中考数学几何综合题汇总

合集下载

2023年数学中考试题精选:几何综合证明(一)

2023年数学中考试题精选:几何综合证明(一)

1.(2023.营口24题)在平行四边形ABCD中,∠ADB=90°,点E在CD 上,点G在AB上,点F在BD的延长线上,连接EF,DG, ∠FED=∠ADG,ADBD =DG EF=k.(1)如图1,当k=1时,请用等式表示线段AG与线段DF的数量关系________;(2)如图2,当k=√(3)时,写出线段AD,DE和DF之间的数量关系,并说明理由;(3)在(2)的条件下,当点G是AB的中点时,连接BE,求tan∠EBF的值2.(2023.本溪铁岭辽阳25题)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF 的数量关系;(2)如图2,当点D在线段AB上时,求证:CG+BD=√2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.3.(2023.大连25题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质。

已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折,同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”补足探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.4.(2023.牡丹江26题)平行四边形ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图1,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图2,当点E在线段CB延长线上,∠ABC=135°时,如图3,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE=______.5.(2023.贵州省25题)如图1,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图2,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为______度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图3,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD将于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.6.(2023.沈阳24题)如图1.在平行四边形纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将平行四边形ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C`,D`,射线C`E与射线AD将于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为______;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM 交C`D`于点N,连接AN,EN,求△ANE的面积。

历年中考数学(典型)几何中长度的计算综合试题汇总

历年中考数学(典型)几何中长度的计算综合试题汇总

历年中考数学(典型)几何中长度的计算综合试题汇总1如图,在等边三角形ABC 中,点D 、E 分别是边AC 、BC 上两点,将三角形ABC 沿DE 翻折,点C 正好落在线段AB 上的点F 处,使得AF :BF=2:3,若BE=16,则CE的长度为( )A.18B.19C.20D.212如图,△BAC 中,AB=AC=10,tan 2A =,BE ⊥AC 于点E ,D 是线段BE 上一动点,则5CD BD +的最小值( ) A 25 B 45 C 53 D 103如图,已知在△ABC 中,90BAC ∠>,13AB =,BC=10,点D 是BC 中点,点E 在AC 上,将△CDE 沿着 DE 翻折,使得点C 恰好落在BA 的延长线上的点F 处,连接AD ,5=2EDF S △,这AD 的长度为( ) A 52B 22C 734D 41354如图,在等腰三角形纸片ABC 中,∠ABC=120,BC=6,点D 、E 分别在边AC 、BC 上,连接DE ,将△CDE 沿着DE 翻折使得点C 恰好落在点B处,则AE 的长为( )A 372B 152C 37D 675如图,在△ABC 中,点D 是BC 边上一点,连接AD ,把△ABD 沿着AD 翻折,得到'AB D △,'B D 与AC 交于点E ,连接'B B 交AD 于点F ,若'=3B D DE ,213AB ,AF=6,'AB E △的面积为12,则点B 到'B D 的距离为( )A 65B 125C 245D 4576如图,在三等腰△ABC 中,AB=AC=2,∠ABC=120,点D 为边BC 的中点,将△ACD 沿着AC 折叠,使得点D 落在了点E 处,则点B 到直线CE 的距离是( )A 1B 3C 2D 37如图,在四边形ABCD 中,AD//BC ,90A ∠=,120ADC ∠=,连接BD ,把△ABD 沿着BD 翻折,得到'A BD △,连接'A C ,若AB=3,∠ABC=60,则点D 到直线'A C 的距离为( ) A 7 B 9714 C 977 D 18778如图,在△ABC 中,AB=AC=5,BC=8,点D 是BC 上一点,(点D 不与B,C 重合),将△ACD 沿着AD 翻折,点C 的对应点为E ,AE 交BC 于点F ,若DE//AB ,则点B 到线段AD 的距离为( ) A.255 B.3102 C.552 D.71029如图,把一张矩形纸片折叠使点A 与点C 重合,折痕为EF ,再将△CDF 沿着CF折叠,点D 恰好哦落在EF 上的点M 处,若BC=6厘米,则EF 的长为( )里面A.1.5B.3C.23D.410如图四边形ABEC 中,∠BEC 和∠BAC 都是直角,且AB=AC ,现将△BEC 沿BC 翻折,点E 的对应点'E ,BE 与AC 边相交于点D 点,恰好'BE 是∠ABC 的角平分线,若CE=1,则BD 的长为( )A 1.5B 2C 2D 311如图,在四边形ABCD 中,90ABC BCD ∠=∠=,,3,3AB BC ==,把Rt △ABC沿着AC 翻折得到Rt △AEC ,若23tan CED ∠=,则线段DE 的长度A.63 B.7373 C.32 D.275。

中考数学几何题总汇

中考数学几何题总汇

1.三角形的有关概念知识考点:理解三角形三边的关系及三角形的主要线段(中线、高线、角平分线)和三角形的内角和定理。

关键是正确理解有关概念,学会概念和定理的运用。

应用方程知识求解几何题是这部分知识常用的方法。

【例1】已知一个三角形中两条边的长分别是a 、b ,且b a >,那么这个三角形的周长L 的取值范围是( ) A 、b L a 33>> B 、a L b a 2)(2>>+ C 、a b L b a +>>+262 D 、b a L b a 23+>>- 变式与思考:在△ABC 中,AC =5,中线AD =7,则AB 边的取值范围是( ) A 、1<AB <29 B 、4<AB <24 C 、5<AB <19 D 、9<AB <19 【例2】如图,已知△ABC 中,∠ABC =450,∠ACB =610,延长BC 至E ,使CE =AC ,延长CB 至D ,使DB =AB ,求∠DAE 的度数。

一、填空题:1、三角形的三边为1,a -1,9,则a 的取值范围是 。

2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为 。

3、在△ABC 中,若∠C =2(∠A +∠B ),则∠C = 度。

4、如果△ABC 的一个外角等于1500,且∠B =∠C ,则∠A = 。

5、如果△ABC 中,∠ACB =900,CD 是AB 边上的高,则与∠A 相等的角是 。

6、如图,在△ABC 中,∠A =800,∠ABC 和∠ACB 的外角平分线相交于点D ,那么∠BDC = 。

7、如图,CE 平分∠ACB ,且CE ⊥DB ,∠DAB =∠DBA ,AC =18cm ,△CBD 的周长为28 cm ,则DB = 。

8、纸片△ABC 中,∠A =650,∠B =750,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=200,则∠2的度数为 。

函数与几何综合问题(共25题)(学生版)--2023年中考数学真题分项汇编(全国通用)

函数与几何综合问题(共25题)(学生版)--2023年中考数学真题分项汇编(全国通用)

专题32函数与几何综合问题(25题)一、填空题1(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为2(2023·四川自贡·统考中考真题)如图,直线y=-13x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=-43x+2上的一动点,动点E m,0,F m+3,0,连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是.3(2023·江苏无锡·统考中考真题)二次函数y=a(x-1)(x-5)a>1 2的图像与x轴交于点A、B,与y轴交于点C,过点M3,1的直线将△ABC分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为.二、解答题4(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2-6x+8=0的两个根(OB>OC).请解答下列问题:(1)求点B 的坐标;(2)若OD :OC =2:1,直线y =-x +b 分别交x 轴、y 轴、AD 于点E ,F ,M ,且M 是AD 的中点,直线EF 交DC 延长线于点N ,求tan ∠MND 的值;(3)在(2)的条件下,点P 在y 轴上,在直线EF 上是否存在点Q ,使△NPQ 是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q 的坐标;若不存在,请说明理由.5(2023·湖南·统考中考真题)如图,点A ,B ,C 在⊙O 上运动,满足AB 2=BC 2+AC 2,延长AC 至点D ,使得∠DBC =∠CAB ,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记△BDC ,△ABC ,△ADB 的面积分别为S 1,S 2,S ,若S 1⋅S =S 2 2,求tan D 2的值;(3)若⊙O 的半径为1,设FM =x ,FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.6(2023·湖南·统考中考真题)我们约定:若关于x 的二次函数y 1=a 1x 2+b 1x +c 1与y 2=a 2x 2+b 2x +c 2同时满足a 2-c 1+(b 2+b 1)2+c 2-a 1 =0,b 1-b 22023≠0,则称函数y 1与函数y 2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数y 1=2x 2+kx +3与y 2=mx 2+x +n 互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,函数y 1与y 2互为“美美与共”函数.①求函数y 2的图像的对称轴;②函数y 2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数y 1=ax 2+bx +c 与它的“美美与共”函数y 2的图像顶点分别为点A ,点B ,函数y 1的图像与x 轴交于不同两点C ,D ,函数y 2的图像与x 轴交于不同两点E ,F .当CD =EF 时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.7(2023·江苏无锡·统考中考真题)如图,四边形ABCD 是边长为4的菱形,∠A =60°,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q .(1)当∠QPB =45°时,求四边形BB C C 的面积;(2)当点P 在线段AB 上移动时,设BP =x ,四边形BB C C 的面积为S ,求S 关于x 的函数表达式.8(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数y =-3x 2+23x 的图象与x 轴分别交于点O ,A ,顶点为B .连接OB ,AB ,将线段AB 绕点A 按顺时针方向旋转60°得到线段AC ,连接BC .点D ,E 分别在线段OB ,BC 上,连接AD ,DE ,EA ,DE 与AB 交于点F ,∠DEA =60°.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①∠EDA 的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,△BDE 的面积为.9(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.10(2023·吉林·统考中考真题)如图,在正方形ABCD 中,AB =4cm ,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC -CD 向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA -AB 于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(0<x <4),四边形PQMN 的面积为y (cm 2)(1)BP 的长为cm ,CM 的长为cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.11(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上,如图2,将正方形OABC 绕点O 逆时针旋转,旋转角为α0°<α<45° ,AB 交直线y =x 于点E ,BC 交y 轴于点F .(1)当旋转角∠COF 为多少度时,OE =OF ;(直接写出结果,不要求写解答过程)(2)若点A (4,3),求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y =x 于点N ,连接FN ,将△OFN 与△OCF 的面积分别记为S 1与S 2,设S =S 1-S 2,AN =n ,求S 关于n 的函数表达式.12(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.13(2023·湖北宜昌·统考中考真题)如图,已知A (0,2),B (2,0).点E 位于第二象限且在直线y =-2x 上,∠EOD =90°,OD =OE ,连接AB ,DE ,AE ,DB .(1)直接判断△AOB 的形状:△AOB 是三角形;(2)求证:△AOE ≌△BOD ;(3)直线EA 交x 轴于点C (t ,0),t >2.将经过B ,C 两点的抛物线y 1=ax 2+bx -4向左平移2个单位,得到抛物线y 2.①若直线EA 与抛物线y 1有唯一交点,求t 的值;②若抛物线y 2的顶点P 在直线EA 上,求t 的值;③将抛物线y 2再向下平移,2(t -1)2个单位,得到抛物线y 3.若点D 在抛物线y 3上,求点D 的坐标.14(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为2,23 ,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF ∥OB 交边BC 于点F ,连接EF .设OD =x ,△DEF 的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.15(2023·天津·统考中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点A (3,0),B (0,1),D (23,1),矩形EFGH 的顶点E 0,12 ,F -3,12 ,H 0,32.(1)填空:如图①,点C 的坐标为,点G 的坐标为;(2)将矩形EFGH 沿水平方向向右平移,得到矩形E F G H ,点E ,F ,G ,H 的对应点分别为E ,F ,G ,H .设EE =t ,矩形E F G H 与菱形ABCD 重叠部分的面积为S .①如图②,当边E F 与AB 相交于点M 、边G H 与BC 相交于点N ,且矩形E F G H 与菱形ABCD 重叠部分为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当233≤t ≤1134时,求S 的取值范围(直接写出结果即可).16(2023·浙江温州·统考中考真题)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE ⊥CD ,交CD 延长线于点E ,交半圆于点F ,已知OA =32,AC =1.如图2,连接AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH ⊥AB 于点H .设PH =x ,MN =y .(1)求CE 的长和y 关于x 的函数表达式.(2)当PH <PN ,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与△BCE 相似时,求a 的值.(3)延长PN 交半圆O 于点Q ,当NQ =154x -3时,求MN 的长.17(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.18(2023·江苏连云港·统考中考真题)【问题情境 建构函数】(1)如图1,在矩形ABCD 中,AB =4,M 是CD 的中点,AE ⊥BM ,垂足为E .设BC =x ,AE =y ,试用含x 的代数式表示y .【由数想形 新知初探】(2)在上述表达式中,y 与x 成函数关系,其图像如图2所示.若x 取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.【数形结合 深度探究】(3)在“x 取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x 的增大而增大;②函数值y 的取值范围是-42<y <42;③存在一条直线与该函数图像有四个交点;④在图像上存在四点A 、B 、C 、D ,使得四边形ABCD 是平行四边形.其中正确的是.(写出所有正确结论的序号)【抽象回归 拓展总结】(4)若将(1)中的“AB=4”改成“AB=2k”,此时y关于x的函数表达式是;一般地,当k≠0,x取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).19(2023·四川凉山·统考中考真题)阅读理解题:阅读材料:如图1,四边形ABCD是矩形,△AEF是等腰直角三角形,记∠BAE为α、∠FAD为β,若tanα=1 2,则tanβ=13.证明:设BE=k,∵tanα=12,∴AB=2k,易证△AEB≌△EFC AAS∴EC=2k,CF=k,∴FD=k,AD=3k∴tanβ=DFAD =k3k=13,若α+β=45°时,当tanα=12,则tanβ=13.同理:若α+β=45°时,当tanα=13,则tanβ=12.根据上述材料,完成下列问题:如图2,直线y=3x-9与反比例函数y=mx(x>0)的图象交于点A,与x轴交于点B.将直线AB绕点A顺时针旋转45°后的直线与y轴交于点E,过点A作AM⊥x轴于点M,过点A作AN⊥y轴于点N,已知OA=5.(1)求反比例函数的解析式;(2)直接写出tan ∠BAM 、tan ∠NAE 的值;(3)求直线AE 的解析式.20(2023·山东泰安·统考中考真题)如图1,二次函数y =ax 2+bx +4的图象经过点A (-4,0),B (-1,0).(1)求二次函数的表达式;(2)若点P 在二次函数对称轴上,当△BCP 面积为5时,求P 坐标;(3)小明认为,在第三象限抛物线上有一点D ,使∠DAB +∠ACB =90°;请判断小明的说法是否正确,如果正确,请求出D 的坐标;如果不正确,请说明理由.21(2023·湖北恩施·统考中考真题)在平面直角坐标系xoy 中,O 为坐标原点,已知抛物线y =-12x 2+bx +c 与y 轴交于点A ,抛物线的对称轴与x 轴交于点B .(1)如图,若A 0,3 ,抛物线的对称轴为x =3.求抛物线的解析式,并直接写出y ≥3时x 的取值范围;(2)在(1)的条件下,若P 为y 轴上的点,C 为x 轴上方抛物线上的点,当△PBC 为等边三角形时,求点P ,C 的坐标;(3)若抛物线y =-12x 2+bx +c 经过点D m ,2 ,E n ,2 ,F 1,-1 ,且m <n ,求正整数m ,n 的值.22(2023·辽宁营口·统考中考真题)如图,抛物线y =ax 2+bx -1a ≠0 与x 轴交于点A 1,0 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点D 3,0 ,过点B 作直线l ⊥x 轴,过点D 作DE ⊥CD ,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.23(2023·山东日照·统考中考真题)在平面直角坐标系xOy内,抛物线y=-ax2+5ax+2a>0交y 轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当a=13时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E1a ,a+1,F5,a+1,以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52时,求a的值.24(2023·江苏无锡·统考中考真题)已知二次函数y=22x2+bx+c的图像与y轴交于点A,且经过点B(4,2)和点C(-1,2).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=22x2+bx+c图像上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.25(2023·辽宁·统考中考真题)如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.11。

中考数学-几何综合压轴问题(共40题)(学生版)

中考数学-几何综合压轴问题(共40题)(学生版)

几何综合压轴问题(40题)1(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.2(2023·山东烟台·统考中考真题)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.3(2023·浙江绍兴·统考中考真题)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB= 12,AD=10,∠B为锐角,且sin B=45.(1)如图1,求AB边上的高CH的长.(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C ,D .①如图2,当点C 落在射线CA上时,求BP的长.②当△AC D 是直角三角形时,求BP的长.4(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.5(2023·江西·统考中考真题)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.(2)知识应用:如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=12∠ACD,求OFEF的值.6(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕,点C顺时针旋转60°得到△A P C,连接PP ,由PC=P C,∠PCP =60°,可知△PCP 为三角形,故PP =PC,又P A =PA,故PA+PB+PC =PA +PB+PP ≥A B,由可知,当B,P,P ,A在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=;已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a 元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为元.(结果用含a的式子表示)7(2023·山东枣庄·统考中考真题)问题情境:如图1,在△ABC中,AB=AC=17,BC=30,AD是BC边上的中线.如图2,将△ABC的两个顶点B,C分别沿EF,GH折叠后均与点D重合,折痕分别交AB,AC,BC于点E,G,F,H.猜想证明:(1)如图2,试判断四边形AEDG的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点H重合,折痕分别交AB, BC于点M,N,BM的对应线段交DG于点K,求四边形MKGA的面积.8(2023·湖南·统考中考真题)(1)[问题探究]如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.9(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.10(2023·湖北黄冈·统考中考真题)【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.(1)如图1,当m=1时,直接写出AD,BE的位置关系:;(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.11(2023·河北·统考中考真题)如图1和图2,平面上,四边形ABCD中,AB=8,BC=211,CD=12, DA=6,∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA ,∠A MA的平分线MP所在直线交折线AB-BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A P.(1)若点P在AB上,求证:A P=AP;(2)如图2.连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A MP的值;(3)当0<x≤8时,请直接写出点A 到直线AB的距离.(用含x的式子表示).12(2023·四川达州·统考中考真题)(1)如图①,在矩形ABCD的AB边上取一点E,将△ADE沿DE翻折,使点A落在BC上A 处,若AB=6,BC=10,求AEEB的值;(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B 处,若BC ⋅CE =24,AB =6,求BE 的值;(3)如图③,在△ABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD +53EF 的值.13(2023·湖南郴州·统考中考真题)已知△ABC 是等边三角形,点D 是射线AB 上的一个动点,延长BC 至点E ,使CE =AD ,连接DE 交射线AC 于点F .(1)如图1,当点D 在线段AB 上时,猜测线段CF 与BD 的数量关系并说明理由;(2)如图2,当点D 在线段AB 的延长线上时,①线段CF 与BD 的数量关系是否仍然成立?请说明理由;②如图3,连接AE .设AB =4,若∠AEB =∠DEB ,求四边形BDFC 的面积.14(2023·湖北宜昌·统考中考真题)如图,在正方形ABCD 中,E ,F 分别是边AD ,AB 上的点,连接CE ,EF ,CF .(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当∠FEC =90°时,求证:△AEF ∽△DCE ;②如图2,当tan ∠FCE =23时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当GE =DE ,sin ∠FCE =13时,求证:AE =AF .15(2023·湖北武汉·统考中考真题)问题提出:如图(1),E 是菱形ABCD 边BC 上一点,△AEF 是等腰三角形,AE =EF ,∠AEF =∠ABC =αa ≥90° ,AF 交CD 于点G ,探究∠GCF 与α的数量关系.问题探究:(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF 的大小;(2)再探究一般情形,如图(1),求∠GCF 与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当α=120°时,若DG CG =12,求BECE的值.16(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC 和△DFE ,其中∠ACB =∠DEF =90°,∠A =∠D .将△ABC 和△DFE 按图2所示方式摆放,其中点B 与点F 重合(标记为点B ).当∠ABE =∠A 时,延长DE 交AC 于点G .试判断四边形BCGE 的形状,并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的△DBE 绕点B 逆时针方向旋转,使点E 落在△ABC 内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当∠ABE =∠BAC 时,过点A 作AM ⊥BE 交BE 的延长线于点M ,BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当∠CBE=∠BAC时,过点A作AH⊥DE于点H,若BC=9,AC=12,求AH的长.请你思考此问题,直接写出结果.17(2023·湖北十堰·统考中考真题)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.(1)如图1,若∠CDP=25°,则∠DAF=°;(2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;(3)在DP绕点D转动的过程中,设AF=a,EF=b请直接用含a,b的式子表示DF的长.18(2023·辽宁大连·统考中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.19(2023·山东·统考中考真题)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF 的长.20(2023·福建·统考中考真题)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.(1)求证:△ADE∽△FMC;(2)求∠ABF的度数;(3)若N是AF的中点,如图2.求证:ND=NO.21(2023·四川·统考中考真题)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BDC=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.22(2023·广西·统考中考真题)【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD对折,使AD与BC重合,展平纸片,得到折痕EF;折叠纸片,使点B 落在EF上,并使折痕经过点A,得到折痕AM,点B,E的对应点分别为B ,E ,展平纸片,连接AB ,BB ,BE .请完成:(1)观察图1中∠1,∠2和∠3,试猜想这三个角的大小关系;(2)证明(1)中的猜想;【类比操作】如图2,N为矩形纸片ABCD的边AD上的一点,连接BN,在AB上取一点P,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ,P ,展平纸片,连接,P B .请完成:(3)证明BB 是∠NBC 的一条三等分线.23(2023·重庆·统考中考真题)在Rt △ABC 中,∠ACB =90°,∠B =60°,点D 为线段AB 上一动点,连接CD .(1)如图1,若AC =9,BD =3,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边△CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若∠G =∠BCE ,求证:GF =BF +BE .(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边△CDE .点M 为CD 所在直线上一点,将△BEM 沿BM 所在直线翻折至△ABC 所在平面内得到△BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将△BCP 沿BC 所在直线翻折至△ABC 所在平面内得到△BCQ ,请直接写出此时NQ CP的值.24(2023·湖南·统考中考真题)如图,在等边三角形ABC 中,D 为AB 上的一点,过点D 作BC 的平行线DE 交AC 于点E ,点P 是线段DE 上的动点(点P 不与D 、E 重合).将△ABP 绕点A 逆时针方向旋转60°,得到△ACQ ,连接EQ 、PQ ,PQ 交AC 于F .(1)证明:在点P 的运动过程中,总有∠PEQ =120°.(2)当AP DP为何值时,△AQF 是直角三角形?25(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.26(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.27(2023·广东深圳·统考中考真题)(1)如图,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≌△FCB;=20时,则BE⋅CF=.②若S矩形ABCD(2)如图,在菱形ABCD中,cos A=13,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD =24时,求EF⋅BC的值.于点F,若S菱形ABCD(3)如图,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF⋅EG=73时,请直接写出AG的长.28(2023·内蒙古·统考中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,点P,Q分别是边BC,线段OD上的点,连接AP,QP,AP与OB相交于点E.(1)如图1,连接QA.当QA=QP时,试判断点Q是否在线段PC的垂直平分线上,并说明理由;(2)如图2,若∠APB=90°,且∠BAP=∠ADB,①求证:AE=2EP;②当OQ=OE时,设EP=a,求PQ的长(用含a的代数式表示).29(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM ,CN 始终与正方形的边AD ,AB 所在直线分别相交于点M ,N ,连接MN ,可得△CMN .【探究一】如图②,把△CDM 绕点C 逆时针旋转90°得到△CBH ,同时得到点H 在直线AB 上.求证:∠CNM =∠CNH ;【探究二】在图②中,连接BD ,分别交CM ,CN 于点E ,F .求证:△CEF ∽△CNM ;【探究三】把三角尺旋转到如图③所示位置,直线BD 与三角尺45°角两边CM ,CN 分别交于点E ,F .连接AC 交BD 于点O ,求EFNM的值.30(2023·山东东营·统考中考真题)(1)用数学的眼光观察.如图,在四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,M 是AB 的中点,N 是DC 的中点,求证:∠PMN =∠PNM .(2)用数学的思维思考.如图,延长图中的线段AD 交MN 的延长线于点E ,延长线段BC 交MN 的延长线于点F ,求证:∠AEM =∠F .(3)用数学的语言表达.如图,在△ABC 中,AC <AB ,点D 在AC 上,AD =BC ,M 是AB 的中点,N 是DC 的中点,连接MN 并延长,与BC 的延长线交于点G ,连接GD ,若∠ANM =60°,试判断△CGD 的形状,并进行证明.31(2023·甘肃兰州·统考中考真题)综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边AB上一点,DF⊥CE于点F,GD⊥DF,AG⊥DG,AG=CF.试猜想四边形ABCD的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD中,E是边AB上一点,DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,可以用等式表示线段FH,AH,CF的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E是边AB上一点,AH⊥CE于点H,点M在CH上,且AH=HM,连接AM,BH,可以用等式表示线段CM,BH的数量关系,请你思考并解答这个问题.32(2023·贵州·统考中考真题)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP, BE之间的数量关系,并说明理由.33(2023·辽宁·统考中考真题)在RtΔABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图,当点D在线段AB上时,求证:CG+BD=2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.34(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).35(2023·江苏徐州·统考中考真题)【阅读理解】如图1,在矩形ABCD中,若AB=a,BC=b,由勾股定理,得AC2=a2+b2,同理BD2=a2+b2,故AC2+BD2=2a2+b2.【探究发现】如图2,四边形ABCD为平行四边形,若AB=a,BC=b,则上述结论是否依然成立?请加以判断,并说明理由.【拓展提升】如图3,已知BO为△ABC的一条中线,AB=a,BC=b,AC=c.求证:BO2=a2+b22-c24.【尝试应用】如图4,在矩形ABCD中,若AB=8,BC=12,点P在边AD上,则PB2+PC2的最小值为.36(2023·四川南充·统考中考真题)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B 落在AC上,连接MB′.当点M在边BC上运动时(点M 不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.37(2023·安徽·统考中考真题)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD 位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(ⅰ)如图2,连接CD,求证:BD=CD;(ⅱ)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.38(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连接AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD的周长.39(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含30°的三角板开展数学探究活动,两块三角板分别记作△ADB和△A D C,∠ADB=∠A D C=90°,∠B=∠C=30°,设AB=2.【操作探究】如图1,先将△ADB和△A D C的边AD、A D 重合,再将△A D C绕着点A按顺时针方向旋转,旋转角为α0°≤α≤360°,旋转过程中△ADB保持不动,连接BC.(1)当α=60°时,BC=;当BC=22时,α=°;(2)当α=90°时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC的中点F,将△A D C绕着点A旋转一周,点F的运动路径长为.40(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB C 的位置,那么可以得到:AB=AB ,AC =AC ,BC=B C ;∠BAC=∠B AC ,∠ABC=∠AB C ,∠ACB=∠AC B ()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:;(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A BC 的位置.①请在图中作出点O;②如果BB =6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.。

中考数学真题几何综合2

中考数学真题几何综合2
∴∠EOD=180°-∠POC=120°,
∴S扇EOD= = .
【点睛】本题考查了全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算,掌握知识点灵活运用是解题关键.
5.如图,在 中, , 平分 交 于点 ,点 在 上,以点 为圆心, 为半径的圆恰好经过点 ,分别交 、 于点 、 .
(1)试判断直线 与 的位置关系,并说明理由;
(1)①求证: ;
②写出∠1,∠2和 三者间的数量关系,并说明理由.
(2)若 ,当 最大时,直接指出 与小半圆的位置关系,并求此时 (答案保留 ).
【答案】(1)①见详解;②∠2=∠C+∠1;(2) 与小半圆相切, .
【解析】
【分析】
(1)①直接由已知即可得出AO=PO,∠AOE=∠POC,OE=OC,即可证明;
(2)如图(见解析),设圆O的半径为 ,先根据圆周角定理得出 ,再根据直角三角形的性质可得 ,从而可得 ,然后在 中,利用勾股定理求解即可得.
【详解】(1)如图,连接OA


AE是圆O的切线
,即
在 中,由三角形的内角和定理得:

解得
则由圆周角定理得:
故 的度数为 ;
(2)如图,连接AD
设圆O的半径为 ,则
【详解】解:(1)证明:∵四边形ABCD为菱形,
∴点O为BD的中点,
∵点E为AD中点,
∴OE为△ABD的中位线,
∴OE∥FG,
∵OG∥EF,∴四边形OEFG为平行四边形
∵EF⊥AB,∴平行四边形OEFG为矩形.
(2)∵点E为AD的中点,AD=10,
∴AE=
∵∠EFA=90°,EF=4,
∴在Rt△AEF中, .

【初中数学】几何综合题及答案,13道!

【初中数学】几何综合题及答案,13道!

几何综合题复习几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。

一、几何论证型综合题例1、(盐城)如图,已知:⊙O 1与⊙O 2是等圆,它们相交于A 、B 两点,⊙O 2在⊙O 1上,AC 是⊙O 2的直径,直线CB 交⊙O 1于D ,E 为AB 延长线上一点,连接DE 。

(1)请你连结AD ,证明:AD 是⊙O 1的直径;(2)若∠E=60°,求证:DE 是⊙O 1的切线。

分析:解几何综合题,一要注意图形的直观提示,二要注意分析挖掘题目的隐含条件,不断地由已知想可知,发展条件,为解题创条件打好基础。

证明:(1)连接AD ,∵AC 是⊙O 2的直径,AB ⊥DC A∴∠ABD=90°,∴AD 是⊙O 1的直径O 1O 2(2)证法一:∵AD 是⊙O 1的直径,∴O 1为AD 中点CDB 连接O 1O 2,∵点O 2在⊙O 1上,⊙O 1与⊙O 2的半径相等,E∴O 1O 2=AO 1=AO 2∴△AO 1O 2是等边三角形,∴∠AO 1O 2=60°由三角形中位线定理得:O 1O 2∥DC ,∴∠ADB=∠AO 1O 2=60°∵AB ⊥DC ,∠E=60,∴∠BDE=30,∠ADE=∠ADB+∠BDE=60°+30°=90°又AD 是直径,∴DE 是⊙O 1的切线证法二:连接O 1O 2,∵点O 2在⊙O 1上,O 1与O 2的半径相等,∴点O 1在⊙O 2∴O 1O 2=AO 1=AO 2,∴∠O 1AO 2=60°∵AB 是公共弦,∴AB ⊥O 1O 2,∴∠O 1AB=30°∵∠E=60°∴∠ADE=180°-(60°+30°)=90°由(1)知:AD 是的⊙O 1直径,∴DE 是⊙O 1的切线.说明:本题考查了三角形的中位线定理、圆有关概念以及圆的切线的判定定理等。

函数与几何综合问题专练2023中考真题分类汇编(共25题)(解析版)

函数与几何综合问题专练2023中考真题分类汇编(共25题)(解析版)

专题32函数与几何综合问题(25题)一、填空题1.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy 中,点B 的坐标为()86-,,过点B 分别作x 轴、y 轴的垂线,垂足分别为点C 、点A ,直线26y x =--与AB 交于点D .与y 轴交于点E .动点M 在线段BC 上,动点N 在直线26y x =--上,若AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为【答案】()8,6M -或28,3M ⎛⎫- ⎪⎝⎭【分析】如图,由AMN 是以点N 为直角顶点的等腰直角三角形,可得N 在以AM 为直径的圆H 上,MN AN =,可得N 是圆H 与直线26y x =--的交点,当,M B 重合时,符合题意,可得()8,6M -,当N 在AM 的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,证明MNK NAJ ≌,设(),26N x x --,可得MK NJ x ==-,266212KN AJ x x ==---=--,而8KJ AB ==,则2128x x ---=,再解方程可得答案.【详解】解:如图,∵AMN 是以点N 为直角顶点的等腰直角三角形,∴N 在以AM 为直径的圆H 上,MN AN =,∴N 是圆H 与直线26y x =--的交点,当,M B 重合时,∵()8,6B -,则()4,3H -,∴4MH AH NH ===,符合题意,∴()8,6M -,当N 在AM 的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,∴90NAJ ANJ ∠+∠=︒,【答案】392【分析】作出点()32C -,,作CD 直角三角形求得1103F ⎛⎫ ⎪⎝⎭,,利用待定系数法求得直线DG y ⊥轴于点G ,此时35BH +【详解】解:∵直线123y x =-+则2CP =,3OP =,∵CFP AFD ∠=∠,∴FCP FAD ∠=∠,∴tan tan FCP FAD ∠=∠,∴PF OB PC OA=,即226PF =,∴23PF =,则1103F ⎛⎫ ⎪⎝⎭,,设直线CD 的解析式为y kx =+则321103k b k b +=-⎧⎪⎨+=⎪⎩,解得311k b =⎧⎨=-⎩∴直线CD 的解析式为3y x =联立,311123y x y x =-⎧⎪⎨=-+⎪⎩,解得⎧⎪⎪⎨⎪⎪⎩即3971010D ⎛⎫ ⎪⎝⎭,;过点D 作DG y ⊥轴于点G ,②如图2,直线BM过AC中点,直线BM解析式为1522y x=-+,AC中点坐标为910a=;③如图3,直线CM过AB中点,AB中点坐标为()3,0,5⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴22BE =,∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得12AE AB =,∴22AE =,222NE =-,tan tan MEN CBO ∠∠=,∴155222a =-,解得212a +=;综上所述,910a =或225+或212+.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.二、解答题4.(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,ABCD Y 的顶点B ,C 在x 轴上,D(1)求点B 的坐标;(2)若:2:1OD OC =,直线y x b =-+分别交x DC 延长线于点N ,求tan MND ∠的值;(3)在(2)的条件下,点P 在y 轴上,在直线存在,请直接写出等腰三角形的个数和其中两个点【答案】(1)()4,0B -(2)1tan 3MND ∠=(3)存在,等腰三角形的个数是8个,1652Q ⎛- ⎝【分析】(1)解方程得到OB ,OC 的长,从而得到点(2)由:2:1OD OC =,2OC =,得4OD =线y x b =-+中,求得b 的值,从而得到直线的解析式,进而求得点45FEO ∠=︒.过点C 作CH EN ⊥于H ,过点::2:1DO OC NK CK ==,进而得到2NK CK =EC CK =,由211EC OC OE =-=-=可得CK 得到22cos EK EN KEN ==∠,在Rt ECH △中,322NH EN EH =-=,最终可得结果tan MND ∠(3)分PN PQ =,PN NQ =,PQ NQ =三大类求解,共有【详解】(1)解方程2680x x -+=,得14x =OB OC > ,(3)解:由(2)知:直线EF 解析式为设()0,P p ,(),1Q q q -+,①当5PN QN ==时,()()2223025p -+--=,()23q -+解得6p =-或2p =,6522q +=或∴1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652Q ⎛+ ⎝如图,11PQ N 、12PQ N 、21P Q N ;②当5PQ QN ==时,由①知:1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652,2Q ⎛+ ⎝;③当5PN PQ ==时,由①知:()10,6P -,()20,2P ,当()10,6P -时,()()22061q q -+-+-解得13q =(舍去),24q =,∴()34,3Q -,如图,当()20,2P 时,()()220215q q -++-=解得13q =(舍去),24q =-,综上,等腰三角形的个数是8个,符合题意的Q 坐标为16525,2Q ⎛- ⎝【点睛】本题考查了一次函数的图像与性质,一次函数与平行四边形,等腰三角形的综合问题,数形结合思想是解题的关键.5.(2023·湖南·统考中考真题)如图,点使得DBC CAB ∠=∠,点E 是弦AC 上一动点(不与点交BC 的延长线于点N ,交O 于点M (1)BD 是O 的切线吗?请作出你的判断并给出证明;(2)记BDC ABC ADB ,,的面积分别为(3)若O 的半径为1,设FM x =,FE 自变量x 的取值范围.【答案】(1)BD 是O 的切线,证明见解析(2)152+∴在Rt OFM △中,2OF OM =∴211BF BO OF x =+=+-,AF2②若a c=,则A、B关于y轴对称,以综上,以A,B,C,D为顶点的四边形能构成正方形,此时【点睛】本题主要考查了二次函数的综合应用、正方形的性质等知识点,解题的关键是利用分类讨论的思想解决问题.(1)当45QPB ∠=︒时,求四边形(2)当点P 在线段AB 上移动时,设【答案】(1)438+(2)23234312x S x =++【分析】(1)连接BD 、可得PBQ 为等腰直角三角形,则 四边形ABCD 为菱形,∠PB x=,23BQ=,PBQ(1)求点,A B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,【答案】(1)()20A ,,()13B ,;∵()2313y x =--+,∴抛物线对称轴为1x =,即1ON =,∵将线段AB 绕点A 按顺时针方向旋转∵2OA OB AC BC ====,∴四边形OACB 是菱形,∴BC OA ∥,∵DH BN ⊥,AN BN ⊥,∴DH BC OA ∥∥,∴MBE MHD ∠∠=,MEB MDH ∠∠=∵DE 的中点为点M ,∴MD ME =,∴MBE MHD ≌,∴DH BE =,∵90ANM ∠=︒,∴1809090MBE ANM ∠∠=︒-︒=︒=,∵DE 的中点为点M ,DAE 是等边三角形,∴AM DE ⊥,∴90AME ∠=︒,∴180BME NMA ∠∠+=︒,∴BME NAM ∠∠=,(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接,AF DF ①求证:DFC △是直角三角形;②DFC ∠的平分线FK 交线段DC 于点,K P 是直线坐标.【答案】(1)(3,1)C ,(0,2)D ,(6,0)E (2)①证明见解析,②点P 的坐标为(1,3)或(7,3【分析】(1)根据一次函数与坐标轴的交点及一次函数与二次函数的交点求解即可;(2)①设(,0),F m 然后利用勾股定理求解,m-①抛物线231y x x =-++交y 轴于点A ,当0x =时,1,y =.(0,1),A ∴1OA ∴=,在Rt AOF 中,90AOF ∠=︒,由勾股定理得222AF OA OF +=,设(,0),F m ,OF m ∴=221AF m ∴=+,(6,0),E .6,OE ∴=6EF OE OF m ∴=-=-,2221,AF EF += 221(6)21,m m ∴++-=122,4m m ∴==,,OF EF < 2,m ∴=2OF ∴=,(2,0)F ∴.(0,2),D 2OD ∴=,OD OF ∴=.DOF ∴ 是等腰直角三角形,45OFD ∴∠=︒.过点C 作CG x ⊥轴,垂足为G .(3,1),C 1,3CG OG ∴==,1,GF OG OF =-= ,CG GF ∴=CGF ∴ 是等腰直角三角形,45,GFC ∴∠︒=90,DFC ∴∠=︒DFC ∴ 是直角三角形.②FK 平分,90,DFC DFC ∠∠=︒(1)BP 的长为__________,CM 的长为_________(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 【答案】(1)()4x -;x(2)()(241216024162x x y x x ⎧-+⎪=⎨-+<≤⎪⎩(3)43x =或83x =【分析】(1)根据正方形中心对称的性质得出OM ANP CQM ≌即可;(2)分02x <≤,2<两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【详解】(1)解:依题意,1AP x x =⨯=()cm ,则∵四边形ABCD 是正方形,∴,90AD BC DAB ∠=∠=︒∥,∵点O 是正方形对角线的中点,∴,OM OP OQ ON ==,则四边形PQMN 是平行四边形,∴MQ PN =,MQ NP ∥∴PNQ MQN ∠=∠,又AD BC ∥,∴ANQ CQN ∠=∠,∴ANP MQC ∠=∠,在,ANP CQM 中,ANP MQC NAP QCM NP MQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ANP CQM ≌,∴()cm MC AP x ==故答案为:()4x -;x .(2)解:当02x <≤时,点Q 在BC 上,由(1)可得ANP CQM ≌,同理可得PBQ MDN ≌,∵4,2,PB x QB x MC x =-==,42QC x =-,则222MCQ BPQy AB S S =-- ()()164242x x x x =--⨯--241216x x =-+;当24x <≤时,如图所示,则AP x =,224AN CQ x CB x ==-=-,()244PN AP AN x x x =-=--=-+,∴()44416y x x =-+⨯=-+;综上所述,()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩;当四边形PQMN 是菱形时,则∴()()2242x x x -+=解得:0x =(舍去)②如图所示,当PB =424x x -=-,解得x 当四边形PQMN 是菱形时,则综上所述,当四边形【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.(1)当旋转角COF ∠为多少度时,OE OF =;(直接写出结果,不要求写解答过程)(2)若点(4,3)A ,求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y x =于点N ,连接FN ,将OFN △1S 与2S ,设12S S S =-,AN n =,求S 关于n 的函数表达式.【答案】(1)22.5︒(2)154FC =(3)212S n =【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出AOG ∠=45EOG ∠=︒,即可求解;(2)过点A 作AP x ⊥轴,根据勾股定理及点的坐标得出5OA =,再由相似三角形的判定和性质求解即可;(3)根据正方形的性质及四点共圆条件得出O 、C 、F 、N 四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出FN ON =,90FNO ∠=︒,过点N 作GQ BC ⊥于点G ,交OA 于点形的判定和性质得出,CG OQ CO QG ==,结合图形分别表示出1S ,2S ,得出(2)过点A 作AP x ⊥轴,如图所示:∵(4,3)A ,∴3,4AP OP ==,∴5OA =,∵正方形OABC ,∴5OC OA ==,90C ∠=∴90C APO ∠∠==︒,∵AOP COF ∠∠=,∴OCF OPA ∽ ,∴OC FC OP AP=即543FC =,∴154FC =;(3)∵正方形OABC ,∵BC OA ∥,∴GQ OA ⊥,∵90FNO ∠=︒,∴1290∠∠+=︒,∵1390∠∠+=︒,∴23∠∠=,∴(AAS)FGN NQO ≌ ∴,GN OQ FG QN ==,∵GQ BC ⊥,FCO COQ ∠∠=∴四边形COQG 为矩形,∴,CG OQ CO QG ==,∴(211S S ON OQ ===(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒,点的边,DQ DB 上的动点,QE DF =,记BE Q F +的最小值为m .①求m 的值;②设PCB 的面积为S ,若214S m k =-,请直接写出k 的取值范围.【答案】(1)32,2,()1,0-,12(2)()2,3(3)解:①如图2,作DH ⊥∵90BQD BDQ ︒∠+∠=,HDF ∠∴QD HDF ∠=∠,∵QE DF =,DH BQ =,∴(SAS)BQE HDF ≌,∴BE FH =,∴BE QF FH QF QH +=+≥,∴Q ,F ,H 共线时,BE Q F +②如图3,作PT y ∥轴,交设22,1T a a ⎛⎫-+ ⎪⎝⎭,,P a ⎛ ⎝则21132222S a a ⎛=-+++ ⎝∴04S <≤,∴21044m k <-≤,∴0174k <-≤,∴1317k ≤<.【点睛】本题考查用待定系数法求函数解析式、二次函数与几何综合、二次函数与(1)直接判断AOB 的形状:AOB 是_________三角形;(2)求证:AOE BOD △≌△;(3)直线EA 交x 轴于点(,0),2C t t >.将经过B ,C 两点的抛物线21y ax =物线2y .①若直线EA 与抛物线1y 有唯一交点,求t 的值;②若抛物线2y 的顶点P 在直线EA 上,求t 的值;③将抛物线2y 再向下平移,22(1)t -个单位,得到抛物线3y .若点D 在抛物线【答案】(1)等腰直角三角形(2)详见解析(3)①3t =;②6t =;③126,55D ⎛⎫ ⎪⎝⎭【分析】(1)由(0,2),(2,0)A B 得到2OA OB ==,又由90AOB ∠=︒,即可得到结论;(2)由90EOD ∠=︒,90AOB ∠=︒得到AOE BOD ∠=∠,又有AO OB =AOE BOD △≌△;(3)①求出直线AC 的解析式和抛物线1y 的解析式,联立得()23x t -+22(3)43(3)0t t t ∆=+-⨯=-=即可得到t 的值;∵90EOD ∠=︒,90AOB ∠=︒,AOB AOD DOE ∴∠-∠=∠-∠AOE BOD ∴∠=∠,∵,AO OB OD OE ==,(SAS)AOE BOD ∴△≌△;(3)①设直线AC 的解析式为(0,2),(,0)A C t ,∴90EMO OND ∠=∠=︒,90DOE ∠=︒ ,∴EOM MEO EOM NOD ∠+∠=∠+∠∴MEO NOD ∠=∠,∵OD OE =,∴(AAS)ODN EOM ≌,∴,ON EM DN OM ==,∵OE 的解析式为2y x =-,∴设22EM OM m ==,∴DN OM m ==,EM x ⊥ 轴,∴OA EM ∥,∴~CAO CEM ,::OC CM OA EM ∴=,22t t m m∴=+,1t m t ∴=-,∴2221t EM ON OM m t ====-,DN 2,11t t D t t ⎛⎫∴ ⎪--⎝⎭, 抛物线2y 再向下平移22(1)t -个单位,得到抛物线2222(2)y x t x(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.【答案】(1)23232S x x =-+(2)当2x =时,S 的最大值为23∵顶点A 的坐标为()2,23,∴()222234OA =+=,2OG =,∴1cos 2OG AOG AO ∠==,①如图②,当边E F ''与AB 相交于点M 、边G H ''与BC 相交于点N ,且矩形E F G H ''''与菱形为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当2311334t ≤≤时,求S 的取值范围(直接写出结果即可).【答案】(1)()3,2,33,2⎛⎫- ⎪⎝⎭(2)①332t <≤;②3316S ≤≤【分析】(1)根据矩形及菱形的性质可进行求解;(2)①由题意易得3,1EF E F EH E H ''''====,然后可得60ABO ∠=︒,则有32EM =,进而根据割补∵四边形ABCD 是菱形,且(3,0),(0,1),(2A B D ∴()()2230012AB AD ==-+-=,AC BD ⊥∴2AC =,∴()3,2C ,故答案为()3,2,33,2⎛⎫- ⎪⎝⎭;(2)解:①∵点10,2E ⎛⎫ ⎪⎝⎭,点13,2F ⎛⎫- ⎪⎝⎭,点∴矩形EFGH 中,EF x ∥轴,EH x ⊥轴,EF ∴矩形E F G H ''''中,E F x ''∥轴,E H x ''⊥轴,由点()3,0A ,点()0,1B ,得3,1OA OB ==.在Rt ABO △中,tan 3OA ABO OB ∠==,得ABO ∠在Rt BME △中,由1tan 60,12EM EB EB =⋅︒=-此时面积S 最大,最大值为133S =⨯=当1134t =时,矩形E F G H ''''和菱形ABCD 由(1)可知B 、D 之间的水平距离为23,则有点由①可知:60D B ∠=∠=︒,(1)求CE的长和y关于x的函数表达式.(2)当PH PN<,且长度分别等于PH,PN,a的三条线段组成的三角形与(3)延长PN交半圆O于点Q,当1534NQ x=-时,求【答案】(1)165CE=,25412y x=-+(2)1615或2740或6041(3)17 8【分析】(1)如图1,连接OD,根据切线的性质得出出165CE=;证明四边形APMC是平行四边形,得出MN(2)根据BCE三边之比为3:4:5,可分为三种情况.当:3:4PH PN=时,分别列出比例式,进而即可求解.∵CD 切半圆O 于点D ,∴OD CE ⊥.∵32OA =,1AC =,∴52OC =,∴2CD =.∵BE CE ⊥,∴OD BE ∥,∴CD CO CE CB=,即5224CE =,∴165CE =.∵MN CB ∥,∴四边形APMC 是平行四边形,∴sin 1sin PH PH CM PA ===∠∵MN ME BC CE =,则90AQB AGQ ∠=∠=︒,∴QAB BQG ∠=∠.∵1534NQ x =-,PN y =。

上海市中考数学25题各区期末汇编—几何综合题

上海市中考数学25题各区期末汇编—几何综合题

一.解答题(共15小题)1.(2022秋•嘉定区校级期末)在矩形ABCD 中,AB =3,AD =4,点E 是边AD 上一点,EM ⊥EC 交A 上海市中考数学25题各区期末汇编—几何综合题B 于点M ,点N 在射线MB 上,且∠ANE =∠DCE .(1)如图,求证:AE 是AM 和AN 的比例中项;(2)当点N 在线段AB 的延长线上时,联结AC ,且AC 与NE 互相垂直,求MN的长.2.(2022秋•浦东新区期末)如图,在Rt△ABC中,∠ABC=90°,AC=10,tan C=,点D是斜边AC 上的动点,联结BD,EF垂直平分BD交射线BA于点F,交边BC于点E.(1)如图,当点D是斜边AC上的中点时,求EF的长;(2)联结DE,如果△DEC和△ABC相似,求CE的长;(3)当点F在边BA的延长线上,且AF=2时,求AD的长.3.(2022秋•青浦区校级期末)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AD=CD,O是对角线AC的中点,联结BO并延长交边CD于点E.(1)①求证:△DAC∽△OBC;②若BE⊥CD,求的值:(2)若DE=2,OE=3,求CD的长.4.(2022秋•黄浦区校级期末)如图,已知∠AOB=90°,∠AOB的内部有一点P,且OA=OB=OP=10,过点B作BC∥AP交AO于点C,OP与BC交于点D.(1)如果tan∠AOP=,求OC的长;(2)设AP=x,BC=y,求y与x的函数关系式,并写出定义域;(3)如果BD=AP,求△PBD的面积.5.(2022秋•青浦区校级期末)如图1,梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,M在边CD上,连接BM,BM⊥DC.(1)求CD的长;(2)如图2,作∠EMF=90°,ME交AB于点E,MF交BC于点F,若AE=x,BF=y,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.6.(2022秋•徐汇区期末)已知:在梯形ABCD中,AB∥CD,AD=BC=5,AB=2.5,sin D=,点E是AD边上一点,DE=3,点P是CD边上的一动点,连接EP,作∠EPF,使得∠EPF=∠D,射线PF与AB边交于点F,与CB的延长线交于点G,设DP=x,BG=y.(1)求CD的长;(2)试求y关于x的函数关系式,并写出定义域;(3)连接EF,如果△EFP是等腰三角形,试求DP的长.7.(2022秋•静安区期末)在等腰直角△ABC中,∠C=90°,AC=4,点D为射线CB上一动点(点D 不与点B、C重合),以AD为腰且在AD的右侧作等腰直角△ADF,∠ADF=90°,射线AB与射线FD 交于点E,联结BF.(1)如图所示,当点D在线段CB上时,①求证:△ACD∽△ABF;②设CD=x,tan∠BFD=y,求y关于x的函数解析式,并写出x的取值范围;(2)当AB=2BE时,求CD的长.8.(2022秋•杨浦区校级期末)如图,在△ABC中,∠ACB=90°,CD是边AB上的中线,AC=3,BC=4,点Q是CB延长线上的一动点,过点Q作QP⊥CD,交CD的延长线于点P.(1)当点B为CQ的中点时,求PD的长;(2)设BQ=x,PD=y,求y关于x的函数关系式,并写出x的取值范围;(3)过点B作BF⊥AB交PQ于F,当△BDF和△ABC相似时,求BQ的长.9.(2022秋•金山区校级期末)已知∠BAC的余切值为2,AB=2,点D是线段AB上一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F都在射线AC上,且点F在点E 的右侧,联结BG,并延长BG交射线AC于点P.(1)联结AG,求证:cot∠GAF=3;(2)如图1,当点P在线段EF上时,如果∠GPF的正切值为2,求线段BD的长;(3)联结AG,当△AGP为等腰三角形时,求线段BD的长.10.(2022秋•闵行区期末)如图1,点D为△ABC内一点,联结BD,∠CBD=∠BAC,以BD、BC为邻边作平行四边形DBCE,DE与边AC交于点F,∠ADE=90°.(1)求证:△ABC∽△CEF;(2)延长BD,交边AC于点G,如果CE=FE,且△ABC的面积与平行四边形DBCE面积相等,求的值;(3)如图2,联结AE,若DE平分∠AEC,AB=5,CE=2,求线段AE的长.11.(2022秋•黄浦区期末)已知,如图1,在四边形ABCD中,∠BAC=∠ADC=90°,CD=4,cos∠ACD =.(1)当BC∥AD时(如图2),求AB的长;(2)联结BD,交边AC于点E,①设CE=x,AB=y,求y关于x的函数解析式并写出定义域;②当△BDC是等腰三角形时,求AB的长.12.(2022秋•徐汇区校级期末)如图,梯形ABCD中,AD∥BC,对角线AC⊥BC,AD=9,AC=12,BC =16,点E是边BC上一个动点,∠EAF=∠BAC,AF交CD于点F、交BC延长线于点G,设BE=x.(1)使用x的代数式表示FC;(2)设=y,求y关于x的函数关系式,并写出定义域;(3)当△AEG是等腰三角形时,直接写出BE的长.13.(2022秋•浦东新区校级期末)如图,在△ABC中,AB=8,BC=10,cos C=,∠ABC=2∠C,BD 平分∠ABC交AC边于点D,点E是BC边上的一个动点(不与B、C重合),F是AC边上一点,且∠AEF=∠ABC,AE与BD相交于点G.(1)求证:;(2)设BE=x,CF=y,求y与x之间的函数关系式,并写出x的取值范围;(3)当△AEF是以AE为腰的等腰三角形时,求BE的长.14.(2022秋•徐汇区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=4,点D为边BC上一动点(与点B、C不重合),点E为AB上一点,∠EDB=∠ADC,过点E作EF⊥AD,垂足为点G,交射线AC于点F.(1)如果点D为边BC的中点,求∠DAB的正切值;(2)当点F在边AC上时,设CD=x,CF=y,求y关于x的函数解析式及x的取值范围;(3)联结DF,如果△CDF与△AGE相似,求线段CD的长.15.(2022秋•杨浦区期末)如图,在Rt△ABC中,∠ACB=90°.AB=13,CD∥AB.点E为射线CD上一动点(不与点C重合),联结AE,交边BC于点F,∠BAE的平分线交BC于点G.:S△CAF的值;(1)当时CE=3,求S△CEF(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.一.解答题(共15小题)1.(2022秋•嘉定区校级期末)在矩形ABCD 中,AB =3,AD =4,点E 是边AD 上一点(参考答案),EM ⊥EC 交AB 于点M ,点N 在射线MB 上,且∠ANE =∠DCE .(1)如图,求证:AE 是AM 和AN 的比例中项;(2)当点N 在线段AB 的延长线上时,联结AC ,且AC 与NE 互相垂直,求MN的长.【分析】(1)利用矩形的性质和相似三角形的判定与性质解答即可;(2)利用△EDC ∽△CAD ,得出比例式求得线段DE ,AE ,利用△AME ∽△DEC 求得线段AM ,利用(1)的结论求得线段AN ,则MN =AN ﹣AM .【解答】(1)证明:∵EM ⊥EC ,∴∠AEM +∠DEC =90°.∵四边形ABCD 为矩形,∴∠A =∠D =90°,∴∠DEC +∠ECD =90°,∴∠AEM =∠DCE ,∵∠ANE =∠DCE ,∴∠ANE =∠AEM .∵∠A =∠A ,∴△ANE ∽△AEM ,∴.∴AE 2=AM •AN ,∴AE 是AM 和AN 的比例中项;(2)解:如图,AC===5.∵AC与NE互相垂直,∴∠AFE=90°,∴∠ANE+∠NAF=90°.∵∠NAF+∠CAD=90°,∴∠ANE=∠DAC.∵∠ANE=∠DCE,∴∠DAC=∠DCE,∵∠D=∠D,∴△EDC∽△CAD,∴,∴,∴DE=,∴AE=AD﹣DE=.∵EM⊥EC,∴∠AEM+∠DEC=90°.∵四边形ABCD为矩形,∴∠MAE=∠D=90°,∴∠DEC+∠ECD=90°,∴∠AEM=∠DCE,∴△AME∽△DEC,∴,∴,∴AM=.由(1)知:AE2=AM•AN,∴AN=,∴MN=AN﹣AM==.【点评】本题主要考查了矩形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.2.(2022秋•浦东新区期末)如图,在Rt△ABC中,∠ABC=90°,AC=10,tan C=,点D是斜边AC上的动点,联结BD,EF垂直平分BD交射线BA于点F,交边BC于点E.(1)如图,当点D是斜边AC上的中点时,求EF的长;(2)联结DE,如果△DEC和△ABC相似,求CE的长;(3)当点F在边BA的延长线上,且AF=2时,求AD的长.【分析】(1)连接DF,DE,由∠ABC=90°,AC=10,tan C=,得AB=6,BC=8,而D是AC中点,知BD=AC=5,从而DG=BD=,证明△DGF∽△ABC∽△EGD,可得=,=,解得FG=,EG=,即可得EF=FG+EG=;(2)分两种情况:①当△DEC∽ABC时,设CE=m,则BE=8﹣m=DE,有=,解得m=;②当△EDC∽△ABC时,设CE=n,则BE=DE=8﹣n,可得=,解得n=5,即可得△DEC和△ABC相似,CE的长为或5;(3)连接DF,过D作DK⊥AB于K,由∠ADK=∠C,有=,设AK=3t,则DK=4t,在Rt△DKF中,得(4t)2+(3t+2)2=82,解方程即可得到答案.【解答】解:(1)连接DF,DE,如图:∵∠ABC=90°,AC=10,tan C=,∴AB=6,BC=8,∵D是AC中点,∴BD=AC=5,∵EF是BD的垂直平分线,∴DG=BD=,∵D是AC中点,∠ABC=90°,∴AD=BD=CD,∴∠A=∠DBA,∠C=∠DBC,∵EF是BD的垂直平分线,∴DF=BF,DE=BE,∴∠FDG=∠DBA,∠EDG=∠DBC,∴∠FDG=∠A,∠EDG=∠C,∵∠DGF=∠ABC=90°=∠EGD,∴△DGF∽△ABC∽△EGD,∴=,=,∴=,=,解得FG=,EG=,∴EF=FG+EG=;(2)①当△DEC∽ABC时,如图:设CE=m,则BE=8﹣m=DE,∵=,∴=,解得m=,∴CE=;②当△EDC∽△ABC时,如图:设CE=n,则BE=DE=8﹣n,∵=,∴=,解得n=5,∴CE=5;综上所述,△DEC和△ABC相似,CE的长为或5;(3)连接DF,过D作DK⊥AB于K,如图:∴DK∥BC,∴∠ADK=∠C,∴tan∠ADK=tan C=,即=,设AK=3t,则DK=4t,∵AB=6,AF=2,∴BF=8=DF,KF=AK+AF=3t+2,在Rt△DKF中,DK2+KF2=DF2,∴(4t)2+(3t+2)2=82,解得t=或t=(舍去),∴AD===5t=,∴AD的长是.【点评】本题考查直角三角形中的相似问题,涉及勾股定理及应用,垂直平分线等知识,解题的关键是掌握相似三角形的判定定理及应用.3.(2022秋•青浦区校级期末)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AD =CD,O是对角线AC的中点,联结BO并延长交边CD于点E.(1)①求证:△DAC∽△OBC;②若BE⊥CD,求的值:(2)若DE=2,OE=3,求CD的长.【分析】(1)①由等腰三角形的性质得出∠DAC=∠DCA,由平行线的性质得出∠DAC =∠ACB,由直角三角形的性质得出∠OBC=∠OCB,根据相似三角形的判定定理可得出结论;②得出∠OCE=∠OCB=∠EBC=30°.过点D作DH⊥BC于点H,设AD=CD=2m,则BH=AD=2m,则可得出答案;(2)①如图3,当点E在AD上时,证明四边形ABCE是矩形.设AD=CD=x,由勾股定理得出方程,解方程即可得出答案;②如图4,当点E在CD上时,设AD=CD=x,则CE=x﹣2,设OB=OC=m,由相似三角形的性质得出,证明△EOC∽△ECB,得出比例线段,可得出方程,解方程可得出答案.【解答】(1)①证明:如图1,∵AD=CD,∴∠DAC=∠DCA.∵AD∥BC,∴∠DAC=∠ACB.∵BO是Rt△ABC斜边AC上的中线,∴OB=OC,∴∠OBC=∠OCB,∴∠DAC=∠DCA=∠ACB=∠OBC,∴△DAC∽△OBC;②解:如图2,若BE⊥CD,在Rt△BCE中,∠OCE=∠OCB=∠EBC,∴∠OCE=∠OCB=∠EBC=30°.过点D作DH⊥BC于点H,设AD=CD=2m,则BH=AD=2m,在Rt△DCH中,DC=2m,∴CH=m,∴BC=BH+CH=3m,∴;(2)设AD=CD=x,则CE=x﹣2,设OB=OC=m,∵OE=3,∴EB=m+3,∵△DAC∽△OBC,∴,∴,∴.∵∠EBC=∠OCE,∠BEC=∠OEC,∴△EOC∽△ECB,∴,∴,∴,∴m=,将m=代入,整理得,x2﹣6x﹣10=0,解得x=3+,或x=3﹣(舍去).∴CD=3+.【点评】本题考查了相似形综合题,掌握等腰三角形的性质,直角三角形的性质,相似三角形的判定与性质,矩形的判定与性质是解题的关键.4.(2022秋•黄浦区校级期末)如图,已知∠AOB=90°,∠AOB的内部有一点P,且OA =OB=OP=10,过点B作BC∥AP交AO于点C,OP与BC交于点D.(1)如果tan∠AOP=,求OC的长;(2)设AP=x,BC=y,求y与x的函数关系式,并写出定义域;(3)如果BD=AP,求△PBD的面积.【分析】(1)过A作AH⊥OP于H,由勾股定理得AH•OH的值,根据相似三角形的判定,可得△HAP∽△OBC,根据相似三角形的判定得=,即可得OC的值.(2)过A作AN⊥OP于N,过O作OM⊥AP于M,由(1)知△NAP∽△OBC,可得=,即AN=,根据圆的性质过圆心垂直于弦的直线也平分弦,可得AM=MP=,=AP•OM=OP•AN,化简得y=在Rt△AOM中,OM=,S△OAP(0<x<5);(3)如图3,连接AB、AD,AB与OP交于Q,根据平行四边形的判定可得四边形ADBP 是平行四边形,且△AOB是等腰Rt△,即Q是弦AB边PD的中点,根据平行四边形对角线互相平分,可得△AOQ、△BOQ均为等腰Rt△,即OQ==5,PQ=OP﹣OQ=10﹣5,即S△PBD=•PD•BQ可得出结果.【解答】解:(1)如图1,过A作AH⊥OP于H,则有tan∠AOP==,设AH=3a,则OH=4a,在Rt△AOH中有(3a)2+(4a)2=102,解之得a1=﹣2(舍),a2=2,∴AH=6,OH=8,PH=2,∵CD∥AP,OA=OP,∴∠OCD=∠OAP=∠APO,∵∠HAP+∠OPA=∠OCB+∠CBO=90°,∴∠HAP=∠OBC,∴△HAP∽△OBC,∴=,∴OC=;(2)如图2,∵OA=OB=OP,∴A、P、B三点共圆,过A作AN⊥OP于N,过O作OM⊥AP于M,由(1)知△NAP∽△OBC,∴=,∴AN=,∵OM⊥弦AP,∴AM=MP=(圆的性质,过圆心垂直于弦的直线也平分该弦),∴OM==,=AP•OM=OP•AN,∴S△OAP即•x•=×10•,化简移项得y=,其中x最大为AB的长为10,∴0<x<10,即y=(0<x<5);(3)如图3,连接AB、AD,AB与OP交于Q,∵BD平行且等于AP,∴四边形ADBP是平行四边形且△AOB是等腰Rt△,∴Q是弦AB边PD的中点,∴BQ=AQ=AB=5,DQ=PQ,∴OQ⊥AB,∴△AOQ、△BOQ均为等腰Rt△,∴OQ==5,∴PQ=OP﹣OQ=10﹣5,=•PD•BQ=PQ•BQ=(10﹣5)×5=50﹣50.∴S△PBD【点评】本题考查圆的应用,解本题的关键要掌握圆的性质、相似三角形的判定与性质、平行四边形的性质、勾股定理等.5.(2022秋•青浦区校级期末)如图1,梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,M在边CD上,连接BM,BM⊥DC.(1)求CD的长;(2)如图2,作∠EMF=90°,ME交AB于点E,MF交BC于点F,若AE=x,BF=y,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.【分析】(1)过点D作DP⊥BC于点E,证明四边形ABPD为矩形,则BP=AD=2,DP=AB=4,再根据勾股定理定理即可求出CD;(2)连接BD,先用等面积法求出BM=4,再证明Rt△ABD≌Rt△MBD(HL),从而得出AD=DM=2,最后证明△MBE∽△MCF,根据相似三角形的性质即可求解;(3)根据△MBE∽△MCF可得△MBE为等腰三角形,根据题意进行分类讨论,当点E 在线段AB上时,当点E在AB延长线上时.【解答】解:(1)过点D作DP⊥BC于点P,∵AD∥BC,∠A=90°,∴∠ABC=90°,∵DP⊥BC,∴∠DPB=90°,∴四边形ABPD为矩形,∴BP=AD=2,DP=AB=4,∵BC=5,∴CP=BC﹣BP=5﹣2=3,在Rt△CDE中,根据勾股定理得:.(2)解:连接BD,∵BM⊥DC,DP⊥BC,=,∴S△BCD即5×4=5BM,解得:BM=4,在Rt△ABD和Rt△MBD中,,∴Rt△ABD≌Rt△MBD(HL),∴AD=DM=2,∴CM=CD﹣DM=3,∵BM⊥DC,∴∠CMF+∠BMF=90°,∠C+∠CBM=90°,∵∠EMF=90°,∠ABC=90°,∴∠BME+∠BMF=90°,∠EBM+∠CBM=90°∴∠BME=∠CMF,∠EBM=∠C,∴△MBE∽△MCF,∴,∴,整理得:.(3)①当点E在线段AB上时,由(2)可得△MBE∽△MCF,∵△MCF为等腰三角形,∴△MBE为等腰三角形,当BM=BE=4时,AE=0;当BM=ME=4时,过点M作MQ⊥AB于点Q,由(1)可得:,∴,∵BM=4,∴BQ=BM•cos∠MBE=4×,∵BM=ME,MQ⊥AB,∴,不符合题意,舍去;当BE=ME时,过点E作EH⊥BM于点H,∵BE=ME,EH⊥BM,∴,∵,∴,∴,②当点E在AB延长线上时,∵∠ABC=90°,∠ABM<∠ABC,∴∠MBE>90°,∴当点E在AB延长线上时,∠MBE只能为等腰三角形△MBE的顶角,∴BM=BE=4,∴AE=AB+BE=8.综上:AE=0或或8.【点评】本题主要考查了四边形和三角形的综合应用,相似三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,勾股定理等,解题的关键是熟练掌握各个相关知识点并灵活运用,根据题意正确作出辅助线,构造直角三角形那个和全等三角形求解.6.(2022秋•徐汇区期末)已知:在梯形ABCD中,AB∥CD,AD=BC=5,AB=2.5,sin D=,点E是AD边上一点,DE=3,点P是CD边上的一动点,连接EP,作∠EPF,使得∠EPF=∠D,射线PF与AB边交于点F,与CB的延长线交于点G,设DP=x,BG =y.(1)求CD的长;(2)试求y关于x的函数关系式,并写出定义域;(3)连接EF,如果△EFP是等腰三角形,试求DP的长.【分析】(1)作等腰梯形ABCD的高AM、BN,得矩形AMNB,△ADM≌△BCN,则DC=DM+MN+NC=AB+2AD•cos D=8.5;(2)先由三角形内角和定理得出∠DEP=∠GPC,由等腰梯形在同一底上的两个角相等得出∠D=∠C,则△DEP∽△CPG,根据相似三角形对应边成比例得出y关于x的函数关系式,并写出定义域;(3)分三种情况:①PE=PF;②PE=EF;③PF=EF.【解答】解:(1)如图,作等腰梯形ABCD的高AM、DN,得矩形AMNB,△ADM≌△BCN,所以CD=DM+MN+NC=AB+2AD•cos D=2.5+2×5×=8.5;(2)如图.∵∠EPD+∠EPF+∠GPC=∠EPD+∠D+∠DEP=180°,∠EPF=∠D,∴∠DEP=∠GPC,∵ABCD是等腰梯形,∴∠D=∠C,∴△DEP∽△CPG,∴DE:CP=DP:CG,∴3:(8.5﹣x)=x:(y+5);y=﹣x2+x﹣5(<x<6);(3)分三种情况:①如果PE=PF,如图,过F作BC平行线交底边于H,则∠FHP=∠C=∠D.∵在△PED与△FPH中,,∴△PED≌△FPH(AAS),∴ED=PH=3,DP=FH=BC=5;②如果PE=EF,如图,过F作BC平行线交底边于H,则∠FHP=∠C=∠D.在△PED与△FPH中,,∴△PED∽△FPH,∴PE:PF=PD:FH,又∵PE=EF,过E点做△EFP的高ET,则FP:PE=2PT:PE=2cos∠EPF=2cos∠D=,∵FH=BC=5,∴=,解得x=;即PD=;③如果PF=EF,同理可得△PED∽△FPH,∴PE:PF=PD:FH,∵PE=EF,过F点做△EFP的高FT,则PE:PF=2PT:PF=2cos∠EPF=2cos D=,∵FH=BC=5,∴=,解得x=6,∵2.5<x<6;∴x=6(舍去),综上所述:PD=5或时,△EFP是等腰三角形.【点评】本题考查了等腰梯形的性质,全等三角形、相似三角形的判定与性质,等腰三角形的性质,第(3)问进行分类讨论是解题的关键.7.(2022秋•静安区期末)在等腰直角△ABC中,∠C=90°,AC=4,点D为射线CB上一动点(点D不与点B、C重合),以AD为腰且在AD的右侧作等腰直角△ADF,∠ADF =90°,射线AB与射线FD交于点E,联结BF.(1)如图所示,当点D在线段CB上时,①求证:△ACD∽△ABF;②设CD=x,tan∠BFD=y,求y关于x的函数解析式,并写出x的取值范围;(2)当AB=2BE时,求CD的长.【分析】(1)①利用等腰直角三角形的性质和两边对应成比例且夹角相等的两个三角形相似解答即可;②过点E作EH⊥BD于点H,设BH=HE=m,利用相似三角形的拍等于性质和直角三角形的边角关系定理解答即可;(2)利用分类讨论的思想方法,画出图形,列出关于x的方程,解方程即可得出结论.【解答】(1)①证明:∵△ABC和△ADF是等腰直角三角形,∴AB=AC,AF=AD,∠CAB=∠DAF=45°.∴,∠CAD=∠BAF,∴△ACD∽△ABF;②解:过点E作EH⊥BD于点H,如图,∵△ABC是等腰直角三角形,∴∠ABC=45°,∵EH⊥BD,∴BH=HE.设BH=HE=m,则BE=m,∴DH=BC﹣CD﹣BM=4﹣x﹣m.∵∠ADF=90°,∴∠ADC+∠FDH=90°,∵∠CAD+∠ADC=90°,∴∠CAD=∠FDH.∵∠ACD=∠DHE=90°,∴△ACD∽△DHE,∴,∴,∴m=,∴BH=HE=.由①知:△ACD∽△ABF,∴∠ACD=∠ABF=90°.∵∠ADF=90°,∴∠ADF=∠ABF=90°.∵∠AED=∠BEF,∴∠BFD=∠DAE.∴tan∠BFD=tan∠DAE=.∵△ACD∽△DHE,∴,∴y=tan∠BFD==,∴y关于x的函数解析式y=,x的取值范围:0<x<4;(2)①解:当点D在线段CB上时,如图,由(1)②知:BH=HE=.∴BE=BH=•.∵AB=2BE,AB=AC=4,∴4=2ו,∴8+2x=4x﹣x2,∴x2﹣2x+8=0.∵Δ=(﹣2)2﹣4×1×8=4﹣32=﹣28<0,∴此方程没有实数根,∴当点D在线段CB上时,不存在AB=2BE;②当点D在线段CB的延长线上时,如图,过点E作EH⊥BD于点H,∵△ABC和△ADF是等腰直角三角形,∴AB=AC,AF=AD,∠CAB=∠DAF=45°.∴,∠CAD=∠BAF,∴△ACD∽△ABF.∴∠ACD=∠ABF=90°.∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠EBH=∠ABC=45°.∵EH⊥BD,∴BH=HE.设BH=HE=n,则BE=n,∴DH=BC﹣CD﹣BM=x﹣4﹣n.∵∠ADF=90°,∴∠ADE=90°,∴∠ADC+∠EDH=90°,∵∠CAD+∠ADC=90°,∴∠CAD=∠EDH.∵∠ACD=∠DHE=90°,∴△ACD∽△DHE,∴,∴,∴n=.∴BH=HE=.∴BE=BH=•.∵AB=2BE,AB=4,∴4=2ו.∴8+2x=x2﹣4x,∴x2﹣6x﹣8=0,解得:x==3±,∵x>0,∴x=3+.∴CD=3+.综上,当AB=2BE时,CD的长为3+.【点评】本题主要考查了等腰直角三角形的性质,直角三角形的性质,相似三角形的判定与性质,函数的解析式,一元二次方程的解法,本题是相似三角形的综合题,熟练掌握相似三角形的判定与性质是解题的关键.8.(2022秋•杨浦区校级期末)如图,在△ABC中,∠ACB=90°,CD是边AB上的中线,AC=3,BC=4,点Q是CB延长线上的一动点,过点Q作QP⊥CD,交CD的延长线于点P.(1)当点B为CQ的中点时,求PD的长;(2)设BQ=x,PD=y,求y关于x的函数关系式,并写出x的取值范围;(3)过点B作BF⊥AB交PQ于F,当△BDF和△ABC相似时,求BQ的长.【分析】(1)由勾股定理可求得AB的长,由直角三角形斜边上中线的性质可得∠PCQ =∠ABC,则可得△PCQ∽△CBA,由相似三角形的性质即可求得PC的长度,从而求得结果;(2)由△PCQ∽△CBA,即可求得PC的长度,从而由y=PC﹣CD即可求得y关于x 的函数关系式,由CQ在CB延长线上的一动点,即可写出x的取值范围;(3)分△DBF∽△ACB,△DBF∽△BCA两种情况,利用相似三角形的性质即可完成求解.【解答】解:(1)∵∠ACB=90°,AC=3,BC=4,∴,∵CD是边AB上的中线,∴,∴∠PCQ=∠ABC,∵∠PQC=∠ACB=90°,∴△PCQ∽△CBA,即,∵点B为CQ的中点,∴CQ=2BC=8,∴,∴;(2)解:∵△PCQ∽△CBA,∴,∵CQ=BC+BQ=4+x,∴,∴,∵点Q是CB延长线上的一动点,∴x>4,∴y关于x的函数关系式,x的取值范围为x>4;(3)若△DBF∽△ACB,如图,则,∴,∵∠FBQ+∠ABC=∠ABC+∠A=90°,∠PCQ+∠ACD=∠PCQ+∠PQC=90°,∴∠FBQ=∠A,∠ACD=∠PQC,∴△FBQ∽△DAC,∴,∵,∴;若△DBF∽△BCA,如图,则,∠FDB=∠ABC,∴,DF∥CQ,∴△PDF∽△PCQ,∴,即DF⋅PC=PD⋅CQ,∴,化简得:4x2+7x﹣36=0,解得:,x2=﹣4(舍去),∴.综上,BQ的长为4或.【点评】本题考查了相似三角形的判定与性质,直角三角形斜边上中线的性质,勾股定理,正确运用相似三角形的判定与性质是解题的关键,注意分类讨论.9.(2022秋•金山区校级期末)已知∠BAC的余切值为2,AB=2,点D是线段AB上一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F 都在射线AC上,且点F在点E的右侧,联结BG,并延长BG交射线AC于点P.(1)联结AG,求证:cot∠GAF=3;(2)如图1,当点P在线段EF上时,如果∠GPF的正切值为2,求线段BD的长;(3)联结AG,当△AGP为等腰三角形时,求线段BD的长.【分析】(1)联结AG,根据三角函数的定义可得出结论;(2)由题意可知DG∥AP,所以△BDG∽△BAP,再由三角形函数的定义和相似三角形的性质可得结论;(3)根据题意,需要分三种情况,画图出行,分别求解即可.【解答】(1)证明:如图,联结AG,∵四边形DEFG是正方形,∴∠DEA=∠DEF=∠GFE=90°,∵∠BAC的余切值为2,∴cot∠DEA==2,设DE=a,则AE=2a,∴DG=GF=EF=a,∴tan∠GAF==.即cot∠GAF=3.(2)解:由(1)知,DG=GF=EF=a,AE=2a,∵∠GPF的正切值为2,∴tan∠GPF==2,∴PF=a,∴EP=a,∴AP=AE+EP=a,∵DG∥AP,∴△BDG∽△BAP,∴BD:AB=DG:AP,即BD:2=a:a,解得BD=;(3)解:设正方形的边长为t.根据题意,需要分三种情况:①AG=AP,如图,∵cot∠GAF==3,∴AF=3t,∴AG=t,∴AP=AG=t,∵DG∥AP,∴△BDG∽△BAP,∴BD:AB=DG:AP,即BD:2=t:t,解得BD=;②AG=GP,如图,∴∠GAF=∠GPF,即cot∠GAF=cot∠GPF=3,∴AF=PF=3t,∴AP=6t,∵DG∥AP,∴△BDG∽△BAP,∴BD:AB=DG:AP,即BD:2=t:6t,解得BD=;③AP=PG,如图,设PG=AP=m,则PF=3t﹣m,在Rt△PGF中,由勾股定理可得,m2=t2+(3t﹣m)2,解得m=t,∴AP=t,∵DG∥AP,∴△BDG∽△BAP,∴BD:AB=DG:AP,即BD:2=t:t,解得BD=.综上,当△AGP为等腰三角形时,求线段BD的长为:或或.【点评】本题属于几何综合题,主要考查正方形的性质,相似三角形的性质与判定,等腰三角形的性质与判定,分类讨论思想等相关知识,根据题意求出AP与正方形边长的关系是解题关键.10.(2022秋•闵行区期末)如图1,点D为△ABC内一点,联结BD,∠CBD=∠BAC,以BD、BC为邻边作平行四边形DBCE,DE与边AC交于点F,∠ADE=90°.(1)求证:△ABC∽△CEF;(2)延长BD,交边AC于点G,如果CE=FE,且△ABC的面积与平行四边形DBCE 面积相等,求的值;(3)如图2,联结AE,若DE平分∠AEC,AB=5,CE=2,求线段AE的长.【分析】(1)根据平行的性质推导出∠E=∠BAC,即可证明;(2)延长AD交BC于点H,由题意可得AH=2DH,再由(1)可得∠ABC=∠ACB,从而得到△ABC是等腰三角形,H是BC的中点,由DF∥BC,可得==,则AG=2GF,即可求=2;(3)延长BD交AE于点N,交AC于点M,根据平行四边形的性质和角平分线的定义,可得∠NDE=∠DEA,则DN=EN,再由∠ADE=90°,可知N是AE的中点,M是AC 的中点,求出MN=1,证明△ABC∽△BMC,则有==,可求BM=,再求DN=BM﹣BD+MN=﹣1,由此即可求出AE=2DN=5﹣2.【解答】(1)证明:∵四边形CBCE是平行四边形,∴DE∥BC,∴∠ACB=∠EFC,∠CBD=∠E,∵∠CBD=∠BAC,∴∠E=∠BAC,∴△ABC∽△CEF;(2)解:延长AD交BC于点H,∵△ABC的面积与平行四边形DBCE面积相等,∴×BC×AH=BC×DH,∴AH=2DH,∵CE=FE,∴∠EFC=∠FCE,∵△ABC∽△CEF,∴∠ABC=∠ACB,∴AB=AC,∴H是BC的中点,∴DF=HC,HC=BC,∵DF∥BC,∴==,∴CF=3GF,∵AF=FC,∴AG=2GF,∴=2;(3)解:延长BD交AE于点N,交AC于点M,∵DE平分∠AEC,∴∠AED=∠CED,∵BD∥CE,∴∠NDE=∠DEC,∴∠NDE=∠DEA,∴DN=EN,∵∠ADE=90°,∴N是AE的中点,∵MN∥CE,∴M是AC的中点,∵CE=2,∴MN=1,∵∠CBD=∠BAC,∴△ABC∽△BMC,∴==,∵AB=5,CE=2,∴==,∴=,∴BM=,∴DN=BM﹣BD+MN=﹣1,∴AE=2DN=5﹣2.【点评】本题考查相似三角形的综合应用,熟练掌握平行四边形的性质,三角形相似的判定及性质,直角三角形的性质,中位线的性质是解题的关键.11.(2022秋•黄浦区期末)已知,如图1,在四边形ABCD中,∠BAC=∠ADC=90°,CD=4,cos∠ACD=.(1)当BC∥AD时(如图2),求AB的长;(2)联结BD,交边AC于点,①设CE=x,AB=y,求y关于x的函数解析式并写出定义域;②当△BDC是等腰三角形时,求AB的长.【分析】(1)由锐角三角函数定义得AC=5,再由勾股定理得AD=3,然后证△ABC∽△DCA,即可解决问题;(2)①过D作DN⊥AC于点N,由三角形面积得DN=,再由勾股定理得CN=,然后证△BAE∽△DNE,即可解决问题;②分两种情况,a、当BC=BD时,过B作BQ⊥CD于点Q,过A作AP⊥BQ于点P,则CQ=DQ=CD=2,四边形APQD是矩形,再证△APB∽△ADC,即可求解;b、当BD=CD=4时,过B作BM⊥直线AD于点M,证△BMA∽△ADC,得=,设BM=3k,则AM=4k,然后由勾股定理得出方程,解方程,即可得出结论.【解答】解:(1)∵∠ADC=90°,∴cos∠ACD==,∴AC=CD=×4=5,∴AD===3,∵BC∥AD,∴∠ACB=∠DAC,∵∠BAC=∠ADC=90°,∴△ABC∽△DCA,∴=,即=,∴AB=,即AB的长为;(2)①如图1,过D作DN⊥AC于点N,则∠DNE=∠DNC=90°,∵∠ADC=90°,=AC•DN=AD•CD,∴S△ACD∴DN===,∴CN===,∴AN=AC﹣CN=5﹣=,∵CE=x,∴AE=AC﹣CE=5﹣x,EN=CE﹣CN=x﹣,∵AE>0,EN>0,∴<x<5,∵∠BAE=∠DNE=90°,∠AEB=∠NED,∴△BAE∽△DNE,∴=,即=,∴y==,即y关于x的函数解析式为y=(<x<5);②∵∠BAC=90°,∴BC>AC,∵AC=5,CD=4,∴BC>CD,分两种情况:a、当BC=BD时,如图3,过B作BQ⊥CD于点Q,过A作AP⊥BQ于点P,则CQ=DQ=CD=2,四边形APQD是矩形,∴AP=DQ=2,∠PAD=90°,∵∠BAC=90°,∴∠PAD=∠BAC,∴∠BAP=∠CAD,∵∠APB=∠ADC=90°,∴△APB∽△ADC,∴=,即=,解得:AB=;b、当BD=CD=4时,如图4,过B作BM⊥直线AD于点M,则∠BMA=∠BAC=∠ADC=90°,∴∠ABM+∠BAM=∠CAD+∠BAM=90°,∴∠ABM=∠CAD,∴△BMA∽△ADC,∴==,设BM=3k,则AM=4k,∴DM=AD+AM=3+4k,在Rt△BDM中,由勾股定理得:BD2=BM2+DM2,即42=(3k)2+(3+4k)2,整理得:25k2+24k﹣7=0,解得:k1=,k2=(不符合题意舍去),∴AB===5k=;综上所述,当△BDC是等腰三角形时,AB的长为或.【点评】本题是四边形综合题目,考查了矩形的判定与性质、梯形的性质、相似三角形的判定与性质、勾股定理、等腰三角形的性质、锐角三角函数定义以及分类讨论等知识,本题综合性强,熟练掌握矩形的判定与性质,证明三角形相似是解题的关键,属于中考常考题型.12.(2022秋•徐汇区校级期末)如图,梯形ABCD中,AD∥BC,对角线AC⊥BC,AD=9,AC=12,BC=16,点E是边BC上一个动点,∠EAF=∠BAC,AF交CD于点F、交BC延长线于点G,设BE=x.(1)使用x的代数式表示FC;(2)设=y,求y关于x的函数关系式,并写出定义域;(3)当△AEG是等腰三角形时,直接写出BE的长.【分析】(1)易证△ABC∽△DCA,则有∠B=∠ACD,由∠EAF=∠BAC可得∠BAE =∠CAF,从而得到△ABE∽△ACF,然后根据相似三角形的性质即可解决问题;(2))由△ABE∽△ACF可得=,根据∠EAF=∠BAC可得△AEF∽△ABC,从而得到EF=AF.易证△CFG∽△DFA,从而得到=,问题得以解决;(3)易证△ADF∽△GAE,因而当△GAE是等腰三角形时,△ADF也是等腰三角形,然后只需分三种情况(①AF=DF,②AD=DF,③AF=AD,)讨论,就可解决问题.【解答】解:(1)如图1,∵AC⊥BC,∴∠ACB=90°.∵AD∥BC,∴∠DAC=∠ACB=90°.∵AD=9,AC=12,BC=16,∴AB=20,DC=15.∵==,∠DAC=∠ACB,∴△ABC∽△DCA,∴∠B=∠ACD.∵∠EAF=∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,∴=,∴CF=x;(2)∵△ABE∽△ACF,∴=,又∵∠EAF=∠BAC,∴△AEF∽△ABC,∴===,∴EF=AF.∵AD∥CG,∴△CFG∽△DFA,∴=,∴y===•=•,整理得:y=(0<x≤16);(3)当△AEG是等腰三角形时,BE的长为、10或7.解题过程如下:∵△ABC∽△DCA,∴∠BAC=∠D,∴∠EAF=∠BAC=∠D.∵AD∥BC,∴∠G=∠FAD,∴△ADF∽△GAE,∴当△GAE也是等腰三角形.①当AF=DF时,则有∠FAD=∠D,∵∠FAD+∠CAF=90°,∠D+∠ACD=90°,∴∠CAF=∠ACD,∴FA=FC,∴CF=DF=,∴x=,∴x=;②当AD=DF=9时,CF=CD﹣DF=6,∴x=6,。

中考数学真题分类汇编——几何综合题(含答案)

中考数学真题分类汇编——几何综合题(含答案)

中考数学真题分类汇编——几何综合题(含答案)类型1 类比探究的几何综合题类型2 与图形变换有关的几何综合题类型3 与动点有关的几何综合题类型4 与实际操作有关的几何综合题类型5 其他类型的几何综合题类型1 类比探究的几何综合题(2018苏州)(2018烟台)(2018东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°, BO:OD=1:3,求DC的长.(2018长春)(第24题图1) (第24题图2) (第24题图3)(2018陕西)(2018齐齐哈尔)(2018河南)(2018仙桃)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.(2018襄阳)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值为;②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=22,则BC= .(2018淮安)(2018咸宁)(2018黄石)在△ABC 中,E 、F 分别为线段AB 、AC 上的点(不与A 、B 、C 重合). (1)如图1,若EF ∥BC ,求证:AEF ABC S AE AFS AB AC∆∆= (2)如图2,若EF 不与BC 平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF 上一点G 恰为△ABC 的重心,34AE AB =,求AEFABC S S ∆∆的值.BBB(2018山西)(2018盐城)【发现】如图①,已知等边ABC ,将直角三角形的60角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若6AB=,4AE=,2BD=,则CF=_______;(2)求证:EBD DCF∆∆.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分BEF∠且FD平分CFE∠?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰ABC∆中,AB AC=,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中MON B∠=∠),使两条边分别交边AB、AC于点E、F(点E、F均不与ABC∆的顶点重合),连接EF.设Bα∠=,则AEF∆与ABC∆的周长之比为________(用含α的表达式表示).(2018绍兴)(2018达州)(2018菏泽)(2018扬州)问题呈现如图1,在边长为1的正方形网格中,连接格点D、N和E、C,DN与EC相交于点P,求tan CPN∠的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中CPN∠不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点M、N,可得∠就变换到中Rt DMN∆.∠=∠,连接DM,那么CPNMN EC,则DNM CPN//问题解决(1)直接写出图1中tan CPN ∠的值为_________;(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求cos CPN ∠的值; 思维拓展(3)如图3,AB BC ⊥,4AB BC =,点M 在AB 上,且AM BC =,延长CB 到N ,使2BN BC =,连接AN 交CM 的延长线于点P ,用上述方法构造网格求CPN ∠的度数.(2018常德)已知正方形ABCD 中AC 与BD 交于O 点,点M 在线段BD 上,作直线AM 交直线DC 于E ,过D 作DH AE ⊥于H ,设直线DH 交AC 于N .(1)如图14,当M 在线段BO 上时,求证:MO NO =;(2)如图15,当M 在线段OD 上,连接NE ,当//EN BD 时,求证:BM AB =; (3)在图16,当M 在线段OD 上,连接NE ,当NE EC ⊥时,求证:2AN NC AC =⋅.(2018滨州)(2018湖州)(2018自贡)如图,已知AOB 60∠=,在AOB ∠的平分线OM 上有一点C ,将一个120°角的顶点与点C 重合,它的两条边分别与直线OA OB 、相交于点D E 、 .⑴当DCE ∠绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE OD +与OC 的数量关系,并说明理由;⑵当DCE ∠绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,⑴中的结论是否成立?并说明理由; ⑶当DCE ∠绕点C 旋转到CD 与OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD OE 、与OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.(2018嘉兴、舟山)O BOO B图3.(2018淄博)(1)操作发现:如图①,小明画了一个等腰三角形ABC ,其中AB AC =,在ABC ∆的外侧分别以,AB AC 为腰作了两个等腰直角三角形ABD ACE ,,分别取,BD CE ,BC 的中点,,M N G ,连接,GM GN .小明发现了:线段GM 与GN 的数量关系是 ;位置关系是 . (2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC 换为一般的锐角三角形,其中AB AC >,其它条件不变,小明发现的上述结论还成立吗?请说明理由. (3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向ABC ∆的内侧分别作等腰直角三角形,ABD ACE ,其它条件不变,试判断GMN ∆的形状,并给与证明.类型2 与图形变换有关的几何综合题(2018宜昌)在矩形ABCD 中,12AB =,P 是边AB 上一点,把PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE CG ⊥,垂足为E 且在AD 上,BE 交PC 于点F . (1)如图1,若点E 是AD 的中点,求证:AEB DEC ∆∆≌; (2) 如图2,①求证: BP BF =;②当AD 25=,且AE DE <时,求cos PCB ∠的值; ③当BP 9=时,求BE EF 的值.图1 图2 图2备用图 23.(1)证明:在矩形ABCD 中,90,A D AB DC ∠=∠==, 如图1,又AE DE =,图1∆≅∆,ABE DCE(2)如图2,图2①在矩形ABCD中,90∠=,ABC∆沿PC折叠得到GPC∆BPC∠=∠∴∠=∠=,BPC GPC PGC PBC90⊥BE CG∴,BE PG//∴∠=∠GPF PFBBPF BFP∴∠=∠∴=BP BFAD=时,②当25∠=BEC90∴∠+∠=,90AEB CED90AEB ABE ∠+∠=,CED ABE ∴∠=∠ 又90A D ∠=∠=,ABE DEC ∴∆∆∽AB DEAE CD∴=∴设AE x =,则25DE x =-,122512xx -∴=, 解得19x =,216x =AE DE <9,16AE DE ∴==, 20,15CE BE ∴==,由折叠得BP PG =,BP BF PG ∴==,//BE PG , ECF GCP ∴∆∆∽EF CEPG CG∴=设BP BF PG y ===,152025y y -∴=253y ∴=则253BP = 在Rt PBC ∆中,PC =,cos 10BC PCB PC ∠=== ③若9BP =,解法一:连接GF ,(如图3)90GEF BAE ∠=∠=, //,BF PG BF PG =∴四边形BPGF 是平行四边形BP BF =,∴平行四边形BPGF 是菱形//BP GF ∴, GFE ABE ∴∠=∠, GEF EAB ∴∆∆∽EF ABGF BE∴=129108BE EF AB GF ∴==⨯= 解法二:如图2,90FEC PBC ∠=∠=,EFC PFB BPF ∠=∠=∠, EFC BPC ∴∆∆∽EF CEBP CB∴=又90BEC A ∠=∠=, 由//AD BC 得AEB EBC ∠=∠,AEB EBC ∴∆∆∽AB CEBE CB∴=AE EFBE BP∴=129108BE EF AE BP ∴==⨯=解法三:(如图4)过点F 作FH BC ⊥,垂足为HBPF PFEGS BF BFS EF PG BE∆==+四边形图41212BFC BEC S BF EF BC EFBE S BC ∆∆⋅===⨯ 912EFBE ∴=129108BE EF ∴=⨯=(2018邵阳)(2018永州)(2018无锡)(2018包头)(2018赤峰)(2018昆明)(2018岳阳)(2018宿迁)(2018绵阳)(2018南充)(2018徐州)类型3 与动点有关的几何综合题(2018吉林)(2018黑龙江龙东)(2018黑龙江龙东)(2018广东)已知Rt△OAB,∠OAB=90o,∠ABO=30o,斜边OB=4,将Rt△OAB绕点O顺时针旋转60o,如图25-1图,连接BC.(1)填空:∠OBC=_______o;(2)如图25-1图,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图25-2图,点M、N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒.设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?(结果可保留根号)(2018衡阳)(2018黔东南)如图1,已知矩形AOCB,6cm s的AB cm=,动点P从点A出发,以3/=,16BC cm速度向点O运动,直到点O为止;动点Q同时从点C出发,以2/cm s的速度向点B运动,与点P同时结束运动.(1)点P 到达终点O 的运动时间是________s ,此时点Q 的运动距离是________cm ; (2)当运动时间为2s 时,P 、Q 两点的距离为________cm ; (3)请你计算出发多久时,点P 和点Q 之间的距离是10cm ;(4)如图2,以点O 为坐标原点,OC 所在直线为x 轴,OA 所在直线为y 轴,1cm 长为单位长度建立平面直角坐标系,连结AC ,与PQ 相交于点D ,若双曲线ky x=过点D ,问k 的值是否会变化?若会变化,说明理由;若不会变化,请求出k 的值.(2018青岛)已知:如图,四边形ABCD ,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP 、为边作平行四边形AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式; (3)当QP BD ⊥时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.(2018广州)如图12,在四边形ABCD 中,∠B=60°,∠D=30°,AB=BC. (1)求∠A+∠C 的度数(2)连接BD,探究AD,BD,CD 三者之间的数量关系,并说明理由。

初三数学 几何综合-中考必做题(详解版)

初三数学 几何综合-中考必做题(详解版)

中,点 是 边的中点,延长 至点 ,使
,连接
, .将
绕点 按顺时针方向旋转.当点 恰好落在 上的点 处时,连接 、
、 ,则 的长是

答案
解析 如图,过 作
于 ,过 作
于 ,过 作




∵四边形
是正方形,




由勾股定理得:














由旋转得















,交 于 ,交 于

,连接 、 , 与 的延长线交于点 ,下列结论:①
;②
;③

的中线;④
,其中,正确结论的个数是 ( ).
A.
B.
答案 A
解析 在正方形

中,
C.


D. ,




∵在

中,





,(故①正确);
设 、 相交于点 ,










,(故②正确);
过点 作
的延长线于 ,过点 作
于,



圆 圆的基础知识 圆心角、弧、弦的关系
, 不一定成立,因此④不正确.
10
如图,已知 是⊙ 的直径,点 在 上,过点 的直线与 的延长线交于点 ,

中考数学几何综合题 练习(附答案)

中考数学几何综合题 练习(附答案)

几何专题综合训练1如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点.(1)求证:△BCF ≌△DCE .(2)若BC=5,CF=3,∠BFC=900,求DG :GC 的值.2正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.NDA CBM第2题图3在图3-1至图3-3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图3-1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图3-1中的CE绕点C顺时针旋转一个锐角,得到图3-2,求证:△FMH是等腰直角三角形;(3)将图3-2中的CE缩短到图3-3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图3-1AHC(M) D E BF G(N)G图3-2AHCDEBF NMAHCDE图3-3BF GMN4如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;(4分) (2)连接FC ,观察并猜测∠FCN 的度数,并说明理由;(4分)(3)如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB =a ,BC =b (a 、b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请用含a 、b 的代数式表示tan ∠FCN 的值;若∠FCN 的大小发生改变,请举例说明N M B E A C D F G图(1)图(2) M B E A C D F G N5如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.(1)写出y与x的函数关系,并确定自变量x的范围.(2)有人提出一个判断:“关于动点P,⊿PBC面积与⊿PAD面积之和为常数”.请你说明此判断是否正确,并说明理由..答案1. 分析与解答 (1)∵四边形 ABCD 是正方形,∴∠BCF+∠FCD=900,BC=CD .∵△ECF 是等腰直角三角形,CF=CE .∴∠ECD+∠FCD=900.∴∠BCF=∠ECD .∴△BCF ≌△DCE(2)在△BFC 中,BC=5,CF=3,∠BFC=900. ∴4==.∵△BCF ≌△DCE ,∴DE=BF=4,∠BFC=∠DEC=∠FCE=900. ∴DE ∥FC .∴△DGE ∽△CGF .∴DG :GC=DE :CF=4:3.2. .解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°, AM MN ⊥ ,90AMN ∴∠=°,90CMN AMB ∴∠+∠=°.在Rt ABM △中,90MAB AMB ∠+∠=°, CMN MAB ∴∠=∠,Rt Rt ABM MCN ∴△∽△. ······················································· 2分 (2)Rt Rt ABM MCN △∽△,44AB BM xMC CN x CN∴=∴=-,, 244x x CN -+∴=, ···················································································································· 4分22214114428(2)102422ABCNx x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭梯形, 当2x =时,y 取最大值,最大值为10. ··················································································· 6分 (3)90B AMN ∠=∠= °,∴要使ABM AMN △∽△,必须有AM ABMN BM=, ································································ 7分 由(1)知AM ABMN MC=, BM MC ∴=,∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =. ···································· 9分3(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .NDA CBM答案第2题图∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形.(3)是.。

初三复习:几何综合题精选

初三复习:几何综合题精选

初三几何综合题(精选至2022年九年级上半年各地检测题,答案见视频)1.如图1,在△ACB中,∠ACB=90°,CA=CB,点D,E分别在边CA,CB上,CD=CE,连接DE,AE,BD,过点C作CF⊥AE, 垂足为H,直线CF交直线BD于F.(1)求证:DF=BF;(2)将图1中的△CDE绕点C逆时针旋转,其他条件不变,如图2,(1)的结论是否成立?如果成立,请证明;如果不成立,请说明理由;(3)若CD=2,CB=4,将△CDE绕点C逆时针旋转一周,当A,E,D三点共线时,直接写出CF的长。

2.如图1,在△ABE和△ACD中,AE=AB,AD=AC,且∠BAE=∠CAD,则可证明得到△AEC≌△ABD.【初步探究】(1)如图2,△ABC为等边三角形,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连接QB.请写出AP与BQ的数量关系并说明理由;【深入探究】(2)如图3,在(1)的条件下,连接PB并延长PB交直线CQ于点D.当点P运动到PD⊥CQ时,若AC=√(2),求PB的长;【拓展探究】(3)如图4,在△ABC中,∠ACB=45°,以AB为直角边,A为直角顶点向外作等腰直角△ABD,连接CD,若AC=1,BC=3,则CD长为____.3.已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,∠DAE=∠BAC.(1)特殊情形:如图1,若点D,E分别在边AB,AC上,则DB____EC.(填>、【初步感知】<、=)(2)发现证明:如图2,将图1中△ADE绕点A旋转,当点D在△ABC外部,点E在△ABC内部时,求证:DB=EC.【深入研究】(3)如图3,△ABC和△ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为_____; 线段CE,BD之间的数量关系为_____。

中考数学20道经典几何题

中考数学20道经典几何题

中考数学20道经典几何题1.已知三角形ABC,AB=AC,∠A=36°,求BC与AB的比值。

2.直角三角形ABC中,∠C=90°,AC=3,BC=4,求斜边AB上的高。

3.四边形ABCD是平行四边形,对角线AC、BD相交于点O,若AB=5,AC=8,BD=6,求平行四边形ABCD的面积。

4.三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且DE⊥DF,求证:BE²+CF²=EF²。

5.圆O的半径为5,弦AB=8,求圆心O到弦AB的距离。

6.等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=3,BC=7,求梯形ABCD的周长。

7.三角形ABC中,∠C=90°,∠A=30°,BC=3,求三角形ABC的外接圆半径。

8.正方形ABCD的边长为4,E是BC中点,F是CD上一点,且CF=1,求∠AEF的度数。

9.三角形ABC是等边三角形,D是AC中点,E在BC延长线上,CE=CD,求证:BD=DE。

10.矩形ABCD中,AB=6,BC=8,点P在AD上,且AP=2,求点P到对角线BD的距离。

11.三角形ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,若AB=5,DE=3,求DF的值。

12.菱形ABCD的对角线AC=6,BD=8,求菱形ABCD的边长。

13.三角形ABC中,∠B=90°,AB=3,BC=4,以BC为直径作圆O,交AC于D,求AD的长。

14.等腰三角形ABC中,AB=AC,∠A=120°,AB=4,求三角形ABC的面积。

15.三角形ABC中,∠C=90°,AC=4,BC=3,以AC为一边向三角形外作等腰直角三角形ACD,∠ACD=90°,求BD的长。

16.圆O的直径AB=10,弦AC=6,∠BAC的平分线交圆O于D,求CD的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图8,在ABC Rt ∆中,︒=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】(1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ∆和ADB ∆相似时,求x 的值; (5分)(3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一个交点在边AB 上时,求AP 的长. (5分)【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若 ,求∠F 的度数;(2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域;(图8)CABDEP QCA BDEPQ(图9)(备用图)CABBE ED =⌒ ⌒第25题(3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长.【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =︒90.,∠BAC =︒30.,BC=6,∠FDE =︒90,DF=DE=4.(1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域;(2)在(1)的条件下,求当x 为何值时 AB PC //;(3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段AD 、FC 、BC 的长度为边长的三角形是直角三角形.【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC .(1)如图8,求证:AB ∥OC ;(2)如图9,当点B 与点1O 重合时,求证:CB AB =;图①图②CEPFAB(3)过点C 作射线1AO 的垂线,垂足为E ,联结OE 交AC 于F .当5=AO ,11=B O 时,求AFCF的值.,分别是AB 、AC 上的动点,︒=∠45EPF . (1)求证:BPE ∆∽CFP ∆.(2)设x BE =,PEF∆ 的面积为y .求y 关于x 的函数解析式,并写出x 的取值范围. (3)当E 、F 在运动过程中,EFP ∠是否可能等于︒60,若可能请求出x 的值,若不可能请说明理由.【2013静安】已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,AH =5,CD =54,点E 在⊙O 上,射线AE 与射线CD 相交于点F ,设AE =x ,(1)求⊙O 的半径;(2) 如图,当点E 在AD 上时,求y 与x 之间的函数解析式,并写出函数的定义域;(3)如果EF =23,求DF 的长.【2013松江】如图,已知在Rt △ABC 中,A O 图9 A O 备用图O图8 (第24题图)A(第25题图)∠BAC =90°,AB =4,点D 在边AC 上,△ABD 沿BD 翻折,点A 与BC 边上的点E 重合,过点B 作BG ∥AC 交AE 的延长线于点G ,交DE 的延长线于点F . (1) 当∠ABC =60°时,求CD 的长;(2) 如果AC=x ,AD=y ,求y 关于x 的函数解析式,并写出函数定义域; (3) 联结CG ,如果∠ACB=∠CGB ,求AC 的长.【2013闸北】已知:如图七,在梯形ABCD 中,AD∥BC,∠A =90°,AD =6,AB =8,sinC =54,点P 在射线DC 上, 点Q 在射线AB 上,且PQ⊥CD,设DP =x ,BQ =y .(1)求证:点D 在线段BC 的垂直平分线上;(2)如图八,当点P 在线段DC 上,且点Q 在线 段AB 上时,求y 关于x 的函数解析式,并写出定义域;(3)若以点B 为圆心、BQ 为半径的⊙B 与以点C 为圆心、CP 为半径的⊙C 相切,求线段DP 的长.【2013黄浦】 如图,在梯形ABCD 中,AD=BC=10,tanD=34,E 是腰AD 上一点,且AE ∶ED=1∶3.(1)当AB ∶CD=1∶3时,求梯形ABCD 的面积; (2)当∠ABE =∠BCE 时,求线段BE 的长;(3)当△BCE 是直角三角形时,求边AB 的长.(图八)BPACDQ(备用)A BCDBCD EA【2013闵行】如图,在平行四边形ABCD 中,8AB =,tan 2B =,CE ⊥AB ,垂足为点E (点E 在边AB 上),F 为边AD 的中点,联结EF ,CD . (1)如图1,当点E 是边AB 的中点时,求线段EF 的长;(2)如图2,设BC x =,△CEF 的面积等于y ,求y 与x 的函数解析式,并写出函数定义域;(3)当16BC =时,∠EFD 与∠AEF 的度数满足数量关系:EFD k AEF ∠=∠,其中k ≥0,求k 的值.【2013浦东】已知:如图,在Rt △ABC 中, 90=∠C ,4=BC ,21tan =∠CAB ,点O 在边AC 上,以点O 为圆心的圆过A 、B 两点,点P 为AB 上一动点. (1)求⊙O 的半径;(2)联结AP 并延长,交边CB 延长线于点D ,设x P A =,y D B =,求y 关于x 的函数解析式,并写出定义域;A BC DEF(图1)ABCDEF(图2)(第25题图)A BCDEF(3)联结P B ,当点P 是AB 的中点时,求△ABP 的面积与△ABD 的面积比ABDABPS S ∆∆的值.【2013普陀】如图,在Rt △ABC 中,∠ACB=90°,AC=6cm ,BC =8cm . 点P 为BC 的中点,动点Q 从点P 出发,延射线PC 方向以2cm/s 的速度运动,以点P 为圆心,PQ 长为半径作圆. 设点Q 运动的时间为t 秒,(1) 当t =时,判断直线AB 与⊙P 的位置关系,并说明理由;(6分)(2) 当△AQP 是等腰三角形时,求t 的值;(4分) (3) 已知⊙O 为ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值. (4分)【2013杨浦】第25题图备用图BPCAOQ第25题如图1,已知⊙O 的半径长为3,点A 是⊙O 上一定点,点P 为⊙O 上不同于点A 的动点。

(1)当1tan 2A =时,求AP 的长; (2)如果⊙Q 过点P 、O ,且点Q 在直线AP 上(如图2),设AP =x ,QP =y ,求y 关于x 的函数关系式,并写出函数的定义域; (3)在(2)的条件下,当4tan 3A =时(如图3),存在⊙M 与⊙O 相内切,同时与⊙Q 相外切,且OM ⊥OQ ,试求⊙M 的半径的长。

【2012虹口】如图,△ABC 中,∠ABC =90°,AB =BC =4,点O 为AB 边的中点,点M 是BC 边上一动点(不与点B 、C 重合),AD ⊥AB ,垂足为点A .联结MO ,将△BOM 沿直线MO 翻折,点B 落在点B 1处,直线M B 1与AC 、AD 分别交于点F 、N ..(1)当∠CMF =120°时,求BM 的长; (2)设BM x =,CMF y ANF ∆=∆的周长的周长,求y 关于x 的函数关系式,并写出自变量x 的取 值范围;(3)联结NO ,与AC 边交于点E ,当△FMC ∽△AEO 时,求BM 的长.(图1) (图2) (图3)(第25题图)OA BCMDNB 1F【2012宝山】已知△ABC 中,︒=∠90ACB (如图8),点P 到ACB ∠两边的距离相等,且PA =PB .(1)先用尺规作出符合要求的点P (保留作图痕迹,不需要写作法),然后判断△ABP 的形状,并说明理由;(2)设m PA =,n PC =,试用m 、n 的代数式表示ABC ∆的周长和面积; (3)设CP 与AB 交于点D ,试探索当边AC 、BC 的长度变化时,BCCDAC CD +的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.【2012闵行】已知:如图,AB ⊥BC ,ADABC Rt ∆︒=∠90C 6=AC 53sin =B B B CB P O AB B P ︒180M M AB OMP ∆OA N BC NB N OA O y NB =x OA =y x x y y x (1)如图1,当点E 在线段BC 上时,试猜想线段EF 、BE 、DF 有怎样的数量关系?并证明你的猜想. (2)设BE=x ,DF=y ,当点E 在线段BC 上运动时(不包括点B 、C ),如图1,求y 关于x 的函数解析式,并指出x 的取值范围. (3)当点E 在射线BC 上运动时(不含端点B ),点F 在射线CD 上运动.试判断以E 为圆心以BE 为半径的⊙E 和以F 为圆心以FD 为半径的⊙F 之间的位置关系.(4)当点E 在BC 延长线上时,设AE 与CD 交于点G ,如图2.问⊿EGF 与⊿EFA 能否相似,若能相似,求出BE 的值,若不可能相似,请说明理由.第25题图A(图 )8 A(备用图)AB C D P (第25题图) A B C D (备用图)B O ACP图9BO AC P 图8 图10ON BACO A C D B E (第25题图)【2012市抽样】已知:在Rt △ABC 中,∠C =90°,AC =4,∠A =60°,CD 是边AB 上的中线,直线BM ∥AC ,E 是边CA 延长线上一点,ED 交直线BM 于点F ,将△EDC 沿CD 翻折得△DC E ',射线E D '交直线BM 于点G .(1)如图1,当CD ⊥EF 时,求BF 的值; (2)如图2,当点G 在点F 的右侧时;①求证:△BDF ∽△BGD ;②设AE =x ,△DFG 的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围; (3)如果△DFG 的面积为36,求AE 的长.【2012长宁】在Rt △ABC 中, AB =BC =4,∠B =︒90,将一直角三角板的直角顶点放在斜边AC(第25题图1)AC E M(第25题图2)A CE(第25题备用图)A CM的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别与边AB 、BC 或其延长线上交于D 、E 两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形.(1)直角三角板绕点P 旋转过程中,当BE = ▼ 时,△PEC 是等腰三角形; (2)直角三角板绕点P 旋转到图(1)的情形时,求证:PD =PE ;(3)如图(3),若将直角三角板的直角顶点放在斜边AC 的点M 处,设AM : MC =m : n (m 、n 为正数),试判断MD 、ME 的数量关系,并说明理由.【2012奉贤】已知:半圆O 的半径OA =4,P 是OA 延长线上一点,过线段OP 的中点B 做垂线交⊙O 于点C ,射线PC 交⊙O 于点D ,联结OD . (1)若AC =CD ,求弦CD 的长。

相关文档
最新文档