第九届“新希望杯”全国数学大赛七年级B卷试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九届“新希望杯”全国数学大赛

七年级试题(B 卷)

(时间:2013年3月24日 9:00~11:00 满分120分)

一、选择题(每小题4分,共32分)

1.方程261

2312-+=-x x 的解为( )

A .21 B.27 C.21- D.2

9-

2,已知a 、b 、c 都是整数,则2b a +、2

c b +和2a

c +中( )

A .必定都是整数 B.必定有两个是整数 C.必定有一个是整数 D.可能都不是整数

3.已知有理数a 、b 满足如下关系:)0(≠-=ab ab ab ,b a b a -=+.用数轴上的点来表示a 和b ,下列表示正确的是( )

x

D

C

B

A

4.关于x 的方程|2x|=mx-3没有负根,则m 的取值范围是( ) A .m > -2 B.m > 2 C.m 2-≥ D.m ≥2

5.如图所示,OB 、OC 是∠AOD 内的任意两条射线,OM 平分∠AOB ,ON 平分∠COD.若∠MON=α,∠BOC=β,则∠AOD=( ) A .βα-2 B.βα- C.βα+ D.以上都不正确

6.已知1a 、2a 、3a 、…、2013a 都是正有理数,

(+⋯+++321a a a ))(20134322012a a a a a +⋯+++,N=(+⋯+++321a a a )(2013a )2012432a a a a +⋯+++, 则M 、N 的大小关系为( )

A .M>N B.M

A

C

D

M (第5题图)

7.某中学七年级有13个课外兴趣小组,共165人.各组人数如下表:

一天下午学校同学举办语文和数学交流会,已知有12个小组参加,其中参加数学交流会的人数与参加语文交流会的人数之比为4:3,还剩下一个小组未参加,这个小组是( )

A .第3组 B.第6组 C. 第9组 D.第12组

8.某商场为招揽顾客,贴出优惠告示:一次性购物不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.苏老师二月份到该商场购物三次,第一次购物付款153元,第二次购物付款220元,三次共优惠了107元.则苏老师二月份三次到该商场购物实际付款共( ) A.400元 B. 713元 C. 760元 D.820元 二、填空题(每小题5分,共40分) 9.计算:

[

]45434

312124.0217812

2---⎪⎭

⎝⎛+÷⎪

⎭⎫ ⎝

-⨯-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 10.若)23(1-=-m m A ,)12(3-=-m m B ,)1(5+=+m m C ,且

n C B B A =-=-,则=n .

11.观察一列按规律排列的数:2,1,

32,21,52,3

1

,…,则第8个数为 . 12.有三个互不相等的有理数,它们既可表示为1,x ,y x +的形式,又可表示为0,

x

y

,y 的形式,则=+20132012y x . 13.如图,用图1所示的包装纸剪出图2所示的小图案,最多能剪 个. 14.如图,A 、B 、C 三地两两之间由若干条曲线连接,每条曲线表示两地之间的一种走法,那么从A 地到C 地可供选择的走法共有 种.

图1

(第13题图)

图2

(第14

题图)

15.满足

02=-++b a ab 的所有整数对(a ,b )有 对.

16.已知∠A 与∠B 互补,且∠A>∠B ,代数式○1B ∠-︒90,○2A ∠-︒90,○3︒-∠90A ,○

42

B

A ∠-∠中,可以表示∠

B 的余角的是 (填序号). 17.已知关于 x 的多项式()b x x x a b +---243是二次三项式, (1)求a 和b 的值;

(2)设=y ()b x x x a b +---243,当x 3-=时,求()xy

x xy xy x 2

14218222-⎥⎦⎤⎢⎣⎡-+-的值.

18.点C 是线段AB 延长线上一点,且BC 5

3

=AB ,反向延长AB 到点D ,使AD 4

3

=

AC ,已知CD=56cm , (1)求AB 的长度;

(2)点P 是直线AB 上一点(与A 、C 不重合),AP 、CP 的中点分别为点M 、N ,求MN 的长度.

19.有甲、乙两家眼镜厂,甲厂配套生产镜片和镜架,乙厂不配套生产镜片和镜

某个季度内,甲厂销售10000副眼镜,乙厂销售镜片数量是镜架数量的4倍,乙厂获得的利润是甲厂的两倍,问:这个季度内,乙厂销售我镜片和镜架各多少副?

20.如图1,将数字1,2,3,4,5,6,7,8分别填写在八边形ABCDEFGH 的8个顶点上,并且以S1,S2,

S3,……,S8

分别表示(A ,B ,C ),(B ,C ,D ),……,(H ,A ,B )8组相邻3个顶点上的数字之和。

(1)请给出一种填法,使得S1,S2,S3,……,S8都不小于12,在图2中完成;

(2)是否存在一种填法,使得S1,S2,S3,……,S8都不小于13?证明你的结论.

图2

图1

C

E

解答:

一、选择题

1.方程两边同乘以6,得2(21)2112x x -=+-,9

2

x =-

答案:D

2.○1当a 、b 、c 三数同奇或同偶时,2a b +、2b c +、2

c a

+都是整数;

○2当a 、b 、c 三数不完全为奇或不完全为偶时,2a b +、2b c +、2

c a

+只有一个是整数; 答案:C

3.因为(0)ab ab ab =-≠,所以a 、b 异号;又a b a b +=-,所以0b b a ><且

答案:C

4.因为关于x 的方程23x mx =-没有负根,显然也不能有零根,也就是说x 为正数.因此

原方程就可变化为23x mx =-,即(2)3m x -=,因此2m > 答案:B

5.AOD AOM MON NOD ∠=∠+∠+∠

BOM MON NOC =∠+∠+∠

()BOM NOC MON =∠+∠+∠ 2αβααβ=-+=- 答案:A

6.设232012S a a a =+++ ,则2120131201312013()()()M a S S a S a a S a a =++=+++,

21201312013()()N a S a S S a a S =++=++,因为1a 、2013a 都是正有理数,所以M N >

答案:A

7.因为参加数学交流会的人和参加语文交流会的人数之比为4:3,所以参加交流会的总人

数是7的倍数. 又因为1657234722117211872025=⨯+=⨯+=⨯+=⨯+,对照可

知,没有参加的是第6组 答案:B

8.一次购物200元,须付款180元,

苏老师第一次付款153元,购物原价是1530.9170÷=元,优惠17元;

苏老师第二次付款220元,购物原价是(220180)0.8200250-÷+=元,优惠30元; 苏老师第三次优惠107173060--=元,其中的200元按九折计算,优惠20元,所以按八折计算的部分优惠40元,这一部分商品原价是200元,因此苏老师第三次所购商品的原价是400元,购物付款340元;

苏老师二月份三次购物实际付款共153220340713++=元. 答案:B

相关文档
最新文档