人教版八年级数学上册:乘法公式专题训练试题
部编数学八年级上册专题01运算能力之乘法公式综合难点专练(解析版)(人教版)含答案
专题01运算能力之乘法公式综合难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,为了美化校园,某校要在面积为120平方米的长方形空地ABCD中划出长方形EBKR和长方形QFSD,若两者的重合部分GFHR恰好是一个边长为3米的正方形,>,现将图中阴影部分区域作为花圃,若长方形空地ABCD的长和宽分别为m和n,m n花圃区域AEGQ和HKCS总周长为32米,则m n-的值为()A.2B.3C.4D.5【答案】A【分析】根据花圃区域AEGQ和HKCS总周长为32米,重合部分GFHR恰好是一个边长为3米的正方形,可得m+n=22,再根据长方形面积公式可得mn=120,再根据完全平方公式即可求解.【详解】解:∵花圃区域AEGQ和HKCS总周长为32米,重合部分GFHR恰好是一个边长为3米的正方形,∴2(m-3)+2(n-3)=32,∴m+n=22,∵mn=120,∴(m+n)2=m2+n2+2mn=m2+n2+240=484,∴m2+n2=244,∴(m-n)2=m2+n2-2mn=244-240=4,∵m>n,∴m-n=2.故选:A.【点睛】本题考查了完全平方公式的应用,解题的关键是灵活运用完全平方公式.2.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44【答案】C【分析】由图1可知,阴影部分面积a2﹣b2=2,图2可知,阴影部分面积(a+b)2﹣a2﹣b2=20,进而得到ab=10,由图3可知,阴影部分面积(2a+b)2﹣3a2﹣2b2=a2﹣b2+4ab=2+40=42.【详解】解:设正方形A、B的边长分别为a、b,由图1可知,阴影部分面积a2﹣b2=2,图2可知,阴影部分面积(a+b)2﹣a2﹣b2=20,所以ab=10,由图3可知,阴影部分面积为(2a+b)2﹣3a2﹣2b2=a2﹣b2+4ab=2+40=42.故选:C.【点睛】此题考查完全平方公式在几何图形中的应用,正确理解图形的构成,正确掌握完全平方公式是解题的关键.3.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为22,长方形③中的阴影部分面积为96,那么一个小长方形①的面积为()A .5B .6C .9D .10【答案】A【分析】设①小长方形的长为a ,宽为b ,根据正方形阴影面积=正方形面积-3个小长方形面积=22根根据大长方形阴影面积为长为()3+a b ,宽为()3a b +的长方形面积-7个小长方形面积=96列方程求出5ab =即可.【详解】解:设①小长方形的长为a ,宽为b ,根据②正方形边长为+a b ,阴影面积为()2+322a b ab -=,根据③大长方形的长为3+a b ,宽为+3a b ,阴影面积为()()3+3796a b a b ab +-=,∴联立得()()()2+3223+3796a b ab a b a b ab ì-=ïí+-=ïî,整理得222222+32a b ab a b ab ì+-=í+=î①②,解得22=275a b ab ì+í=î,一个小长方形①的面积为5.故选择A .【点睛】本题考查图形阴影面积应用问题,多项式乘法与图形面积,完全平方公式,仔细分析图形,从中找出等量关系,正方形阴影面积=正方形面积-3个小长方形面积=22,大长方形阴影面积为长为()3+a b ,宽为()3a b +的长方形面积-7个小长方形面积=96,列方程组是解题关键.4.利用乘法公式判断,下列等式何者成立?( )A .22224824852+52+=300´B .222248248484800=2-´-C .222248224852++=52300´´D .22224822484848200=-´´-【答案】C【分析】根据完全平方公式的特征进行判断,然后根据公式特点进行计算.【详解】解: A 、222482485252´++不符合完全平方公式的特征且计算错误,完全平方公式的中间一项为224852´´,所以不符合题意;B 、222482484848-´-不符合完全平方公式特征且计算错误,最后一项应为248+,所以不符合题意;C 、()222224822485252248+52300´´++==,所以符合题意;D 、22224822484848200-´´-=不符合完全平方公式特征且计算错误,最后一项应为248+,所以不符合题意.故选:C .【点睛】本题主要考查了完全平方公式的特征,识记且熟练运用完全平方公式:2222a ab b a b ±±+=()是解答问题的关键.二、填空题5.如图,长方形ABCD 的边13BC =,E 是边BC 上的一点,且10BE BA ==,F ,G 分别是线段AB ,CD 上的动点,且BF DG =,现以BE ,BF 为边作长方形BEHF ,以DG 为边作正方形DGIJ ,点H ,I 均在长方形ABCD 内部.记图中的阴影部分面积分别为1S ,2S 长方形BEHF 和正方形DGH 的重叠部分是四边形KILH ,当四边形KILH 的邻边比为3∶4,12S S +的值为________.【答案】7或93125【分析】利用长方形及正方形的性质可求解KI =2DG -10,KH =DG -3,根据当长方形KILH 的邻边的比为3:4可求解DG 的长,再利用DG 的长分别求解AF ,CG ,AJ 的长,进而可求解,注意分类讨论.【详解】解:在长方形ABCD 中,AB =CD =10,AD =BC =13.∵四边形DGIJ 为正方形,四边形BFHE 为长方形,BF =DG ,∴四边形KILH 为长方形,KI =HL =2DG -AB =2DG -10.∵BE =BA =10,∴LG =EC =3,∴KH =IL =DG -LG =DG -3.当长方形KILH 的邻边的比为3:4时,(DG -3):(2DG -10)=3:4,或(2DG -10):(DG -3)=3:4,解得DG =9或315,当DG =9时,AF =CG =1,AJ =4,∴S 1+S 2=AF •AJ +CE •CG =1×4+1×3=7;当DG =315时,AF =CG =195,AJ =345,∴S 1+S 2=AF •AJ +CE •CG =1934193555´+´=93125故答案为7或93125.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.6.计算:(1)若x 满足(30)(20)10x x --=-则22(30)(20)x x -+-的值为____;(2)如上图,2,4AE CG ==,长方形EFGD 的面积是50,四边形ABCD 和NGDH 以及MEDQ 都是正方形四边形PQDH 是长方形,则图中正方形NFMP 的面积为_______.【答案】120204【分析】(1)设(30-x )=m ,(x -20)=n ,求出mn 和m +n ,利用完全平方公式计算即可;(2)根据正方形ABCD 的边长为x ,AE =2,CG =4,所以DE =x -2,DG =x -4,得到(x -2)(x -4)=50,设x -2=a ,x -4=b ,从而得到ab =50,a -b =(x -2)-(x -4)=2,根据题意求出(a +b )2,即可求出正方形NFMP 的面积.【详解】解:(1)设(30-x)=m,(x-20)=n,∴(30-x)(x-20)=mn=-10,∴m+n=(30-x)+(x-20)=10,∴(30-x)2+(x-20)2,=m2+n2,=(m+n)2-2mn,=102-2×(-10)=120;(2)∵正方形ABCD的边长为x,AE=2,CG=4,∴DE=x-2,DG=x-4,∴(x-2)(x-4)=50,设x-2=a,x-4=b,∴ab=50,a-b=(x-2)-(x-4)=2,则(a+b)2=(a-b)2+4ab=22+4×50=204,∴正方形NFMP的面积为:204,故答案为:(1)120;(2)204.【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式,进行转化应用.7=_____(直接填写结果).【答案】10n【分析】10n.【详解】==+99 (91)10n=.故答案为:10n.【点睛】本题主要考查算术平方根以及完全平方公式的逆运用,熟练掌握算术平方根以及完全平方公式的逆运用是解决本题的关键.三、解答题8.已知关于x 的二次三项式A 满足2(1)(1)(1)A x x x --+=+.(1)求整式A ;(2)若2342B x x =++,当12x =-时,求B A -的值.【答案】(1)222A x x =+;(2)54B A -=.【分析】(1)直接利用整式的加减运算法则计算得出答案即可;(2)直接利用整式的加减运算法则结合x 的值代入得出答案即可.【详解】解:(1)∵2(1)(1)(1)A x x x --+=+∴2(1)(1)(1)A x x x =+++-22211x x x =+++-222x x =+;(2)∵2342B x x =++,222A x x=+∴()2234222B A x x x x -=++-+2234222x x x x=++--222x x =++2(1)1=++x .当12x =-时,2215(1)11124B A x æö-=++=-++=ç÷èø.【点睛】此题主要考查了整式的加减,正确掌握相关运算法则是解答此题的关键.9.计算:(1)()2354102•2x x x x x -+¸;(2)()()()433223a a b b a a b ---+;(3)()()()323423159x y xy x y -¸-g ;(4)请用简便方法计算:2704696700´-【答案】(1)82x -;(2)228129a ab b --;(3)3445x y ;(4)-16.【分析】(1)先算乘方,再算乘除,最后合并同类项即可;(2)先根据单项式乘以多项式和平方差公式进行计算,再合并同类项即可;(3)先根据积的乘方化简,再从左往右计算即可;(4)先变形,再根据平方差公式进行计算,最后求出答案即可.【详解】解:(1)()2354102•2x x x x x -+¸8884x x x =-+82x =-;(2)()()()433223a a b b a a b ---+()()()432323a a b a b a b =-+-+22241249a ab a b =-+-228129a ab b =--;(3)()()()323423159x y xy x y -¸-g ()()6334227159x y xy x y =-¸-g ()76424059x y x y =-¸-3445x y =;(4)2704696700´-()()270047004700=+´--2270016700=--16=-.【点睛】本题考查了整式的混合运算,能灵活运用知识点进行计算和化简是解此题的关键.10.计算:(1)234110;2x yz xy æö×-ç÷èø(2)221232ab ab ab æö-×ç÷èø;(3)()()()()223523642x x x x x ++-+--;(4)()()2121x y x y -+--.【答案】(1)-5x 3 y 5 z 3;(2)232213a b a b -;(3)18;(4)22441x xy y -+-.【分析】(1)根据单项式乘以单项式的运算法则进行计算即可;(2)根据单项式乘以多项式的运算法则进行计算即可;(3)分别根据多项式乘以多项式和单项式乘以单项式运算法则去括号,然后外挂;(4)运用平方差公式进行计算即可得到答案.【详解】解:()12341102x yz xy æö×-ç÷èø()()2431102x x y y z éùæö=´-××ç÷êúèøëû3535x y z =-.()2221232ab ab ab æö-×ç÷èø()22112322ab ab ab ab =×+-×232213a b a b =-.()3()()()()223523642x x x x x ++-+--2261061061248x x x x x x =+++---+=18()4()()2121x y x y -+--()()2121x y x y éùéù=-+--ëûëû2(2)1x y =--22441x xy y =-+-.【点睛】此题主要考查了整式的混合运算,正确掌握相关运算法则是解答此题的关键.11.对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式.(1)对于等式()()22232a b a b a ab b ++=++,可以由图1进行解释:这个大长方形的长为_____,宽为_____,用长乘以宽可求得其面积,同时,大长方形的面积也等于3个长方形和3个正方形的面积之和.(2)如图2,试用两种不同的方法求它的面积,你能得到什么数学等式?方法1(从整体角度):_________;方法2(从局部角度:6个长方形和3个正方形):_____________;数学等式:______________________.(3)利用(2)中得到的数学等式,解决下列问题:已知7a b c ++=,22219a b c ++=,求ab bc ac ++的值.【答案】(1)(a +2b ),(a +b );(2)(a +b +c )2,a 2+b 2+c 2+2ab +2bc +2ac ,(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;(3)15【分析】(1)根据图形直接得出长为(a +2b ),宽为(a +b );(2)整体上是一个边长为(a +b +c )的正方形,各个部分的面积和为a 2+b 2+c 2+2ab +2bc +2ac ,可得等式;(3)将(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,变形为(a +b +c )2-a 2-b 2-c 2=2ab +2bc +2ac ,再整体代入求值即可.【详解】解:(1)由图形直观得出,长为:(a +2b ),宽为(a +b ),故答案为:(a +2b ),(a +b );(2)方法1(从整体角度):(a +b +c )2,方法2(从局部角度:6个长方形和3个正方形):a 2+b 2+c 2+2ab +2bc +2ac ,因此有数学等式:(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;(3)由(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac 得,2ab +2bc +2ac =(a +b +c )2-(a 2+b 2+c 2),∵a +b +c =7,a 2+b 2+c 2=19,∴2ab +2bc +2ac =49-19=30,∴ab +bc +ac =15.【点睛】本题考查完全平方公式的几何背景,因式分解以及多项式乘以多项式的计算法则,掌握公式特征和适当变形是正确应用的前提.12.某公园对一个边长为a (a >1)的正方形花坛进行改造,由于占地需要,正方形花坛南北方向需要缩短1米,使其形状成为长方形.为了使花坛中的绿植面积不变,公园决定将花坛向东侧扩展,使得到的长方形面积和原来正方形的面积相等.(1)小明说:这太简单了,把正方形南北方向减少1米,在花坛东侧增加1米就行了.这样得到的长方形的周长和面积与原来正方形的周长和面积都相等.你认为小明说的对吗?请你说明理由.(2)如果原来正方形的花坛边长是5米,在只保证面积不变的情况下,请你计算出改造后,向东扩展了多少米?(3)如果正方形的花坛边长是a 米,在只保证面积不变的情况下,请你用代数式表示出改造后长方形的长.【答案】(1)小明的说法不对,理由见解析;(2)向东扩展54米;(3)2a a 1-【分析】(1)理由平方差公式求出小明所得的图形面积,与原图形面积相比较即可得到答案;(2)设向东扩展x 米,根据题意得方程2(51)(5)5x -+=,解方程即可;(3)利用长方形的面积公式计算即可【详解】解:(1)小明的说法不对,理由如下:由题意得:22(1)(1)1a a a a -+=-<,∴小明的说法不对;(2)设向东扩展x 米,由题意得2(51)(5)5x -+=,解得x =54,答:向东扩展54米;(3)改造后长方形的长为2a a 1-【点睛】此题考查了平方差计算公式与图形面积,一元一次方程的实际应用,正确理解题意是解题的关键13.对于实数a ,b ,c 定义一种新运算,规定22(,,)2F a b c a b c=++例如:22(1,2,3)122311F =++´=(1)求(2,3,1)F ;(2)如图,在矩形ABFG 和矩形BCDE 中,2AB x =,4AG x =,2BC y =,CD y =,若25x y +=,22(3,3,4)40F x y x y x y +---=.连接AF 和AD ,求图中阴影部分的面积;(3)若,2,2)2F y xy -=-,求x y +的值.【答案】(1)15;(2)754;(3【分析】(1)根据新定义运算法则计算即可;(2)根据新定义运算法则列出方程,得到22420x y +=,运用完全平方公式可得54xy =,再把这两个条件代入阴影面积的代数式可得;(3)根据新定义运算法则列出方程,配方得22(2)(0x y x -+=,根据非负数性质可得.【详解】(1)(2,3,1)F =22221531++´=故答案为:15(2)22(3,3,4)40F x y x y x y +---=Q 2222(3)(3)2(4)0x y x y x y ++-+--=22420x y \+=又25x y +=Q 2(2)25x y +=224425x xy y ++=54xy \=22118224(22)22S x y x x y x y =+-××-+阴224S x y xy=+-阴754S =阴(3),2,2)2F y xy -=-222442x y xy +--=-222440x xy y x -++-=22(2)(0x y x -+=x =,y =x y +=【点睛】考核知识点:新定义运算、乘法公式.熟练掌握完全平方公式是关键.14.现定义运算,对于任意有理数a ,b ,都有()(),()().a b a a b b a b a b b a b a a b Ä=+-£ìíÄ=+->î如:232(23)37Ä=´+-=,522(52)59Ä=´+-=.(1)若(2)(3)x x x x Ä+>Ä-,求x 的取值范围;(2)有理数a ,b 在数轴上的位置如图所示,计算:[]()(2)()(22)a b b b a a b -Ä--Ä-.【答案】(1)x 的取值范围是1x >;(2)2234a b b ab a ---+-.【分析】(1)根据新定义的运算方法进行计算即可,(2)在理解新定义运算()(),()().a b a a b b a b a b b a b a a b Ä=+-£ìíÄ=+->î的意义和转换方法,然后类推计算即可.【详解】解:(1)∵x <x +2,x >x -3,∴22(2)(22)(2)22222x x x x x x x x x x Ä+=+-+=+--=+-,2(3)(3)(23)2109x x x x x x x Ä-=---=-+.∵(2)(3)x x x x Ä+>Ä-,∴22222109x x x x +->-+.∴1111x >.∴1x >.x 的取值范围是1x >.(2)∵a -b <0,2b >0,b -a >0,2a -2b <0,∴a -b <2b ,b -a >2a -2b .[]()(2)()(22)a b b b a a b -Ä--Ä-[]()(2)2(22)(22)()a b a b b b a b b a a b b a =--+----+---[]()()2(22)()a b a b b a b a b b a =-+-----+22222242a b b a ab b b a éù=----+-+ëû22222242a b b a ab b b a=---+-+-2234a b b ab a =---+-.【点睛】此题主要考查了整式的四则运算以及新定义运算的意义,理解新定义的运算方法是正确解答的前提.15.如图1,用4个相同边长是x 、y 的长方形和中间一个小正方形组成的大正方形.(1)若大正方形的面积为36,小正方形的面积为4,则x y -值为__________;则x y +的值为__________;(2)若小长方形两边长为9m -和4m -,则大正方形的边长为___________;若满足(9)(4)4m m --=,则22(9)(4)m m -+-的值为__________;(3)如图2,正方形ABCD 的边长是c ,它由四个直角边长分别是a ,b 的直角三角形和中间一个小正方形组成的,猜想a ,b ,c 三边的数量关系,并说明理由.【答案】(1)2,6;(2)5,17;(3)222+=a b c ,理由见解析【分析】(1)大正方形的边长为x +y ,小正方的边长为x -y ,由面积可求出正方形的边长;(2)小长方形两边之和为正方形的边长,再由完全平方公式求解即可;(3)根据大、小正方形和4个直角三角形的面积之间的关系得出结论.【详解】解:(1)∵大正方形的面积为36,小正方形的面积为4,∴()236x y +=,()24x y -=,又∵0x y >>,∴6x y +=,2x y -=,故答案为:2,6;(2)大正方形的边长为945x y m m +=-+-=,∵(9)(4)4m m --=,∴[]2222(9)(4)(9)(4)2(9)(4)5817m m m m m m -+-=-+----=-=,故答案为:5,17;(3)a ,b ,c 三边的数量关系为222+=a b c .理由如下:由拼图可得,小正方形的边长为-a b ,由大正方形的面积等于小正方形的面积与4个直角三角形的面积和可得,221()42a b ab c -+´=,即222+=a b c .【点睛】本题考查完全平方公式的几何背景,理清各个图形面积之间的关系是解决问题的关键,用代数式表示各个部分的面积是得出结论的前提.16.某同学用如图所示不同颜色的正方形与长方形纸片拼成了一个如图所示的正方形.(1)①请用两种不同的方法求图中阴影部分的面积.方法1:;方法2: .②以上结果可以验证的乘法公式是 .(2)根据上面的结论计算:①已知m +n =5,2211m n +=,求mn 的值.②已知(2019−m )(2020−m )=1010,求()()222020--2019m m +的值.【答案】(1)①22a b +,()2-2a b ab +;②22a b +=()2-2a b ab +;(2)①7;②2021【分析】(1)①方法一:阴影部分面积为两个小正方形面积之和,分别求出两个小正方形面积然后相加即可;方法二:阴影部分面积等于大正方形面积减去两个空白长方形面积,分别求出面积然后进行计算即可;②根据完全平方公式可以很容易得出答案;(2)①根据完全平方公式进行相应的计算即可得到答案;②根据完全平方公式进行相应的计算即可得到答案.【详解】解:(1)①方法一:由题意可知阴影部分面积为两个小正方形面积之和∴22S a b =+阴影方法二:由阴影部分面积等于大正方形面积减去两个空白长方形面积∴()()222S a b ab ab a b ab=+--=+-阴影②∵()22222-222a b ab a b ab ab a b +=++-=+∴()222-2a b ab a b +=+即验证的乘法公式为()222-2a b ab a b +=+(2)①∵m +n =5∴()225m n +=∵2211m n +=∴()()222-225-1114m n m n mn ++===∴mn =7②∵(2019−m )(2020−m )=1010,∴()()()()()2222020--10192020--2019-22020--2019m m m m m m +=+()()2122020-2019-m m =+1210102021=+´=【点睛】本题主要考查了完全平方公式的运用,解题的关键在于能够熟练掌握相关公式.17.数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个请阅读以下探究过程并解决问题.猜想发现:由5510+==;112333+==;0.40.40.8+==;1525+>=;0.2 3.2 1.6+>=;111282+>=猜想:如果0a >,0b >,那么存在a b +³a b =时等号成立).猜想证明:∵20³∴①0=,即a b =时,0a b -+=,∴a b +=②0¹,即a b ¹时,0a b ->,∴a b +>综合上述可得:若0a >,0b >,则a b +³a b =时等号成立).猜想运用:(1)对于函数()10y x x x=+>,当x 取何值时,函数y 的值最小?最小值是多少?变式探究:(2)对于函数()133y x x x =+>-,当x 取何值时,函数y 的值最小?最小值是多少?拓展应用:(3)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为S (米2).问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积S 最大?最大面积是多少?【答案】(1)1x =,函数y 的最小值为2;(2)4x =,函数y 的最小值为5;(3)每间隔离房长为72米,宽为218米时,S 的最大值为214716米【分析】猜想运用:根据材料以及所学完全平方公式证明求解即可;变式探究:将原式转换为1333y x x =+-+-,再根据材料中方法计算即可;拓展应用:设每间隔离房与墙平行的边为x 米,与墙垂直的边为y 米,依题意列出方程,然后根据两个正数之和与这两个正数之积的算术平方根的两倍之间的关系探究最大值即可.【详解】猜想运用:∵0x >,∴10x>,∴12y x x =+³=,∴当1x x=时,min 2y =,此时21x =,只取1x =,即1x =时,函数y 的最小值为2.变式探究:∵3x >,∴30x ->,103x >-,∴133353y x x =+-+³=-,∴当133x x =--时,min 5y =,此时()231x -=,∴14x =,22x =(舍去),即4x =时,函数y 的最小值为5.拓展应用:设每间隔离房与墙平行的边为x 米,与墙垂直的边为y 米,依题意得:91263x y +=,即3421x y +=,∵30x >,40y >,∴34x y +³,即21≥,整理得:14716xy ≤,即14716S ≤,∴当34x y =时max 14716S =,此时72x =,218y =,即每间隔离房长为72米,宽为218米时,S 的最大值为214716米.【点睛】本题主要考查根据完全平方公式探究两个正数之和与这两个正数之积的算术平方根的两倍之间的关系,熟练运用完全平方公式并参照材料中步骤进行计算是解题关键,属于创新探究题.18.有些同学会想当然地认为333()x y x y -=-.(1)举出反例说明该式不一定成立;(2)计算3()x y -;(3)直接写出当x 、y 满足什么条件,该式成立.【答案】(1)见解析;(2)33222()33x y x x y xy y -=-+-;(3)x y=【分析】(1)选一组使等式不成立的x 、y 值即可;(2)利用多项式乘以多项式的运算法则进行推导计算即可;(3)将x=y 代入等式中即可解答.【详解】解:(1)令2x =,1y = ,(反例不唯一)∵ 3()1x y -=,337x y -=, 17¹,∴该等式不一定成立;(2)3()x y -= 2()()y y x x ×--=22(2)()x xy y x y -+×-=322233x x y xy y -+-,即33222()33x y x x y xy y -=-+-(3)将x y =代入333()x y x y -=-中,得: 3()0x y -=,33330x y x x -==-,0=0,∴当x 、y 满足x=y 时,该式成立.【点睛】本题考查整式的混合运算、完全平方公式,熟练掌握整式的混合运算是解答的关键.19.计算:(1)8x 2y 2÷2y 2;(2)(﹣2a 2)3+4a 5•a ;(3)(x +2y )2﹣2y (2x +y );(4)249922a a a a a --æö-¸ç÷--èø;(5)2323222221a a a a a a a a a a ++¸--+--;(6)23221x xy y x y x y x y æöæö--+¸-ç÷ç÷++èøèø.【答案】(1)4x 2;(2)-4a 6;(3)x 2+2y 2;(4)33a a -+;(5)21a ;(6)y x -.【分析】(1)根据单项式除以单项式可以解答本题;(2)根据积的乘方、单项式乘单项式和合并同类项可以解答本题;(3)根据完全平方公式、单项式乘多项式可以解答本题;(4)根据分式的减法和除法可以解答本题;(5)根据分式的除法和减法可以解答本题;(6)根据分式的减法和除法可以解答本题.【详解】解:(1)8x 2y 2÷2y 2=4x 2;(2)(-2a 2)3+4a 5•a=(-8a 6)+4a 6=-4a 6;(3)(x +2y )2-2y (2x +y )=x 2+4xy +4y 2-4xy -2y 2=x 2+2y 2;(4)2499(22a a a a a ---¸--(2)(49)22(3)(3)a a a a a a a ----=×-+-2249(3)(3)a a a a a --+=+-2(3)(3)(3)a a a -=+-33a a -=+;(5)2323222221a a a a a a a a a a ++¸--+--22(1)(1)(1)2(1)(1)(1)a a a a a a a a a a ++-=×--+-212(1)(1)a a a a a +=---212(1)a a a a +-=-21(1)a a a -=-21a =;(6)23221x xy y x y x y x y æöæö--+¸-ç÷ç÷++èøèø23(2)()2()x xy x y x y y x y x y x y---+-+=¸++2223222x xy x xy xy y x y x y y x y---+++=×+--222x xy y y x-+=-2()y x y x-=-y x =-.【点睛】本题考查分式的混合运算、整式的混合运算,解答本题的关键是明确它们各自的计算方法.20.长方形ABCD 和正方形CEFH ,按如图所示的方式叠放在一起,且长方形ABHG 与长方形DEFG 的周长相等(其中点D 在EC 上,点B 在CH 的延长线上,AD 和FH 相交于点G ),正方形CEFH 的边长为m ,长方形ABCD 的宽为x ,长为y (x <m <y ).(1)写出x ,y ,m 之间的等量关系;(2)若长方形ABHG 的周长记作C 1,长方形DEFG 的周长记作C 2.①求C 1+C 2的值(用含y 、m 的代数式表示);②若关于y 的不等式C 1+C 2<10-2m 的正整数解只有2个,求m 的取值范围;(3)若长方形ABHG 的面积记作S 1,长方形DEFG 的面积记作S 2,试比较2S 2与S 1的大小,并说明理由.【答案】(1)2x +y =3m ;(2)①2m +2y ;②1≤m <32;(3)2S 2>S 1【分析】(1)根据长方形ABHG 与长方形DEFG 的周长相等列式求解即可;(2)①把长方形ABHG 与长方形DEFG 的周长相加整理即可;②根据C 1+C 2<10+2m 列式求解;(3)分别表示出S 1,S 2,然后用作差法比较;【详解】解:(1)长方形ABHG 的周长=2x +2(y -m )=2x +2y -2m ,长方形DEFG 的周长=2m +2(m -x )=4m -2x ,∵长方形ABHG 与长方形DEFG 的周长相等,∴2x+2y-2m=4m-2x,∴2x+y=3m;(2)①C1+C2=2x+2y-2m+4m-2x=2m+2y;②由C1+C2<10-2m,得2m+2y<10-2m,∴y<5-2m,∵C1+C2<10-2m的正整数解只有2个,∴2<5-2m≤3,∴1≤m<32;(3)∵S1=x(y-m)=xy-xm,S2=m(m-x)=m2-mx,∴2S2-S1= 2m2-2mx- xy+xm,∵2x+y=3m∴y=3m-2x∴2S2-S1=2m2-2mx- x(3m-2x)+xm=2m2-4mx+2x2=2(m-x)2,∵x<m<y,∴2(m-x)2>0,∴2S2>S1.【点睛】本题考查了整式混合运算的应用,解一元一次不等式,根据题意正确列出算式是解答本题的关键.21.若一个正整数m能表示为两个正整数a,b的平方和,则称m为“方和数”.(1)100 “方和数”,110 “方和数”;(填写“是”或“不是”)(2)以下两个判断,正确选项的序号是 .①两个“方和数”的和是“方和数”;②两个“方和数”的积是“方和数”.【答案】(1)是,不是;(2)②【分析】(1)根据“方和数”的概念计算求解;(2)①举反例进行分析说明;②根据方和数的概念,结合完全平方公式进行计算求解.【详解】解:(1)100=36+64=62+82,∴100是“方和数”,110不能写成两个正整数的平方和的形式,∴110不是“方和数”,故答案为:是,不是;(2)①两个“方和数”的和不一定是“方和数”,比如:2=12+12,13=22+32,∴2和13都是“方和数”,但2+13=15,而15不能写成两个正整数的平方和的性质,∴15不是“方和数”,故①错误;②设两个方和数分别为m ,n ,设m =a 2+b 2,n =c 2+d 2(a ,b ,c ,d 均为正整数),∴mn =(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+a 2d 2+b 2c 2+b 2d 2+2abcd -2abcd=(ac +bd )2+(ad +bc )2,∴mn 是“方和数”,故②正确,故答案为:②.【点睛】本题属于新定义题目,考查有理数的乘方运算,理解题意,掌握完全平方公式的结构特点是解题关键.22.通过课堂的学习知道,我们把多项式222a ab b ++及222a ab b -+叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:例如()22223214(1)4x x x x x +-=++-=+-,()2222462232(1)8x x x x x +-=+-=+-,像这样先添加一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称之为配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等等,如:因为222462(1)8x x x +-=+-,可知当1x =-时,2246x x +-的最小值是8-.请阅读以上材料,并用配方法解决下列问题:(1)因式分解:268x x ++;(2)已知a 是任何实数,若(23)M a =-(31)a -,3222N a a æö=--ç÷èø,通过计算判断M 、N的大小关系;(3)如图,用一段长为20米的篱笆围成一个长方形菜园,菜园的一面靠墙,墙长为8米.设与墙壁垂直的一边长为x 米,①试用x 的代数式表示菜园的面积;②求出当x 取何值时菜园面积最大,最大面积是多少平方米?【答案】(1)()()42x x ++;(2)M >N ;(3)①2220x x -+;②当x =6时,菜园面积最大,最大面积为48平方米【分析】(1)根据完全平方公式把原式变形,根据平方差公式进行因式分解;(2)计算M -N 并配方,根据结果判断即可;(3)①根据长方形的面积公式计算即可;②将①中结果进行配方,根据结果利用非负数的性质.【详解】解:(1)2268691x x x x ++=++-=()231x +-=()()3131x x +++-=()()42x x ++;(2)M -N =()()32331222a a a a éùæö-----ç÷êúèøëû=()()32331222a a a a æö----+ç÷èø=226293232a a a a a --+-++=2485a a -+=()242145a a -+-+=()2411a -+>0,∴M >N ;(3)①由题意可得:菜园的面积=()202x x -=2220x x -+;②由题意可得:0<20-2x ≤8,解得:6≤x <10,2220x x -+=()2210x x --=()22102550x x --++=()22550x --+,∴当x =6时,菜园面积最大,最大面积为48平方米.【点睛】本题考查的是完全平方公式的应用,非负数的性质,将多项式配方,再利用非负数的性质解答是解题的关键.23.数学家波利亚说过:“为了得到一个方程,我们必须把同一个量以两种不同的方法表示出来,即将一个量算两次,从而建立相等关系,”这就是“算两次”原理,也称为富比尼(G .Fubini )原理,例如:对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.(教材片段):计算如图1的面积,把图1看做一个大正方形,它的面积是()2a b +,如果把图1看做是由2个长方形和2个小正方形组成的,它的面积为222a ab b ++,由此得到:()2222a b a ab b +=++.(1)如图2,用不同的代数式表示大正方形的而积,由此得到的等式为__________;(用a 、b 表示)(2)利用上面结论解决问题:若6,2x y xy +==,则()2x y -=__________;(3)如图3,用不同的代数式表示大正方形的面积,由此得到的等式为__________;(用a 、b 、c 表示)(4)利用上面结论解决问题:已知7,14a b c ab bc ac ++=++=,则222a b c ++=__________;(5)如图4,用不同的代数式表示大正方形的面积(里面是边长为c 的小正方形),由此得到的等式为__________;(用a 、b 、c 表示)(6)若221,2,1a n b n c n =-==+,请通过计算说明a 、b 、c 满足上面结论.【答案】(1)()()224b a b a ab +=-+;(2)28;(3)()2222222a b c a b c ac ab bc ++=+++++;(4)21;(5)222+=a b c ;(6)见解析【分析】(1)分别利用整体和部分和两种方法表示出面积即可得到结论;(2)由(1)得到()()224x y x x y y +=-+,再将已知等式代入计算即可;(3)分别利用整体和部分和两种方法表示出面积即可得到结论;(4)根据(3)中结论,将已知等式代入计算即可;(5)分别利用整体和部分和两种方法表示出面积即可得到结论;(6)分别计算出2a ,2b ,2c ,根据整式的混合运算法则可得结论.【详解】解:(1)大正方形整体表示面积为:()2a b +,大正方形部分和表示面积为:()24b a ab -+,∴由此可得等式为:()()224b a b a ab +=-+;(2)由(1)可得:()()224x y x x y y +=-+,∴x +y =6,xy =2,∴()22642x y =-+´,∴()236828x y -=-=;(3)大正方形面积整体表示为:()2a b c ++,大正方形面积部分和表示为:222222a b c ac ab bc +++++,故由此可得公式为:()2222222a b c a b c ac ab bc ++=+++++;(4)∵a +b +c =7,ab +bc +ac =14,∴由(3)可得:22227214a b c =+++´,∴222492821a b c ++=-=;(5)由题可得:大正方形面积整体表示为:()2a b +,大正方形面积部分和表示为:221422c ab c ab +´=+,∴()222a b c ab +=+,∴222+=a b c ;(6)∵21a n =-,2b n =,21c n =+,∴()22242121a n n n =-=-+,()22224b n n ==,()22242121c n n n =+=++,∴2242242221421a b n n n n n c +=-++=++=,∴222+=a b c .【点睛】本题考查了完全平方公式的几何背景,整式的混合运算,解题的关键是读懂题意,用不同的方式表示出同一个图形的面积,解题时注意数形结合思想的运用.24.同学们,在数学课本第9章《整式乘法与因式分解》里学习了整式乘法的完全平方公式,还记得它是如何被发现的吗?(苏科版教材P75页)计算如图1的面积,把图1看做一个大正方形,它的面积是2()a b +,如果把图1看做是由2个长方形和2个小正方形组成的,它的面积为222a ab b ++,由此得到:222()2a b a ab b +=++.(类比探究(1)):如图2,正方形ABCD 是由四个边长分别是a ,b 的长方形和中间一个小正方形组成的,用不同的方法对图2的面积进行计算,你发现的等式是_______(用a ,b 表示)(应用探索结果解决问题):已知:两数x ,y 满足7x y +=,6xy =,求x y -的值.(类比探究(2)):如图3,正方形ABCD 的边长是c ,它由四个直角边长分别是a ,b 的直角三角形和中间一个小正方形组成的,对图3的面积进行计算,你发现的式子是_________.(用a ,b ,c 表示,结果尽可能化简)(应用探索结果解决问题):正方形ABCD 的边长是c ,它由四个直角边长分别是a ,b 的直角三角形和中间一个小正方形组成的,当22103,3a xb y ==时,4c =;当232a x =,22b y =时,3c =,求x ,y 的值.【答案】[类比探究(1)]:22()()4a b a b ab +=-+,±5;[类比探究(2)]:222+=a b c ;[应用探索结果解决问题]:23x y =ìí=î.【分析】[类比探究(1)]根据正方形ABCD 的面积2()a b =+,正方形ABCD 的面积2()4a b ab -+,即可得出22()()4a b a b ab +=-+;据此可得x y -的值.[类比探究(2)]根据正方形ABCD 的面积2c =,正方形ABCD 的面积21()42a b ab -+´,即可得出222+=a b c ;[应用探索结果解决问题]根据222+=a b c 可得关于x ,y 的方程组,求得x ,y 的值.【详解】解:(1)如图2,正方形ABCD 的面积2()a b =+,正方形ABCD 的面积2()4a b ab -+,22()()4a b a b ab \+=-+;22()()4x y x y xy +=-+Q ,且7x y +=,6xy =,249()24x y \=-+,即2()25x y -=,x y \-的值为5±;(2)如图3,正方形ABCD 的面积2c =,正方形ABCD 的面积21()42a b ab -+´,221()42c a b ab \=-+´,即222+=a b c ,Q 当23a x =,2103b y =时,4c =;当232a x =,22b y =时,3c =,\1031633292x y x y ì+=ïïíï+=ïî,解得23x y =ìí=î.【点睛】本题主要考查了完全平方公式的几何背景以及解二元一次方程组,解决问题的关键是运用面积法得出完全平方公式:(a +b )2=a 2+2ab +b 2.解题时注意数形结合思想的运用.25.(知识生成)通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >.把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a 2-b 2,图2中阴影部分面积可表示为(a +b )(a -b ),因为两个图中的阴影部分面积是相同的,所以可得到等式:a 2-b 2=(a +b )(a -b );(拓展探究)图3是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1: ,方法2: ;(2)由(1)可得到一个关于(a +b )2、(a -b )2、ab 的的等量关系式是 ;(3)若a +b =10,ab =5,则(a -b )2= ;(知识迁移)(4)如图5,将左边的几何体上下两部分剖开后正好可拼成如右图的一个长方体.根。
初二年级上乘法公式练习题
初二年级上乘法公式练习题一、多位数乘一位数1. 58 × 7 = ______解:首先将个位上的数字7乘以被乘数58的个位上的数字8,得到56,将6写在个位上,将5进位;然后将个位数7乘以被乘数58的十位数5,得到35,加上进位的5,得到40,将0写在十位上,将4进位;最后将个位数7乘以被乘数58的百位数,得到49,再加上进位的4,得到53,将3写在百位上,将5进位。
所以,58 × 7 = 406。
2. 293 × 6 = ______解:首先将个位上的数字6乘以被乘数293的个位上的数字3,得到18,将8写在个位上,将1进位;然后将个位数6乘以被乘数293的十位数9,得到54,加上进位的1,得到55,将5写在十位上,将5进位;最后将个位数6乘以被乘数293的百位数2,得到12,再加上进位的5,得到17,将7写在百位上,将1进位。
所以,293 × 6 = 1758。
二、两位数乘两位数1. 34 × 57 = ______解:将个位数7分别乘以乘数34的个位4和十位3,得到28和21,并将结果相加,得到49,将9写在个位上,将4进位;然后将十位数5分别乘以乘数34的个位4和十位3,得到20和15,并将结果相加,得到35,再加上进位的4,得到39,将9写在十位上,将3进位;最后将个位数7分别乘以乘数34的百位,得到28,并将结果写在百位上。
所以,34 × 57 = 1938。
2. 76 × 28 = ______解:将个位数8分别乘以乘数76的个位6和十位7,得到48和56,并将结果相加,得到104,将4写在个位上,将10进位;然后将十位数2分别乘以乘数76的个位6和十位7,得到12和14,并将结果相加,得到26,再加上进位的10,得到36,将6写在十位上,将3进位;最后将个位数8分别乘以乘数76的百位7,得到56,并将结果写在百位上。
人教版 八年级数学上册 14.2 乘法公式 同步训练(含答案)
人教版 八年级数学上册 14.2 乘法公式 同步训练一、选择题1. 将202×198变形正确的是 ( )A .2002-4B .2022-4C .2002+2×200+4D .2002-2×200+4 2. 如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数3. 若M ·(2x -y 2)=y 4-4x 2,则M 应为 ( )A .-(2x +y 2)B .-y 2+2xC .2x +y 2D .-2x +y 24. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为( )A .abB .0C .2abD .3ab 5. 若(2x +3y )(mx -ny )=9y 2-4x 2,则m ,n 的值分别为( )A .2,3B .2,-3C .-2,-3D .-2,36. 将9.52变形正确的是 ( )A .9.52=92+0.52B .9.52=(10+0.5)×(10-0.5)C .9.52=92+9×0.5+0.52D .9.52=102-2×10×0.5+0.52 7. 若(x +a )2=x 2+bx +25,则( )A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =108. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C.一定能被10整除D.一定能被12整除9. 如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b)D.(a+b)(a-2b)10. 如果a,b,c是ABC△三边的长,且22()a b ab c a b c+-=+-,那么ABC△是( ) A. 等边三角形. B. 直角三角形. C. 钝角三角形. D. 形状不确定.二、填空题11. 用平方差公式计算:(ab-2)(ab+2)=________.12. 如果(x+my)(x-my)=x2-9y2,那么m=________.13. 多项式x2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是________(任写一个符合条件的即可).14. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.abba15. 如图,在边长为a的正方形中剪去一个边长为b的小正方形(a b>),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.bab b a16. 根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题17. 计算:()()a b c a b c +--+18. 计算2244()()()()a b a b a b a b -+++19. 阅读材料后解决问题.小明遇到一个问题:计算(2+1)×(22+1)×(24+1)×(28+1).经过观察,小明发现将原式进行适当的变形后,可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)×(22+1)×(24+1)×(28+1)=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)=(22-1)×(22+1)×(24+1)×(28+1)=(24-1)×(24+1)×(28+1)=(28-1)×(28+1)=216-1.请你根据小明解决问题的方法,试着解决下列问题:(1)计算:(2+1)×(22+1)×(24+1)×(28+1)×(216+1);(2)计算:(3+1)×(32+1)×(34+1)×(38+1)×(316+1);(3)化简:(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).人教版 八年级数学上册 14.2 乘法公式 同步训练-答案一、选择题1. 【答案】A [解析] 202×198=(200+2)×(200-2)=2002-4.2. 【答案】C【解析】将原式展开,合并后得到1ab =,选择C .3. 【答案】A [解析] M 与2x -y 2的相同项应为-y 2,相反项应为-2x 与2x ,所以M 为-2x -y 2,即-(2x +y 2).4. 【答案】D5. 【答案】C [解析] 因为(2x +3y)(mx -ny)=2mx 2-2nxy +3mxy -3ny 2=9y 2-4x 2,所以2m =-4,-3n =9,-2n +3m =0,解得m =-2,n =-3.6. 【答案】D [解析] 9.52=(10-0.5)2=102-2×10×0.5+0.52.7. 【答案】D[解析] 因为(x +a)2=x 2+bx +25, 所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.8. 【答案】B [解析] 原式=(4n 2+4n +1)-(4n 2-4n +1)=8n ,则原式的值一定能被8整除.9. 【答案】A [解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.10. 【答案】A【解析】已知关系式可化为2220a b c ab bc ac ++---=,即2221(222222)02a b c ab bc ac ++---=, 所以2221[()()()]02a b b c a c -+-+-=,故a b =,b c =,c a =.即a b c ==.选A .二、填空题11. 【答案】a 2b 2-4 [解析] (ab -2)(ab +2)=a 2b 2-4.12. 【答案】±3 [解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m =±3.13. 【答案】2x (或-2x 或14x 4) 【解析】x 2+2x +1=(x +1)2;x 2-2x +1=(x -1)2;14x 4+x 2+1=(12x 2+1)2.14. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--15. 【答案】22()()a b a b a b +-=-【解析】左图中阴影部分的面积为22a b -,右图中阴影部分的面积为1(22)()()()2b a a b a b a b +-=+-,故验证了公式22()()a b a b a b +-=-(反过来写也可)16. 【答案】(a +b)(a -b)=a 2-b 2三、解答题17. 【答案】2222a b bc c -+-【解析】原式()()()222222a b c a b c a b c a b bc c =+---=--=-+-⎡⎤⎡⎤⎣⎦⎣⎦18. 【答案】88a b -【解析】原式222244444488()()()()()a b a b a b a b a b a b =-++=-+=-19. 【答案】解:(1)原式=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)×(216+1)=232-1.(2)原式=×(3-1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)=.(3)若m≠n,则原式=(m-n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=;若m=n,则原式=2m·2m2·……·2m16=32m31.。
人教版八年级数学上册乘法公式(含答案)
14.2乘法公式专题一乘法公式1.下列各式中运算错误的是()A.a2+b2=(a+b)2-2ab B.(a-b)2=(a+b)2-4abC.(a+b)(-a+b)=-a2+b2D.(a+b)(-a-b)=-a2-b2 2.代数式(x+1)(x-1)(x2+1)的计算结果正确的是()A.x4-1 B.x4+1 C.(x-1)4D.(x+1)43.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a-b)=a2-b2 B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.(a+b)2=a2+ab+b25.如图,你能根据面积关系得到的数学公式是()A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.a(a+b)=a2+ab6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?状元笔记【知识要点】1.平方差公式(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.2.完全平方公式(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【温馨提示】1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.【方法技巧】1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.参考答案:1.D 解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.2.A 解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,当x=2,y=3时,原式=22+4×2×3=4+24=28.4.B 解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.5.C 解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.。
人教版八年级上册数学 14.2乘法公式 同步练习
人教版八年级上册数学14.2乘法公式同步练习第1课时平方差公式1.若x²−y²=4,则x+y²x−y²的值是()A.4B.8C.16D.642.下列多项式相乘不能用平方差公式计算的是()A.(4x-3y)(3y-4x)B.(-4x+3y)(-4x-3y)C.(3y+2x)(2x-3y)D.−14x+2y+2y3.已知(x+2)(x--2)--2x=1,则2x²−4x+3的值为()A.13B.8C.--3D.54.若a=2022º,b=2021×2023-2022²,c=−×,则a,b,c的大小关系是()A.a<b<cB.b<a<cC.c<b<aD.b<c<a5.计算:x+1x−1x²+1=.6.已知a--b=2,则a²−b²−4a的值为7.运用平方差公式计算:(1)9.9×10.1(2)(5ab-3xy)(-3xy-5ab)(3)31×29(4)(3m-2n)(-3m-2n)8.如图,大正方形ABCF与小正方形EBDH的面积之差是40,则涂色部分的面积是()A.20B.30C.40D.609.若(3a+3b+1)(3a+3b--1)=899,则a+b=.10.[3−1×3+1×32+1×34+1×⋯×3³²+1+1]÷3的个位上的数字为.11.如果a,b为有理数,那么2a²−a−b(a+b)-[(2-a)(a+2)+(-b-2)(2-b)]的结果与b的值有关吗?12.先化简,再求值:(a+2b)(a—2b)—(--2a+3b)(-2a-3b)+(--a-b)(b-a),其中a=2,b=3.13.阅读材料:乐乐遇到一个问题:计算(2+1)×2²+1×2⁴+1.经过观察,乐乐答案讲解发现如果将原式进行适当变形后,可以出现特殊的结构,进而可以运用平方差公式解决问题,具体解法如下:2+1×2²+1×2⁴+1=2−1×2+1×2²+1×2⁴+1=2²−1×2²+1×2⁴+1=2¹−1×2⁴+1=2⁸−1.根据乐乐解决问题的方法,请你试着计算下列各题:12+1×2²+1×2⁴+1×2⁸+1×2¹⁶+1.23+1×3²+1×3⁴+1×3⁸+1×3¹⁶+1.14.(1)将图①中的涂色部分裁剪下来,重新拼成一个如图②所示的长方形,通过比较图①②中涂色部分的面积,可以得到的整式乘法公式为(2)运用你所得到的乘法公式,完成题目:①若x²−9y²=12,x+3y=4,求x-3y的值.②计算:103×97.(3)计算:1−×1−×1−×⋯×1×1−.第2课时完全平方公式1.下列关于104²的计算方法中,正确的是()A.104²=100²+4²B.104²=100+4×100−4C.104²=100²+100×4+4²D.104²=100²+2×100×4+4²2.我们在学习许多公式时,可以用几何图形来推理和验证.观察下列图形,可以推出公式a−b²=a²−2ab+b²的是()3.若x=y+3,xy=4,则.x²−3xy+y²的值为4.已知x²−2x−2=0,则x−1²+2021=5.运用乘法公式计算:1.x+3x−3x²−92.−x−5²−2x+3²3.1+12x21−12x26.已知3a−b=5,9a²−7ab+b²=14,则ab的值为()A.1B.2C.9D.117.已知长方形的长和宽分别为a和b,长方形的周长和面积分别为20和24,则a²+b²的结果为()A.64B.52C.48D.448.已知a,b满足等式x=3a²−2a+4,y=2a²+4a--5,则x,y的大小关系是()A.x=yB.x>yC.x<yD.x≥y9.先化简,再求值:[4xy−1²−xy+2(2−xy)]÷xy,其中x=2,y=-0.3.10.已知2024−x²+x−2023²=9,则(2024-x)(x-2023)的值为.11.已知x+1x=3,求下列各式的值:1x4+1x4.2x.12.如图,将一块大长方形铁皮切割成九块(虚线代表切痕),其中两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是(第10题)长、宽分别为m,n的小长方形,且m>n,切痕的总长为42,每块小长方形的面积为9,则(m-n)²的值为.13.如图①,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)如图②,用1张A型卡片,2张答案讲解B型卡片,3张C型卡片拼成一个长方形,利用两种方法计算这个长方形的面积,可以得到一个等式:(2)选取1张A型卡片,8张C型卡片,张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的式子表示为.(3)如图③,正方形的边长分别为m,n,m+2n=10,mn=12,求涂色部分的面积.完全平方公式经过适当的变形,可以用来解决很多数学问题.14.例如:若a+b=3,ab=1,求a²+b²的值.解:∵a+b=3,ab=1,∴a+b²=9,2ab=2.∴a²+b²+2ab=9.∴a²+b²=7.根据上面的解题思路与方法,还可以解决下面的几何问题:如图,C是线段AB上的一点,分别以AC,BC为边向两侧作正方形ACDE与正方形BCFG.设AB=8,两个正方形的面积和为40,求△AFC的面积.。
八年级数学上册《第十四章 乘法公式》同步训练题及答案(人教版)
八年级数学上册《第十四章乘法公式》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列多项式,能用平方差公式分解的是()A.−x2−4y2B.9x2+4y2C.−x2+4y2D.x2+(−2y)2 2.当m为自然数时,(4m+5)2−9一定能被下列哪个数整除()A.5B.6C.7D.83.如图中能够用图中已有图形的面积说明的等式是()A.x(x+4)=x2+4x B.(x+2)(x−2)=x2−4C.(x+2)2=x2+4x+4D.(x+4)(x−4)=x2−164.计算:52a×10012−52a×9992=()A.5000a B.1999a C.10001a D.10000a5.已知x−y=3,xy=2则(x+y)2的值等于()A.12 B.13 C.14 D.176.设a=√7−1,则3a3+12a2−6a−12=()A.24 B.25 C.4√7+10D.4√7+127.如图有三种不同的纸片,现选取4张拼成了图甲,你能根据面积关系得到下列等式成立的是()A.a(a+b)=a2+ab B.a2−b2=(a+b)(a−b)C.(a−b)2=a2−2ab+b2D.(a+b)2=a2+2ab+b28.若a+x2=2020,b+x2=2021,c+x2=2022,则a2+b2+c2﹣ab﹣bc﹣ca的值为( )A.0 B.1 C.2 D.3二、填空题9.计算982−99×97=.10.若a≠b,且a2﹣a=b2﹣b,则a+b=.11.若x2−y2=16,x+y=8,则x-y= .12.若a+b=8,ab=−5则(a−b)2=.13.若x2+2(m+3)x+9是关于x的完全平方式,则m=.三、解答题14.化简:(2m−n)2+(m+n)(m−n).15.用简便方法计算:2022+20222−2023216.已知a、b、c是三边ΔABC的长,且满足a2+b2+c2+50=6a+8b+10c,求ΔABC三边的长.17.如图,有一位狡猾的地主,把一块边长为a的正方形的土地,租给李老汉种植,他对李老汉说:“我把你这块地的一边减少4m,另一边增加4m,继续租给你,你也没有吃亏,你看如何”.李老汉一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李老汉有没有吃亏?请说明理由.18.当a、b为何值时,多项式a2+b2-4a+6b+18有最小值?并求出这个最小值.参考答案1.C2.D3.B4.D5.D6.A7.D8.D9.110.111.212.8413.0或-614.解:(2m−n)2+(m+n)(m−n)=4m2−4mn+n2+m2−n2=5m2−4mn.15.解:原式=2022+(2022+2023)(2022-2023)=2022+(2022+2023)×(-1)=2022-2022-2023=-2023.16.∵a2+b2+c2+50=6a+8b+10c∴a2−6a+9+b2−8b+16+c2−10c+25=0即:(a−3)2+(b−4)2+(c−5)2=0∴a−3=0,b−4=0,c−5=0∴a=3,b=4,c=5 .17.解:赵老汉吃亏了.∵a2-(a+4)(a-4)=a2-(a2-16)=16∴与原来相比,赵老汉的土地面积减少了16米2 即赵老汉吃亏了.18.解:a2+b2-4a+6b+18=a2-4a+b2+6b+18=a2-4a+4+b2+6b+9+5=(a-2)2+(b+3)2+5∵(a-2)2≥0,(b+3)2≥0∴当a-2=0,b+3=0即a=2,b=-3时,原式有最小值,最小值为5.。
2020年最新人教版数学八年级上册 14.2《乘法公式》章节测试
人教版数学八年级上册《乘法公式》章节测试一、选择题(本大题共4小题,共16.0分)1.下列计算正确的是( )A. x5÷x3=x2B. 2x+3y=5xyC. (x2)3=x5D. (x+y)(x−2y)=x2−2y22.如果9a2−ka+4是完全平方式,那么k的值是( )A. −12B. 6C. ±12D. ±63.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A. (a−b)2=a2−2ab+b2B. (a+b)2=a2+2ab+b2C. 2a(a+b)=2a2+2abD. (a+b)(a-b)=a2-b24.若(x−2)(x+3)=x2+ax+b,则a,b的值分别为( )A. a=5,b=−6B. a=5,b=6C. a=1,b=6D. a=1,b=−6二、填空题(本大题共6小题,每空3分,共24.0分)5.若x+y=3,则2x⋅2y的值为______.6.计算:(−2x3)2=______.7.若a m=2,a n=3,则a m−n的值为______ .8.x2-x+______=(x-0.5)2 , (______-1)2=______-4x+1.9.图中的四边形均为矩形.根据图形,写出一个正确的等式:______10.如果(x+2)(x+p)的展开式中不含x的一次项,那么p=______三、计算题(本大题共6小题,共30.0分)(1) (-3x-2y)2 (2)(−2a)3−(−a)⋅(3a)21(3) (2a-b)2-4a(a-b) (4) (x+2y)(x-2y)-(2x+1)2(5)(m-2n+3) (m+2n-3) (6)2008×2006−20072.12.(10分)已知a=−1,b=2,求[(2a+b)2−(4a+b)(a−2b)]÷b的值.13.(10分)已知x2−x=5,求(2x+1)2−x(5+2x)+(2+x)(2−x)的值14.(10分)已知x+y=4,x−y=2,求下列各式的值.第!异常的公式结尾页,共3页 2(1)x2+y2(2)xy.附加题:(20分)已知m−n=3,mn=2,求:(1)(m+n)2的值;(2)m2−5mn+n2的值.3。
人教版八年级上册数学 14.2乘法公式 同步练习(含解析)
人教版八年级上册数学14.2乘法公式同步练习(含解析)一.选择题1.下列各式中,运算错误的是()A.(x+5)(x﹣5)=x2﹣25B.(﹣x﹣5)(﹣x+5)=x2﹣25C.(x+)2=x2+x+D.(x﹣3y)2=x2﹣3xy+9y22.下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)3.下列乘法公式的运用,正确的是()A.(2x﹣3)(2x+3)=4x2﹣9B.(﹣2x+3y)(3y+2x)=4x2﹣9y2C.(2a﹣3)2=4a2﹣9D.(﹣4x﹣1)2=16x2﹣8x+14.已知a+b=3,ab=,则a2+b2的值等于()A.6B.7C.8D.95.如图,用4个相同的小长方形与1个小正方形(阴影部分)摆成了一个正方形图案,已知该图案的面积为81,小正方形的面积为25,若用x、y表示小长方形的两边长(x>y),请观察图案.指出以下关系式中,不正确的是()A.x+y=9B.x﹣y=5C.4xy+25=81D.x2+y2=496.为了运用平方差公式计算(x+3y﹣z)(x﹣3y+z),下列变形正确的是()A.[x﹣(3y+z)]2B.[(x﹣3y)+z][(x﹣3y)﹣z]C.[x﹣(3y﹣z)][x+(3y﹣z)]D.[(x+3y)﹣z][(x﹣3y)+z]7.下列计算中,正确的是()A.x(2x2﹣x+1)═2x3﹣x2+1B.(a+b)2=a2+b2C.(x﹣2)2=x2﹣2x+4D.(﹣a﹣b)2=a2+2ab+b28.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b][(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)][a+(b﹣c)]D.[a﹣(b﹣c)][a+(b﹣c)]9.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和30,则正方形A、B的面积之和为()A.33B.30C.27D.24二.填空题10.计算(a﹣2b)2﹣2a(3a﹣4b)的结果是.11.计算(a+b)(a﹣b)的结果等于.12.如图是边长为a+b的大正方形,通过两种不同的方法计并该大正方形的面积,聪明的你可以得到一个乘法公式,请你用含有a,b的等式表达出来,结果是.13.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.14.已知(5+2x)2+(3﹣2x)2=40,则(5+2x)•(3﹣2x)的值为.三.解答题15.计算:(1)9992.(2)计算()2﹣()2.16.23.142﹣23.14×6.28+3.142.17.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.答案1.解:A.(x+5)(x﹣5)=x2﹣25,故本选项不合题意;B.(﹣x﹣5)(﹣x+5)=x2﹣25,故本选项不合题意;C.(x+)2=x2+x+,故本选项不合题意;D.(x﹣3y)2=x2﹣6xy+9y2,故本选项符合题意.故选:D.2.解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.3.解:A.(2x﹣3)(2x+3)=(2x)2﹣32=4x2﹣9,故本选项符合题意;B.(﹣2x+3y)(3y+2x)=(3y)2﹣(2x)2=9y2﹣4x2,故本选项不合题意;C.(2a﹣3)2=4a2﹣12a+9,故本选项不合题意;D.(﹣4x﹣1)2=﹣16x2﹣8x﹣1,故本选项不合题意.故选:A.4.解:∵a+b=3,∴(a+b)2=32=9,∴a2+b2=(a+b)2﹣2ab=9﹣3=6.故选:A.5.解:∵小正方形的面积为25,∴小正方形的为边长为5,∴x﹣y=5,∴选项B正确;∵已知该图案的面积为81,∴4xy+25=81,∴选项C正确,∵由题与图已知x+y=9,x=7,y=2,∴选项A正确,∴选项D不正确,故选:D.6.解:运用平方差公式计算(x+3y﹣z)(x﹣3y+z),应变形为[x+(3y﹣z)][x﹣(3y﹣z)],故选:C.7.解:A、x(2x2﹣x+1)═2x3﹣x2+x,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、(x﹣2)2=x2﹣4x+4,故此选项错误;D、(﹣a﹣b)2=a2+2ab+b2,正确.故选:D.8.解:(a﹣b+c)(a+b﹣c)=[a﹣(b﹣c)][a+(b﹣c)].故选:D.9.解:设正方形A的边长是a,正方形B的边长是b(a>b),由题可得图甲中阴影部分的面积是S甲=(a﹣b)2,图乙中阴影部分的面积是S乙=(a+b)2﹣a2﹣b2=2ab,∵图甲和图乙中阴影部分的面积分别为3和30,∴S甲=(a﹣b)2=3,S乙=2ab=30,∴正方形A、B的面积之和为:S A+S B=a2+b2=(a﹣b)2+2ab=3+30=33,故选:A.10.解:(a﹣2b)2﹣2a(3a﹣4b)=a2﹣4ab+4b2﹣6a2+8ab=﹣5a2+4ab+4b2,故答案为:﹣5a2+4ab+4b2.11.解:(a+b)(a﹣b)=a2﹣b2;故答案为:a2﹣b2.12.解:如图,用不同的方法表示大正方形的面积可得(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.13.解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).14.解:∵(5+2x)2+(3﹣2x)2=40,∴[(5+2x)+(3﹣2x)]2﹣2(5+2x)(3﹣2x)=40,即64﹣2(5+2x)(3﹣2x)=40,∴(5+2x)(3﹣2x)=12.故答案为12.15.解:(1)9992=(1000﹣1)2=10002﹣2×1000+1=1000000﹣2000+1=9980001;(2)原式=x2+5x+1﹣(x2﹣5x+1)=x2+5x+1﹣x2+5x﹣1=10x.16.解:原式=23.142﹣2×23.14×3.14+3.142=(23.14﹣3.14)2=400.17.解:(1)如图所示:(2)(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣12xy+9y2﹣x2+4y2=3x2﹣12xy+13y2.。
2020年人教版八年级上册14.2《乘法公式》同步练习卷 含答案
2020年人教版八年级上册14.2《乘法公式》同步练习卷一.选择题1.计算(a+2b)2的结果是()A.a2+4b2B.a2+2ab+2b2C.a2+4ab+2b2D.a2+4ab+4b22.下列从左到右的变形,错误的是()A.(y﹣x)2=(x﹣y)2B.﹣a﹣b=﹣(a+b)C.(m﹣n)3=﹣(n﹣m)3D.﹣m+n=﹣(m+n)3.下列算式能用平方差公式计算的是()A.(3a+b)(3b﹣a)B.(﹣1)(﹣﹣1)C.(x﹣y)(﹣x+y)D.(﹣a﹣b)(a+b)4.若x2﹣kx+81是完全平方式,则k的值应是()A.16B.9或﹣9C.﹣18D.18或﹣185.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.256.代数式(m﹣2)(m+2)(m2+4)﹣(m4﹣16)的结果为()A.0B.4m C.﹣4m D.2m47.如图是用四个相同的矩形和一个正方形拼成的图案,已知此图案的总面积是49,小正方形的面积是4,x,y分别表示矩形的长和宽,那么下面式子中不正确的是()A.x+y=7B.x﹣y=2C.4xy+4=49D.x2+y2=258.如图,将一张正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为2m+3,则原正方形边长是()A.m+6B.m+3C.2m+3D.2m+6二.填空题9.计算:(m﹣2n)2=.10.计算:x(x+2)﹣(x+1)(x﹣1)=.11.若x2﹣6x+k是x的完全平方式,则k=.12.9992﹣998×1002=.13.(a+b)(a﹣b)(a2+b2)(a4+b4)=.14.如果(a+b﹣2)(a+b+2)=77,那么a+b=.15.已知a,b满足a﹣b=1,ab=2,则a+b=.16.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.三.解答题17.(a+1)(a2﹣1)(a﹣1).18.利用乘法公式计算:982.19.已知a﹣b=4,ab=3(1)求(a+b)2(2)a2﹣6ab+b2的值.20.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2 第一步=3002﹣2×300×(﹣4)+42 第二步=90000+2400+16 第三步=92416.第四步老师表扬小亮积极发言的同时,也指出了解题中的错误.(1)你认为小亮的解题过程中,从第几步开始出错;(2)请你写出正确的解题过程.21.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?参考答案一.选择题1.解:(a+2b)2=a2+4ab+4b2.故选:D.2.解:A、(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故本选项不合题意;B、﹣a﹣b=﹣(a+b),故本选项不合题意;C、(m﹣n)3=(m﹣n)(n﹣m)2=﹣(n﹣m)(n﹣m)2=﹣(n﹣m)3,故本选项不合题意;D、﹣m+n=﹣(m﹣n),故本选项符合题意.故选:D.3.解:选项A:没有两项完全相同,也没有两项属于相反数,故不能用平方差公式计算;选项B:和﹣是相反数,﹣1和﹣1是相同项,故可以用平方差公式计算;选项C:x与﹣x是相反数,﹣y与y也是相反数,故不能用平方差公式计算;选项D:﹣a和a是相反数,﹣b和b也是相反数,故不能用平方差公式计算;综上,只有选项B符合题意.故选:B.4.解:∵x2﹣kx+81是完全平方式,81=92,∴k=±2×1×9=±18.故选:D.5.解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.6.解:(m﹣2)(m+2)(m2+4)﹣(m4﹣16)=(m2﹣4)(m2+4)﹣(m4﹣16)=(m4﹣16)﹣(m4﹣16)=0.故选:A.7.解:A、∵此图案的总面积是49,∴(x+y)2=49,∴x+y=7,故本选项正确,不符合题意;B、∵小正方形的面积是4,∴(x﹣y)2=4,∴x﹣y=2,故本选项正确,不符合题意;C、根据题得,四个矩形的面积=4xy,四个矩形的面积=(x+y)2﹣(x﹣y)2=49﹣4,∴4xy=49﹣4,即4xy+4=49,故本选项正确,不符合题意;D、∵(x+y)2+(x﹣y)2=49+4,∴2(x2+y2)=53,解得x2+y2=26.5,故本选项错误,符合题意.故选:D.8.解:设原正方形的边长为x,则x﹣m=3,解得,x=m+3,故选:B.二.填空题9.解:原式=m2﹣4mn+4n2.10.解:原式=x2+2x﹣x2+1=2x+1.故答案为:2x+111.解:∵关于x的多项式x2﹣6x+k是完全平方式,∴x2﹣6x+k=x2﹣2•x•3+32,∴k=32=9,故答案为:9.12.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.13.解:原式=(a2﹣b2)(a2+b2)(a4+b4)=(a4﹣b4)(a4+b4)=a8﹣b8,故答案为:a8﹣b814.解:(a+b﹣2)(a+b+2)=77,即(a+b)2﹣22=77,(a+b)2=81,a+b=,a+b=±9.故答案为:±9.15.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.16.解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).三.解答题17.解:(a+1)(a2﹣1)(a﹣1)=[(a+1)(a﹣1)](a2﹣1)=(a2﹣1)(a2﹣1)=a4﹣2a2+1.18.解:原式=(100﹣2)2=1002﹣2×100×2+4=10000﹣400+4=9604.19.解:(1)∵a﹣b=4,ab=3,∴(a+b)2=(a﹣b)2+4ab=16+3×4=28;(2)∵a﹣b=4,ab=3,∴a2﹣6ab+b2=(a﹣b)2﹣4ab=16﹣12=4.20.解:(1)从第二步开始出错;(2)正确的解题过程是:2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.21.解:(1)图②中的阴影部分的面积为(m﹣n)2,故答案为:(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2,故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)(x﹣y)2=(x+y)2﹣4xy=25,则x﹣y=±5;(4)(2m+n)(m+n)=2m(m+n)+n(m+n)=2m2+3mn+n2.。
人教版数学八年级上册:乘法公式练习题
乘法公式练习题一、选择题1. 用乘法公式计算(2+1)(22+1)(24+1)…(22018+1)的结果( )A. 24036+1B. 24036−1C. 22018+2D. 22018−22. 已知(m −n)2=8,(m +n)2=2,则m 2+n 2的值为( )A. 10B. 6C. 5D. 33. 对于任意正整数m ,能整除式子(m +3)(m −3)−(m +2)(m −2)的整数是 ()A. 2B. 3C. 4D. 54. 下列计算结果为2ab −a 2−b 2的是( )A. (a −b)2B. (−a −b)2C. −(a +b)2D. −(a −b)25. 下列运算中,正确的有( ) ①(x +2y)2=x 2+4y 2; ②(a −2b)2=a 2−4ab +4b 2; ③(x +y)2=x 2−2xy +y 2; ④(x −14)2=x 2−12x +116.A. 1个B. 2个C. 3个D. 4个6. 利用平方差公式计算:1013×923,应先将算式写成( ).A. (10+13)×(9+23)B. (10+13)(10−13)C. (9+43)(9+23)D. (11−23)(11−43)7.小明在利用完全平方公式计算二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A. 12B. −6C. 6或−6D. 12或−128.下列各式中,是完全平方式的是()A. m2−4m−1B. x2−2x−1C. x2+2x+14D. 14b2−ab+a29.下列各式中与2ab−a2−b2相等的是()A. −(a−b)2B. −(a+b)2C. (−a−b)2D. (−a+b)210.下列算式中,能连续两次用平方差公式计算的是()A. (x+y)(x2+y2)(x−y)B. (x+1)(x2−1)(x+1)C. (x+y)(x2−y2)(x−y)D. (x−y)(x2+y2)(x−y)二、填空题11.根据完全平方公式填空:(1)(x+1)2=(__________)2+2×________×________+(________)2=____________;(2)(−x+1)2=(________)2+2×________×________+(________)2=____________;(3)(−2a−b)2=(________)2+2×________×________+(________)2=____________.12.在括号内填上适当的项:(1)a+2b−c=a+();(2)2−x2+2xy−y2=2−();(3)(a+b−c)(a−b+c)=[a+()][a−()].13.若x2+Rx+16是一个完全平方式,则R的值等于.14. 已知a +b =10,a −b =8,则a 2−b 2=______.三、计算题15. 计算:(1)(x −1)(x +1);(2)(a +2b)(a −2b);(3)(14a −1)(14a +1); (4)(2m +3n)(2m −3n).16. 用乘法公式计算:(1)(x −2y +3z)2;(2)(2a +3b −1)(1+2a +3b).四、解答题17. 先化简,再求值:(x +1)(x −1)+x 2(1−x)+x 3,其中x =2.18.(1)计算并观察下列各式:(x−1)(x+1)=;(x−1)(x2+x+1)=;(x−1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填空:(x−1)()=x6−1;(3)利用你发现的规律计算:(x−1)(x m+x m−1+x m−2+x m−3+⋯+x+1)的结果为.19.如图1是一个宽为a、长为4b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图2,请你用等式表示(a+b)2,(a−b)2,ab之间的数量关系:______;(2)根据(1)中的结论.如果x+y=5,xy=9,求代数式(x−y)2的值;4(3)如果(2019−m)2+(m−2020)2=7,求(2019−m)(m−2020)的值.答案和解析1.【答案】B【解析】【分析】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式=(2−1)×(2+1)×(22+1)×(24+1)×…×(22017+1)×(22018+1) =(22−1)×(22+1)×(24+1)×…×(22017+1)×(22018+1)=(24−1)×(24+1)×…×(22017+1)×(22018+1)=(22018−1)×(22018+1)=24036−1.故选:B.2.【答案】C【解析】【分析】本题考查了代数式求值和完全平方公式:(a±b)2=a2±2ab+b2.根据完全平方公式由(m−n)2=8得到m2−2mn+n2=8①,由(m+n)2=2得到m2+2mn+n2=2②,然后①+②得,2m2+2n2=10,变形即可得到m2+n2的值.【解答】解:∵(m−n)2=8,∴m2−2mn+n2=8①,∵(m+n)2=2,∴m2+2mn+n2=2②,①+②得,2m2+2n2=10,∴m2+n2=5.故选C.3.【答案】D【解析】【分析】此题考查平方差公式,关键是根据平方差公式化简.根据平方差公式化简后解答即可.【解答】解:因为(m+3)(m−3)−(m+2)(m−2)=m2−9−m2+4=−5,所以对于任意正整数m,能整除式子(m+3)(m−3)−(m+2)(m−2)的整数是5,故选D.4.【答案】D【解析】【分析】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.根据完全平方公式即可求出答案.【解答】解:原式=−(a2−2ab+b2)=−(a−b)2故选D.5.【答案】B【解析】【分析】本题考查了完全平方公式的变形.熟练掌握公式是解题的关键【解答】解: ①(x+2y)2=x2+4xy+4y2,故错误; ②(a−2b)2=a2−4ab+4b2,故正确; ③(x+y)2=x2+2xy+y2故错误; ④(x −14)2=x 2−12x +116故正确.故选B .6.【答案】B【解析】【分析】本题考查了平方差公式的应用,能灵活运用公式进行计算是解此题的关键,注意:(a +b)(a −b)=a 2−b 2.先根据式子的特点进行变形,再根据平方差公式进行计算,即可求出答案.【解答】解:原式=(10+13)(10−13).故选B . 7.【答案】D【解析】【分析】本题主要考查完全平方公式,熟记完全平方公式是解题的关键.运用完全平方公式求出(2a ±3b)2对照求解即可.【解答】解:由(2a ±3b)2=4a 2±12ab +9b 2,∴染黑的部分为±12.故选D .8.【答案】D【解析】【分析】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的结构特征判断即可得到结果.【解答】解:14b2−ab+a2=(12b−a)2.故选D.9.【答案】A【解析】【分析】此题主要考查完全平方式的定义及其应用,比较简单.把2ab−a2−b2根据完全平方式整理,然后直接选取答案.【解答】解:2ab−a2−b2,=−(a2−2ab+b2),=−(a−b)2.故选A.10.【答案】A【解析】【分析】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键,利用平方差公式的结构特征判断即可.【解答】解:A.首先(x+y)(x−y)=x2−y2,再与(x2+y2)使用平方差公式,可以两次使用平方差公式,故A正确;B.不能使用平方差公式,故B错误;C.只能使用一次平方差公式,故C错误;D.不能使用平方差公式,故D错误.故选A.11.【答案】(1)x;x;1;1;x2+2x+1;(2)−x;(−x);1;1;x2−2x+1;(3)−2a;(−2a);(−b);(−b);4a2+4ab+b2.【解析】【分析】本题考查了完全平方公式,能熟记公式的特点是解此题的关键,注意:(a+b)2=a2+ 2ab+b2,(a−b)2=a2−2ab+b2.根据完全平方公式得出各题结果即可.【解答】解:根据完全平方公式可得:(1)(x+1)2=x2+2×x×1+12=x2+2x+1;(2)(−x+1)2=(−x)2+2×(−x)×1+12=x2−2x+1;(3)−2a−b)2=(−2a)2+2×(−2a)×(−b)+(−b)2=4a2+4ab+b2.故答案为(1)x;x;1;1;x2+2x+1;(2)−x;(−x);1;1;x2−2x+1;(3)−2a;(−2a);(−b);(−b);4a2+4ab+b2.12.【答案】(1)2b−c;(2)x2−2xy+y2;(3)b−c,b−c.【解析】【分析】本题主要考查平方差公式,解题的关键是掌握添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.(1)根据添括号法则求解可得;(2)根据添括号法则求解可得;(3)根据添括号法则求解可得.【解答】解:(1)a+2b−c=a+(2b−c);(2)2−x2+2xy−y2=2−(x2−2xy+y2);(3)(a+b−c)(a−b+c)=[a+(b−c)][a−(b−c)].故答案为(1)2b−c;(2)x2−2xy+y2;(3)b−c,b−c.13.【答案】±8【解析】【分析】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.根据完全平方公式的特征判断即可得到k的值.【解答】解:∵x2+Rx+16是一个完全平方式,∴k=±2×4=±8,故答案为±8.14.【答案】80【解析】【分析】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.根据平方差公式即可求出答案.【解答】解:∵(a+b)(a−b)=a2−b2,a+b=10,a−b=8,∴a2−b2=10×8=80.故答案为80.15.【答案】解:(1)原式=x2−1.(2)原式=a2−(2b)2=a2−4b2.a2−1.(3)原式=116(4)原式=(2m)2−(3n)2=4m2−9n2.【解析】本题主要考查的是平方差公式的有关知识.(1)直接利用平方差公式进行求解即可;(2)直接利用平方差公式进行求解即可;(3)直接利用平方差公式进行求解即可;(4)直接利用平方差公式进行求解即可.16.【答案】解:(1)原式=[(x−2y)+3z]2=(x−2y)2+6z(x−2y)+9z2=x2+4y2+9z2−4xy+6xz−12yz;(2)原式=[(2a+3b)−1][(2a+3b)+1]=(2a+3b)2−1=4a2+12ab+9b2−1.【解析】本题主要考查的是平方差公式和完全平方公式,掌握平方差公式和完全平方公式是解答此题的关键.(1)把(x−2y)当作一项,直接运用完全平方公式进行计算即可;(2)把(2a+3b)当作一项,直接运用平方差公式和完全平方公式进行计算即可.17.【答案】解:原式=x2−1+x2−x3+x3,=2x2−1,当x=2时,原式=2×22−1=7.【解析】本题考查了整式的混合运算和代数式求值,主要考查学生的计算和化简能力.根据平方差公式和单项式乘以多项式法则先化简,再代入求值即可.18.【答案】(1)x2−1;x3−1;x4−1;(2)x5+x4+x3+x2+x+1;(3)x m+1−1【解析】【分析】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,也考查了规律型问题的解决方法.(1)利用平方差公式计算(x−1)(x+1),利用立方差公式计算(x−1)(x2+x+1)=x3−1;利用上面两等式的变化规律计算(x−1)(x3+x2+x+1);(2)利用(1)中三个等式的变化规律求解;(3)利用(1)中三个等式的变化规律求解.【解答】解:(1)(x−1)(x+1)=x2−1;(x−1)(x2+x+1)=x3−1;(x−1)(x3+x2+x+1)=x4−1;(2)(x−1)(x5+x4+x3+x2+x+1)=x6−1;(3)(x−1)(x m+x m−1+x m−2+x m−3+⋯+x+1)=x m+1−1.故答案为(1)x2−1;x3−1;x4−1;(2)x5+x4+x3+x2+x+1;(3)x m+1−1.19.【答案】(a+b)2=(a−b)2+4ab【解析】解:(1)由图2可知,大正方形的边长为(a+b),小正方形的边长为(a−b),大正方形的面积可以表示为:(a+b)2或(a−b)2+4ab,因此有(a+b)2=(a−b)2+4ab,故答案为:(a+b)2=(a−b)2+4ab;(2)由(a+b)2=(a−b)2+4ab得,(x−y)2=(x+y)2−4xy=25−9=16;答:代数式(x−y)2的值为16;(3)∵a2+b2=(a+b)2−2ab,∴(2019−m)2+(m−2020)2=[(2019−m)+(m−2020)]2−2(2019−m)(m−2020),=(−1)2−2(2019−m)(m−2020),又∵(2019−m)2+(m−2020)2=7,∴7=1−2(2019−m)(m−2020)∴(2019−m)(m−2020)=−3,答:(2019−m)(m−2020)的值为−3.(1)表示出大、小正方形的边长和面积,根据面积之间的关系得出结论;(2)由(1)的结论得(x−y)2=(x+y)2−4xy,再整体代入即可;(3)由a2+b2=(a+b)2−2ab的形式可得,(2019−m)2+(m−2020)2=[(2019−m)+(m−2020)]2−2(2019−m)(m−2020),再根据(2019−m)+(m−2020)=−1,(2019−m)2+(m−2020)2=7,得出答案.本题考查完全平方公式的几何背景,用不同的方法表示图形的面积,得出关系等式是关键,适当的变形是正确计算的前提.。
八年级数学上册《第十四章 乘法公式》同步练习题及答案(人教版)
八年级数学上册《第十四章 乘法公式》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.下列运算中,正确的是( ) A .336x x x ⋅= B .235()x x = C .232x x x ÷=D .222()x y x y -=-2.设(a+b )2=(a ﹣b )2+A ,则A=( ) A .2ab B .4ab C .abD .﹣4ab 3.若4a 2+kab+9b 2是完全平方式,则常数k 的值为( ) A .6 B .12 C .6±D .12± 4.无论x ,y 取何值,多项式x 2+y 2-4x+6y+13的值总是( ) A .都是整数 B .都是负数 C .是零 D .是非负数5.若()()22221135a b a b +++-=,则22a b +=( ) A .3B .6C .3±D .6±6.我们把形如+b (a ,b +1型无理数,则2是( )A 型无理数B C D 型无理数7.已知: ()2(1)5a a a b ---=-. 求: 代数式 222a b ab +- 的值为( )A .-5B .5C .252D .258.如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x>y ),则①x-y=n ;②xy= 224m n - ;③x 2-y 2=mn ;④x 2+y 2= 222m n - 中,正确的是( )A .①②③B .①②④C .①③①D .①②③①二、填空题:9.计算()()11a a +-的结果是 .10.多项式 2264x mx ++ 是完全平方式,则m= . 11.已知a+b=7,ab=6,则a 2+b 2的值为 . 12.若 2111322a k a a ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭ ,则k= . 13.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b )5= . 三、解答题:14.计算:32)(32)x y c x y c -+++( .15.计算下列各题 (1)()222(2)x y xy -⋅-(2)24(1)(25)(25)x x x +-+-16.先化简,再求值: ()()()22235a b a b a b b +-+--, 其中 12a =- 和 2b = .17.已知4m n -=和3mn =-. (1)计算:22m n +;(2)求()()2244m n --的值; (3)求28324m n m n +⋅÷的值.18.当我们利用2种不同的方法计算同一图形的面积时,可以得到一个等式.例如,由图1可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=13,ab+bc+ac=52,求a2+b2+c2的值.(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:(3a+b)(a+3b)=3a2+10ab+3b2.参考答案:1.A 2.B 3.D 4.D 5.B 6.B 7.C 8.A 9.a 2-1 10.±8 11.37 12.3413.1a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+1b 514.解:原式= ()()2323x c y x c y +-++⎡⎤⎡⎤⎣⎦⎣⎦ = ()()2223x c y +- = 222449x cx c y ++- . 15.(1)解: ()222(2)x yxy -⋅-42=4(2)x y xy ⋅- 53=8x y - ;(2)解: 24(1)(25)(25)x x x +-+-22=4(21)(425)x x x ++--22=484425x x x ++-+=829x + .16.解:原式=a 2+4ab+4b 2﹣3a 2+ab ﹣3ab+b 2﹣5b 2 =﹣2a 2+2ab 当a 12=-,b=2时,原式 15222=--=-17.(1)解:4m n -= 3mn =-22m n ∴+ 2()2m n mn =-+()2423=+⨯- 166=- 10=;(2)解:()()2244m n --()222()416mn m n =-++当3mn =-,2210m n +=时 原式2(3)41016=--⨯+94016=-+ 15=-;(3)28324m n m n +⋅÷3522(2)(2)(2)m n m n +=⋅÷3524222m n m n +=⋅÷ 352422m n m n ++=÷ 35242m n m n +--= 2m n +=4m n -= 3mn =-2()m n ∴+ 2()4m n mn =-+()2443=+⨯- 1612=- 4=2m n ∴+=或2- 2m n +∴ 22=或22-4=或14.18.(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc (2)解:∵a+b+c =13,ab+bc+ac =52 ∴(a+b+c )2=a 2+b 2+c 2+2(ab+ac+bc )即(13)2=a 2+b 2+c 2+2×52 ∴a 2+b 2+c 2=65(3)解:如图:。
人教版八年级数学上册:乘法公式专题训练试题
人教版八年级数学上册:乘法公式专题训练试题学校_________ 班级__________ 姓名__________ 学号__________一、填空题1. 若x2+kx+25是一个完全平方式,则k的值是____________.2. 已知则=__________.3. 计算:(x-y)(x2+xy+y2)=__________4. 已知:,,那么________________.5. 用完全平方公式填空:4-12(x-y)+9(x-y)2=(___________)2.6. 观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n个等式为__7. 观察下列等式:(1+2)2-4×1=12+4,(2+2)2-4×2=22+4,(3+2)2-4×3=32+4,(4+2)2-4×4=42+4,…,则第n个等式是__________________.8. 杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,西方人帕斯卡发现时,已比宋代杨辉要迟393年.如图,根据你观察的杨辉三角的排列规律,则(a+b)6结果中含有a2b4的项的系数为_____.9. 若恰好是某一个多项式的平方,那么实数的值是_________.10. 观察下列运算并填空.1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192;4×5×6×7+1=840+1=841=292;7×8×9×10+1=5040+1=5041=712;……试猜想:(n+1)(n+2)(n+3)(n+4)+1=________2.二、单选题11. 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b212. 若,则表示的代数式是( ) A.B.C.D.13. 若a-b=8, a2-b2=72,则a+b的值为( )A.9 B.-9 C.27 D.-2714. 计算的结果是()A.B.C.0 D.15. 观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66 16. 计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9 C.a2-b2+6b-9 D.a2+b2-2ab+6a +6b+917. 已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.618. 计算(x﹣y)3?(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)419. 下列各式能用平方差公式计算的是( )A.(3a+b)(a-b) B.(3a+b)(-3a-b)C.(-3a-b)(-3a+b) D.(-3a+b)(3a-b)20. 下列计算中,能用平方差公式计算的是( )A.(x+3)(x-2) B.(-1-3x)(1+3x)C.(a2+b)(a2-b) D.(3x+2)(2x-3)21. 下列等式能够成立的是( ).A.(x-y)2=x2-xy+y2B.(x+3y)2=x2+9y2C.(x-)2=x2-xy+D.(m-9)(m+9)=m2-922. 下列各式中,与相等的是()A.B.C.D.23. 下列各式,计算正确的是( ).A.(a-b)2=a2-b2B.(x+y)(x-y)=x2+y2 C.(a+b)2=a2+b2D.(a-b)2=a2-2ab+b224. 下列计算正确的是()A.(x+7)(x﹣8)=x2+x﹣56 B.(x+2)2=x2+4C.(7﹣2x)(8+x)=56﹣2x2D.(3x+4y)(3x﹣4y)=9x2﹣16y2三、解答题25. (x–2)2–(x+2)(x–2)26. 因式分解:(y2-1)2-6(y2-1)+927. (3a+2)2(3a-2)2.28. (a+2b)(a+b)-3a(a+b)29. 已知a2-4a-1=0,求(1);(2).30. 先化简,再求值(3a+2b)(2a﹣3b)﹣(a﹣2b)(2a﹣b),其中.。
人教版 八年级上册数学 14.2 乘法公式 同步课时训练(含答案) (2)
14.2 乘法公式同步训练一、选择题1. 计算(-a-b)2的结果是()A.a2+b2B.a2+2ab+b2C.a2-b2D.a2-2ab+b22. 将202×198变形正确的是()A.2002-4 B.2022-4C.2002+2×200+4 D.2002-2×200+43. 若a2+ab+b2=(a-b)2+X,则整式X为()A.ab B.0 C.2ab D.3ab4. 化简(-2x-3)(3-2x)的结果是()A.4x2-9 B.9-4x2C.-4x2-9 D.4x2-6x+95. 若(2x+3y)(mx-ny)=9y2-4x2,则m,n的值分别为() A.2,3 B.2,-3C.-2,-3 D.-2,36. 将9.52变形正确的是()A.9.52=92+0.52 B.9.52=(10+0.5)×(10-0.5) C.9.52=92+9×0.5+0.52 D.9.52=102-2×10×0.5+0.52 7. 计算(x+1)(x2+1)·(x-1)的结果是()A.x4+1 B.(x+1)4C.x4-1 D.(x-1)48. 若(x+a)2=x2+bx+25,则()A.a=3,b=6B.a=5,b=5或a=-5,b=-10C.a=5,b=10D.a=-5,b=-10或a=5,b=109. 如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b)D.(a+b)(a-2b)10. 如图,阴影部分是边长为a的大正方形剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是()A .①②B .②③C .①③D .①②③二、填空题11. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.12. 填空:()22121453259x y x y ⎛⎫-=- ⎪⎝⎭13. 如果(x -ay )(x +ay )=x 2-9y 2,那么a = .14. 若x -y =6,xy =7,则x 2+y 2的值等于________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.ab ba16. 根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题17. 计算:(41)(41)a a ---+18. 阅读材料后解决问题.小明遇到一个问题:计算(2+1)×(22+1)×(24+1)×(28+1).经过观察,小明发现将原式进行适当的变形后,可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)×(22+1)×(24+1)×(28+1)=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)=(22-1)×(22+1)×(24+1)×(28+1)=(24-1)×(24+1)×(28+1)=(28-1)×(28+1)=216-1.请你根据小明解决问题的方法,试着解决下列问题:(1)计算:(2+1)×(22+1)×(24+1)×(28+1)×(216+1);(2)计算:(3+1)×(32+1)×(34+1)×(38+1)×(316+1);(3)化简:(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).19. 观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…(1)(x-1)(x4+x3+x2+x+1)=________;(2)根据规律可得:(x-1)(x n-1+…+x+1)=________(其中n为正整数);(3)计算:(3-1)(350+349+348+…+32+3+1);(4)计算:(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1.20. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,….下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a+b)n展开式中共有多少项?(2)请写出多项式(a+b)5的展开式.答案一、选择题1. 【答案】B[解析] 原式=(-a)2-2·(-a)·b+b2=a2+2ab+b2.2. 【答案】A[解析] 202×198=(200+2)×(200-2)=2002-4.3. 【答案】D4. 【答案】A[解析] 原式=(-2x-3)(-2x+3)=(-2x)2-32=4x2-9.5. 【答案】C[解析] 因为(2x+3y)(mx-ny)=2mx2-2nxy+3mxy-3ny2=9y2-4x2,所以2m=-4,-3n=9,-2n+3m=0,解得m=-2,n=-3.6. 【答案】D[解析] 9.52=(10-0.5)2=102-2×10×0.5+0.52.7. 【答案】C[解析] (x+1)(x2+1)(x-1)=(x+1)(x-1)(x2+1)=(x2-1)(x2+1)=x4-1.8. 【答案】D[解析] 因为(x+a)2=x2+bx+25,所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.9. 【答案】A [解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.10. 【答案】D [解析] 在图①中,左边的图形阴影部分的面积=a 2-b 2,右边图形的面积=(a +b )(a -b ),故可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式; 在图②中,左边图形的阴影部分的面积=a 2-b 2,右边图形的面积=(2b +2a )(a -b )=(a +b )(a -b ),可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式;在图③中,左边图形的阴影部分的面积=a 2-b 2,右边图形的面积=(a +b )(a -b ),可得a 2-b 2=(a +b )(a -b ),可以验证平方差公式.二、填空题11. 【答案】±3 [解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m =±3.12. 【答案】221212145353259x y x y x y ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭ 【解析】221212145353259x y x y x y ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭13. 【答案】±3 [解析] ∵(x -ay )(x +ay )=x 2-a 2y 2=x 2-9y 2,∴a 2=9,解得a =±3.14. 【答案】50 [解析] 因为x -y =6,xy =7,所以x 2+y 2=(x -y)2+2xy =62+2×7=50.15. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--16. 【答案】(a +b)(a -b)=a 2-b 2三、解答题17. 【答案】222(41)(41)(4)1161a a a a ---+=--=-【解析】222(41)(41)(4)1161a a a a ---+=--=-18. 【答案】解:(1)原式=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)×(216+1)=232-1.(2)原式=×(3-1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)=. (3)若m ≠n ,则原式=(m -n )(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16)=;若m =n ,则原式=2m ·2m 2·……·2m 16=32m 31.19. 【答案】 解:(1)x 5-1(2)x n -1(3)(3-1)(350+349+348+…+32+3+1)=351-1.(4)因为(-2-1)[(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1]=(-2)2021-1=-22021-1,所以(-2)2020+(-2)2019+(-2)2018+…+(-2)3+(-2)2+(-2)+1=22021+13.20. 【答案】解:(1)由已知可得:(a+b)1展开式中共有2项,(a+b)2展开式中共有3项,(a+b)3展开式中共有4项,……则(a+b)n展开式中共有(n+1)项.(2)(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,…则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册:乘法公式专题训练试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.若x 2+kx+25是一个完全平方式,则k 的值是____________.2.已知4s t +=则228s t t -+=__________.3.计算:(x -y)(x 2+xy +y 2)=__________4.已知:7a b +=,13ab =,那么 22a ab b -+= ________________. 5.用完全平方公式填空:4-12(x-y)+9(x-y)2=(___________)2.6.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n 个等式为__7.观察下列等式:(1+2)2-4×1=12+4,(2+2)2-4×2=22+4,(3+2)2-4×3=32+4,(4+2)2-4×4=42+4,…,则第n 个等式是__________________. 8.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,西方人帕斯卡发现时,已比宋代杨辉要迟393年.如图,根据你观察的杨辉三角的排列规律,则(a+b )6结果中含有a 2b 4的项的系数为_____.9.若24x kx ++恰好是某一个多项式的平方,那么实数k 的值是_________. 10.观察下列运算并填空.1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192;4×5×6×7+1=840+1=841=292;7×8×9×10+1=5040+1=5041=712;……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2.二、单选题11.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 212.若22(23)(23)a b a b N -=++,则N 表示的代数式是( )A .12abB .12ab -C .24abD .24ab -13.若a -b =8, a 2-b 2=72,则a +b 的值为( )A .9B .-9C .27D .-2714.计算11(13)(31)9()()33x x x x +-+-+的结果是( )A .2182x -B .2218x -C .0D .28x15.观察下列各式及其展开式:(a+b )2=a 2+2ab+b 2(a+b )3=a 3+3a 2b+3ab 2+b 3(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5…请你猜想(a+b )10的展开式第三项的系数是( )A .36B .45C .55D .66 16.计算:(a-b +3)(a +b-3)=( )A .a 2+b 2-9B .a 2-b 2-6b-9C .a 2-b 2+6b -9D .a 2+b 2-2ab +6a +6b +9 17.已知a+b=3,ab=2,则a 2+b 2的值为( )A .3B .4C .5D .618.计算(x ﹣y )3•(y ﹣x )=( )A .(x ﹣y )4B .(y ﹣x )4C .﹣(x ﹣y )4D .(x+y )4 19.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b)20.下列计算中,能用平方差公式计算的是( )A .(x +3)(x -2)B .(-1-3x)(1+3x)C .(a 2+b)(a 2-b)D .(3x +2)(2x -3) 21.下列等式能够成立的是( ).A .(x -y)2=x 2-xy +y 2B .(x +3y)2=x 2+9y 2C .(x -12y )2=x 2-xy +214y D .(m -9)(m +9)=m 2-922.下列各式中,与()2a 1?-相等的是( ) A .2a 1- B .2a 2a 1-+ C .2a 2a 1-- D .2a 1+ 23.下列各式,计算正确的是( ).A .(a -b)2=a 2-b 2B .(x +y)(x -y)=x 2+y 2C .(a +b)2=a 2+b 2D .(a -b)2=a 2-2ab +b 224.下列计算正确的是( )A .(x+7)(x ﹣8)=x 2+x ﹣56B .(x+2)2=x 2+4C .(7﹣2x )(8+x )=56﹣2x 2D .(3x+4y )(3x ﹣4y )=9x 2﹣16y 2三、解答题25.(x –2)2–(x+2)(x –2)26.因式分解:(y 2-1)2-6(y 2-1)+927.(3a+2)2(3a -2)2 .28.(a+2b)(a+b)-3a(a+b) 29.已知a 2-4a-1=0,求(1)1a a -;(2)21a a ⎛⎫+ ⎪⎝⎭. 30.先化简,再求值(3a+2b )(2a ﹣3b )﹣(a ﹣2b )(2a ﹣b ),其中11.54a b =-=,.参考答案1.±10.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵x2+kx+25=x2+kx+52,∴kx=±2•x•5,解得k=±10.故答案为±10.【点睛】本题考查完全平方式,根据平方项确定出一次项系数是解题关键,也是难点,熟记完全平方公式对解题非常重要.2.16【解析】试题分析:根据平方差公式可得s2﹣t2+8t=(s+t)(s﹣t)+8t,把s+t=4代入可得原式=4(s ﹣t)+8t=4(s+t),再代入即可求解.解:∵s+t=4,∴s2﹣t2+8t=(s+t)(s﹣t)+8t=4(s﹣t)+8t=4(s+t)=16.故答案为16.3.x3-y3【解析】(x-y)(x2+xy+y2)=x3+x2y+xy2-x2y-xy2-y3=x3-y3,故答案为:x3-y3.4.10【解析】∵(a+b)2 =7 2 =49,∴a 2 -ab+b 2 =(a+b)2 -3ab=49-39=10,故答案为10.5.2-3x+3y【分析】把(x-y )看成一个整体a ,然后根据完全平方公式整理求解即可.【详解】4−12(x−y)+9(x−y)2,=[2-3(x−y)]2,=(2-3x+3y)2.故答案为2-3x+3y.【点睛】本题考查了完全平方公式,解题的关键是熟练的掌握完全平方公式的相关知识点. 6.(n+1)²-1=n(n+2)【解析】根据已知可以得出,左边的规律是:第n 个式子为(n+1)2-1,右边是即n (n+2). 解:∵22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,∴规律为(n+1)2-1=n (n+2).故答案为(n+1)2-1=n (n+2).“点睛”此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.对于等式,要注意分别发现:等式的左边和右边的规律. 7.(n+2)2-4n=n 2+4【解析】解:观察每一等式的相同点及不同点得到规律:等号左边底数为n +2,指数为2,减数是4n ,等号右边=底数为n ,指数为2,后一个加数为4.故答案为(n +2)2﹣4n =n 2+4.点睛:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.15【解析】分析:首先根据规律得出()5a b +和()6a b +的展开项,从而得出答案.详解:()554322345a b 1510105a 1a a b a b a b b b +=+++++;()66542332456a b 161520156a 1a a b a b a b a b b b +=++++++;则24a b 的系数为15.点睛:本题主要考查的就是杨辉三角的展开,属于中等题型.解决这个问题的关键就是找出展开项各系数之间的规律,从而得出答案.9.4±【解析】∵x 2+kx+4=x 2+kx+22,∴kx=±2×2x,解得k=±4.故答案是:±4.10.n 2+5n+5【分析】观察几个算式可知,结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,…,由此可知,最后一个式子为完全平方式,且底数=(n+1)(n+4)+1=n 2+5n+5.【详解】根据算式的规律可得:(n+1)(n+2)(n+3)(n+4)+1=(n 2+5n+5)2.故答案为n 2+5n+5.【点睛】本题考查了整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则. 11.C【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.【详解】解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即22a b -,乙图中阴影部分长方形的长为()a b +,宽为()-a b ,阴影部分的面积为()()a b a b +-,根据两个图形中阴影部分的面积相等可得22()()a b a b a b -=+-.故选:C.【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键.12.D【解析】分析:根据完全平方公式即可求出N 的代数式.详解:(2a ﹣3b )2=4a 2﹣12ab +9b 2=4a 2+12ab +9b 2﹣24ab=(2a +3b )2﹣24ab故N =﹣24ab故选D .点睛:本题考查了完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.13.A【解析】227298a b a b a b -+===- ,故选A. 14.C .【解析】 试题分析:11(13)(31)9()()33x x x x +-+-+=221919()9x x -+-=229119x x -+-=0,故选C .考点:平方差公式.15.B【分析】归纳总结得到展开式中第三项系数即可.【详解】解:解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.【点睛】本题考查了完全平方公式的规律,根据给的式子得出规律是解题的关键.16.C【解析】【分析】把所给的整式化为[a-(b-3)][ a+(b-3)],先利用平方差公式,再利用完全平方公式计算即可.【详解】(a-b+3)(a+b-3),=[a-(b-3)][ a+(b-3)],=a2-(b-3)2,= a2-b2+6b-9,故选C.【点睛】本题考查了整式的混合运算,正确利用乘法公式是解决本题的关键.17.C【解析】试题分析:根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5.考点:完全平方公式18.C【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加计算.【详解】(x−y)3⋅(y−x)=−(x−y)3⋅(x−y)=−(x−y)3+1=−(x−y)4故答案选C.【点睛】本题考查了同底数幂的乘法法则,解题的关键是熟练的掌握同底数幂的乘法法则. 19.C【分析】利用平方差公式的逆运算判断即可.【详解】解:平方差公式逆运算为:()()22a b a b a b +-=- 观察四个选项中,只有C 选项符合条件.故选C.【点睛】此题重点考查学生对平方差公式的理解,掌握平方差公式的逆运算是解题的关键. 20.C【分析】根据平方差公式逐一判断即可.【详解】A.(x +3)(x -2)不满足平方差的形式,不能用平方差公式计算,故本选项错误;B.(-1-3x)(1+3x)=-(1+3x )(1+3x )不满足平方差的形式,不能用平方差公式计算,故本选项错误;C. (a 2+b)(a 2-b) 满足平方差的形式,能用平方差公式计算,故本选项正确;D. (3x +2)(2x -3) 不满足平方差的形式,不能用平方差公式计算,故本选项错误. 故答案选C.【点睛】本题考查了多项式乘多项式,解题的关键是熟练的掌握平方差公式.21.C。