2、负数的大小比较
2、负数比较大小
![2、负数比较大小](https://img.taocdn.com/s3/m/2893d0d0ad51f01dc281f1fa.png)
3 C > -10 C 和
。
。
2、比较大小:
> 0 C 和 -7 C
。
。
< -20 C 和 0 C
。
。
0>负数
3、比较大小: 。 。 -5 C 和 -27 C >
< -23 C 和 -4 C
。
。
如何在一条直线上表示出他们 运动后的情况?
以大树为起点,向东为正,向西为负。
· -4
-3
·· -2 -1
完成课本第9页3、4题。
填一填:如果+15分表示比平均分 高15分,那么比平均分低8分应记 作 -8分 ;如果王明的数学成绩比平均 +27分 分高27分,应记作 ,张红的数学 成绩比平均分低3分,应记作-3分。
作业: 1、比较大小 -6O0.6 -9O9 3 O- 3 8 8 0O-2 - 1O - 3 5 5
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
.
周 四
.
周周周 一六三
. . .
周 二
.
周 日
.
0 1
2
3
说一说这一周每天最低气温的大小情况。
-8<-6<-4<-3<-2<0<2
在数轴上,从左到右的顺序就是 数从小到大的顺序。
完成课本第7页第一自然段。
完成课本第7页做一做第1—3题。
你对正数和负数有什么认识?
正数和负数是具有相反意义的两个量。
正数比零大,前面的“+”号可以省略不写。 负数比零小,前面的“-”号不能省略。
零既不是正数,也不是负数。 正数 数 0 负数
-2℃与-27℃哪个温度更 冷?说明了什么?
-2 C > -27 C
北师大版小学数学四年级上册《正负数的比较大小》知识点讲解突破练习
![北师大版小学数学四年级上册《正负数的比较大小》知识点讲解突破练习](https://img.taocdn.com/s3/m/d1f9e91f02d8ce2f0066f5335a8102d276a261dc.png)
正负数的比较大小
知识精讲
正负数大小比较的方法
1. 0大于所有的负数,小于所有的正数,即负数<0<正数,如0>-4,0<2。
2.所有的正数都大于负数,如5>-5,2.3>-5.4。
3.负数与负数比较大小,负号后面的数字大的数反而小,如-7>-8,-50<-15。
名师点睛
借助模型比较正负数的大小
可以借助数线或温度计进行比较。
数线上,0左边的数都是负数,0右边的数都是正数,从左往右,数越来越大。
温度计上,0下面的数都是负数,0上面的数都是正数,从下往上,数越来越大。
典型例题
例1:在〇里填上“>”“<”或“=”。
3〇-3 -4〇0 -6〇-6.5
解析:因为所有的正数都大于负数,所以3>-3;
因为所有的负数都小于0,所以-4<0;
因为两个负数相比,负号后面的数字大的数反而小,所以-6>-6.5。
答案:> < >
例2:把下列城市的气温从高到低排列出来。
解析:把气温从高到低排列,也就是将各个城市对应的正负数按从大到小的顺序排列。
可以在温度计上分别标出这4个城市的气温(如下图),根据温度计上从下往上温度越来越高,即可得出不同城市气温的高低情况。
答案:上海5℃>青岛0℃>天津-2℃>长春-8℃。
数字的正负数比较
![数字的正负数比较](https://img.taocdn.com/s3/m/2b70cf2f001ca300a6c30c22590102020740f2db.png)
数字的正负数比较在数学中,有一个非常常见的比较概念,那就是数字的正负数比较。
无论是正数、负数还是零,它们都在我们的生活中扮演着重要的角色。
本文将探讨数字的正负数比较,以及它们在不同情境中的应用。
1. 数字的基本概念数字是我们用来表示数量和进行计算的工具。
它们可以是正数(大于零)、负数(小于零)或零。
正数通常用来表示物品的数量,比如有5个苹果;而负数则表示欠款或债务,比如欠债100元;零则表示没有数量。
2. 正数的比较正数之间的比较很简单,比较的结果取决于它们的大小关系。
例如,比较2和5,我们可以直观地知道5大于2。
更正式地说,如果一个正数比另一个正数更大,则我们可以说前者大于后者。
相反,如果一个正数比另一个正数更小,则我们可以说前者小于后者。
例如,2小于5。
3. 负数的比较负数的比较稍微复杂一些。
负数的大小关系同样遵循正数的比较原则。
尽管负数表示欠款或债务,但我们仍然可以用它们的数量进行比较。
例如,比较-2和-5,我们可以知道-5比-2更小。
同样地,如果一个负数比另一个负数更大,则我们可以说前者小于后者;如果一个负数比另一个负数更小,则我们可以说前者大于后者。
例如,-2大于-5。
4. 正数与负数的比较比较正数和负数时,我们需要比较它们的绝对值。
绝对值是一个数字的非负数表示,即去掉它的正负符号。
例如,比较2和-5时,我们可以将它们的绝对值进行比较,即比较2和5,我们可以得出2小于5。
同样地,如果一个正数的绝对值大于一个负数的绝对值,则我们可以说前者大于后者;如果一个正数的绝对值小于一个负数的绝对值,则我们可以说前者小于后者。
例如,2小于-5。
5. 数字的正负数比较应用数字的正负数比较在我们的日常生活中有广泛的应用。
例如,在银行账户中,我们需要比较存款和债务的数量以确定余额。
如果存款大于债务,则余额为正数;如果存款小于债务,则余额为负数。
在气温的比较中,正负数也起着重要的作用。
比如,如果今天的气温比昨天更高,我们将使用正数表示温度升高的幅度;如果气温比昨天更低,我们将使用负数表示温度下降的幅度。
数字的大小比较
![数字的大小比较](https://img.taocdn.com/s3/m/136d8f6e76232f60ddccda38376baf1ffc4fe312.png)
数字的大小比较在数学中,我们经常需要比较不同数字的大小。
数字的大小顺序可以决定很多事情,比如排名、赛事结果、商品价格等等。
在本文中,我们将探讨数字的大小比较方法,并提供一些实际应用的例子。
一、使用符号比较数字大小常用的方法是使用大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号来对比数字的大小。
这些符号具体的意义如下:1. 大于:当一个数字大于另一个数字时,使用大于符号(>)表示。
例如,对于数字4和数字2,可以表示为4 > 2。
2. 小于:当一个数字小于另一个数字时,使用小于符号(<)表示。
例如,对于数字2和数字4,可以表示为2 < 4。
3. 大于等于:当一个数字大于或等于另一个数字时,使用大于等于符号(≥)表示。
例如,对于数字4和数字4,可以表示为4 ≥ 4。
4. 小于等于:当一个数字小于或等于另一个数字时,使用小于等于符号(≤)表示。
例如,对于数字2和数字4,可以表示为2 ≤ 4。
通过使用这些符号,我们可以简单明了地比较数字的大小。
在实际应用中,比较数字大小经常出现在排名、分数、预算等场景中。
二、实际应用举例以下是一些实际应用中常见的数字大小比较场景:1. 排名比较:在体育比赛中,比赛结果常用数字表示。
例如,如果A队得到了10分,而B队得到了8分,则可以表示为10 > 8,即A队的成绩大于B队的成绩。
2. 商品价格比较:在购物过程中,我们常常需要比较不同商品的价格。
例如,如果商品A的价格为100元,而商品B的价格为80元,则可以表示为100 > 80,即商品A的价格高于商品B的价格。
3. 温度比较:在天气预报中,我们经常看到不同地区的气温对比。
例如,如果城市X的温度为30摄氏度,而城市Y的温度为25摄氏度,则可以表示为30 > 25,即城市X的温度高于城市Y的温度。
这些实际应用的例子展示了数字大小比较的重要性和广泛性。
无论是在日常生活还是学术研究中,对数字大小比较的准确理解和运用都是必需的。
正负数大小的比较参考答案
![正负数大小的比较参考答案](https://img.taocdn.com/s3/m/8e2ae4a6bd64783e08122b1d.png)
正负数大小的比较参考答案典题探究一.基本知识点:二.解题方法:例1.所有的负数都小于0.正确.考点:正、负数大小的比较.专题:压轴题.分析:我们知道,在数轴上,0是正、负数的分界点,负数位于0的左边,正数位于0的右边,在数轴上从左到右的顺序,就是数从小到大的顺序,由此可知,正数大于0和一切负数,0大于一切负数.解答:解:正数大于0和一切负数,0大于一切负数,因此题干正确;故答案为:正确点评:本题是考查正、负数的大小比较.正数大于0和一切负数,0大于一切负数.例2.负数都比正数大.×.(判断对错)考点:正、负数大小的比较.专题:运算顺序及法则.分析:根据正数和负数的定义判断即可.解答:解:根据正数和负数的定义,可知负数都比正数小,因此所有负数都比正数大这句话不对.故答案为:×.点评:此题考查了学生对正数和负数的定义及大小关系掌握的熟练程度.例3.在中,最大的数是 1.5,最小的数是.考点:正、负数大小的比较.专题:数的认识.分析:我们知道正数大于0和负数,0大于负数,这组数中,+1和1.5是正数,1.5大于+1;剩下的三个负数,在数轴上﹣3在最左边.据此可判断出大小.解答:解:正数大于0和负数,+1和1.5是正数,1.5大于+1;剩下的三个负数,在数轴上﹣3在最左边.所以最大的数是1.5,最小的数是.故答案为:1.5,.点评:本题主要是考查正、负数的大小比较,在数轴上,0右边的数都是正数,0左边的数都是负数.例4.将5.6、﹣5.6、、56.%、5.66按从大到小的顺序排列是>5.66>5.6>56.%>﹣5.6.考点:正、负数大小的比较.专题:数的认识.分析:小数大小的比较,先看小数的整数部分,整数部分大的这个数就大,整数部分相同的就看十分位,十分位大的这个数就大,十分位相同的,再看百分位,百分位大的这个数就大…;首先把、56.%分别化成小数,然后根据正、负数以及小数大小比较的方法排序即可.解答:解:≈5.667,56.%≈0.5656,因为5.667>5.66>5.6>0.5656>﹣5.6,所以>5.66>5.6>56.%>﹣5.6.故答案为:>5.66>5.6>56.%>﹣5.6.点评:此题主要考查了正、负数以及小数比较大小的方法的应用.演练方阵A档(巩固专练)1.下面各数中,小于﹣4的是()A.1B.0C.﹣3 D.﹣5考点:正、负数大小的比较.分析:画出数轴,在数轴上标出各数,根据“在数轴上,从左到右的顺序,就是数从小到大的顺序”;看﹣4的左边是哪个数,那个数就比﹣4小.解答:解:如图:因为﹣3、0、1都在﹣4的右边,所以它们都比﹣4大,只有﹣5在﹣4的左边,所以小于﹣4的是﹣5;故选:D.点评:此题考查正、负数的大小比较,利用数轴进行比较,比较直观、易懂.2.﹣5℃比0℃()A.高5℃B.低5℃C.低10%考点:正、负数大小的比较.专题:运算顺序及法则.分析:把温度计看作一个数轴,﹣5℃在0℃的左边(或下边),距0℃5格,相差5℃,就是低5℃.解答:解:﹣5℃比0℃低5℃;故选:B点评:本题主要是考查正、负数的大小比较,在数轴上从左到右的方向就是数从小到大的顺序.3.下列各数比﹣小的数是()A.﹣B.0C.﹣D.﹣(﹣)考点:正、负数大小的比较.专题:压轴题.分析:在数轴上,负数在原点左边,距离原点越大,负数越小.由此得解.解答:解:A、﹣在原点左边,距离原点比﹣距离原点小,因此﹣>﹣;B、0是原点,大于所有负数;C、﹣在原点的左边,距离原点,比﹣距离原点大,因此﹣<﹣;D、﹣(﹣)=在原点右边,大于0,同样大于一切负数.故选:C.点评:此题利用数轴进行正负数大小的比较,数轴上,从左到右数字依次增大.4.下面是我国四个城市今年1月份某天的最低气温情况统计表:城市上海天津西安武汉最低气温0℃﹣10℃﹣6℃﹣2℃其中最冷的城市是()A.上海B.天津C.西安D.武汉考点:正、负数大小的比较.专题:计算题.分析:根据有理数的大小比较方法,正数大于负数,0大于负数,两个负数作比较,绝对值大的反而小.得出气温最低的城市即可.解答:解:0>﹣2>﹣6>﹣10,所以最冷的城市是天津,故答案为:B.点评:此题比较简单,考查的是有理数比较大小的方法,解答此题的关键是熟知以下知识:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数相比较,绝对值大的反而小.5.在下列各个温度中,最接近0℃的是()A.+2℃B.1℃C.﹣3℃D.﹣0.5℃考点:正、负数大小的比较.分析:在数轴表示出这些数,然后找出与0最接近的即可.解答:解:在数轴表示出这些数如下:由数轴可知最接近0的是﹣0.5,即﹣0.5℃最接近0℃;故选:D.点评:本题考查的是与0差别最小的数,用数轴表示出这些数,可以直接看成.6.﹣6一定()0.6.A.大于B.小于C.等于考点:正、负数大小的比较.专题:计算题.分析:正数大于0,负数小于0,正数大于负数.解答:解:﹣6<0.6,故答案为:B.点评:主要考查有理数比较大小的方法的运用.7.下面三个数中最大的一个数是()A.﹣4.05 B.﹣5.40 C.﹣5.04考点:正、负数大小的比较.专题:数的认识.分析:因为在数轴上,从0点开始,越向右数越来越大,越向左数越来越小;进而判断即可.解答:解:在数轴上,﹣5.04在﹣4.05的左边,﹣5.40在﹣5.04的左边,即:﹣5.40<﹣5.04<﹣4.05,所以三个数中最大的一个数是﹣4.05,故选:A.点评:此题考查了正、负数大小比较的方法.8.在﹣10,6,0和﹣1这四个数中,最小的数是()A.﹣10 B.6C.0D.﹣1考点:正、负数大小的比较.专题:数的认识.分析:正数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.解答:解:从小到大排列为:﹣10<﹣1<0<6.故选:A.点评:此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.9.下面各数中,最大的数是()A.﹣9 B.﹣200 C.2.9 D.0考点:正、负数大小的比较.专题:数的认识.分析:本题是对正数、负数和0的大小比较法则的考查,先排除负数,然后比较0和2.9的大小.解答:解:因为正数>一切负数,所以排除A、B,0和2.9显然2.9>0.故选:C.点评:正数、负数和0大小的比较法则为:在数轴上表示的两:数,右边的数总比左边的数大.正数>零,负数<零,正数>一切负数;两个负数,越靠近0,值就越大.10.下列各式中正确的是()A.﹣3.14<﹣πB.﹣1.5>﹣1 C.3.5>﹣3.4 D.考点:正、负数大小的比较.分析:我们知道,正数大于0和一切负数,0大于一切负数;在数轴上,从左到右的顺序就是数从小到大的顺序;要比较两个负数的大小,就是要看这两个数哪个在左,哪个数在右,右边的大于左边的;或者说看哪个数距离0点远,距离0点越远,这个数越小;或者说去掉负号大的数,添上负号反而小.据此解答.解答:解:由分析可得,四个选项中正确的是3.5>﹣3.4;故选:C.点评:本题主要是考查正、负数的大小比较,比较两个负数的大小容易错.B档(提升精练)1.﹣a和a(a>0),比较﹣a()a.A.>B.<C.=D.以上答案均不对考点:正、负数大小的比较.分析:因为a>0,在数轴上位于原点的右边,﹣a则为负数,在数轴上位于原点的左边,由此得解.解答:解:a>0,是正数,﹣a是负数,一切负数小于正数;故选:B.点评:关于正负数大小的比较,借用数轴进行,从左到右依次增大.因此正数大于0,0大于负数.负数距离原点越远值越小.2.如图,如果点A、B、C、D所对应的数为a、b、c、d,则a、b、c、d的大小关系为()A.a<c<d<b B.b<d<a<c C.b<d<c<a D.d<b<c<a考点:正、负数大小的比较.分析:我们知道,在数轴上,从左到右的顺序就是数从小到大的顺序;据此解答.解答:解:在数轴上,从左到右的顺序就是数从小到大的顺序,这四个数在数轴上的排列顺序从左到右是b、d、c、a,所以它们的大小关系就是:b<d<c<a;故选:C.点评:本题主要是考查正、负数的大小比较,在数轴上右边的数大于左边的数.3.下列各数中,大于﹣的负数是()A.﹣B.﹣C.D.0考点:正、负数大小的比较.分析:要比较两个负数的大小,就是要看这两个数哪个在左,哪个数在右,右边的大于左边的.或都说看哪个数距离0点的远,距离0越远,这个数越小.或者说去掉负号大的数,添上负号反而小.解答:解:在数轴上,在的右边,所以大于的负数是;故选:B点评:本题是考查正、负数的大小比较.在数轴上从左到右的顺序就是数从小到大的顺序.4.2008年初,我国南方地区遇到了历史罕见的雪灾,下表是我国几个城市一月份的平均气温,其中气温最低的城市是()城市北京长沙广州宜昌平均气温(单位:℃)﹣2.7 1.8 8.1 0A.宜昌B.长沙C.广州D.北京考点:正、负数大小的比较.专题:小数的认识.分析:四个城市中,求气温最低的城市,即求这四个数中的最小数.根据有理数大小比较的方法可知结果.解答:解:因为﹣2.7<0<1.8<8.1,所以气温最低的城市是北京.故选:D.点评:本题考查了有理数的大小比较在实际生活中的应用,体现了数学的应用价值.将实际问题转化为数学问题是解决问题的关键.5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆D.宁夏考点:正、负数大小的比较.专题:数的认识.分析:正数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.解答:解:﹣8<﹣4<5<6,故选:D.点评:此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.6.﹣()﹣.A.<B.=C.>D.无法确定考点:正、负数大小的比较.专题:运算顺序及法则.分析:正数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.解答:解:﹣<﹣.故选:A.点评:此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.7.如图:,a、b表示两个整数,a、b、c的大小关系是()A.a>b>c B.a<b<c C.c<a<b D.a<c<b考点:正、负数大小的比较.专题:数的认识.分析:数轴是规定了原点(0点)、方向和单位长度的直线,在数轴上,所有负数都在原点的左边,所有正数都在原点的右边,从左向右,数轴上的点表示的数逐渐变大,据此解答即可.解答:解:因为在数轴上,从左向右,数轴上的点表示的数逐渐变大,所以根据图示,可得c<a<b.故选:C.点评:此题主要考查了数轴的特征,以及正、负数的大小比较.8.下列各题中,答案正确的是()A.﹣5>0.1 B.﹣7>﹣2 C.﹣<D.0.6=﹣0.6考点:正、负数大小的比较.专题:数的认识.分析:若是两个负数,先比较绝对值,再比较原数的大小;若是两个正数,绝对值大的数就大;一个正数一个负数,正数大于一切负数,据此解答.解答:解:A、﹣5<0.1,A错误;B、﹣7<﹣2,B错误;C、﹣,C正确;D、0.6>﹣0.6,D错误.故选:C.点评:本题考查有理数的大小比较,有理数的比较方法为:两个负数,绝对值大的反而小;正数大于一切负数;两个正数,绝对值大的数就大.9.比﹣7.1大,而比1小的整数的个数是()A.6B.7C.8D.9考点:正、负数大小的比较.专题:数的认识.分析:比﹣7.1大,而比1小的整数有﹣7、﹣6、﹣5、﹣4、﹣3、﹣2、﹣1、0,一共8个,据此解答即可.解答:解:比﹣7.1大,而比1小的整数有:﹣7、﹣6、﹣5、﹣4、﹣3、﹣2、﹣1、0,一共8个,故选:C.点评:此题主要考查了整数定义与有理数大小比较的应用.10.2009年12月24日我国部分城市的气温北京0℃乌鲁木齐﹣21℃沈阳﹣6℃.()的温度最低.A.北京B.乌鲁木齐C.沈阳考点:正、负数大小的比较.分析:温度以0℃为分界点,0℃以下,数字越大,温度越低.所以﹣21℃<﹣6℃<0℃,故温度最低的是乌鲁木齐.解答:解:因为﹣21℃<﹣6℃<0℃,所以温度最低的是﹣21℃,即乌鲁木齐.故选B.点评:此题考查了正、负数大小的比较方法,结合数轴,或利用负号前面的数字越大,数值反而越小进行解答.C档(跨越导练)1.在﹣6,32,+9,0.2,﹣40,0,﹣2.8中,小于0的数有()个.A.3B.4C.5D.6考点:正、负数大小的比较.专题:数的认识.分析:有理数大小比较法则:正数>0,0>负数,正数>负数.解答:解:32、+9、0.2都大于0,﹣6、﹣40、﹣2.8都小于0.所以在﹣6,32,+9,0.2,﹣40,0,﹣2.8中,小于0的数有3个.故选:A.点评:掌握以下知识点是解题的关键:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大;(2)正数>0,负数<0,正数>负数;(3)两个正数中绝对值大的数大;(4)两个负数中绝对值大的反而小.2.下面温度最低的是()A.﹣3℃B.0℃C.﹣17℃考点:正、负数大小的比较.专题:数的认识.分析:把温度计可以看作一个数轴,在数轴上从左到右的顺序就是数从小到大的顺序,﹣17℃在﹣3℃的左边,因此,﹣17℃<﹣3℃.解答:解:下面温度最低的是﹣17℃;故选:C.点评:本题主要是考查负数的大小比较,最简单的方法是去掉“﹣”大的数反而小.3.下面几种说法,正确的是()A.有的负数大于0B.人的体重与年龄成正比例C.三角形的面积一定,底与高成反比例D.圆锥的体积是圆柱体积的三分之一.考点:正、负数大小的比较;辨识成正比例的量与成反比例的量;圆柱的侧面积、表面积和体积;圆锥的体积.专题:综合题.分析:(1)根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得有的负数大于0不正确.(2)判断两种相关联的量是否成正比例,就看这两种量对应的比值是否一定,如果比值一定,就成正比例,如果比值不一定,就不成正比例.(3)判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.(4)圆柱、圆锥的底面积、高都未知,所以无法比较它们的体积.解答:解:(1)根据正数>0>负数,所以有的负数大于0不正确.(2)一个人的体重与年龄的比值不一定,所以一个人的体重与年龄不成正比例,所以题中说法不正确.(3)根据底×高=三角形的面积×2,可得三角形的面积一定,底与高的乘积一定,所以它们成反比例.(4)圆柱、圆锥的底面积、高都未知,所以无法比较它们的体积.故选:C.点评:此题主要考查了正负数、0的大小比较以及正反比例的运用.4.在数轴上,﹣在﹣的()边.A.左B.右C.无法确定考点:正、负数大小的比较.专题:分数和百分数.分析:不看负号,先比较和的大小,再根据数据大的添上负号反而小,数据小的添上负号反而大,进而根据在数轴上,从左到右的顺序就是数从小到大的顺序得解.解答:解:因为,所以﹣,所以﹣在﹣的左边;故选:A.点评:关键的是先确定这两个负数的大小关系,再根据在数轴上,从左到右的顺序就是数从小到大的顺序得解.5.甲、乙两个冷库,甲冷库的温度是﹣10℃,乙冷库的温度是﹣12℃.()冷库的温度高一些.A.甲B.乙C.无法比较考点:正、负数大小的比较.专题:整数的认识.分析:要求那个冷库的温度高一些,也就是比较﹣10℃和﹣12℃谁大,根据“在数轴上,从左到右的顺序,就是数从小到大的顺序”;因为﹣10在﹣12的右边,所以﹣10>﹣12,进而选择即可.解答:解:如图:在数轴上,因为﹣10在﹣12的右边,所以﹣10℃>﹣12℃;答:甲冷库的温度高一些.故选:A.点评:解决此题也可以利用数字大的添上负号反而小,数字小的添上负号反而大,进而得解.6.在﹣5,﹣0.5,0,﹣0.01这四个数中,最大的负数是()A.﹣5 B.﹣0.5 C.0D.﹣0.01考点:正、负数大小的比较.专题:数的认识.分析:在数轴上,从左向右,数字越来越大,离0越近的负数越大,在上面的四个数中,﹣0.01离0最近,而且是负数,由此得解.解答:解:根据分析可知,离0越近的负数越大,在上面的四个数中,﹣0.01离0最近;所以最大的是负数是﹣0.01;故选:D.点评:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.利用数轴来比较负数的大小.7.﹣9<□<﹣6,□里可以填的数有()个.A.2B.4C.0D.无数考点:正、负数大小的比较.专题:数的认识.分析:﹣9<□<﹣6,□里可以填的整数有﹣8、﹣7,小数有﹣8.1、﹣8.11、﹣8.111、…,﹣7.1、﹣7.11、﹣7.111、…,一共有无数个,因此,□里可以填的数有无数个,据此解答即可.解答:解:﹣9<□<﹣6,□里可以填的整数有﹣8、﹣7,小数有﹣8.1、﹣8.11、﹣8.111、…,﹣7.1、﹣7.11、﹣7.111、…,一共有无数个,因此,□里可以填的数有无数个.故选:D.点评:此题主要考查了正、负数的大小比较,注意要找出满足算式的小数的个数.8.下列几个数:﹣1.5、0、0.5、、+1,按从小到大的顺序排列是()A.0<﹣1.5<<0.5<+1 B.﹣1.5<0<0.5<<+1考点:正、负数大小的比较.专题:数的认识.分析:正数大于0和一切负数,0大于一切负数,正数的大小比较方法同以前学过的数的大小比较方法相同,负数的大小比较方法是去掉“﹣”后大的数反而小,据此选择.解答:解:下列几个数:﹣1.5、0、0.5、、+1,按从小到大的顺序排列是:﹣1.5<0<0.5<<+1.故选:B.点评:此题是考查了正、负数大小比较的方法.值得注意的是,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.9.在﹣4,﹣9,﹣,﹣0.1这些数中,最大的数是()A.﹣4 B.﹣9 C.﹣D.﹣0.1考点:正、负数大小的比较.分析:在负数中,不看负号剩下的部分,数字越大的这个负数越小.解答:解:9>4>0.1>,所以:﹣>﹣0.1>﹣4>﹣9;最大的数是﹣;故答案选:C.点评:负数之间比较大小,去掉负号后越大的数字反而小.10.下列式子中正确的是()A.B.,C.D.考点:正、负数大小的比较;分数大小的比较.专题:分数和百分数.分析:把﹣、﹣3、﹣3化成小数,然后再进行比较,根据绝对值大的反而小,由此选择即可.解答:解:因为﹣=﹣3.75,﹣3=﹣3.875,﹣3=﹣3.79,﹣3.75绝对值是3.75最小,﹣3.79绝对值是3.79第二小,﹣3.875绝对值是3.875最大,即:;故应选:B.点评:本题根据绝对值大的反而由此进行解答即可.。
正数负数大小关系
![正数负数大小关系](https://img.taocdn.com/s3/m/404777d6dbef5ef7ba0d4a7302768e9951e76ea8.png)
正数负数大小关系正数和负数是数学中的基本概念,它们在实际生活和各个领域中都有着广泛的应用。
了解正数和负数的大小关系是我们运用数学知识进行计算和解决问题的重要基础。
本文将详细讨论正数和负数的大小关系,以帮助读者深入理解这个概念。
一、正数和负数的定义及表示方式正数是大于零的数,用正号“+”表示,例如1、2、3等。
负数是小于零的数,用负号“-”表示,例如-1、-2、-3等。
我们通常使用数轴来表示正数和负数,数轴上以原点为起点,向右表示正数,向左表示负数。
二、正数和负数的大小比较1. 正数与正数的比较当两个正数进行比较时,数值较大的正数更大。
例如,比较2和5,显然5大于2,因此5>2。
同理,比较10和100,显然100大于10,因此100>10。
总结起来,正数之间的大小关系遵循数值的大小。
2. 负数与负数的比较与正数相似,负数之间的大小关系也遵循数值的大小规律。
例如,比较-2和-5,显然-2小于-5,因此-2<-5。
同理,比较-10和-100,显然-10小于-100,因此-10<-100。
总结起来,负数之间的大小关系同样遵循数值的大小。
3. 正数和负数的比较正数和负数之间的大小关系可以通过它们在数轴上的位置来判断。
正数位于负数的右侧,数值越大的正数离原点越远,因此正数大于负数。
例如,比较2和-5,我们可以通过数轴发现2在-5的右侧,因此2>-5。
同理,比较10和-100,我们可以发现10在-100的右侧,因此10>-100。
需要注意的是,正数和负数之间的大小关系不仅受数值大小的影响,还受正负号的影响。
在比较正数和负数时,负数的数值可能更大,但由于正数的正号“+”,所以正数仍然大于负数。
例如,比较2和-2,尽管-2的数值比2更大,但由于2是正数,因此2>-2。
三、零与正数、负数的大小关系零是一个特殊的数,既不是正数也不是负数。
在比较大小方面,零与正数、负数存在一些特殊的关系。
人教版数学六年下2、负数的大小比较
![人教版数学六年下2、负数的大小比较](https://img.taocdn.com/s3/m/572a74365a8102d276a22f54.png)
青岛
我向西走2m 我向西走4m
我向东走4m
我向东走3m
以大树为起点,向 。 这样的直线叫数轴 东为正,向西为负。
像这样在直线上表示出正数、 、负数, 像这样在直线上表示出正数、0、负数,
西 -5 -4 -3 -2 -1 0 1 2 3 4
东
5
直线上0右边的数是正 数,左边的数是负数。
西
东
-5
4、正数都大于零; 正数都大于零; 负数都小于零; 负数都小于零; 负数都小于正数。 负数都小于正数。 正数 > 0 > 负数
1.数轴上0右边的数是正数, 左边的数是负数。
2.在数轴上,从左到右的顺序 就是数从小到大的顺序。
1.正数>0;负数<0;正数>负数 正数> 负数 负数< 正数 正数> 正数 2.负号后面的数大,这个负数就小; 负号后面的数大,这个负数就小; 负号后面的数大 负号后面的数小, 负号后面的数小,这个负数就大
在数轴上表示出1.5和 在数轴上表示出 和-1.5,如果你想 如果你想 从起点分别到1.5和 从起点分别到 和-1.5处,应如何 处 运动? 运动? -1.5 1.5 -5 -4 -3 -2 -1 0 1 2 3 4 5
请看未来一周 的天气情况。
把未来一周每 天的最低气温 在数轴上表示 出来 ,并比 较它们的大小。 较它们的大小。
周五 周四 周一 周六 周三 周二 周日
-8 -7 -6 -5 -4 -3 -2 -1 0
1
2
-5
-4
-3
-2
-1
0
1
2
3
4
5
所有的负数都在0 所有的负数都在0的(左 )边,也就是负数 都比0 ),而正数都比 而正数都比0 ).负数 都比0( 小),而正数都比0(大 ).负数 都比正数( 都比正数( 小).
新人教版六年级下册数学教案:比较负数的大小3篇
![新人教版六年级下册数学教案:比较负数的大小3篇](https://img.taocdn.com/s3/m/bef84f54a66e58fafab069dc5022aaea998f411b.png)
新人教版六年级下册数学教案:比较负数的大小新人教版六年级下册数学教案:比较负数的大小精选3篇(一)教学目标:1. 理解负数的概念,掌握负数的大小比较方法;2. 能够用不等式比较法进行负数的大小比较;3. 通过练习,提高对负数大小比较的能力。
教学准备:1. 教学课件或黑板、白板;2. 教学素材(包括正负数的数轴、练习题等);3. 学生练习册。
教学过程:Step 1:引入负数的概念(5分钟)1. 要求学生回顾正数的概念,让学生举例说明正数表示什么。
2. 对比正数,引入负数的概念,说明负数表示什么。
3. 通过展示数轴,让学生观察正数和负数在数轴上的位置关系。
Step 2:负数的大小比较方法(10分钟)1. 引导学生思考,如何比较两个负数的大小。
2. 提示学生,可以用不等式比较法进行负数的大小比较。
3. 通过例题演示,让学生掌握负数大小比较的方法。
Step 3:练习负数的大小比较(15分钟)1. 发放练习册,让学生完成相关练习题。
2. 监督学生进行练习,及时给予指导和帮助。
3. 随堂批改,让学生自行订正答案。
Step 4:小结(5分钟)1. 总结负数的概念和大小比较方法。
2. 强调练习的重要性,提醒学生多做练习来巩固所学内容。
Step 5:拓展练习(5分钟)1. 提供一些拓展练习题,让学生进一步巩固和运用负数大小比较的能力。
2. 鼓励学生自主思考和解决问题。
Step 6:作业布置(5分钟)1. 布置相关作业,要求学生自主完成。
2. 提醒学生注意规范书写和认真检查。
教学反思:本节课通过引入负数的概念,结合数轴、不等式比较法等方式,帮助学生理解负数的大小比较方法。
通过练习负数的大小比较题目,提高学生对负数大小比较的能力。
同时,通过拓展练习和解决问题的方式,培养学生的思维能力和解决问题的能力。
新人教版六年级下册数学教案:比较负数的大小精选3篇(二)教学目标:1. 了解负数的概念和表示方法。
2. 掌握负数的加法、减法的计算方法。
负分数大小比较法则
![负分数大小比较法则](https://img.taocdn.com/s3/m/27c458670622192e453610661ed9ad51f11d5442.png)
负分数大小比较法则负数是数学中的一个重要概念,它与正数一样,能够用来表示数量或数值大小。
然而,负数却具有特殊的性质,也就是负分数大小比较法则。
在本文中,我将详细介绍负分数大小比较法则,并探讨其在实际生活中的应用。
我们来回顾一下负数的定义。
负数是小于零的数,它在数轴上位于原点的左侧。
与正数相比,负数具有相反的数值,即它们的绝对值相等,但符号不同。
例如,-3和3是一对相反数,它们的绝对值都是3,但一个是正数,一个是负数。
在进行负数大小比较时,我们需要遵循以下几个规则:1. 绝对值比较:首先比较两个负数的绝对值大小。
绝对值较大的负数表示的数量更多。
例如,-5的绝对值大于-3的绝对值,因此-5表示的数量比-3多。
2. 符号比较:如果两个负数的绝对值相等,那么我们需要比较它们的符号。
正号表示正数,负号表示负数。
例如,-2和-4的绝对值都是2,但-2的符号是负号,-4的符号是负号,所以-2表示的数量比-4多。
3. 负数比较:如果两个负数的绝对值和符号都相等,那么我们需要比较它们的位置。
在数轴上,离原点越远的负数表示的数量越多。
例如,-7和-9的绝对值都是7,符号都是负号,但-7离原点更近,表示的数量比-9多。
现在,让我们来看一些负数大小比较的实际应用。
1. 温度比较:在气象学中,负数常常用来表示温度。
例如,-5°C 表示的温度比-2°C更低,因为-5的绝对值大于-2的绝对值。
2. 负债比较:在财务管理中,负数用来表示负债。
例如,某人的负债是-5000元,而另一个人的负债是-3000元,那么前者的负债更多,因为-5000表示的数量比-3000多。
3. 海拔比较:在地理学中,负数可以用来表示海拔。
例如,某地的海拔是-100米,而另一个地方的海拔是-50米,那么前者的海拔更低,因为-100离海平面更近。
4. 深度比较:在水下探测中,负数常常用来表示深度。
例如,某个湖泊的深度是-10米,而另一个湖泊的深度是-5米,那么前者的深度更大,因为-10表示的深度比-5大。
杂谈初中比较负数大小的三种方法
![杂谈初中比较负数大小的三种方法](https://img.taocdn.com/s3/m/56034d18bed5b9f3f90f1c34.png)
杂谈初中比较负数大小的三种方法作者:任飞飞来源:《读写算·教研版》2014年第20期摘要:比较两个数的大小从小学,初中,高中甚至大学有各种各样的方法。
我们学过的数也从小学学的自然数扩充到初中的有理数,无理数,实数,再到高中学的复数。
站在初中知识的舞台上,我们会发现:比较两数大小的核心是,比较两负数的大小。
本文介绍三种比较负数大小的方法,并分别从学生和老师的角度阐述三种比较方法的特点与差异。
关键词:负数大小;数轴;绝对值;作差中图分类号:G643 文献标识码:B 文章编号:1002-7661(2014)20-082-02整个初等数学的学习过程中,比较两个数的大小有六种方法。
《中学生数理化中》有一篇题为《比较负数大小的6绝招》中这样介绍道:第一招:利用法则比较;第二招:利用数轴比较;第三招:利用求差法比较;第四招:利用球商法比较;第五招:利用倒数比较;第六招:利用同分子(同分母)比较。
学生进入初中阶段,在学习北师大版七年级数学上册第二章教材学习有理数之后,比较两个数的大小就重点放在比较两个负数的大小。
纵览整个初中数学的知识内容,我总结出比较两个负数的大小最常用以下3种方法:(1).借助数轴比较(2).利用绝对值比较(3)通过有理数减法法则进行比较。
下面本文将重点从3种方法的特点、学生接受的难易程度、对老师教学的启示等三个方面进行简单的剖析与阐述。
一、上述3种方法的特点任何事情都有其两面性,这三种方法在比较两个负数大小时也不例外,同样有各自的优缺点。
下面具体来看看。
1、借助数轴进行大小比较此法的思路非常简单:画数轴,在数轴上标出所要比较的数,然后根据数轴上的数右边的总是大于左边的数给出结果。
这种方法更适合的是三个后三个以上的负有理数比较大小。
也就是所要比较的数越多,用此法就越值当。
可是,如果面对的是刚刚从小学升入初中的学生。
他们刚刚接触数轴,在数轴上正确的标出一些有理数对他们来说是有一定难度的。
初中数学 有理数的大小比较规则是什么
![初中数学 有理数的大小比较规则是什么](https://img.taocdn.com/s3/m/a9325ae2ac51f01dc281e53a580216fc700a53de.png)
初中数学有理数的大小比较规则是什么在初中数学中,有理数的大小比较规则是判断两个有理数的大小关系。
有理数的大小比较涉及正数、负数、零以及小数等不同形式的数。
下面将分别介绍这些情况下的大小比较规则。
一、正数的大小比较规则1. 同符号的正数比较大小:绝对值大的正数更大。
例如,3和5比较,5大于3。
2. 不同符号的正数比较大小:正数大于负数。
例如,3和-5比较,3大于-5。
二、负数的大小比较规则1. 同符号的负数比较大小:绝对值大的负数更小。
例如,-3和-5比较,-5小于-3。
2. 不同符号的负数比较大小:负数小于正数。
例如,-3和5比较,-3小于5。
三、正数和负数的大小比较规则正数大于负数,负数小于正数。
例如,3和-5比较,3大于-5;-3和5比较,-3小于5。
四、零与其他数的大小比较规则1. 正数大于零。
例如,3大于0。
2. 负数小于零。
例如,-3小于0。
五、小数的大小比较规则小数的大小比较与整数的大小比较规则类似,比较小数的关键在于比较小数点后面的数位。
1. 小数位数相同的情况:从左到右逐位比较,数位大的数更大。
例如,0.35和0.25比较,0.35大于0.25。
2. 小数位数不同的情况:先将小数位数补齐,然后按照上述规则进行比较。
例如,0.35和0.025比较,先将0.025补齐为0.0250,然后比较0.35和0.0250,0.35大于0.0250。
需要注意的是,当小数位数很多时,比较大小时可能需要进行近似计算。
综上所述,有理数的大小比较规则根据正数、负数、零以及小数的不同情况来判断大小关系。
学生需要掌握这些规则,以便正确比较有理数的大小,解决实际问题。
正负数大小的比较参考答案
![正负数大小的比较参考答案](https://img.taocdn.com/s3/m/b04f78c2a8956bec0875e332.png)
正负数大小的比较参考答案典题探究例1.所有的负数都小于0.正确.考点:正、负数大小的比较.专题:压轴题.分析:我们知道,在数轴上,0是正、负数的分界点,负数位于0的左边,正数位于0的右边,在数轴上从左到右的顺序,就是数从小到大的顺序,由此可知,正数大于0和一切负数,0大于一切负数.解答:解:正数大于0和一切负数,0大于一切负数,因此题干正确;故答案为:正确点评:本题是考查正、负数的大小比较.正数大于0和一切负数,0大于一切负数.例2.负数都比正数大.×.(判断对错)考点:正、负数大小的比较.专题:运算顺序及法则.分析:根据正数和负数的定义判断即可.解答:解:根据正数和负数的定义,可知负数都比正数小,因此所有负数都比正数大这句话不对.故答案为:×.点评:此题考查了学生对正数和负数的定义及大小关系掌握的熟练程度.例3.在中,最大的数是 1.5,最小的数是.考点:正、负数大小的比较.专题:数的认识.分析:我们知道正数大于0和负数,0大于负数,这组数中,+1和1.5是正数,1.5大于+1;剩下的三个负数,在数轴上﹣3在最左边.据此可判断出大小.解答:解:正数大于0和负数,+1和1.5是正数,1.5大于+1;剩下的三个负数,在数轴上﹣3在最左边.所以最大的数是1.5,最小的数是.故答案为:1.5,.点评:本题主要是考查正、负数的大小比较,在数轴上,0右边的数都是正数,0左边的数都是负数.例4.将5.6、﹣5.6、、56.%、5.66按从大到小的顺序排列是>5.66>5.6>56.%>﹣5.6.考点:正、负数大小的比较.专题:数的认识.分析:小数大小的比较,先看小数的整数部分,整数部分大的这个数就大,整数部分相同的就看十分位,十分位大的这个数就大,十分位相同的,再看百分位,百分位大的这个数就大…;首先把、56.%分别化成小数,然后根据正、负数以及小数大小比较的方法排序即可.解答:解:≈5.667,56.%≈0.5656,因为5.667>5.66>5.6>0.5656>﹣5.6,所以>5.66>5.6>56.%>﹣5.6.故答案为:>5.66>5.6>56.%>﹣5.6.点评:此题主要考查了正、负数以及小数比较大小的方法的应用.演练方阵A档(巩固专练)1.下面各数中,小于﹣4的是()A.1B.0C.﹣3 D.﹣5考点:正、负数大小的比较.分析:画出数轴,在数轴上标出各数,根据“在数轴上,从左到右的顺序,就是数从小到大的顺序”;看﹣4的左边是哪个数,那个数就比﹣4小.解答:解:如图:因为﹣3、0、1都在﹣4的右边,所以它们都比﹣4大,只有﹣5在﹣4的左边,所以小于﹣4的是﹣5;故选:D.点评:此题考查正、负数的大小比较,利用数轴进行比较,比较直观、易懂.2.﹣5℃比0℃()A.高5℃B.低5℃C.低10%考点:正、负数大小的比较.专题:运算顺序及法则.分析:把温度计看作一个数轴,﹣5℃在0℃的左边(或下边),距0℃5格,相差5℃,就是低5℃.解答:解:﹣5℃比0℃低5℃;故选:B点评:本题主要是考查正、负数的大小比较,在数轴上从左到右的方向就是数从小到大的顺序.3.下列各数比﹣小的数是()A.﹣B.0C.﹣D.﹣(﹣)考点:正、负数大小的比较.专题:压轴题.分析:在数轴上,负数在原点左边,距离原点越大,负数越小.由此得解.解答:解:A、﹣在原点左边,距离原点比﹣距离原点小,因此﹣>﹣;B、0是原点,大于所有负数;C、﹣在原点的左边,距离原点,比﹣距离原点大,因此﹣<﹣;D、﹣(﹣)=在原点右边,大于0,同样大于一切负数.故选:C.点评:此题利用数轴进行正负数大小的比较,数轴上,从左到右数字依次增大.4.下面是我国四个城市今年1月份某天的最低气温情况统计表:城市上海天津西安武汉最低气温0℃﹣10℃﹣6℃﹣2℃其中最冷的城市是()A.上海B.天津C.西安D.武汉考点:正、负数大小的比较.专题:计算题.分析:根据有理数的大小比较方法,正数大于负数,0大于负数,两个负数作比较,绝对值大的反而小.得出气温最低的城市即可.解答:解:0>﹣2>﹣6>﹣10,所以最冷的城市是天津,故答案为:B.点评:此题比较简单,考查的是有理数比较大小的方法,解答此题的关键是熟知以下知识:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数相比较,绝对值大的反而小.5.在下列各个温度中,最接近0℃的是()A.+2℃B.1℃C.﹣3℃D.﹣0.5℃考点:正、负数大小的比较.分析:在数轴表示出这些数,然后找出与0最接近的即可.解答:解:在数轴表示出这些数如下:由数轴可知最接近0的是﹣0.5,即﹣0.5℃最接近0℃;故选:D.点评:本题考查的是与0差别最小的数,用数轴表示出这些数,可以直接看成.6.﹣6一定()0.6.A.大于B.小于C.等于考点:正、负数大小的比较.专题:计算题.分析:正数大于0,负数小于0,正数大于负数.解答:解:﹣6<0.6,故答案为:B.点评:主要考查有理数比较大小的方法的运用.7.下面三个数中最大的一个数是()A.﹣4.05 B.﹣5.40 C.﹣5.04考点:正、负数大小的比较.专题:数的认识.分析:因为在数轴上,从0点开始,越向右数越来越大,越向左数越来越小;进而判断即可.解答:解:在数轴上,﹣5.04在﹣4.05的左边,﹣5.40在﹣5.04的左边,即:﹣5.40<﹣5.04<﹣4.05,所以三个数中最大的一个数是﹣4.05,故选:A.点评:此题考查了正、负数大小比较的方法.8.在﹣10,6,0和﹣1这四个数中,最小的数是()A.﹣10 B.6C.0D.﹣1考点:正、负数大小的比较.专题:数的认识.分析:正数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.解答:解:从小到大排列为:﹣10<﹣1<0<6.故选:A.点评:此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.9.下面各数中,最大的数是()A.﹣9 B.﹣200 C.2.9 D.0考点:正、负数大小的比较.专题:数的认识.分析:本题是对正数、负数和0的大小比较法则的考查,先排除负数,然后比较0和2.9的大小.解答:解:因为正数>一切负数,所以排除A、B,0和2.9显然2.9>0.故选:C.点评:正数、负数和0大小的比较法则为:在数轴上表示的两:数,右边的数总比左边的数大.正数>零,负数<零,正数>一切负数;两个负数,越靠近0,值就越大.10.下列各式中正确的是()A.﹣3.14<﹣πB.﹣1.5>﹣1 C.3.5>﹣3.4 D.考点:正、负数大小的比较.分析:我们知道,正数大于0和一切负数,0大于一切负数;在数轴上,从左到右的顺序就是数从小到大的顺序;要比较两个负数的大小,就是要看这两个数哪个在左,哪个数在右,右边的大于左边的;或者说看哪个数距离0点远,距离0点越远,这个数越小;或者说去掉负号大的数,添上负号反而小.据此解答.解答:解:由分析可得,四个选项中正确的是3.5>﹣3.4;故选:C.点评:本题主要是考查正、负数的大小比较,比较两个负数的大小容易错.B档(提升精练)1.﹣a和a(a>0),比较﹣a()a.A.>B.<C.=D.以上答案均不对考点:正、负数大小的比较.分析:因为a>0,在数轴上位于原点的右边,﹣a则为负数,在数轴上位于原点的左边,由此得解.解答:解:a>0,是正数,﹣a是负数,一切负数小于正数;故选:B.点评:关于正负数大小的比较,借用数轴进行,从左到右依次增大.因此正数大于0,0大于负数.负数距离原点越远值越小.2.如图,如果点A、B、C、D所对应的数为a、b、c、d,则a、b、c、d的大小关系为()A.a<c<d<b B.b<d<a<c C.b<d<c<a D.d<b<c<a考点:正、负数大小的比较.分析:我们知道,在数轴上,从左到右的顺序就是数从小到大的顺序;据此解答.解答:解:在数轴上,从左到右的顺序就是数从小到大的顺序,这四个数在数轴上的排列顺序从左到右是b、d、c、a,所以它们的大小关系就是:b<d<c<a;故选:C.点评:本题主要是考查正、负数的大小比较,在数轴上右边的数大于左边的数.3.下列各数中,大于﹣的负数是()A.﹣B.﹣C.D.0考点:正、负数大小的比较.分析:要比较两个负数的大小,就是要看这两个数哪个在左,哪个数在右,右边的大于左边的.或都说看哪个数距离0点的远,距离0越远,这个数越小.或者说去掉负号大的数,添上负号反而小.解答:解:在数轴上,在的右边,所以大于的负数是;故选:B点评:本题是考查正、负数的大小比较.在数轴上从左到右的顺序就是数从小到大的顺序.4.2008年初,我国南方地区遇到了历史罕见的雪灾,下表是我国几个城市一月份的平均气温,其中气温最低的城市是()城市北京长沙广州宜昌平均气温(单位:℃)﹣2.7 1.8 8.1 0A.宜昌B.长沙C.广州D.北京考点:正、负数大小的比较.专题:小数的认识.分析:四个城市中,求气温最低的城市,即求这四个数中的最小数.根据有理数大小比较的方法可知结果.解答:解:因为﹣2.7<0<1.8<8.1,所以气温最低的城市是北京.故选:D.点评:本题考查了有理数的大小比较在实际生活中的应用,体现了数学的应用价值.将实际问题转化为数学问题是解决问题的关键.5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆D.宁夏考点:正、负数大小的比较.专题:数的认识.分析:正数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.解答:解:﹣8<﹣4<5<6,故选:D.点评:此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.6.﹣()﹣.A.<B.=C.>D.无法确定考点:正、负数大小的比较.专题:运算顺序及法则.分析:正数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.解答:解:﹣<﹣.故选:A.点评:此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.7.如图:,a、b表示两个整数,a、b、c的大小关系是()A.a>b>c B.a<b<c C.c<a<b D.a<c<b考点:正、负数大小的比较.专题:数的认识.分析:数轴是规定了原点(0点)、方向和单位长度的直线,在数轴上,所有负数都在原点的左边,所有正数都在原点的右边,从左向右,数轴上的点表示的数逐渐变大,据此解答即可.解答:解:因为在数轴上,从左向右,数轴上的点表示的数逐渐变大,所以根据图示,可得c<a<b.故选:C.点评:此题主要考查了数轴的特征,以及正、负数的大小比较.8.下列各题中,答案正确的是()A.﹣5>0.1 B.﹣7>﹣2 C.D.0.6=﹣0.6﹣<考点:正、负数大小的比较.专题:数的认识.分析:若是两个负数,先比较绝对值,再比较原数的大小;若是两个正数,绝对值大的数就大;一个正数一个负数,正数大于一切负数,据此解答.解答:解:A、﹣5<0.1,A错误;B、﹣7<﹣2,B错误;C、﹣,C正确;D、0.6>﹣0.6,D错误.故选:C.点评:本题考查有理数的大小比较,有理数的比较方法为:两个负数,绝对值大的反而小;正数大于一切负数;两个正数,绝对值大的数就大.9.比﹣7.1大,而比1小的整数的个数是()A.6B.7C.8D.9考点:正、负数大小的比较.专题:数的认识.分析:比﹣7.1大,而比1小的整数有﹣7、﹣6、﹣5、﹣4、﹣3、﹣2、﹣1、0,一共8个,据此解答即可.解答:解:比﹣7.1大,而比1小的整数有:﹣7、﹣6、﹣5、﹣4、﹣3、﹣2、﹣1、0,一共8个,故选:C.点评:此题主要考查了整数定义与有理数大小比较的应用.10.2009年12月24日我国部分城市的气温北京0℃乌鲁木齐﹣21℃沈阳﹣6℃.()的温度最低.A.北京B.乌鲁木齐C.沈阳考点:正、负数大小的比较.分析:温度以0℃为分界点,0℃以下,数字越大,温度越低.所以﹣21℃<﹣6℃<0℃,故温度最低的是乌鲁木齐.解答:解:因为﹣21℃<﹣6℃<0℃,所以温度最低的是﹣21℃,即乌鲁木齐.故选B.点评:此题考查了正、负数大小的比较方法,结合数轴,或利用负号前面的数字越大,数值反而越小进行解答.C档(跨越导练)1.在﹣6,32,+9,0.2,﹣40,0,﹣2.8中,小于0的数有()个.A.3B.4C.5D.6考点:正、负数大小的比较.专题:数的认识.分析:有理数大小比较法则:正数>0,0>负数,正数>负数.解答:解:32、+9、0.2都大于0,﹣6、﹣40、﹣2.8都小于0.所以在﹣6,32,+9,0.2,﹣40,0,﹣2.8中,小于0的数有3个.故选:A.点评:掌握以下知识点是解题的关键:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大;(2)正数>0,负数<0,正数>负数;(3)两个正数中绝对值大的数大;(4)两个负数中绝对值大的反而小.2.下面温度最低的是()A.﹣3℃B.0℃C.﹣17℃考点:正、负数大小的比较.专题:数的认识.分析:把温度计可以看作一个数轴,在数轴上从左到右的顺序就是数从小到大的顺序,﹣17℃在﹣3℃的左边,因此,﹣17℃<﹣3℃.解答:解:下面温度最低的是﹣17℃;故选:C.点评:本题主要是考查负数的大小比较,最简单的方法是去掉“﹣”大的数反而小.3.下面几种说法,正确的是()A.有的负数大于0B.人的体重与年龄成正比例C.三角形的面积一定,底与高成反比例D.圆锥的体积是圆柱体积的三分之一.考点:正、负数大小的比较;辨识成正比例的量与成反比例的量;圆柱的侧面积、表面积和体积;圆锥的体积.专题:综合题.分析:(1)根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得有的负数大于0不正确.(2)判断两种相关联的量是否成正比例,就看这两种量对应的比值是否一定,如果比值一定,就成正比例,如果比值不一定,就不成正比例.(3)判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.(4)圆柱、圆锥的底面积、高都未知,所以无法比较它们的体积.解答:解:(1)根据正数>0>负数,所以有的负数大于0不正确.(2)一个人的体重与年龄的比值不一定,所以一个人的体重与年龄不成正比例,所以题中说法不正确.(3)根据底×高=三角形的面积×2,可得三角形的面积一定,底与高的乘积一定,所以它们成反比例.(4)圆柱、圆锥的底面积、高都未知,所以无法比较它们的体积.故选:C.点评:此题主要考查了正负数、0的大小比较以及正反比例的运用.4.在数轴上,﹣在﹣的()边.A.左B.右C.无法确定考点:正、负数大小的比较.专题:分数和百分数.分析:不看负号,先比较和的大小,再根据数据大的添上负号反而小,数据小的添上负号反而大,进而根据在数轴上,从左到右的顺序就是数从小到大的顺序得解.解答:解:因为,所以﹣,所以﹣在﹣的左边;故选:A.点评:关键的是先确定这两个负数的大小关系,再根据在数轴上,从左到右的顺序就是数从小到大的顺序得解.5.甲、乙两个冷库,甲冷库的温度是﹣10℃,乙冷库的温度是﹣12℃.()冷库的温度高一些.A.甲B.乙C.无法比较考点:正、负数大小的比较.专题:整数的认识.分析:要求那个冷库的温度高一些,也就是比较﹣10℃和﹣12℃谁大,根据“在数轴上,从左到右的顺序,就是数从小到大的顺序”;因为﹣10在﹣12的右边,所以﹣10>﹣12,进而选择即可.解答:解:如图:在数轴上,因为﹣10在﹣12的右边,所以﹣10℃>﹣12℃;答:甲冷库的温度高一些.故选:A.点评:解决此题也可以利用数字大的添上负号反而小,数字小的添上负号反而大,进而得解.6.在﹣5,﹣0.5,0,﹣0.01这四个数中,最大的负数是()A.﹣5 B.﹣0.5 C.0D.﹣0.01考点:正、负数大小的比较.专题:数的认识.分析:在数轴上,从左向右,数字越来越大,离0越近的负数越大,在上面的四个数中,﹣0.01离0最近,而且是负数,由此得解.解答:解:根据分析可知,离0越近的负数越大,在上面的四个数中,﹣0.01离0最近;所以最大的是负数是﹣0.01;故选:D.点评:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.利用数轴来比较负数的大小.7.﹣9<□<﹣6,□里可以填的数有()个.A.2B.4C.0D.无数考点:正、负数大小的比较.专题:数的认识.分析:﹣9<□<﹣6,□里可以填的整数有﹣8、﹣7,小数有﹣8.1、﹣8.11、﹣8.111、…,﹣7.1、﹣7.11、﹣7.111、…,一共有无数个,因此,□里可以填的数有无数个,据此解答即可.解答:解:﹣9<□<﹣6,□里可以填的整数有﹣8、﹣7,小数有﹣8.1、﹣8.11、﹣8.111、…,﹣7.1、﹣7.11、﹣7.111、…,一共有无数个,因此,□里可以填的数有无数个.故选:D.点评:此题主要考查了正、负数的大小比较,注意要找出满足算式的小数的个数.8.下列几个数:﹣1.5、0、0.5、、+1,按从小到大的顺序排列是()A.0<﹣1.5<<0.5<+1 B.﹣1.5<0<0.5<<+1考点:正、负数大小的比较.专题:数的认识.分析:正数大于0和一切负数,0大于一切负数,正数的大小比较方法同以前学过的数的大小比较方法相同,负数的大小比较方法是去掉“﹣”后大的数反而小,据此选择.解答:解:下列几个数:﹣1.5、0、0.5、、+1,按从小到大的顺序排列是:﹣1.5<0<0.5<<+1.故选:B.点评:此题是考查了正、负数大小比较的方法.值得注意的是,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.9.在﹣4,﹣9,﹣,﹣0.1这些数中,最大的数是()A.﹣4 B.﹣9 C.D.﹣0.1﹣考点:正、负数大小的比较.分析:在负数中,不看负号剩下的部分,数字越大的这个负数越小.解答:解:9>4>0.1>,所以:﹣>﹣0.1>﹣4>﹣9;最大的数是﹣;故答案选:C.点评:负数之间比较大小,去掉负号后越大的数字反而小.10.下列式子中正确的是()A.B.,C.D.考点:正、负数大小的比较;分数大小的比较.专题:分数和百分数.分析:把﹣、﹣3、﹣3化成小数,然后再进行比较,根据绝对值大的反而小,由此选择即可.解答:解:因为﹣=﹣3.75,﹣3=﹣3.875,﹣3=﹣3.79,﹣3.75绝对值是3.75最小,﹣3.79绝对值是3.79第二小,﹣3.875绝对值是3.875最大,即:;故应选:B.点评:本题根据绝对值大的反而由此进行解答即可.。
正负数知识点整理
![正负数知识点整理](https://img.taocdn.com/s3/m/ec2f92c00129bd64783e0912a216147916117e31.png)
正负数知识点整理一、正负数的定义。
1. 正数。
- 正数是大于0的数。
例如:1、2、3、1.5、(1)/(2)等都是正数。
在数学中,正数前面的“+”号可以省略不写,所以1和 +1表示的意义相同。
2. 负数。
- 负数是小于0的数。
例如: - 1、 - 2、 - 3、 - 1.5、-(1)/(2)等都是负数。
负数前面必须有“ - ”号,不能省略。
3. 0的特殊性。
- 0既不是正数也不是负数,它是正数和负数的分界点。
二、正负数的表示方法。
1. 在数轴上表示。
- 数轴是规定了原点、正方向和单位长度的直线。
- 原点表示0,原点右边的点表示正数,从原点向右数,数越来越大;原点左边的点表示负数,从原点向左数,数越来越小。
例如:在数轴上表示+2和 - 2,+2在原点右边2个单位长度处, - 2在原点左边2个单位长度处。
2. 用符号表示。
- 正数前面可以加“+”号(通常省略),负数前面必须加“ - ”号。
例如:+5或5表示正数, - 3表示负数。
三、正负数的实际意义。
1. 表示相反意义的量。
- 在生活中,很多情况下会用正负数来表示相反意义的量。
例如:- 盈利和亏损:如果盈利100元记作+100元,那么亏损50元记作 - 50元。
- 上升和下降:气温上升3℃记作+3℃,气温下降2℃记作 - 2℃。
- 向东和向西:如果向东走5米记作+5米,那么向西走3米记作 - 3米。
2. 计算中的意义。
- 在计算中,正负数可以用来表示加减法的方向。
例如:3+( - 2)表示3加上一个与2相反方向的量,结果为1;5 - (-3)表示5减去一个负数,根据减法的运算法则,相当于5+3 = 8。
四、正负数的大小比较。
1. 正数大小比较。
- 正数比较大小,数字大的正数大。
例如:5>3,1.5>1。
2. 负数大小比较。
- 负数比较大小,绝对值大的反而小。
例如:| - 3|=3,| - 2| = 2,因为3>2,所以 - 2> - 3。
正负数的比较与排序掌握正负数的大小关系
![正负数的比较与排序掌握正负数的大小关系](https://img.taocdn.com/s3/m/769ff6a8162ded630b1c59eef8c75fbfc77d94cd.png)
正负数的比较与排序掌握正负数的大小关系正负数在数学中是非常重要的概念,掌握正负数的大小关系能够帮助我们进行有效的比较与排序。
本文将介绍如何比较正负数以及进行相应的排序。
一、正负数的比较在比较正负数时,我们需要注意以下几个规则:1. 正数大于零。
无论是任何正数,比起零来都是更大的。
例如,2大于0,所以2是一个比0更大的正数。
2. 负数小于零。
无论是任何负数,比起零来都是更小的。
例如,-3小于0,所以-3是一个比0更小的负数。
3. 正数大于负数。
如果一个正数的绝对值大于一个负数的绝对值,那么它就比负数更大。
例如,4大于-5,因为4的绝对值大于5的绝对值。
4. 负数小于正数。
如果一个负数的绝对值小于一个正数的绝对值,那么它就比正数更小。
例如,-8小于3,因为8的绝对值小于3的绝对值。
二、正负数的排序在排序正负数时,我们可以按照以下步骤进行:1. 将正负数分开。
将正数和负数分成两组。
2. 对正数进行从小到大的排序。
使用常规的排序方法,例如冒泡排序或快速排序,将正数从小到大进行排序。
3. 对负数进行从大到小的排序。
同样使用冒泡排序或快速排序,将负数从大到小进行排序。
4. 合并排序结果。
将正数组和负数组按照相应的顺序合并在一起,得到最终的排序结果。
例如,有以下一组数:-3, 5, -7, 1, 2, -4。
我们按照上述步骤进行排序,首先将正负数分开:正数为5, 1, 2,负数为-3, -7, -4。
然后对正数进行从小到大的排序得到1, 2, 5,对负数进行从大到小的排序得到-3, -4, -7。
最后将两组排序结果合并在一起得到-3, -4, -7, 1, 2, 5。
三、总结通过掌握正负数的大小关系,我们可以准确地比较和排序正负数。
正数大于零,负数小于零,正数大于负数,负数小于正数。
按照将正负数分组、对正数排序、对负数排序、合并排序结果的步骤进行,可以得到正确的排序结果。
正负数的比较与排序是数学中的基础知识,对于理解数学概念和解决实际问题都有重要意义。
正负数的大小排序
![正负数的大小排序](https://img.taocdn.com/s3/m/6f816e0fc950ad02de80d4d8d15abe23482f0334.png)
正负数的大小排序在数学中,我们经常会遇到正数和负数。
正数是大于零的数,负数则是小于零的数。
在实际生活中,对正负数的大小进行排序是一项基本的技能。
本文将探讨正负数的大小排序方法,帮助读者更好地理解和应用这一概念。
一、正负数的定义和基本规则在开始讨论正负数的大小排序之前,我们需要先了解正负数的定义及其基本规则。
1. 正数:大于零的数,如1、2、3等。
2. 负数:小于零的数,如-1、-2、-3等。
3. 零:等于零的数,用0表示。
基本规则:1. 正数大于零。
2. 负数小于零。
3. 零与任何数比较都是相等的。
二、正负数的大小比较当我们需要比较两个正负数的大小时,可以按照以下步骤进行:1. 判断正负性:首先判断两个数的正负性。
如果两个数正负不同,则正数大于负数;如果两个数正负相同,则进入第二步。
2. 绝对值比较:对于两个正数,比较它们的大小,绝对值大的数较大;对于两个负数,比较它们的大小,绝对值小的数较大。
3. 零的特殊情况:如果一个数是零,无论另一个数为正数还是负数,零都较小。
举例说明:1. 比较正数和负数:如比较2和-3。
由于一个是正数,一个是负数,所以正数2大于负数-3。
2. 比较正数和正数:如比较4和7。
由于两个都是正数,所以绝对值大的数7较大。
3. 比较负数和负数:如比较-5和-10。
由于两个都是负数,所以绝对值小的数-10较大。
4. 比较正数和零:如比较3和0。
由于一个数为零,而另一个数为正数,所以零较小。
5. 比较负数和零:如比较-2和0。
由于一个数为零,而另一个数为负数,所以零较大。
三、多个正负数的大小排序当我们需要对多个正负数进行排序时,可以采用以下方法:1. 将所有数按照正负分成两组,一组是正数,一组是负数。
2. 对正数组和负数组分别进行从大到小的排序。
对于正数组,绝对值大的数排在前面;对于负数组,绝对值小的数排在前面。
3. 按照以下顺序排列数:负数组(从小到大)+ 正数组(从大到小)+ 零(如果有的话)。
正数与负数的比较
![正数与负数的比较](https://img.taocdn.com/s3/m/ddf61b09842458fb770bf78a6529647d2728343b.png)
正数与负数的比较在数学中,我们经常会遇到正数和负数的比较。
比较正数和负数的大小对于我们理解数学概念和解决问题非常重要。
本文将详细探讨正数和负数的比较方法以及其在数学应用中的实际意义。
1. 比较方法要比较正数和负数的大小,我们首先需要了解它们的性质。
正数是指大于零的数,用“+”表示,而负数则是小于零的数,用“-”表示。
比如,2、3、5都是正数,而-2、-3、-5则是负数。
在进行比较时,可以利用以下几个方法:- 借助数轴:我们可以在数轴上绘制出正数和负数的位置。
正数位于数轴的右侧,负数位于数轴的左侧。
通过比较它们在数轴上的位置,就可以确定它们的大小关系。
- 符号比较:正数和负数的符号不同,正数的符号“+”比负数的符号“-”要大,因此正数大于负数。
- 绝对值比较:绝对值是指一个数去掉符号后的值。
比如,|-3|=3,|2|=2。
当我们比较正数和负数的大小时,可以比较它们的绝对值,绝对值大的数就是较大的数。
2. 数学应用正数和负数的比较在数学应用中具有广泛的实际意义。
以下是一些常见的应用场景:- 温度计:在气象学中,温度可以是正数、负数或零。
正数表示较高的温度,负数表示较低的温度。
通过比较温度,我们可以判断哪个地方更热或更冷。
- 财务管理:在财务管理中,正数代表收入或盈利,而负数表示支出或亏损。
比较正数和负数的大小可以帮助我们评估一个企业或个人的财务状况。
- 坐标系:在坐标系中,正数和负数表示不同的方向。
比如,x轴正方向表示右移,负方向表示左移;y轴正方向表示上移,负方向表示下移。
通过比较正数和负数的大小,我们可以确定点的位置关系和方向。
总结:正数和负数的比较是数学中的基本概念之一,通过比较它们的位置、符号或绝对值,我们可以确定它们的大小关系。
正数和负数的比较在数学应用中具有广泛的实际意义,可以帮助我们解决各种问题。
通过理解和掌握正数和负数的比较方法,我们可以更好地理解数学概念,并应用到实际生活中。
正数负数和零的比较与运算
![正数负数和零的比较与运算](https://img.taocdn.com/s3/m/30a0fc5554270722192e453610661ed9ad5155b6.png)
正数负数和零的比较与运算在数学中,正数、负数和零是基本的数学概念。
它们代表了数值的正负和不存在的状态,对于数学运算和比较也有着重要的作用。
本文将讨论正数、负数和零之间的比较与运算,以及它们在现实生活中的应用。
一、比较正数、负数和零比较正数、负数和零的大小关系是数学中的基本知识。
下面是正数、负数和零之间的比较规则:1. 正数比负数大:对于两个不同的正数,较大的数值更大;对于两个不同的负数,较小的数值更小。
例如,2比-2大,-5比-10大。
2. 正数比零大:正数大于零。
例如,3比0大。
3. 负数比零小:负数小于零。
例如,-4比0小。
4. 零与自身相等:零与自身相等,即0等于0。
5. 正数与负数之间的大小关系:对于一个正数和一个负数,正数大于负数。
例如,4比-4大。
在实际应用中,比较正数、负数和零的大小关系可以帮助我们找到最大值、最小值,进行排名等。
二、正数、负数和零的运算正数、负数和零之间的运算包括加法、减法、乘法和除法等。
下面是正数、负数和零之间的运算规则:1. 正数与正数相加:两个正数相加,结果仍为正数。
例如,2 + 3 = 5。
2. 负数与负数相加:两个负数相加,结果仍为负数。
例如,-2 + (-3) = -5。
3. 正数与负数相加:正数与负数相加,结果的正负由绝对值较大的数决定。
绝对值较大的数决定结果的正负。
例如,2 + (-3) = -1,-2 + 3= 1。
4. 正数与零相加:正数与零相加,结果仍为正数。
例如,3 + 0 = 3。
5. 负数与零相加:负数与零相加,结果仍为负数。
例如,-3 + 0 = -3。
6. 正数与正数相减:两个正数相减,结果的正负由绝对值较大的数决定。
绝对值较大的数决定结果的正负。
例如,5 - 2 = 3,2 - 5 = -3。
7. 正数与负数相减:正数与负数相减,结果仍为正数。
例如,5 - (-2) = 7。
8. 负数与负数相减:两个负数相减,结果的正负由绝对值较大的数决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测练习一:
课本第7页“做一做”三道题。 要求:1、独立做题,认真观察,书写规范。 2、写完的同学小组内自查。
做一做(一)
说出点A、B、C、D、E表示的数。 B C E
D A
1 2 3 4
-5 -4 -3 -2 -1 0
5
做一做(二)
在数轴上表示下列各数。
检测练习二:
1、判断。(正确的画“”,错误的画“X”) (1)—a一定是负数。 ( ) (2)0是自然数。 ( ) (3)7>2,所以-7>-2。 ( ) (4)最小的负数是—1. ( ) (5)数轴上左边的数比右边的数小。( ) 2、我会比。 3○5 -1○1 -0.1○0 1 1 ○ 100○-1000 0○4 8 8 3、背一背: 所有的( )都在0的左边,( )都比0小。( )都 在0的右边,( )都比0大。( )都比正数小
0 -4 1
-2
-2.5 -0.5 1.5
5 2
做一做(三)
比较各组数的大小。
-5 -4 -3 -2 -1 0
1
2 3
4
5
-3 -0.5
2 -1.5
做一做(三)
比较各组数的大小。
-5 -4 -3 -2 -1 0
1
2 3
4
5
-5
-4
6
-6
做一做(三)
比较各组数的大小。
-5 -4 -3 -2 -1 0
1
2 3
4
5
0
-7
0
8
思考 :
什么是数轴?
以大树为起点,向 。 这样的直线叫数轴 东为正,向西为负。
像这样在直线上表示出正数、0、负数,
西 -5 -4 -3 -2 -1 0 1 2 3 4
东
5
直线上0右边的数是正 数,左边的数是负数。
思考 :
数轴上数的排列有什么 特征?如何比较正数、0、 负数的大小?
当堂训练
再见!
人教版六年级数学下册
汝南双语小学
郁素娟
学习目标
1、我能认识数轴和数轴上数的排 列规律。 2、我能借助数轴比较正数、0和 负数之间的大小。 3、我能运用负数表示简单的问题。
自学指导
认真看课本第5至7页的例3和例4,看 图看文字并填空,重点看黄底色方框里的 内容和数轴。并思考: 1、什么是数轴? 2、数轴上数的排列有什么特征?如何比 较正数、0、负数的大小?
在数轴上,从左到 右的顺序就是数从 小到大的顺序。
小
-8 -7 -6 -5 -4 -3 -2 -1 0
大
1Leabharlann 2所有的负数都在0的( 左 )边,也就 是负数都比0( 小 ),而正数都在0 的( 右 )边,即正数都比0( 大 ), 所以负数都比正数( 小 )。
负数 < 0 < 正数
负数和负数怎样比较大小? 对应的正数大,这个负 数就小;对应的正数小,这 个负数就大;
这节课你有什么 收获?你还有什么疑 问吗?
目标回顾
1、我能认识数轴和数轴上数的排 列规律。 2、我能借助数轴比较正数、0和 负数之间的大小。 3、我能运用负数表示简单的问题。
必做题 课本第9页的4、5、6。 选做题 一潜水艇所在的高度为-50米,一条鲨鱼在 潜水艇上方10米处,鲨鱼所在的高度是多少米? 拓展题 一个点从数轴上某点出发,先向右移动5个 单位长度,再向左移动2个长度单位,这时这个 点表示的数为1,则起点表示的数是多少?请你 用图表示出来。 实践活动 课本第9页的7。