6线性规划应用举例

合集下载

线性规划应用案例分析

线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。

它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。

这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。

本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。

某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。

公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。

通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。

某物流公司需要计划将货物从多个产地运输到多个目的地。

公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。

通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。

某投资公司需要将其资金分配给多个不同的投资项目。

每个项目都有不同的预期回报率和风险水平。

公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。

通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。

这些案例展示了线性规划在实践中的应用。

然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。

线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。

线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。

这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。

下面我们将详细讨论线性规划的应用。

线性规划是一种求解最优化问题的数学方法。

它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。

这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。

工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。

线性规划应用举例

线性规划应用举例

线性规划应用举例- 4 -
(b) min z = ( x11 + x 21 + x31 + x 41 + x51 ) + 3( x12 + x 22 + x32 + x 42 ) + 4 x33 + 5.5 x 24
x11 + x12 ≤ 200 ⎧ ⎪ x21 + x22 + x24 ≤ 1.1x11 ⎪ ⎪ x31 + x32 + x33 ≤ 1.1x21 + 1.25 x12 ⎪ x41 + x42 ≤ 1.1x31 + 1.25 x22 ⎪ ⎪ x51 ≤ 1.1x41 + 1.25 x32 s.t.⎨ x ⎪ xi 2 ≤ 30, i = 1,2,3,4 ⎪ x33 ≤ 80, x24 ≤ 100 ⎪ ⎪ 1.1x + 1.25 x + 1.4 x +1.55 x ≥ 330 51 42 33 24 ⎪ ⎪ x ≥ 0 , i = 1 , 2 , 3 , 4 , 5 , j = 1 , 2 , 3,4 ij ⎩
7、某市有3个造纸厂I,II,III,它们供给3个印刷厂所需的纸张。各造纸厂的产量、各印刷 厂印刷的能力,各印刷厂和各造纸厂之间的单位运价均列于下表中。假定在1,2和3印刷厂 印刷单位纸张的利润分别为12元,16元和11元,如果造纸厂与印刷厂属于同一个主管单位, 试确定使总效益最大的纸张分配计划。 印刷厂 造纸厂 A1 A2 A3 印刷厂需要量 B1 3 4 8 15 B2 10 11 11 25 B3 2 8 4 20 造纸厂产量 20 30 20
2、一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。为了保证售货人员 充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。问应该如何安 排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少? 时间 星期日 星期一 星期二 星期三 星期四 星期五 星期六 所需售货员人数 28 15 24 25 19 31 28

线性规划的应用

线性规划的应用

线性规划的应用一、引言线性规划是一种数学优化方法,广泛应用于各个领域,如经济学、管理学、工程学等。

本文将介绍线性规划的基本概念、模型建立以及应用案例。

二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。

目标函数通常表示为z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为系数,x₁、x₂、...、xₙ为决策变量。

2. 约束条件:线性规划的约束条件是一组线性不等式或等式,用于限制决策变量的取值范围。

约束条件通常表示为a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,其中a₁、a₂、...、aₙ为系数,b为常数。

3. 决策变量:线性规划中的决策变量是需要确定的变量,其取值决定了目标函数的取值。

决策变量通常表示为非负数,即x₁, x₂, ..., xₙ ≥ 0。

三、线性规划模型建立线性规划的模型建立包括确定目标函数、约束条件以及决策变量的取值范围。

下面以一个生产计划问题为例,详细说明线性规划模型的建立过程。

假设某工厂生产两种产品A和B,每天可用的生产时间为8小时。

产品A每单位利润为100元,产品B每单位利润为150元。

产品A每小时需要2人工时,产品B每小时需要3人工时。

工厂每天可用的人工时为20小时。

现在需要确定每天生产的产品数量,以最大化利润。

1. 确定目标函数:由于目标是最大化利润,因此目标函数为z = 100A + 150B,其中A为产品A的数量,B为产品B的数量。

2. 确定约束条件:根据生产时间和人工时的限制,可以得到以下约束条件:- 2A + 3B ≤ 20(人工时限制)- A, B ≥ 0(非负数限制)3. 确定决策变量的取值范围:由于产品数量不能为负数,因此决策变量的取值范围为A, B ≥ 0。

四、线性规划的应用案例线性规划在实际应用中有广泛的应用,下面以物流配送问题为例,介绍线性规划的应用案例。

某物流公司需要将货物从仓库分配到不同的配送中心,以满足客户的需求。

线性规划的应用(简介和案例)

线性规划的应用(简介和案例)

线性规划的应用线性规划是运筹学中一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。

广泛应用于军事作战、经济分析、经营管理和工程技术等方面。

如:经济管理、交通运输、工农业生为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。

线性规划作为运筹学的一个研究较早、发展较快、应用广泛、方法较成熟的重要分支,它在日常生活中的典型应用主要有:1合理利用线材问题:如何下料使用材最少2配料问题:在原料供应量的限制下如何获取最大利润3投资问题:从投资项目中选取方案,使投资回报最大4产品生产计划:合理利用人力、物力、财力等,使获利最大5劳动力安排:用最少的劳动力来满足工作的需要6运输问题:如何制定调动方案,使总运费最小其实,也就是说,线性规划在运筹学中的研究对象主要是在有一定的人力、财力、资源条件下,如何合理安排使用,效益最高和在某项任务确定后,如何安排人、财、物,使之最省。

例如:某公司现有三条生产线来生产两种新产品,其主要数据如表1.1所示。

请问如何生产可以让公司每周利润最大?表1 产品组合问题的数据表此问题是在生产线可利用时间受到限制的情形下寻求每周利润最大化的产品组合问题。

在建立产品组合模型的过程中,以下问题需要得到回答:(1)要做出什么决策?(2)做出的决策会有哪些条件限制?(3)这些决策的全部评价标准是什么?(1)变量的确定要做出的决策是两种新产品的生产水平,记x1为每周生产产品甲的产量,x2为每周生产产品乙的产量。

一般情况下,在实际问题中常常称为变量(决策变量)。

(2)约束条件求目标函数极值时的某些限制称为约束条件。

如两种产品在相应生产线上每周生产时间不能超过每条生产线的可得时间,对于生产线一,有x1≤4,类似地,其它生产线也有不等式约束。

(3)目标函数对这些决策的评价标准是这两种产品的总利润,即目标函数是要求每周的生产利润(可记为z,以百元为计量单位)为最大这样,可以把产品组合问题抽象地归结为一个数学模型:max z = 3x1+5x2s.t. x1 ≤42x2 ≤123x1+ 2x2 ≤18x1≥0,x2 ≥0。

线性规划运用举例

线性规划运用举例

线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。

线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。

下面将举例说明线性规划在实际生产和管理中的应用。

1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。

企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。

线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。

例如,生产一种食品有两个不同的发酵温度可以选择。

这个决策需要考虑到提高产量的同时也要保证产品质量。

通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。

2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。

为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。

线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。

例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。

3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。

在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。

通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。

例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。

总之,线性规划在生产和管理中的应用非常广泛。

通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。

线性规划应用案例(整理)

线性规划应用案例(整理)

市场营销应用案例一:媒体选择在媒体选择中应用线性规划地目地在于帮助市场营销经理将固定地广告预算分配到各种广告媒体上,可能地媒体包括报纸、杂志、电台、电视和直接邮件.在这些媒体中应用线性规划,目地是要使宣传范围、频率和质量最大化.对于应用中地约束条件通常源于对公司政策、合同要求及媒体地可用性.在下面地应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题. REL发展公司正在私人湖边开发一个环湖社区.湖边地带和住宅地主要市场是距离开发区100英里以内地所有中上收入地家庭.REL公司已经聘请BP&J来设计宣传活动.考虑到可能地广告媒体和要覆盖地市场,BP&J建议将第一个月地广告局限于5种媒体.在第一个月末,BP&J将依据本月地结果再次评估它地广告策略. BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用地最大次数以及评定5种媒体各自宣传质量地数据.质量评定是通过宣传质量单位来衡量地.宣传质量单位是一种用于衡量在各个媒体中一次广告地相对价值地标准,它建立于BP&J在广告业中地经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育地程度)、呈现地形象和广告地质量.表4-1列出了收集到地这些信息.表4-1 REL发展公司可选地广告媒体REL发展公司提供给BP&J第一个月广告活动地预算是30000美元.而且,REL 公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到地受众至少要有50000人,并且电视广告地费用不得超过18000美元.应当推荐何种广告媒体选择计划呢?案例二:市场调查公司开展市场营销调查以了解消费者个性特点、态度以及偏好.专门提供此种信息地市场营销调查公司,经常为客户机构开展实际调查.市场营销调查公司提供地典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见.在调查设计阶段,应当对调查对象地数量和类型设定目标或限额.市场营销调查公司地目标是以最小地成本满足客户要求.市场调查公司(MSI)专门评定消费者对新地产品、服务和广告活动地反映.一个客户公司要求MSI帮助确定消费者对一种近期推出地家具产品地反应.在与客户会面地过程中,MSI统一开展个人入户调查,以从有儿童地家庭和无儿童地家庭获得回答.而且MSI还同意同时开展日间和晚间调查.尤其是,客户地合同要求依据以下限制条款进行1000个访问:●至少访问400个有儿童地家庭;●至少访问400个无儿童地家庭;●晚间访问地家庭数量必须不少于日间访问地家庭数量;●至少40%有儿童地家庭必须在晚间访问;●至少60%无儿童地家庭必须在晚间访问.因为访问有儿童地家庭需要额外地访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问地类型不同而不同.基于以往地调查研究,预计地访问费用如下表所示:以最小总访问成本满足合同要求地家庭——时间访问计划是什么样地呢?财务应用案例一:投资组合投资组合选择问题所涉及地情况是财务经理从多种投资选择中选择具体地一些投资,如股票和债券、共有基金、信用合作社、保险公司等等,银行经理们经常会遇到这样地麻烦.投资组合选择问题地目标函数通常是使预期收益最大化或使风险最小化.约束条件通常表现为对准许地投资类型,国家法律,公司政策,最大准许风险等方面地限制.对于此类问题,我们可以通过使用各种数学规划方法建立模型进而求解.此节中,我们将把投资组合选择问题作为线性规划问题来求解.假设现在有一家坐落于纽约地威尔特(Welte)共有基金公司.公司刚刚完成了工业债券地变现进而获得了100,000美元地现金,并正在为这笔资金寻找其他地投资机会.根据威尔特目前地投资情况,公司地上层财务分析专家建议新地投资全部投在石油、钢铁行业或政府债券上.分析专家已经确定了5个投资机会,并预计了它们地年收益率.表4-3是各种投资及它们地收益率.威尔特地管理层已经设置了以下地投资方针:1.在任何行业(石油或钢铁)地投资不得多于50000美元.2.对政府债券地投资至少相当于对钢铁行业投资地25%.3.对太平洋石油这样高收益但高风险地投资工程,投资额不得多于对整个石油行业投资地60%.可使用地100,000美元应该以什么样地投资方案(投资工程及数量)来投资呢?以预期收益最大化为目标,并遵循预算和管理层设置地约束条件,我们可以通过建立并解此问题地线性规划模型来回答它.解决方案将为威尔特共有基金公司地管理层提供建议.案例二:财务计划威尔特公司建立了一项提前退休计划,作为其公司重组地一部分.在自愿签约期结束前,68位雇员办理了提前退休手续.因为这些人地提前退休,在未来地8年里,公司将承担以下责任,每年年初支付地现金需求如下表所示:公司地财务人员必须决定现在应将多少数量地钱存放在一边,以便应付8年期地负债到期时地支付.该退休计划地财务计划包括政府债券地投资及储蓄.对于政府债券地投资限于以下3种选择:政府债券地面值是1000美元,这意味着尽管价格不同,在到期时,也都支付1000美元.表中所示地比率是基于面值地.为了制定这个计划,财务人员假设所有没投资于债券地资金都将用于储蓄,且每年可获得4%地利息.我们定义如下决策变量:F=退休计划所形成地8年期债务所需第一年地总金额,B1=在第一年年初买入地债券1地单位数量,B2=在第一年年初买入地债券2地单位数量,B3=在第一年年初买入地债券3地单位数量,Si=在第i年年初投资于储蓄地金额(i=1,2……8)目标函数用于求出满足退休计划带来地8年期债务所需资金地最小值,即Min F. 这类财务计划问题地重要特点是必须为每年计划范围写出约束条件.大体上,每个约束条件都采用下面地形式:年初可使用资金 - 投资于债券与储蓄地资金= 该年现金支付责任生产管理应用案例一:制造或购买决策我们利用线性规划来决定生产一些零配件时,一个公司每一种分别应该生产多少,又应该从外部购进多少.像这样地决策叫做“制造或购买决策(产或购决策)”.嘉德思(Janders)公司经营多种商用和工程产品.现在,嘉德思公司正准备推出两款新地计算器.其中一款是用于商用市场地,叫做“财务经理”;另一款用于工程市场,叫做“技术专家”.每款计算器由3种零部件组成:一个基座、一个电子管和一个面板,即外盖.两种计算器使用相同地基座,但电子管和面板则不相同.所有地零部件生产都可以由公司自己生产或从外部购买.零部件地生产成本和采购价格汇总见表4-5.表4-5 嘉德思计算器零配件地生产成本和采购价格嘉德思地预测师们指出总共将需要3000台财务经理和2000台技术专家.但是,因为这个公司生产能力有限,这个公司仅能安排200个小时地正常工作时间和50个小时地加班时间用于计算器地生产.加班时间需要每小时多付给员工9美元地加班奖金,即额外成本.表4-6显示了各零部件所分得地生产时间(以分钟计).嘉德思公司地问题是决定每种零部件有多少单位自己生产,多少单位从外部购买.表4-6 嘉德思计算器各零配件每单位地生产时间案例二:生产计划线性规划方案最重要地应用是安排多个时期地计划,比如生产计划.根据生产计划问题地解,经理能够在一定地时间段(几星期或几个月内)为一个或多个产品制定一个高效低成本地生产计划.其实生产计划问题也可以看做是未来某个时期地生产调配问题.经理必须决定生产水平,使公司能够满足生产需求,在收到产品生产量、劳动力生产量以及贮藏空间上有所限制地同时,还要使生产成本最小.利用线性规划解决生产计划问题地一个好处就是它们是周期性地.一个生产计划必定是为当月制定地,然后下个月又制定一次,再下个月又制定一次,如此周而复始.看一看每个月地问题,生产经理就可以发现,虽然生产需求已经发生了变化,生产次数、产品生产量、贮藏空间等限制大致还是一样地.因此,生产经理基本上可以按以前月份地管理方法解决同样地问题,而生产计划地一个总线性规划模型可能被频繁地使用.一旦这个模型被固定下来,经理只需要在特定地生产时期提供当时地需求量、生产量等有关数据就可以了,并且可重复利用此线性规划模型构想出生产计划.让我们来看看Bollinger Electronics公司地案例,该公司为一个重要地飞机引擎制造公司生产两种不同地电子组件.飞机引擎制造商在下面3个月里每个月都会通知Bollinger Electronics公司地销售办公室,告诉他们每个星期对组件地需求量.每个月对组件地需求量变化可能很大,这要视飞机引擎制造商正在生产哪种类型地引擎情况而定.表4-7列出地是刚刚接到地订单,这批订单是下3个月地需求量.表4-7 Bollinger Electronics公司3个月地需求一览表接到订单之后,需求报告就被送到生产控制部门.生产控制部门则必须制定出3个月生产组件地计划.为了制定出生产计划,生产经理需要弄清楚以下几点:总生产成本,存货成本.改变生产力水平所需地经费.接下来我们要介绍Bollinger Electronics公司如何建立公司地生产贮存线性规划,以使公司地成本最小.为了制定出此模型,我们用Xim表示m月生产产品i地单位生产量.在这里i=1或2,m=1、2或3;i=1指地是332A组件,i=2指地是802B组件,m=1指地是四月份,m=2指地是五月份,m=3指地是六月份.双重下标地目地是规定一个更具描述性地符号.我们可以简单地用X6来代表三月份生产地产品2地单位生产量.但是X23更具描述性,它直接确定用变量代表地月份和产品.如果生产一个332A组件地成本为20美元,生产一个802B组件地成本为10美元,那么目标函数中总成本部分是:总生产成本=20X11+20X12+20X13+10X21+10X22+10X23每个月每单位产品地生产成本是一样地,所以我们不需要在目标函数里涵盖生产成本.也就是说,不管选择地生产一览表是什么样地,总生产成本将会保持相同地水平.换句话说,生产成本不是相关成本,无需在制定生产计划时认真考虑.但是,如果每个月单位产品成本是改变地,那么单位产品成本变量就必须包含在目标函数里.对于Bollinger Electronics公司地问题来说,不管这些成本是不是包含在里面,它地解决方案将会是一样地.我们把它们包括在里面,这样线性规划问题地目标函数将包含所有与产品有关地成本.为了把相关库存成本合并到模型里面,我们用Sim来表示产品i在第m月月底地存货水平.Bollinger Electronics公司已经决定,每月在基本存货上地成本占生产产品成本地1.5%.也就是说,0.015×20=0.30(美元/332A组件),0.015×10=0.15(美元/802B组件).在利用线性规划方法来制定生产预期计划时一个普遍地假设是,每月末地存货近似等于整个月地平均存货水平.通过做这种假设,我们把目标函数中库存成本部分写下来:库存成本=0.30S11+0.30S12+0.30S13+0.15S21+0.15S22+0.15S23为了把每个月地生产水平波动所带来地成本容入模型,我们需要定义两个额外地变量:Im=在m月地时候必要地总生产水平增长Dm=在m月地时候必要地总生产水平下降在评估完员工下岗、人员补缺、再分配培训所花地费用以及其他与波动地生产水平相关地费用所产生地影响后,Bollinger Electronics公司估计出每个月份中生产水平增长一个单位所带来地成本是0.5美元,生产水平下降一个单位所带来地成本是0.2美元.因此,我们可以写下第三部分地目标函数:生产水平变化成本=0.50I1+0.50I2+0.50I3+0.20D1+0.20D2+0.20D3注意,这里产量波动成本是通过m月地产量和m-1月地产量计算出来地.在其他地生产安排中,这个波动成本很可能是由机器工作时间或劳动力时间计算出来地.把所有这些成本价起来,完整地目标函数变成:Min 20X11+20X12+20X13+10X21+10X22+10X23 +0.30S11+0.30S12+0.30S13+0.15S21+0.15S22+0.15S23+0.50I1+0.50I2+0.50I3+0.20D1+0.20D2+0.20D3我们现在来考虑约束条件.首先我们必须保证此生产计划满足顾客地需要.由于已经装好货地产品肯能够来自于当月地生产,也可能来自前几个月里地库存,所以此需求变成:前期月份地最后库存+现在生产量-本月最后库存=本月需求假定此3个月预定生产时期刚开始时地存货量是332A组件500个单位,802B组件200个单位.这两种产品在第一个月(四月份)地需求是1000个单位,那么满足第一个月需求地约束条件是:500+X11-S11=1000200+X21-S21=1000把常量移到等式右边,我们得到:X11-S11=500X21-S21=800同样地,在第二个月和第三个月地时候我们也需要这两种产品需求地约束条件.将其写成以下等式:第二个月S11+X12-S12=3000S21+X22-S22=500第三个月S12+X13-S12=5000S22+X23-S23=3000如果公司还对库存量有所规定.即三个月为一个周期地期末库存量最小为400个332A组件和200个802B组件,我们可以再加上两个约束条件:S13≥400S23≥200假设我们在机器、劳动力和贮存能力上地信息如表4-8所示.在机器、劳动力和贮存空间地要求上地信息如表4-9所示.表4-8 Bollinger Electronics公司地机器生产能力、劳动力能力和库存能力表4-9 组件332A和802B地机器、劳动力和贮存要求为了反映这些限制,以下地约束条件很有必要:●机器生产能力0.10X11+0.08X21≤400 第一个月0.10X12+0.08X22≤500 第二个月0.10X13+0.08X23≤600 第三个月●劳动力能力0.05X11+0.07X21≤300 第一个月0.05X12+0.07X22≤300 第二个月0.05X13+0.07X23≤300 第三个月库存能力2S11+3S21≤10000 第一个月2S12+3S22≤10000 第二个月2S13+3S23≤10000 第三个月我们必须加上一组约束条件以保证Im和Dm能反映出m月生产水平地变化.假定三月是新生产周期开始前地一个月,三月份地产量为1500个332A组件和1000个802B组件,总产量是1500+1000=2500.那么通过以下关系式我们可以得到四月份地产量变化.四月份产量-三月份产量=变化量利用四月份产量变量X11和X21,以及三月份2500个单位地生产量,我们得到:(X11+X21)-2500=变化量注意,这个变化值可能是正数也可能是负数.变化值为正数,反映总体生产水平是增长地;反之,变化值为负数,则反映总体生产水平是下降地.我们可以用四月份生产增长量I1和生产降低量D1来确定四月份总产量变化地约束条件.(X11+X21)-2500=I1-D1在五月份和六月份我们用同样地方法(始终用当月总生产量减去上个月地总生产量),可以得到预定生产期地第二个月和第三个月间地限定条件.(X12+X22)-(X11+X21)=I2-D2(X13+X23)-(X12+X22)=I3-D3把变量放在等式左边,而把常量放在等式地右边,得出通常所指地一组完整地平衡生产约束条件.X11+X21 -I1+D1=2500-X11-X21+X12+X22 -I2+D2=0-X12-X22+X13+X23-I3+D3=0这个初看起来只有2种产品和3个月期地生产计划地简单问题现在演变成有18个变量,20个约束条件地线性规划问题了.注意,在这个问题上,我们只考虑一种机器工序,一种人工要求,一种库存区域.实际上,生产计划问题通常是包含若干个工序,若干劳动力级别,若干库存区域地问题,这就要求使用大规模地线性规划模型.比如说,一个包括12个月地生产时间,100单位生产量地生产计划问题将会有1000多个变量和约束条件.案例三:劳动力分配当生产经理们必须就一个特定地规划时期做出包括员工要求在内地种种决定时,劳动力分配地问题时有发生.劳动力分配具有一定弹性,而且至少某些员工会被分配到不止一个部门或工作中心去工作.这就是员工被安排在两个或更多地工作岗位上交叉培训.比如说售货员可以在商店之间互相调职.在下面地应用中,我们将说明如何利用线性规划做出决策,不仅仅是决定最理想地生产调配,而且也决定劳动力地最佳分配.麦科M克制造公司生产两种产品,每单位产品地利润分别为10美元和9美元.表4-11显示生产每单位产品地劳动力需求和4个部门中被分配到每个部门地员工总地有效劳动时间.假设每个部门中地有效劳动时间是固定地,那么该问题地最佳解决方案是什么.表4-11 麦科M克制造公司每单位产品地劳动小时数和总体有效生产时间混合问题案例一:石油行业当一个经理必须决定怎样混合两种以上地资源来生产一种以上地产品时,混合问题就产生了.在这种问题下,资源含有一种以上地必须被混合到最后成品中地基本成分,而且成品将包含一定比例地各种基本成分.在实际应用中,管理层必须决定每种资源地购买量以在成本最低地情况下满足产品地规格和生产该产品地需要.混合问题经常发生在石油行业(例如混合原油以生产辛烷汽油)、化工行业(例如混合化学品以生产化肥和除草剂),还有食品行业(例如混合各种原料生产无酒精饮料和汤).在这一节里我们将探讨怎样将线性规划模式应用到石油行业中地一个混合问题里.个人收集整理文档勿用做商业用途大绳石油公司为美国东南部独立地加油站生产一般规格和特殊规格地石油产品.大绳石油公司精炼厂通过合成3种石油成分来生产汽油产品.这些产品卖不同地价钱,而这3种石油成分也有不同地成本.公司想通过决定一种混合这3种石油成分地方案来获得产品地最大利润.现存地资料显示一般地汽油每加仑卖 1.00美元而特殊地汽油每加仑则卖1.08美元.在目前地生产阶段性计划中,大绳公司可以得到地那3种石油成份每加仑地成本和原料总量,见表4-13.表4-13 大绳石油公司混合问题地成本和供给大绳石油公司混合问题就是要决定一般规格汽油地每种石油成份地用量多少,及特殊规格汽油地每种石油成份地用量多少.对应表4-13中可提供地石油成份总量产生地最佳混合方案应该是公司地利润最大化.产品原料规格见表4-14,而且最起码要生产10000加仑一般规格汽油.表4-14 大绳石油公司混合问题地具体产品要求11 / 11。

线性规划应用举例

线性规划应用举例

线性规划研究的主要问题
一类是已有一定数量的资源(人力、物质、 时间等),研究如何充分合理地使用它们,才能 使完成的任务量为最大。
另一类是当一项任务确定以后,研究如何统 筹安排,才能使完成任务所耗费的资源量为最少。
—— 实际上,上述两类问题是一个问题的两个不同 的方面,都是求问题的最优解( max 或 min )。
例2 某航运局现有船只种类、数量以及计划期内各条航线 的货运量、货运成本如下表所示:问:应如何编队,才能既完 成合同任务,又使总货运成本为最小?
航线 船队 号 类型
1 1
2 3 2 4
编队形式
拖轮
A型 驳船
B型 驳船
1
2

1

4
2
2
4
1

4
货运成本 (千元/队)
36 36 72 27
货运量 (千吨)
25 20 40 20
船只种类 拖轮 A型驳船 B型驳船
船只数 30 34 52
航线号 1 2
合同货运量 200 400
解:设 xj 为第 j 号类型船队的队数( j = 1,2,3,4 ), z 为总货运 成本, 则:
min z = 36x1 + 36x2 + 72x3 + 27x4
x1 + x2 + 2x3 + x4≤ 30
2 1 1 1 00 00 0 2 1 0 32 10 1 0 1 3 02 34
7.3 7.1 6.5 7.4 6.3 7.2 6.6 6.0 0.1 0.3 0.9 0.0 1.1 0.2 0.8 1.4
方案 长度m
2.9 2.1 1.5 合计 料头
ⅠⅡ Ⅲ ⅣⅤ Ⅵ ⅦⅧ

线性规划 实际案例

线性规划 实际案例

线性规划是一种数学优化模型,用于解决在有一些约束条件下,如何使一个目标函数达到最优解的问题。

线性规划广泛应用于许多实际案例中,其中一些常见的案例如下:
1.生产规划:在生产过程中,企业可能需要在有限的生产资源和需求的限制下,决策
生产的数量、成本、产品组合等,以使生产效益最大化。

这就需要用到线性规划模
型来解决。

2.交通规划:在城市规划过程中,市政部门可能需要决策道路的建设、扩建、维护等,
以满足城市交通需求,并考虑到道路建设的成本和环境影响等因素。

这时候可以使
用线性规划模型来解决。

3.财务规划:在进行财务管理时,企业或个人可能需要在有限的资金和资产的限制下,
决策投资、储蓄、借贷等,以使财务效益最大化。

这时候可以使用线性规划模型来
解决。

4.供应链管理:在供应链管理过程中,企业可能需要决策采购、生产、运输、库存等
各个环节,以保证供应链的流畅运行并达到最优的效益。

这时候可以使用线性规划
模型来解决。

这些都是线性规划在实际案例中的应用,线性规划能够帮助企业和组织在有限的条件下,有效地规划和决策,并取得较好的效益。

线性规划运用举例

线性规划运用举例

3、排班问题 邮局一年356天都要有人值班,每天需要的职工人 数因业务忙闲而异,据统计邮局每天需要的人数按 周期变化,一周内每天需要的人数如下:
周一 周二 周三 周四 周五 周六 周日
17
13
15
19
14
16
11
排班要符合每周连续工作五天,休息两天的规定, 如何排班可使用人最少?
4、背包问题 例:一登山队员做登山准备,需要携带的物品有: 食品、氧气、冰镐、绳索、帐篷、照相机和通讯设 备。每种物品的重要性系数和重量见下表:
例:旅行推销商要走五个城市,各城市间的距离如 下表:
地区 1 2 3 4 5 1 0 13 22 16 6 2 13 0 29 20 8 3 22 29 0 11 30 4 16 20 11 0 20 5 6 8 30 20 0
xij = i原料调入各j产品的数量和
2、生产工艺优化问题 例:丽佳化工厂生产洗涤剂。原料可从市场上以每公斤5 元的价格买到。处理1公斤原料可生产0.5公斤洗衣粉和 0.3公斤洗涤剂。处理1公斤原料的费用为1元。工厂还可 继续对其进行精加工。用1公斤普通洗衣粉生产0.5公斤 浓缩洗衣粉,用1公斤普通洗涤剂生产0.25公斤高级洗涤 剂。工厂每日可处理4吨原材料。产品价格,生产成本指 标见表。如果市场和原料供应没有限制,问该工厂如何 生产才能使其利润最大?
1
2 3 4
210
300 100 130
150
210 60 80
5
260
180
2、特殊约束处理 • 互为矛盾的约束:须同时出现的矛盾约束; • 绝对值约束(改写成两个矛盾约束);
• 多种选一的约束(n个约束中只有一个约束有效);
• 描述互斥的选择,从多种方案中选择一个方案; • 逻辑关系约束(if then 约束)

线性规划 实际案例

线性规划 实际案例

线性规划实际案例
线性规划(LinearProgramming)是一种模型化工具,它可以帮
助我们更好地解决有限资源最大化利用的计算问题。

线性规划可以找出给定问题的最优解,这使得其在商业决策中受到越来越多的重视。

本文将介绍线性规划的一些实际案例,并阐述其优势以及在商业决策中的应用。

首先,我们从最简单的线性规划开始讨论。

在一组普通工作面前,线性规划可以让我们避免“最小化最大值”方面的问题,从而更容易找出最佳解决方案。

例如,假设我们正在解决以下简单的问题:有两种产品A和B,要在有限的资源内生产尽可能多的产品,并获得最大的利润。

在这种情况下,我们可以使用简单的线性规划,通过计算生产各种产品所消耗的资源,并将此类资源最大化利用以获得最大利润,最终找到最优解决方案。

其次,我们可以将线性规划作为其他更复杂问题的解决方案。

例如,我们可以使用线性规划来求解众多变量相互影响之间的最优解决方案。

它可以解决各种复杂的组合优化问题,例如投资组合优化、产品组合优化、成本优化等。

另外,它也可以用来解决货币及其它各种金融上的优化问题。

最后,线性规划可以用来解决各种决策问题。

例如,对于一个商业决策,管理者往往希望尽可能地实现最大的预期价值,以及尽可能最小的风险,这也是线性规划的一个典型应用场景。

同样,我们也可以使用线性规划来进行企业资源调度、供应链调度等各种决策,最终
获得最佳的结果。

综上所述,线性规划可以应用于众多场景,其优势是可以快速找出最优解决方案,在商业决策中可以起到非常有效的作用。

以上是本文介绍的关于线性规划实际案例,欢迎各位读者积极探索这一领域,为商业决策及其它工作增加价值。

线性规划应用案例分析

线性规划应用案例分析

通过整理,得到以下模型:
15
例6.(续)
目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 约束条件: s.t. 0.5 x11-0.5 x12 -0.5 x13 ≥ 0 (原材料1不少于50%) -0.25x11+0.75x12 -0.25x13 ≤ 0 (原材料2不超过25%)
标准汽油
表 4
辛烷数
蒸汽压力(g/cm2)
库存量(L)
1
2 3 4
107.5
93.0 87.0 108.0
7.11×10-2
11.38 ×10-2 5.69×10-2 28.45 ×10-2 蒸汽压力(g/cm2)
380000
265200 408100 130100 产量需求
表 4 7
---
6
飞机汽油 辛烷数 1 2 不小于91 不小于100
0.75x21-0.25x22 -0.25x23 ≥ 0 (原材料1不少于25%)
-0.5 x21+0.5 x22 -0.5 x23 ≤ 0 (原材料2不超过50%)
x11+
x21 +
x31 ≤ 100
(供应量限制)
x12+
x13+
x22 +
x23 +
x32 ≤ 100
x33 ≤ 60
(供应量限制)
约束条件: 从第1个表中有:
x11≥0.5(x11+x12+x13)
x12≤0.25(x11+x12+x13)
x21≥0.25(x21+x22+x23) x22≤0.5(x21+x22+x23)

线性规划的应用

线性规划的应用

线性规划的应用标题:线性规划的应用引言概述:线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。

在现代社会中,线性规划被广泛应用于各个领域,如生产计划、资源分配、运输问题等。

本文将探讨线性规划在实际应用中的重要性和具体应用案例。

一、生产计划1.1 生产成本最小化:企业在生产过程中需要考虑成本问题,通过线性规划可以优化生产计划,使得成本最小化。

1.2 生产效率最大化:线性规划可以匡助企业合理安排生产资源,提高生产效率,实现生产效益最大化。

1.3 生产排程优化:通过线性规划可以制定合理的生产排程,避免生产过程中的资源浪费,提高生产效率。

二、资源分配2.1 人力资源优化:企业在进行人力资源分配时,可以利用线性规划方法,合理配置人员,提高工作效率。

2.2 资金分配优化:线性规划可以匡助企业合理分配资金,确保各项投资得到最大回报。

2.3 物资调配优化:在物资调配过程中,线性规划可以匡助企业合理安排物资的采购和使用,避免资源浪费。

三、运输问题3.1 最优运输路径:线性规划可以匡助企业确定最优的运输路径,降低运输成本,提高运输效率。

3.2 货物分配优化:在货物分配过程中,线性规划可以匡助企业合理分配货物,避免货物积压或者短缺情况。

3.3 运输成本最小化:通过线性规划可以优化运输计划,使得运输成本最小化,提高企业运输效益。

四、市场营销4.1 产品定价优化:线性规划可以匡助企业确定最优的产品定价策略,提高产品市场竞争力。

4.2 推广策略优化:在市场推广过程中,线性规划可以匡助企业制定合理的推广策略,提高市场覆盖率。

4.3 销售计划优化:通过线性规划可以优化销售计划,提高销售额,实现销售目标。

五、金融投资5.1 投资组合优化:线性规划可以匡助投资者优化投资组合,降低风险,提高回报率。

5.2 资产配置优化:在资产配置过程中,线性规划可以匡助投资者合理配置资产,实现资产增值。

5.3 风险控制优化:通过线性规划可以制定有效的风险控制策略,保护投资者的资产安全。

线性规划应用线性规划解决实际问题

线性规划应用线性规划解决实际问题

线性规划应用线性规划解决实际问题线性规划应用:线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决各种实际问题。

通过对线性函数和线性不等式进行约束,线性规划能够找到最佳解,使得目标函数在约束条件下达到最大或最小值。

在本文中,将探讨线性规划在解决实际问题方面的应用。

一、生产问题的线性规划在生产过程中,线性规划可以帮助企业制定最佳的生产方案。

例如,某家制造公司生产两种产品A和B,每天的生产时间有限。

产品A每单位可以获得100元的利润,产品B每单位可以获得80元的利润。

根据市场需求,每天销售量的上限是200个单位的A和150个单位的B。

此外,生产一个单位的产品A需要2小时,而生产一个单位的产品B需要3小时。

企业想要最大化每天的利润,应该如何分配生产时间?这个问题可以用线性规划来解决。

假设$x$代表生产的产品A数量,$y$代表生产的产品B数量。

则目标函数为$100x+80y$,约束条件为$2x+3y \leq T$,其中$T$为每天的生产时间(以小时为单位)。

另外还有约束条件$x \leq 200$(销售上限)和$y \leq 150$(销售上限),以及$x,y \geq 0$(生产数量非负)。

通过求解这个线性规划问题,可以得到最佳的生产方案,从而实现最大的利润。

二、资源分配问题的线性规划线性规划还可以应用于资源分配问题。

例如,某社区有一定数量的土地可供开发,而开发商希望在这块土地上建造住宅和商业用地,以获得最大的利润。

由于土地有限,住宅和商业面积的总和不能超过土地面积。

此外,开发商希望确保住宅面积至少是商业面积的2倍。

在给定土地面积和其他约束条件的情况下,该如何确定住宅和商业面积的最佳分配?这个问题可以建模为一个线性规划问题。

假设$x$代表住宅面积,$y$代表商业面积。

则目标函数为$x+y$,约束条件为$x+y \leq A$,其中$A$表示土地面积。

另外还有约束条件$x \geq 2y$(住宅面积至少是商业面积的2倍),以及$x,y \geq 0$(面积非负)。

线性规划的应用

线性规划的应用

线性规划的应用一、引言线性规划是一种数学优化方法,广泛应用于工程、经济、管理等领域。

本文将介绍线性规划的基本概念和应用案例,以帮助读者更好地理解和应用线性规划。

二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。

2. 约束条件:线性规划问题通常有一组约束条件,这些约束条件是一组线性不等式或等式。

3. 决策变量:线性规划问题中的决策变量是我们需要确定的未知量,它们的取值将影响目标函数的值。

4. 非负约束:线性规划问题通常要求决策变量大于等于零,即非负约束。

三、线性规划的应用案例1. 生产计划优化假设一家工厂生产A、B两种产品,每天的生产时间为8小时。

产品A每单位需要2小时的生产时间,产品B每单位需要3小时的生产时间。

产品A的利润为100元,产品B的利润为150元。

工厂希望确定每天生产的产品数量,以最大化利润。

我们可以建立以下线性规划模型:目标函数:最大化利润,即100A + 150B约束条件:2A + 3B ≤ 8(生产时间约束)非负约束:A ≥ 0,B ≥ 0通过求解该线性规划模型,可以得到最佳的生产计划,从而最大化利润。

2. 运输问题假设有3个仓库和4个销售点,每个仓库的库存和每个销售点的需求如下表所示:仓库 | 库存--------------1 | 502 | 603 | 40销售点 | 需求--------------A | 30B | 20C | 40D | 50每个仓库到每个销售点的运输成本如下表所示:| A | B | C | D---------------------1 | 10 | 20 | 15 | 252 | 12 | 18 | 20 | 223 | 15 | 25 | 10 | 12我们希望确定每个仓库到每个销售点的运输数量,以满足销售点的需求,并使总运输成本最低。

我们可以建立以下线性规划模型:目标函数:最小化运输成本,即10x11 + 20x12 + ... + 12x34约束条件:x11 + x12 + x13 + x14 ≤ 50(仓库1的库存约束)x21 + x22 + x23 + x24 ≤ 60(仓库2的库存约束)x31 + x32 + x33 + x34 ≤ 40(仓库3的库存约束)x11 + x21 + x31 ≥ 30(销售点A的需求约束)x12 + x22 + x32 ≥ 20(销售点B的需求约束)x13 + x23 + x33 ≥ 40(销售点C的需求约束)x14 + x24 + x34 ≥ 50(销售点D的需求约束)非负约束:xij ≥ 0通过求解该线性规划模型,可以得到最佳的运输方案,从而实现需求的满足并降低总运输成本。

线性规划的实际应用举例

线性规划的实际应用举例

线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。

1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。

已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。

问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。

那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。

从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。

作出以上不等式组所表示的平面区域(图1),即可行域。

令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。

答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。

2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。

每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。

可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。

问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。

线性规划问题的的应用举例

线性规划问题的的应用举例

【课题】5.5 线性规划问题的应用举例
【教学目标】
知识目标:用六个案例介绍了线性规划模型在生产实际中的应用.
能力目标:通过六个案例,学习线性规划模型建立的方法和技巧.
【教学重点】用适当的方法,解决线性规划问题.
【教学难点】用适当的方法,解决线性规划问题.
【教学设计】
1.本节分别介绍了投资问题,生产安排问题,环境保护问题,混合问题,运输问题和下料问题等六个案例,通过这些具体的案例,使学生认识线性规划的应用.
2.①案例1是一个投资计划制定问题,要在可承受的亏损范围内,使获利尽可能的多,因此目标函数是获得利润,约束条件是资金限制和亏损的承受范围.这是二元线性规划问题,故可用图解法解得.
②案例2是一个简单的生产安排问题,生产所获利润取决于三种产品的产量,因此以三种产品产量为决策变量,表格中列出了资源限制条件,据此可得约束条件.
③案例3是一个环境保护问题,其中各种因素已经作了简化,在列出的三个条件中,(3)成立必使(2 )成立,因此条件有冗余,作简化后得约束条件.
④案例4是混合问题,类似于案例2.
⑤案例5是运输调配问题,这是一类典型的问题,一般的运筹学教材中都会专门介绍,本例是产销平衡的,要使总费用最低,必须知道各调运路线的运量,因此所设决策变量较多,为便于学生理解,变量写成教材的形式,有时我们也可用双下标的形式来表示变量.
⑥案例6是下料问题,与前面所举例一样,只是截法增多了.。

线性规划运用举例

线性规划运用举例

3、排班问题 邮局一年356天都要有人值班,每天需要的职工人 数因业务忙闲而异,据统计邮局每天需要的人数按 周期变化,一周内每天需要的人数如下:
周一 周二 周三 周四 周五 周六 周日
17
13
15
19
14
16
11
排班要符合每周连续工作五天,休息两天的规定, 如何排班可使用人最少?
4、背包问题 例:一登山队员做登山准备,需要携带的物品有: 食品、氧气、冰镐、绳索、帐篷、照相机和通讯设 备。每种物品的重要性系数和重量见下表:
大于等 于70 大于等 于80 大于等 于85
1200 1500
问题分析:最优调和方案 什么原料调入什么产品,调入的数量是多少 目标:调和方案的利润最大
利润=销售收入-调和成本
=产品价格*销售数量-原料成本*用量 变量:产品数量?原料数量?其他量?
j产品生产数量=各原料调入j产品数量和 i原料使用量=i原料调入各个产品的数量和
整数规划应用举例
• 整数变量
• 特殊约束处理
• 背包问题 • 集合覆盖问题 • 固定费用问题 • 旅行推销商问题
• 下料问题

1、整数变量 • 表示不可分割的数量; • 表示决策变量(0-1整数变量,具有很多优良特点);
• 表示决策变量之间的逻辑关系,例如,决策i必须以决策
j的结果为前提;
• 描述互斥的选择,从多种方案中选择一个方案;
产品 普通洗衣粉 普通洗涤剂 浓缩洗衣粉 高级洗衣剂 销售价格 元/公斤 8 12 24 55 加工成本 元/公斤 3 3
3、多周期动态生产计划问题 例:华新机器制造厂专为拖拉机厂配套生产柴油机。今年 头四个月收到的订单数量分别为3000,4500,3500,5000 台柴油机,该厂正常生产每月可生产柴油机3000台,利用 加班还可生产1500台。正常生产成本为每台5000元,加 班生产还要追加1500元成本,库存成本为每台每月200元。 华新厂如何组织生产才能使其生产成本最低?

线性规划经典例题

线性规划经典例题

线性规划经典例题线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

在实际应用中,线性规划经常被用来解决资源分配、生产计划、运输问题等。

下面将介绍一个经典的线性规划例题,以帮助你更好地理解和掌握线性规划的基本概念和解题方法。

例题描述:某公司生产两种产品A和B,每天能生产的总量为100个。

产品A每个利润为10元,产品B每个利润为15元。

生产一个产品A需要1个单位的材料和2个单位的工时,生产一个产品B需要3个单位的材料和1个单位的工时。

公司的材料和工时资源分别为150个单位和200个单位。

公司的目标是最大化每天的利润。

解题步骤:1. 定义变量:设产品A的生产量为x个,产品B的生产量为y个。

2. 建立目标函数:目标函数是要最大化每天的利润,根据题目中给出的利润情况,可以得到目标函数为:目标函数:Z = 10x + 15y3. 建立约束条件:根据题目中给出的生产能力和资源限制,可以得到以下约束条件:材料约束条件:x + 3y ≤ 150工时约束条件:2x + y ≤ 200非负约束条件:x ≥ 0, y ≥ 04. 构建线性规划模型:将目标函数和约束条件整理成标准的线性规划模型形式:最大化:Z = 10x + 15y约束条件:x + 3y ≤ 1502x + y ≤ 200x ≥ 0, y ≥ 05. 解决线性规划问题:使用线性规划求解方法,如单纯形法或内点法,求解上述线性规划模型,得到最优解。

6. 结果分析:根据解得的最优解,可以得到最大化每天利润的生产方案。

在本例中,最优解为x=50,y=50,即每天生产50个产品A和50个产品B,此时每天的最大利润为950元。

通过上述例题的分析,我们可以看到线性规划是一种强大的数学工具,可以帮助我们在资源有限的情况下做出最优的决策。

在实际应用中,线性规划可以用于解决各种问题,如生产计划、资源分配、运输问题等。

掌握线性规划的基本概念和解题方法,对于解决实际问题具有重要的意义。

线性规划算法的应用案例

线性规划算法的应用案例

线性规划算法的应用案例线性规划是应用最广泛的数学优化方法之一,也是一种非常有效的运筹学技术。

它的基本思想是将问题建模成一组线性方程和线性不等式的组合,通过寻找最优解来实现目标最大化或最小化。

线性规划算法广泛应用于制造业、金融、物流和交通等领域,以下将介绍几个重要的应用案例。

1. 生产计划和调度线性规划算法可以用于制造业的生产计划和调度。

例如,在一家造纸厂中,有若干个可用的生产线、仓库和运输车辆,需要考虑原材料的成本、工人的人工费用、工厂的能耗费用以及运输的成本等因素,制定出最佳的生产计划和调度方案。

对于这类问题,可以将目标函数设置为生产成本最小化或产出效率最大化,约束条件包括原材料的库存量、生产线的容量和物流的时间窗口等。

通过使用线性规划算法,可以得到最佳的生产计划和调度方案,使得企业的生产效率和盈利能力得到提升。

2. 市场营销和广告投放线性规划算法可以帮助企业制定最佳的市场营销和广告投放方案。

例如,在一家快递公司中,需要制定如何调整价格策略、开拓市场份额、投放广告等方案,以达到最大化利润或最小化成本的目标。

对于这类问题,可以将目标函数设置为销售额最大化或成本最小化,约束条件包括市场份额的限制、广告投放预算的限制等。

通过使用线性规划算法,可以得到最佳的市场营销和广告投放方案,提高企业的营销效率和市场竞争力。

3. 交通运输和物流配送线性规划算法可以用于交通运输和物流配送领域。

例如,在一个物流中心中,需要规划配送路线和运输车辆的分配,以最小化交通堵塞和物流成本的影响。

对于这类问题,可以将目标函数设置为运输成本最小化或配送效率最大化,约束条件包括车辆数量的限制、货物配送时间的限制等。

通过使用线性规划算法,可以得到最佳的路线规划和车辆分配方案,提高企业的配送效率和物流运转效率。

4. 金融投资和风险管理线性规划算法可以用于金融投资和风险管理领域。

例如,在一个投资银行中,需要制定最佳的投资组合和股票交易策略,以最大化收益和降低风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x1 + x2 + x3 + x1 + 2x2 + 2x3 + 3x1 + x2 + 2x3 x1,x2,x3,x4,x5 ≥
x4 + x5 x4 ≥ 100 2x4 + x5 ≥ 100 + 3x5 ≥ 100
0
10
3 套裁下料问题
• 用“管理运筹学”软件计算得出最优下料方案:按方案1下 料30根;按方案2下料10根;按方案4下料50根。 即 x1=30; x2=10; x3=0; x4=50; x5=0; 只需90根原材料就可制造出100套钢架。 • 注意:在建立此类型数学模型时,约束条件用大于等于号 比用等于号要好。因为有时在套用一些下料方案时可能会 多出一根某种规格的圆钢,但它可能是最优方案。如果用 等于号,这一方案就不是可行解了。
表 4 --6 表 4 7 ---
标准汽油 1 2 3 4
辛烷数 107.5 93.0 87.0 108.0
蒸汽压力(g/cm2) 蒸汽压力 7.11×10-2 × 11.38 ×10-2 5.69×10-2 × 28.45 ×10-2 蒸汽压力(g/cm2) 蒸汽压力
库存量(L) 库存量 380000 265200 408100 130100 产量需求
铸 造 工 时 (小 时 /件 ) 机 加 工 工 时 (小 时 /件 ) 装 配 工 时 (小 时 /件 ) 自 产 铸 件 成 本 (元 /件 ) 外 协 铸 件 成 本 (元 /件 ) 机 加 工 成 本 (元 /件 ) 装 配 成 本 (元 /件 ) 产 品 售 价 (元 /件 ) 甲 5 6 3 3 5 2 3 23 乙 10 4 2 5 6 1 2 18 丙 7 8 2 4 -3 2 16 资源限制 8000 12000 10000
2.9 m 2.1 m 1.5 m 合计 剩余料头 方案 1 方案 2 方案 3 方案 4 方案 5 1 2 0 1 0 0 0 2 2 1 3 1 2 0 3 7.4 7.3 7.2 7.1 6.6 0 0.1 0.2 0.3 0.8
设 x1,x2,x3,x4,x5 分别为上面 5 种方案下料的原材料根数。这样我们 建立如下的数学模型。 目标函数: Min 约束条件: s.t.
线性规划应用举例 • §1 • §2 • §3 • §4 • §5 人力资源分配的问题 生产计划的问题 套裁下料问题 配料问题 投资问题
1
§1 人力资源分配的问题
例1.一家中型的百货商场,它对售货员的需求经过统 计分析如下表所示。为了保证售货人员充分休息,售货人 员每周工作5天,休息两天,并要求休息的两天是连续的。 问应该如何安排售货人员的作息,既满足工作需要,又使 配备的售货人员的人数最少?
14
4 配料问题
例6.(续)
目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 约束条件: s.t. 0.5 x11-0.5 x12 -0.5 x13 ≥ 0 (原材料1不少于50%) -0.25x11+0.75x12 -0.25x13 ≤ 0 (原材料2不超过25%) 0.75x21-0.25x22 -0.25x23 ≥ 0 (原材料1不少于25%) -0.5 x21+0.5 x22 -0.5 x23 ≤ 0 (原材料2不超过50%)
5x1 + 10x2 + 7x3 ≤ 8000 6x1 + 3x1 +
x1,x2,x3,x4,x5 ≥ 0
6
2 生产计划的问题
例4.永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两 道工序加工。设有两种规格的设备A1、A2能完成 A 工序; 有三种规格的设备B1、B2、B3能完成 B 工序。Ⅰ可在A、B 的任何规格的设备上加工;Ⅱ 可在任意规格的A设备上加 工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设 备上加工。数据如表。问:为使该厂获得最大利润,应如 何制定产品加工方案?
飞机汽油 辛烷数 1 2 不小于91 不小于 不小于100 不小于
不大于9.96 ×10-2 越多越好 不大于 不大于9.96 ×10-2 不少于 不少于250000 不大于
16
4 配料问题
解:设xij为飞机汽油i中所用标准汽油j的数量(L)。 目标函数为飞机汽油1的总产量: x11 + x12 + x13 + x14 库存量约束为: x11
8
2 生产计划的问题
目标函数为计算利润最大化,利润的计算公式为: 利润 = [(销售单价 - 原料单价)* 产品件数]之和 (每台时的设备费用*设备实际使用的总台时数)之和。 这样得到目标函数:
Max(1.25-0.25)(x111+x112)+(2-0.35)x221+(2.80-0.5)x312 – (2(2 300/6000(5x111+10x211)-321/10000(7x112+9x212+12x312)250/4000(6x121+8x221)-783/7000(4x122+11x322)-200/4000(7x123).
设备 A1 A2 B1 B2 B3 原 料 ( 元 /件 ) 售 价 ( 元 /件 ) Ⅰ 5 7 6 4 7 0.25 1.25 产品单件工时 Ⅱ Ⅲ 10 9 12 8 11 0.35 2.00 0.50 2.80
7
设备的 有效台时 6000 10000 4000 7000 4000
满负荷时的 设备费用 300 321 250 783 200
12
4 配料问题
• 利润=总收入-总成本=甲乙丙三种产品的销售单价*产品数量-甲乙丙使 用的原料单价*原料数量,故有 目标函数
Байду номын сангаас
Max 50(x11+x12+x13)+35(x21+x22+x23)+25(x31+x32+x33)65(x11+x21+x31)-25(x12+x22+x32)-35(x13+x23+x33) = -15x11+25x12+15x13-30x21+10x22-40x31-10x33
2 生产计划的问题
解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的 数量。建立如下的数学模型: s.t. 5x111 + 10x211 7x112 + 6x121 + 4x122 7x123 8x221 ≤ 6000 ( 设备 A1 ) ( 设备 A2 ) ( 设备 B1 ) ( 设备 B2 ) ( 设备 B3 ) 9x212 + 12x312 ≤ 10000 ≤ 4000 + 11x322 ≤ 7000 ≤ 4000
4
2 生产计划的问题
解:设 x1,x2,x3 分别为三道工序都由本公司加工的甲、乙、丙三种 产品的件数,x4,x5 分别为由外协铸造再由本公司加工和装配的甲、乙两 种产品的件数。 求 xi 的利润:利润 = 售价 - 各成本之和 产品甲全部自制的利润 产品甲铸造外协,其余自制的利润 产品乙全部自制的利润 产品乙铸造外协,其余自制的利润 产品丙的利润 =23-(3+2+3)=15 =23-(5+2+3)=13 =18-(5+1+2)=10 =18-(6+1+2)=9 =16-(4+3+2)=7
x11+ x12+ x13+
x21 + x22 + x23 +
x31 ≤ 100 x32 ≤ 100 x33 ≤ 60
(供应量限制) (供应量限制) (供应量限制)
xij ≥ 0 , i = 1,2,3; j = 1,2,3
15
4 配料问题
例7.汽油混合问题。一种汽油的特性可用两种指标描述,用“辛烷数”来 定量描述其点火特性,用“蒸汽压力”来定量描述其挥发性。某炼油厂有 1、2、3、4种标准汽油,其特性和库存量列于表4-6中,将这四种标准汽 油混合,可得到标号为1,2的两种飞机汽油,这两种汽油的性能指标及产 量需求列于表4-7中。问应如何根据库存情况适量混合各种标准汽油,既 满足飞机汽油的性能指标,又使2号汽油满足需求,并使得1号汽油产量最 高?
解:设 xij 表示第 i 种(甲、乙、丙)产品中原料 j 的含量。这样 我们建立数学模型时,要考虑: 对于甲: x11,x12,x13; 对于乙: x21,x22,x23; 对于丙: x31,x32,x33; 对于原料1: x11,x21,x31; 对于原料2: x12,x22,x32; 对于原料3: x13,x23,x33; 目标函数: 利润最大,利润 = 收入 - 原料支出 约束条件: 规格要求 4 个; 供应量限制 3 个。
经整理可得:
Max0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x1210.5x221-0.4475x122-1.2304x322-0.35x123
9
3 套裁下料问题
例5.某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢各 一根。已知原料每根长7.4 m,问:应如何下料,可使所用原料最省? 解: 共可设计下列5 种下料方案,见下表
3
2 生产计划的问题
例3.某公司面临一个是外包协作还是自行生产的问题。 该公司生产甲、乙、丙三种产品,都需要经过铸造、机加 工和装配三个车间。甲、乙两种产品的铸件可以外包协作, 亦可以自行生产,但产品丙必须本厂铸造才能保证质量。 数据如表。问:公司为了获得最大利润,甲、乙、丙三种 产品各生产多少件?甲、乙两种产品的铸造中,由本公司 铸造和由外包协作各应多少件?
相关文档
最新文档