(新课标理))如图,直三棱柱111ABC A B C -中,112ACBC AA ==,D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小.第一问省略 第二问:如图建系:A (0,0,0),P (0,0,26),M (32-,32,0), N (3,0, 0),C (3,3,0).设Q (x ,y ,z ),则(33)(3326)CQ x y z CP =--=--,,,,,. ∵(3326)CQ CP λλλλ==--,,,∴(333326)Q λλλ--,,. 由0OQ CP OQ CP ⊥⇒⋅=,得:13λ=. 即:2326(2)33Q ,,. 对于平面AMN :设其法向量为()n a b c =,,. ∵33(0)=(300)22AM AN =-,,,,,. 则33330012230300a AM n a b b AN n a c ⎧=⎪⎪⎧⎧⋅=-+=⎪⎪⎪⇒⇒=⎨⎨⎨⋅=⎪⎪⎪⎩=⎩=⎪⎪⎩. ∴31(0)33n =,,. 同理对于平面AMN 得其法向量为(316)v =-,,. 记所求二面角A —MN —Q 的平面角大小为θ, 则10cos 5n v n vθ⋅==⋅.∴所求二面角A —MN —Q 的平面角的余弦值为105. 5.(2011年安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==△OAB ,,△OAC ,△ODE ,△ODF 都是正三角形。

(Ⅰ)证明直线BC ∥EF ; (II )求棱锥F —OBED 的体积。

本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.(I )(综合法) 证明:设G 是线段DA 与EB 延长线的交点. 由于△OAB 与△ODE 都是正三角形,所以OB ∥DE 21,OG=OD=2,=同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在△GED 和△GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF.(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系.由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有).3,0,3(),23,0,23(-=-=EF BC所以,2BC EF =即得BC ∥EF.(II )解:由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而△OED 是边长为2的正三角形,故.3=OED S所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V6.(2011年北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=.(Ⅰ)求证:BD ⊥平面;PAC= = =(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.证明:(Ⅰ)因为四边形ABCD 是菱形, 所以AC ⊥BD.又因为PA ⊥平面ABCD. 所以PA ⊥BD. 所以BD ⊥平面PAC. (Ⅱ)设AC∩BD=O. 因为∠BAD=60°,PA=PB=2, 所以BO=1,AO=CO=3.如图,以O 为坐标原点,建立空间直角坐标系O —xyz ,则P (0,—3,2),A (0,—3,0),B (1,0,0),C (0,3,0). 所以).0,32,0(),2,3,1(=-=AC PB 设PB 与AC 所成角为θ,则4632226||||cos =⨯=⋅⋅AC PB AC PB θ.(Ⅲ)由(Ⅱ)知).0,3,1(-=BC 设P (0,-3,t )(t>0), 则),3,1(t BP --=设平面PBC 的法向量),,(z y x m =, 则0,0=⋅=⋅m BP m BC所以⎪⎩⎪⎨⎧-+--=+-03,03tz y x y x 令,3=y 则.6,3t z x == 所以)6,3,3(t m = 同理,平面PDC 的法向量)6,3,3(t n -= 因为平面PCB ⊥平面PDC,所以n m ⋅=0,即03662=+-t解得6=t所以PA=67. (2011年福建)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB+AD=4,CD=2,︒=∠45CDA .(I )求证:平面PAB ⊥平面PAD ; (II )设AB=AP .(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理 由。

分析: 本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。

解法一:(I )因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AB ⊥, 又,,AB AD PAAD A ⊥=所以AB ⊥平面PAD 。

又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD 。

(II )以A 为坐标原点,建立空间直角坐标系A —xyz (如图)在平面ABCD 内,作CE//AB 交AD 于点E ,则.CE AD ⊥ 在Rt CDE ∆中,DE=cos451CD ⋅︒=,sin 451,CE CD =⋅︒=设AB=AP=t ,则B (t ,0,0),P (0,0,t ) 由AB+AD=4,得AD=4-t ,所以(0,3,0),(1,3,0),(0,4,0)E t C t D t ---,(1,1,0),(0,4,).CD PD t t =-=--(i )设平面PCD 的法向量为(,,)n x y z =,由n CD ⊥,n PD ⊥,得0,(4)0.x y t y tx -+=⎧⎨--=⎩取x t =,得平面PCD 的一个法向量{,,4}n t t t =-,又(,0,)PB t t =-,故由直线PB 与平面PCD 所成的角为30︒,得22222|24|1cos 60||,,2||||(4)2n PB t t n PB t t t x ⋅-︒==⋅++-⋅即解得445t t ==或(舍去,因为AD 40t =->),所以4.5AB = (ii )假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等, 设G (0,m ,0)(其中04m t ≤≤-)则(1,3,0),(0,4,0),(0,,)GC t m GD t m GP m t =--=--=-,由||||GC GD =得222(4)t m m t --=+,(2) 由(1)、(2)消去t ,化简得2340m m -+=(3)由于方程(3)没有实数根,所以在线段AD 上不存在一个点G , 使得点G 到点P ,C ,D 的距离都相等。

相关文档
最新文档