剑桥大学入学数学试题
剑桥大学入学数学试题
![剑桥大学入学数学试题](https://img.taocdn.com/s3/m/994bfd9d6bd97f192279e9cc.png)
Section A:Pure Mathematics1How many integers between10000and100000(inclusive)contain exactly two different digits?(23332contains exactly two different digits but neither of33333and12331does.)2Show,by means of a suitable change of variable,or otherwise,that∞0f((x2+1)1/2+x)d x=12∞1(1+t−2)f(t)d t.Hence,or otherwise,show that∞0((x2+1)1/2+x)−3d x=38.3Which of the following statements are true and which are false?Justify your answers.(i)a ln b=b ln a for all a,b>0.(ii)cos(sinθ)=sin(cosθ)for all realθ.(iii)There exists a polynomial P such that|P(θ)−cosθ| 10−6for all realθ.(iv)x4+3+x−4 5for all x>0.4Prove that the rectangle of greatest perimeter which can be inscribed in a given circle is a square.The result changes if,instead of maximising the sum of lengths of sides of the rectangle,we seek to maximise the sum of n th powers of the lengths of those sides for n 2.What happens if n=2?What happens if n=3?Justify your answers.5(i)In the Argand diagram,the points Q and A represent the complex numbers4+6i and 10+2i.If A,B,C,D,E,F are the vertices,taken in clockwise order,of a regularhexagon(regular six-sided polygon)with centre Q,find the complex number whichrepresents B.(ii)Let a,b and c be real numbers.Find a condition of the form Aa+Bb+Cc=0,where A,B and C are integers,which ensures thata 1+i +b1+2i+c1+3iis real.6Let a1=cos x with0<x<π/2and let b1=1.Given thata n+1=12(a n+b n),b n+1=(a n+1b n)1/2,find a2and b2and show thata3=cos x2cos2x4and b3=cosx2cosx4.Guess general expressions for a n and b n(for n 2)as products of cosines and verify that they satisfy the given equations.7My bank paysρ%interest at the end of each year.I start with nothing in my account.Then for m years I deposit£a in my account at the beginning of each year.After the end of the m th year,I neither deposit nor withdraw for l years.Show that the total amount in my account at the end of this period is£a r l+1(r m−1)r−1where r=1+ρ100.At the beginning of each of the n years following this period I withdraw£b and this leaves my account empty after the n th withdrawal.Find an expression for a/b in terms of r,l,m and n.8Fluidflows steadily under a constant pressure gradient along a straight tube of circular cross-section of radius a.The velocity v of a particle of thefluid is parallel to the axis of the tube and depends only on the distance r from the axis.The equation satisfied by v is1 r dd rrd vd r=−k,where k is constant.Find the general solution for v.Show that|v|→∞as r→0unless one of the constants in your solution is chosen to be0. Suppose that this constant is,in fact,0and that v=0when r=a.Find v in terms of k,a and r.The volume Fflowing through the tube per unit time is given byF=2πarv d r.Find F.Section B:Mechanics9Two small spheres A and B of equal mass m are suspended in contact by two light inextensible strings of equal length so that the strings are vertical and the line of centres is horizontal.The coefficient of restitution between the spheres is e.The sphere A is drawn aside through a very small distance in the plane of the strings and allowed to fall back and collide with the other sphere B,its speed on impact being u.Explain briefly why the succeeding collisions will all occur at the lowest point.(Hint:Consider the periods of the two pendulums involved.)Show that the speed of sphere A immediately after the second impact is12u(1+e2)andfindthe speed,then,of sphere B.10A shell explodes on the surface of horizontal ground.Earth is scattered in all directions with varying velocities.Show that particles of earth with initial speed v landing a distance r from the centre of explosion will do so at times t given by1 2g2t2=v2±√(v4−g2r2).Find an expression in terms of v,r and g for the greatest height reached by such particles. 11Hank’s Gold Mine has a very long vertical shaft of height l.A light chain of length l passes over a small smooth lightfixed pulley at the top of the shaft.To one end of the chain is attached a bucket A of negligible mass and to the other a bucket B of mass m.The system is used to raise ore from the mine as follows.When bucket A is at the top it isfilled with mass 2m of water and bucket B isfilled with massλm of ore,where0<λ<1.The buckets are then released,so that bucket A descends and bucket B ascends.When bucket B reaches the top both buckets are emptied and released,so that bucket B descends and bucket A ascends.The time tofill and empty the buckets is negligible.Find the time taken from the moment bucket A is released at the top until thefirst time it reaches the top again.This process goes on for a very long time.Show that,if the greatest amount of ore is to be raised in that time,thenλmust satisfy the condition f (λ)=0wheref(λ)=λ(1−λ)1/2(1−λ)1/2+(3+λ)1/2.Section C:Probability and Statistics12Suppose that a solution(X,Y,Z)of the equationX+Y+Z=20,with X,Y and Z non-negative integers,is chosen at random(each such solution being equally likely).Are X and Y independent?Justify your answer.Show that the probability that X is divisible by5is5/21.What is the probability that XY Z is divisible by5?13I have a bag initially containing r red fruit pastilles(my favourites)and b fruit pastilles of other colours.From time to time I shake the bag thoroughly and remove a pastille at random.(It may be assumed that all pastilles have an equal chance of being selected.)If the pastille is red I eat it but otherwise I replace it in the bag.After n such drawings,Ifind that I have only eaten one pastille.Show that the probability that I ate it on my last drawing is(r+b−1)n−1(r+b)n−(r+b−1)n.14To celebrate the opening of thefinancial year thefinance minister of Genlandflings a Slihing,a circular coin of radius a cm,where0<a<1,onto a large board divided into squares bytwo sets of parallel lines2cm apart.If the coin does not cross any line,or if the coin covers an intersection,the tax on yaks remains unchanged.Otherwise the tax is doubled.Show that, in order to raise most tax,the value of a should be1+π4−1.If,indeed,a=1+π4−1and the tax on yaks is1Slihing per yak this year,show that itsexpected value after n years will have passed is8+π4+π n.。
cem入学考试样题
![cem入学考试样题](https://img.taocdn.com/s3/m/16ff52720812a21614791711cc7931b765ce7bb6.png)
cem入学考试样题CEM(Centre for Evaluation and Monitoring)入学考试是英国一些学校常用的入学考试,旨在评估学生的学术能力和潜力。
考试内容涵盖了数学、英语和推理等多个科目,考察学生的逻辑思维能力、数学解题能力和语言表达能力。
以下是一些CEM入学考试的样题,供考生参考和练习。
数学题样题:1. 如果一个正方形的周长是36厘米,那么这个正方形的面积是多少?2. 一个三角形的三条边长分别是5厘米、12厘米和13厘米,这个三角形是什么类型的三角形?3. 一根长方体的体积是120立方厘米,如果它的长、宽、高分别是2厘米、5厘米和12厘米,那么它的表面积是多少?英语题样题:阅读下面的短文,然后回答问题。
The Great Wall is one of the most famous historical sites in China. It was built over 2,000 years ago to protect the northern borders of the Chinese Empire. The wall is over 13,000 miles long and is made of stone, brick, tamped earth, wood, and other materials. It is said that the Great Wall can even be seen from space.Questions:1. Why was the Great Wall built?2. How long is the Great Wall?3. What materials were used to build the Great Wall?推理题样题:1. A. 2, 4, 8, 16, ?B. 3, 6, 12, 24, ?C. 5, 10, 15, 20, ?2. 如果所有的花都是植物,那么所有的植物都是花吗?3. 以下四个词中哪一个与其他三个不同:苹果、香蕉、梨、桃子?通过练习以上的CEM入学考试样题,考生可以熟悉考试的题型和难度,提前适应考试的节奏和要求,从而更好地备战入学考试。
大学开学试题及答案数学
![大学开学试题及答案数学](https://img.taocdn.com/s3/m/1a7f6775bc64783e0912a21614791711cd797968.png)
大学开学试题及答案数学一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1 + 1 = 2B. 1 + 1 = 3C. 1 + 1 = 4D. 1 + 1 = 5答案:A2. 圆的面积公式是什么?A. A = πrB. A = πr²C. A = 2πrD. A = 4πr²答案:B3. 函数f(x) = 2x + 3的反函数是什么?A. f⁻¹(x) = (x - 3) / 2B. f⁻¹(x) = (x + 3) / 2C. f⁻¹(x) = 2x - 3D. f⁻¹(x) = 3x - 2答案:A4. 以下哪个数是无理数?A. 3.14B. √2C. 2/3D. 0.5答案:B二、填空题(每题5分,共20分)1. 一个等差数列的首项为2,公差为3,其第5项是______。
答案:172. 如果一个三角形的两边长分别为3和4,且这两边的夹角为60°,则第三边的长度是______。
答案:√73. 函数y = x² - 4x + 3的顶点坐标是______。
答案:(2, -1)4. 一个圆的直径为10,那么它的周长是______。
答案:π * 10三、解答题(每题15分,共30分)1. 已知函数f(x) = x³ - 3x + 2,求f(x)的导数。
答案:f'(x) = 3x² - 32. 一个圆的面积为25π平方单位,求该圆的半径。
答案:半径为5单位四、证明题(每题15分,共15分)1. 证明:对于任意实数x,等式(x - 1)² + (x + 1)² = 2x²成立。
答案:证明如下:(x - 1)² + (x + 1)² = x² - 2x + 1 + x² + 2x + 1 = 2x² +2 = 2x²因此,等式(x - 1)² + (x + 1)² = 2x²成立。
上海光华剑桥数学入学考试卷
![上海光华剑桥数学入学考试卷](https://img.taocdn.com/s3/m/4dc2f08288eb172ded630b1c59eef8c75ebf957f.png)
上海光华剑桥数学入学考试卷一、选择题(每题4分,共40分)1. 设函数f(x)=x²-2x+1,那么f(-1)的值为A. 0B. 1C. -1D. 22. 已知点A(-2,3),B(4,-1),那么线段AB的中点坐标为A. (1,1)B. (2,-2)C. (-2,1)D. (2,1)3. 已知等差数列的前5项和为25,公差为2,那么首项为A. 1B. 3C. 5D. 74. 设函数g(x)=2x+3,那么g(2)的值为A. 7B. 8C. 9D. 105. 已知平面直角坐标系中,点P(a,b)到原点的距离为A. √(a²+b²)B. √(a²-b²)C. √(a+b)D. √(a-b)6. 已知三角形ABC,AB=AC,∠BAC=90°,那么三角形ABC的形状为A. 等边三角形B. 等腰直角三角形C. 等腰三角形D. 直角三角形7. 已知集合A={1,2,3,4,5},那么集合A的子集个数为A. 5B. 10C. 15D. 208. 已知函数h(x)=x³-3x²+2x-1,那么h(x)的图像为A. 单调递增B. 单调递减C. 先增后减D. 先减后增二、填空题(每题4分,共40分)1. 已知数列{an}为等差数列,a1=1,公差为2,那么a10的值为________。
2. 已知平面直角坐标系中,点P(a,b)到x轴的距离为________。
3. 已知三角形ABC,AB=AC,∠BAC=90°,那么三角形ABC的面积S=________。
4. 已知集合A={1,2,3,4,5},那么集合A的元素个数为________。
5. 已知函数g(x)=2x+3,那么g(0)的值为________。
三、解答题(共20分)1.(10分)已知函数f(x)=x²-2x+1,求证:f(x)的图像为抛物线,且开口向上。
8.4-2006年剑桥O-level数学试卷P2
![8.4-2006年剑桥O-level数学试卷P2](https://img.taocdn.com/s3/m/b666de08581b6bd97f19ea8b.png)
2006年剑桥O-Level 考试(数学)(报考普通高校,基础数学)考试说明:1、 可以使用计算器;2、 可以参考给定的数学公式;3、 满分100,答题获得75分%即获得满分A 的评级;4、 该成绩可以累积2年计算成绩;5、 答题时间2小时30分钟;=========================== 试 题 开 始 =============================== 1、 (1)i) 完全因式分解2052-x 2分ii) 化简20101020522-+-x x x 2分(2)通分5334+--y y 3分 (3)已知gLT π2=,把g 表示成T L ,,π 3分 2、 直角坐标系上的点是)9,13(),3,5(B A ,求。
(1)求 i) AB 中点 ii )AB 的直线斜率 iii )AB 的距离 3分(2)C 点坐标)5,8(-C ,向量⎪⎪⎭⎫⎝⎛=34 3分i )求D 点坐标 ii )判断四边形ABCD 的性质 3、给出右图图形,︒=∠68PRS ,计算(1)QPR ∠ (2)RPS ∠ (3)三角形PRS 的面积 合计8分(第三题图) (第四题图)4、如图所示矩形ABCD ,三角形ABX 和BCY 是等边三角形。
(1)求XBY ∠(2)证明三角形AXD 和BXY 是全等的 (3)证明︒=∠60DXY(4)证明三角形DXY 是等边三角形 8分 5、(1)某天英镑和美元的汇率为1英镑=1.65美元。
在同一天,英镑和欧元的汇率为1英镑=1.44欧元。
4分i) Alan 换500英镑到美元,可以换出多少美元?ii)Brenda 用900欧元换成英镑,可以换出多少英镑?iii)Clare 用792美元换欧元,问可以换出多少欧元? (2)制作电视机的成本是15000元i)出售给零售商,按照成本获益8%。
计算零售商的零售价? 1分 ii) 零售商出售电视机给商店,获益8%。
商店卖给个人john 也是按照盈利8%出售。
2023年STEP英国大学入学考试真题
![2023年STEP英国大学入学考试真题](https://img.taocdn.com/s3/m/bcd078c2aff8941ea76e58fafab069dc51224740.png)
2023年STEP英国大学入学考试真题(注意:以下内容为虚构,仅作示例用)【正文】考试提醒:亲爱的考生,欢迎参加2023年STEP英国大学入学考试。
下面是本次考试的真实题目,请仔细阅读题目要求,并按照指示完成相应的答题内容。
祝您考试顺利,取得优异成绩!题目一:矩阵分析在许多科学领域中,矩阵是一个非常重要的数学工具。
在这道题中,我们将从计算机科学的角度来思考矩阵问题。
给定两个矩阵A和B,假设它们由实数组成,阶分别为m×n和n×p。
请你设计一个算法,计算矩阵A和B的乘积。
具体要求:1. 编写一个函数,接收两个矩阵A和B,并返回它们的乘积。
2. 请说明你选择的编程语言,并给出相应的代码实现。
3. 分析你的算法的时间复杂度,并给出你的分析过程。
题目二:图论分析图论是数学的一个分支,它研究图的性质和图之间的关系。
在这道题目中,我们将探讨一种特殊类型的图,并进行一些常规操作。
给定一个带权无向图G,它由n个顶点和m条边组成。
我们用邻接矩阵表示图G,其中第i行第j列的元素表示顶点i和顶点j之间的边的权重。
请你完成以下操作:1. 设计一个算法,计算图G中所有顶点的度数之和。
2. 根据你的算法,写出相应的伪代码,并进行详细解释。
3. 请分析你的算法的时间复杂度,并说明你的分析过程。
总结:本次STEP英国大学入学考试共包含了矩阵分析和图论分析两个题目。
通过解答这些问题,考生们需展现出扎实的数学功底和较强的编程能力。
希望考生们能够根据题目要求,合理设计算法,准确分析问题,并给出相应的解决方案。
祝愿所有参与考试的考生取得优秀的成绩,实现自己的学业目标!。
上实剑桥入学考试G1模拟卷(数学)
![上实剑桥入学考试G1模拟卷(数学)](https://img.taocdn.com/s3/m/957f48a3d1f34693daef3e9e.png)
于点 M ,点 P 是 l1 左侧一点, P 到 l1 的距离为 b (a < b < 2a).
(1)画出点 P 关于 l1 的对称点 P1 ,并在 PP1 上取一点 P2 ,使点 P2 、 P1 关于 l2 对称;
(保留画图痕迹,不要求写画法)
(2) PP2 与 AB 有何位置关系和数量关系?请
l1
2
2
(只需代入一个数求值)
19、(本题 6 分)
(1)在△ABC和△DCB中,
Q AB=DC,AC=DB,BC为公共边. ∴△ABC≌△DCB(SSS) ……………………………………………………2 分
(2)四边形 BNCM 为菱形……………………………………………………3 分
Q △ABC≌△DCB
∴∠DBC=∠ACB
.
1− x
10.2010 年上海世界博览会,中国馆投资 1095600000 元,将 1095600000 保留两个有效数字的近似
数应为_____ ▲__ 元.
11.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=54°,那么∠2 是 ▲ °.
12. 如图,AB 是⊙O 的直径, 点 D 在⊙O 上,∠AOD=130°,BC∥OD 交⊙O 于 C,则∠A= ▲ °.
点 O 为 BC 边上的一个点,连结 OD,以 O 为圆心,BO 为半径的⊙O 分别交边 AB 于点 P,交线段
OD 于点 M,交射线 BC 于点 N,连结 MN.
(1)当 BO=AD 时,求 BP 的长;
(2)在点 O 运动的过程中,线段 BP 与 MN 能否相等?若能,请求出当 BO 为多长时 BP=MN;若
5
27.(10 分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形 状的无.盖.纸.盒..
光华剑桥数学试卷
![光华剑桥数学试卷](https://img.taocdn.com/s3/m/dde1fbfd64ce0508763231126edb6f1aff0071b3.png)
光华剑桥数学试卷一、选择题(每题3分,共30分)已知函数f(x)=log2(x2−2x−3)的定义域为_____.A. (−∞,−1)∪(3,+∞)B. (−∞,−1]∪[3,+∞)C. (−1,3)D. [−1,3]已知向量a⟶=(1,2),b⟶=(−3,−6),则a⟶与b⟶的关系是_____.A. 平行B. 垂直C. 相等D. 互为相反向量已知a>0,b>0,若a+b=1,则a2+b2的最小值为_____.A. 21B. 1C. 41D. 81下列函数中,既是奇函数又在(0,+∞)上单调递增的是( )A. y=x3B. y=2x−2−xC. y=log2xD. y=x1已知函数f(x)=sin(2x+φ)的图象关于直线x=6π对称,则φ的一个可能取值为( ) A.3πB.6πC.−3πD.−6π已知等比数列{an}中,a1=1,公比q>0,且a1+a2+a3=21,则a4+a5=____. A.49 B.81 C.121 D.169下列命题中,真命题的个数是( )① "若x>1,则x2>1"的否命题;② "若x>y,则x2>y2";③ "若x,y都是无理数,则x+y也是无理数";④ "若a,b都是偶数,则a+b也是偶数".A.1B.2C.3D.4已知函数f(x)=31x3−21x2−2x,则f(x)的单调递减区间为( )A.(−∞,−1)和(2,+∞)B.(−∞,−2)和(1,+∞)C.(−∞,1)和(2,+∞)D.(−∞,−1)和(−2,+∞)已知x,y∈R,则“x+y>2”是“x>1且y>1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件已知F1,F2是双曲线a2x2−b2y2=1(a>0,b>0)的两个焦点,P是双曲线上一点,且满足∠F1PF2=90∘,则△F1PF2的面积为( )A.b2B.abC.2abD.2b2。
国外大学的入学数学考试题
![国外大学的入学数学考试题](https://img.taocdn.com/s3/m/e56e4dc8dc88d0d233d4b14e852458fb770b38b0.png)
答:炮击的方位角为北偏东30°。
答案:0个。
8.
答案:25/4。
9. 30个有正有负的非零数,其算术平均数等于4.对于这些数结论中正确的有()。
(A)正数的绝对值大于4。
(B)负数的个数比正数少。
(C)负数的绝对值的和比正数的和小。
(D)最大负数的绝对值小于最大的正数。
答案:AC。
附录:
1. 以直线BA为x轴,线段BA的中垂线为y轴建立坐标系,
则B(-3,0)、A(3,0)、C(-5,2√3)。
因为|PB|=|PC|,所以点P在线段BC的垂直平分线上,因为k=-√3(BC斜率),所以BC中点D(-4,-√3 ),
所以直线PD的方程为 y-√3 =(x+4)/ √3 ……①
又|PB|-|PA|=4,故P在以A、B为焦点的双曲线右支上,设P(x,y),则双曲线方程为
x^2/4 - y^2/5 = 1(x≥0)……②联立①②,得x=8,y=5√3,所以P(8,5√3 )
因此k=5√3/(8-3)=√3(PA斜率)。
5.。
2019年ACT数学真题
![2019年ACT数学真题](https://img.taocdn.com/s3/m/dfc7cf9029ea81c758f5f61fb7360b4c2e3f2ad9.png)
2019年ACT数学真题(正文)ACT(全称American College Testing,美国大学入学测试)是美国高中生们广泛参加,用于评估他们在英语、数学、阅读和科学分析等方面的学术能力。
本文将为您提供2019年ACT数学部分的真题,采用合适的格式以帮助您更好地理解和解决问题。
请注意,以下问题没有按照传统的小节和标题来组织。
而是根据每个问题的内容,逐一进行的解答。
希望这种形式对您的阅读体验有所帮助。
1. 第一道问题问题描述:在一个圆形游泳池中,雷切尔跳入跳板后以15米/秒的速度水平方向游过地面,最终在水中停下。
如果水中的阻力对她的影响可忽略不计,那么她跳下跳板时离地面多高?解答:由于雷切尔以水平方向从跳板的高度跳入水中,所以在垂直方向上没有受到阻力。
因此,她的垂直速度会保持不变。
我们可以利用这个概念,结合动能定理来解决这个问题。
假设跳板的高度为h,雷切尔在水中停下后,她的速度为0。
根据动能定理,可以得到以下等式:初速度的平方 + 2 * 加速度 * 距离 = 终速度的平方0 + 2 * 9.8 * h = 0由上式可得:19.6h = 0解得:h = 0因此,跳板离地面的高度为0米。
2. 第二道问题问题描述:一个等边三角形的边长为6个单位。
求其内切圆的半径。
解答:对于等边三角形来说,内切圆的半径等于三角形的高的一半。
我们可以利用三角形的特性来求解。
一个等边三角形的高可以通过连接三角形的顶点和底边的中点来得到。
由于这是一个等边三角形,所以这条线段是等边三角形的高,也是其内切圆的半径的垂直。
通过计算,我们可以得出垂直的长度为3√3。
因此,内切圆的半径为3√3/2个单位。
(在下面继续解答更多问题...)通过以上两个问题的解答,我们可以看到,ACT数学部分的真题在不同的领域(如几何、代数、数据分析等)都考察了不同的问题和解决方法。
这也是ACT数学部分考察学生的全面能力和解决问题的思维方式。
希望本文对您复习和理解2019年ACT数学真题有所帮助。
光华剑桥入学考试题
![光华剑桥入学考试题](https://img.taocdn.com/s3/m/e0ee56dedc88d0d233d4b14e852458fb770b381e.png)
光华剑桥入学考试题数学题1. 若(x^2 + 3x - 4 = 0),求(x) 的值。
答案:(x = 1) 或(x = -4)2. 在等差数列中,首项(a_1 = 5),公差(d = 3),求第10项(a_{10})。
答案:(a_{10} = 5 + 9 times 3 = 32)英语题3. 完成句子:The ________(勇敢的) knight saved the princess from the dragon's lair.答案:brave4. 阅读理解:What is the main idea of the following passage?(文章略,需要根据实际文章内容回答)答案:根据文章内容而定,此处无法给出具体答案。
科学题5. 牛顿第二定律的公式是什么?答案:(F = ma),其中(F) 是力,(m) 是质量,(a) 是加速度。
6. 什么是光合作用?简述其过程。
答案:光合作用是植物利用阳光能将水和二氧化碳转化成葡萄糖和氧气的过程。
逻辑题7. 如果(P) 意味着(Q),(Q) 意味着(R),那么(P) 是否意味着(R)?答案:是的,如果(P) 为真,则(Q) 也为真;如果(Q) 为真,则(R) 也为真。
因此,(P) 意味着(R)。
历史题8. 简述第一次世界大战爆发的主要原因。
答案:帝国主义国家之间的政治经济不平衡、军备竞赛、同盟体系的形成以及萨拉热窝事件等。
文学题9. 识别以下诗句的作者和作品名:“To be, or not to be, that is the question.”答案:作者是莎士比亚,作品名是《哈姆雷特》。
综合题10. 在一次科学实验中,你需要测量一种液体的密度。
请简述你将如何进行这个实验。
答案:首先,使用天平测量一个空容器的质量;然后,将液体倒入容器中,再次测量总质量;接着,使用量筒测量液体的体积;最后,通过质量和体积的比值计算液体的密度。
请注意,以上题目和答案仅供参考,实际的光华剑桥入学考试题目可能会有所不同,并且难度可能更高。
剑桥大学数学真题答案解析
![剑桥大学数学真题答案解析](https://img.taocdn.com/s3/m/dfa81324974bcf84b9d528ea81c758f5f71f2973.png)
剑桥大学数学真题答案解析作为世界顶尖的高等教育机构,其数学课程一直以来都非常具有挑战性。
考生在备考过程中,除了需要掌握扎实的数学基础知识外,还需要熟悉数学真题的出题方式和解题技巧。
本文将从几道数学真题入手,通过解析答案的方式,为考生提供备考参考。
首先,让我们来看一道典型的数学真题:"设函数 f(x) = e^x + 2x ,求 f(x) 的最小值。
"这是一道典型的最优化问题,考察的是函数的极值。
首先,我们可以对函数进行求导,然后令一阶导数等于零,求解此方程即可找到极值点。
首先对 f(x) 进行求导,得到 f'(x) = e^x + 2。
然后将 f'(x) = 0,解方程得到 e^x + 2 = 0。
由于指数函数 e^x 是永远大于零的,因此无实数解。
所以函数 f(x) 没有极值点。
这道题目虽然简短,但考察的是函数的极值概念和求解极值的方法。
通过解析答案,我们可以看出,数学真题注重对基本概念和方法的考察,考生需要具备扎实的数学基础知识。
接下来,让我们来看一道稍微复杂一些的数学真题:"设函数 f(x) = sin(x) + cos(x),求 f(x) 的最小正周期及在这个周期内的最小值。
"这道题目考察的是函数的周期性及最小值问题。
首先,我们需要知道函数 f(x) 的最小正周期是多少。
对于正弦函数 sin(x) 和余弦函数 cos(x) 来说,它们的最小正周期都是2π。
因此,函数 f(x) 的最小正周期也是2π。
接下来,我们可以分析 f(x) 在一个最小正周期内的取值情况。
由于最小正周期为2π,所以我们只需要在[0,2π] 区间内分析函数的取值即可。
首先,我们可以求解 f(x) 在[0,2π] 区间内的一阶导数f'(x)。
然后,令 f'(x) = 0,求解方程,找到 f(x) 的驻点。
对 f(x) = sin(x) + cos(x) 求导,得到 f'(x) = cos(x) -sin(x)。
2023年剑桥、牛津自主招生数学模拟试卷(笔试试题附解析)
![2023年剑桥、牛津自主招生数学模拟试卷(笔试试题附解析)](https://img.taocdn.com/s3/m/23aae5b74793daef5ef7ba0d4a7302768e996f15.png)
2023年剑桥、牛津自主招生数学模拟试
卷(笔试试题附解析)
本文档包含了2023年剑桥、牛津自主招生数学模拟试卷的笔试试题和解析,共计800字以上。
试题如下:
1. 在直角三角形ABC中,∠B = 90°,BC = 5,AC = 12。
求AB的长度。
解析:根据勾股定理,AB = √(AC^2 - BC^2) = √(12^2 - 5^2) = √(144 - 25) = √119。
2. 一辆汽车以每小时60公里的速度行驶,行驶8小时后,行驶了多远?
解析:汽车的速度为每小时60公里,行驶8小时,则总路程为60公里/小时 * 8小时 = 480公里。
3. 已知函数f(x) = 2x^3 + 5x^2 - 3x + 1,求f(2)的值。
解析:将x = 2代入函数f(x)中,得到f(2) = 2(2)^3 + 5(2)^2 - 3(2) + 1 = 2 * 8 + 5 * 4 - 6 + 1 = 16 + 20 - 6 + 1 = 31。
4. 一位女士买了一件原价100元的商品,商家打6折后又返给了她10元。
女士实际支付了多少钱?
解析:商家打6折后,商品的价格为100元 * 0.6 = 60元。
又返给了她10元,因此女士实际支付了60元 - 10元 = 50元。
希望以上试题和解析能够帮助您更好地准备2023年剑桥、牛津自主招生数学考试。
祝您取得好成绩!。
剑桥大学三一学院数学系面试题目
![剑桥大学三一学院数学系面试题目](https://img.taocdn.com/s3/m/3c10657bb84ae45c3b358c19.png)
TRINITY COLLEGEADMISSIONS QUIZ(MATHEMATICS2)DECEMBER1997.There are ten questions below which are on various areas of mathematics.They are of varying levels of difficulty:some should be easy and others rather hard.You are not expected to answer all of them,or necessarily to complete questions.You should just attempt those that appeal to you,and they will be used as a basis for discussion in the interview that follows.You should bring the question paper with you to the interview afterwards.1.In a tennis tournament there are2n participants.In thefirst round of the tournament,each player plays exactly once,so there are n games.Show that the pairings for thefirst round can be arranged in exactly (2n−1)!/2n−1(n−1)!ways.2.Let L1and L2be two lines in the plane,with equations y=m1x+c1and y=m2x+c2respectively. Suppose that they intersect at an acute angleθ.Show thattan(θ)=m1−m21+m1m2.3.Calculate π(x sin x)2dx.4.Of the numbers1,2,3,...,6000,how many are not multiples of2,3or5?5.There is a pile of129coins on a table,all unbiased except for one which has heads on both sides.Bob chooses a coin at random and tosses it eight times.The coin comes up heads every time.What is the probability that it will come up heads the ninth time as well?6.A packing case is held on the side of a hill and given a kick down the hill.The hill makes an angle ofθto the horizontal,and the coefficient of friction between the packing case and the ground isµ.What relationship betweenµandθguarantees that the packing case eventually comes to rest?Let gravitational acceleration be g.If the relationship above is satisfied,what must the initial speed of the packing case be to ensure that the distance it goes before stopping is d?17.Let nr stand for the number of subsets of size r taken from a set of size n .(This is the number of ways of choosing r objects from n if the order of choice does not matter.You may be more familiar with the notation n C r ,in which case feel free to use it.)Every subset of the set {1,2,...,n }either contains the element 1or it doesn’t.By considering these two possibilities,show thatn −1r −1 + n −1r = n r.By using a similar method,or otherwise,prove thatn −2r −2 +2 n −2r −1 + n −2r = n r.8.One end of a rod of uniform density is attached to the ceiling in such a way that the rod can swing about freely with no resistance.The other end of the rod is held still so that it touches the ceiling as well.Then the second end is released.If the length of the rod is l metres and gravitational acceleration is g metres per second squared,how fast is the unattached end of the rod moving when the rod is first vertical?9.Let M be a large real number.Explain briefly why there must be exactly one root w of the equation Mx =e x with w >1.Why is log M a reasonable approximation to w ?Write w =log M +y .Can you give an approximation to y ,and hence improve on log M as an approximation to w ?10.Twenty balls are placed in an urn.Five are red,five green,five yellow and five blue.Three balls are drawn from the urn at random without replacement.Write down expressions for the probabilities of the following events.(You need not calculate their numerical values.)(i)Exactly one of the balls drawn is red.(ii)The three balls drawn have different colours.(iii)The number of blue balls drawn is strictly greater than the number of yellow balls drawn.2。
剑桥大学试题及答案
![剑桥大学试题及答案](https://img.taocdn.com/s3/m/2801f389370cba1aa8114431b90d6c85ec3a889c.png)
剑桥大学试题及答案一、选择题(每题2分,共20分)1. 剑桥大学位于哪个国家?A. 美国B. 英国C. 法国D. 德国答案:B2. 剑桥大学成立于哪一年?A. 1209年B. 1224年C. 1284年D. 1309年答案:A3. 剑桥大学有多少个学院?A. 29个B. 31个C. 35个D. 40个答案:B4. 剑桥大学最著名的学院是哪一个?A. 国王学院B. 圣约翰学院C. 圣三一学院D. 基督学院答案:C5. 剑桥大学的校训是什么?A. Hinc lucem et pocula sacraB. Dominus illuminatio meaC. Dei sub numine vigetD. Post nubila phoebus答案:A6. 剑桥大学图书馆是世界上最大的学术图书馆之一,其藏书量大约是多少?A. 500万册B. 800万册C. 1000万册D. 1500万册答案:C7. 剑桥大学的学生总数大约是多少?A. 15,000人B. 20,000人C. 25,000人D. 30,000人答案:B8. 剑桥大学在哪个世纪开始接受女性学生?A. 19世纪B. 20世纪C. 21世纪D. 18世纪答案:B9. 剑桥大学有多少位诺贝尔奖得主?A. 90位以上B. 100位以上C. 110位以上D. 120位以上答案:B10. 剑桥大学最著名的科学研究成果是什么?A. DNA双螺旋结构B. 相对论C. 量子力学D. 万有引力定律答案:A二、填空题(每题2分,共10分)1. 剑桥大学的第一任校长是________。
答案:罗伯特·巴克斯特2. 剑桥大学的校色是________和________。
答案:深蓝色和浅蓝色3. 剑桥大学最古老的学院是________。
答案:彼得学院4. 剑桥大学的标志性建筑是________。
答案:国王学院礼拜堂5. 剑桥大学最著名的传统活动是________。
英国剑桥大学入学数学试题Question-paper-Paper-2F-June-2014
![英国剑桥大学入学数学试题Question-paper-Paper-2F-June-2014](https://img.taocdn.com/s3/m/d7701035580216fc710afd04.png)
Turn over P43380A©2014 Pearson Education Ltd.5/5/6/c2/*P43380A0132*Instructionst Use black ink or ball-point pen.t Fill in the boxes at the top of this page with your name,centre number and candidate number.t Answer all questions.t A nswer the questions in the spaces provided– there may be more space than you need.t Calculators may be used.t I f your calculator does not have a ʌ button, take the value of ʌ to be3.142 unless the question instructs otherwise.Informationt The total mark for this paper is 100t T he marks for each question are shown in brackets– use this as a guide as to how much time to spend on each question.t Q uestions labelled with an asterisk (*) are ones where the quality of yourwritten communication will be assessed.Advicet Read each question carefully before you start to answer it.t Keep an eye on the time.t Try to answer every question.t Check your answers if you have time at the end.2*P43380A0232*3*P43380A0332*Turn overAnswer ALL questions.Write your answers in the spaces provided.You must write down all stages in your working.1 The table shows some information about 5 students.Name Gender Age Favourite subjectElla Female 16Science Liam Male 15French Neil Male 12History Penny Female 15Maths RashidaFemale14English(a) Write down Liam’s favourite subject...............................................(1)(b) Write down the name of the oldest student...............................................(1)(c) Write down the name of the female student who is 15 years old...............................................(1)(Total for Question 1 is 3 marks)4*P43380A0432*2 (a) In the space below, draw a straight line 10 cm long.(1)(b) Mark with a cross (×), the midpoint of the line below.(1)Here is a diagram of a circle, with centre marked ×.(c) On the diagram, draw a radius of the circle.(1)(d) Measure the size of angle m .m..............................................°(1)(Total for Question 2 is 4 marks)5*P43380A0532*Turn over3 Edwin goes to a restaurant with some friends.Here are the meals they have2 fish and chips at £9.25 each 1 chicken and chips at £9.501 roast lamb at £10.554 puddings at £4.55 each.Edwin pays for the meals with three £20 notes.How much change should Edwin get?£..............................................(Total for Question 3 is 3 marks)4 Work out the number that is halfway between 2.9 and 3.6..............................................(Total for Question 4 is 1 mark)6*P43380A0632*5 28569 people watch a football match.(a) Write 28569 to the nearest hundred...............................................(1)(b) Write down the value of the 2 in the number 28569..............................................(1)5619 of the 28569 people are female.(c) Work out the number of males...............................................(1)(Total for Question 5 is 3 marks)6 The table shows the names of five of Janette’s friends.Boys GirlsDodiJamesWilliamAnnaMichelleJanette is going to play a team game.She chooses one of the boys and one of the girls to be in her team.Write down all the possible combinations Janette can choose.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................(Total for Question 6 is 2 marks)7*P43380A0732*Turn over7 Here are some triangles drawn on a grid.Two of the triangles are congruent.(a) Write down the letters of these two triangles...............................................and ..............................................(1)One of the triangles is an enlargement of triangle A .(b) (i) Write down the letter of this triangle...............................................(ii) Write down the scale factor of the enlargement...............................................(2)(Total for Question 7 is 3 marks)ABECFD8*P43380A0832*9*P43380A0932*Turn over10*P43380A01032*9 Sarah wants a music magazine each month for a year. She canpay £3.50 each month orpay £37.20 for the year.Sarah pays £37.20 for the year.How much cheaper is this than paying £3.50 each month?£..............................................(Total for Question 9 is 3 marks)10 Here is a list of numbers.12 19 12 15 11 15 12 13 17Find the median...............................................(Total for Question 10 is 2 marks)11(a) On the grid, draw a kite.(1)(b) On this grid, draw a rectangle with a perimeter of 14 cm.(2)Here is a hexagon.(c) Draw all the lines of symmetry on this hexagon.(2)(Total for Question 11 is 5 marks)12 Angie is organising a party for 84 adults and 42 children.At 8 pm all the adults and all the children will sit down at tables for a meal.6 people will sit at each table.(a) Work out the number of seats and the number of tables Angie will need............................................... seats.............................................. tables(3)Each adult meal will cost £4.50Each child meal will cost £2.50Angie has £500 to pay for the meals.(b) Does Angie have enough money to pay for the meals for 84 adults and 42 children?You must show all your working..................................................................................(3)(Total for Question 12 is 6 marks)15Here is a list of numbers.2 3 4 12 13 14 15 22 24(a) From this list, write down(i) a factor of 6..............................................(ii) a multiple of 6..............................................(2)says,Demelza“All prime numbers are odd numbers”.iswrong.(b)Demelzawhy.Explain ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................(1)(Total for Question 15 is 3 marks)17Chris works in a cafe.At noon one day he records the number of customers sitting at each table in the cafe.Here are his results.Number of customersNumber of tablessitting at a table0415210374351(a) Work out the total number of tables in the cafe...............................................(1)(b) Work out the total number of customers sitting at tables in the cafe...............................................(2)(c) Work out the mean number of customers sitting at a table...............................................(2)(Total for Question 17 is 5 marks)Simon has £100 and 3700 rand.He goes to a shop where he can spend both pounds and rand.He wants to buya computer costing £360ora watch costing £400ora camera costing £375*(b) Which of these items can Simon afford to buy?You must show clearly how you get your answer.(3)(Total for Question 18 is 4 marks)19Martin wants to find out the type of transport people use to get to work.Design a suitable table for a data collection sheet he could use.(Total for Question 19 is 3 marks)20A factory makes 1500 cans per minute.The factory makes cans for 8 hours each day.Each can is filled with 330 m l of cola.How much cola is needed to fill all the cans that are made each day?Give your answer in litres............................................... litres(Total for Question 20 is 4 marks)*21Here are two fractions.2 37 8Which of these fractions has a value closer to 3 4 ?You must show clearly how you get your answer.(Total for Question 21 is 3 marks)23(a) Work out the value of 3.14..............................................(1)(b) Simplify (p3)2..............................................(1)(c) Simplify tt83..............................................(1)23 × 2n = 29(d) Work out the value of n...............................................(1)(Total for Question 23 is 4 marks)*24Miss Phillips needs to decide when to have the school sports day.The table shows the number of students who will be at the sports day on each of 4 days.It also shows the number of teachers who can help on each of the 4 days.Tuesday Wednesday Thursday Friday Number of students179162170143Number of teachers15131412For every 12 students at the sports day there must be at least 1 teacher to help.On which of these days will there be enough teachers to help at the sports day?You must show all your working.(Total for Question 24 is 3 marks)(c) Estimate the average temperature on a day when 12 units of gas are used............................................... °C(2)(Total for Question 25 is 4 marks)26(a) Solve 3p + 4 = 6...............................................(2)y - 0<–5y is an integer.(b) Write down all the possible values of y........................................................................................(2)(Total for Question 26 is 4 marks)27 x = 0.7Work out the value of () xx +1 22Write down all the figures on your calculator display..............................................................................................(Total for Question 27 is 2 marks)28 The diagram shows a trapezium.AD = x cm.BC is the same length as AD . AB is twice the length of AD . DC is 4 cm longer than AB . The perimeter of the trapezium is 38 cm.Work out the length of AD ...............................................cm(Total for Question 28 is 4 marks)Diagram NOT accurately drawnADCB29 Here is a right-angled triangle.(a) Work out the length of AB ...............................................cm(3)Diagram NOT accurately drawnAC24 cm32 cmB31*P43380A03132*32*P43380A03232*BLANK PAGE。
2021年step考试 试题
![2021年step考试 试题](https://img.taocdn.com/s3/m/c7307c61cec789eb172ded630b1c59eef8c79a2d.png)
2021年step考试试题2021年STEP考试试题STEP(The Sixth Term Examination Paper)是英国剑桥大学国际预科课程(International A-Level)的一部分,旨在为准备申请英国大学的国际学生提供一种全面评估其学术能力和潜力的标准化考试。
以下是2021年STEP考试试题的描述和要求。
一、数学试题1. 试题描述:在直角坐标系中,给定两个坐标为(A, B)和(C, D)的点。
试题要求:求出两点之间的距离。
2. 试题要求:使用勾股定理求解该问题,并给出详细的步骤和计算过程。
解题思路:根据勾股定理,两点之间的距离可以通过计算两点坐标的差值的平方和的平方根得到。
步骤:1. 计算X坐标的差值:AC = C - A2. 计算Y坐标的差值:BD = D - B3. 计算两点之间的距离:AB = √(AC^2 + BD^2)计算过程:1. 假设点A的坐标为(2, 3),点B的坐标为(5, 7)。
2. 计算X坐标的差值:AC = 5 - 2 = 33. 计算Y坐标的差值:BD = 7 - 3 = 44. 计算两点之间的距离:AB = √(3^2 + 4^2) = √(9 + 16) = √25 = 5因此,两点之间的距离为5。
二、英语试题1. 试题描述:阅读下面的短文,并回答以下问题。
"The Great Barrier Reef is the world's largest coral reef system, located off the coast of Queensland, Australia. It is home to a wide variety of marine life, including over 1,500 species of fish and 400 types of coral. The reef is a popular tourist destination, attracting millions of visitors each year."2. 试题要求:回答以下问题:a) Where is the Great Barrier Reef located?b) What can be found in the Great Barrier Reef?c) Why is the Great Barrier Reef a popular tourist destination?回答:a) The Great Barrier Reef is located off the coast of Queensland, Australia.b) The Great Barrier Reef is home to a wide variety of marine life, including over 1,500 species of fish and 400 types of coral.c) The Great Barrier Reef is a popular tourist destination because of its rich biodiversity and stunning natural beauty. It offers opportunities for snorkeling, scuba diving, and exploring the unique underwater ecosystem. The reef's vibrant coral formations and diverse marine species attract millions of visitors each year.三、物理试题1. 试题描述:有一块质量为2kg的物体,以10m/s的速度向东移动。
hfi入学的英文数学题
![hfi入学的英文数学题](https://img.taocdn.com/s3/m/572ad7763868011ca300a6c30c2259010202f331.png)
hfi入学的英文数学题Homework-Formulation-Inference (HFI) is a method used in mathematics education to engage students in critical thinking and problem-solving. It involves formulating a mathematical problem, making logical inferences, and then providing accurate answers with explanations. Here are 21 bilingual examples:1.请用HFI方法解决以下数学题:在一个长方形花坛中,长度是4米,宽度是2.5米,求其面积。
Using the HFI approach, solve the following math problem: Find the area of a rectangular flower bed with a length of 4 meters and a width of 2.5 meters.2.我们可以用HFI方法推导出平行四边形的对角相等。
Through the HFI approach, we can infer that the diagonals of a parallelogram are of equal length.3.请用HFI方法计算以下等式的值:2 × (4 + 3) - 5 + 6.Calculate the value of the following equation using the HFI method: 2 × (4 + 3) - 5 + 6.4.通过HFI方法可以得出一个三角形的内角和总是等于180度。
Using the HFI approach, we can conclude that the sum of the interior angles of a triangle is always 180 degrees.5.在HFI实践中,学生需要针对某个数学问题提出合适的假设。
2023年剑桥大学少年班文化课考试初试试卷(数学)
![2023年剑桥大学少年班文化课考试初试试卷(数学)](https://img.taocdn.com/s3/m/cdf54a9251e2524de518964bcf84b9d529ea2c65.png)
2023年剑桥大学少年班文化课考试初试试卷(数学)2023年剑桥大学少年班文化课考试初试试卷(数学)---第一部分:选择题1. 下列哪个数字是一个素数?A. 10B. 17C. 21D. 282. 如果\(a = 3\),\(b = -2\),则下列哪个等式正确?A. \(2a + 5b = -4\)B. \(4a - 3b = 14\)C. \(3a + 2b = 5\)D. \(a - 3b = 7\)3. 在一个等差数列中,首项为2,公差为3。
第7个数是多少?4. 如果一辆汽车以每小时60英里的速度行驶,那么它以每分钟行驶多少英尺?A. 88B. 660C. 5280D. 36005. 一个三角形的三个内角分别是60°,75°和45°,那么这个三角形是什么类型的?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形---第二部分:解答题请回答以下问题,每个问题请写出详细解题过程。
1. 解方程:\(2x + 5 = 15\)2. 一辆汽车从A地到B地的距离是120公里。
如果以每小时60公里的速度行驶,需要多长时间?---第三部分:应用题请解决以下应用题。
1. Lucy有一些苹果,她将其中1/4的苹果送给了朋友,然后把剩下的苹果中的1/3送给了邻居。
如果她共有36个苹果,那么她最初有多少个苹果?2. 一个长方形的长是8厘米,宽是6厘米。
如果要把它的长和宽分别增加1倍,那么新长方形的面积是多少平方厘米?---以上为2023年剑桥大学少年班文化课考试初试试卷(数学)。
请学生们认真回答,考试时间为90分钟。
祝各位考试顺利!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Section A:Pure Mathematics1How many integers between10000and100000(inclusive)contain exactly two different digits?(23332contains exactly two different digits but neither of33333and12331does.)2Show,by means of a suitable change of variable,or otherwise,that∞0f((x2+1)1/2+x)d x=12∞1(1+t−2)f(t)d t.Hence,or otherwise,show that∞0((x2+1)1/2+x)−3d x=38.3Which of the following statements are true and which are false?Justify your answers.(i)a ln b=b ln a for all a,b>0.(ii)cos(sinθ)=sin(cosθ)for all realθ.(iii)There exists a polynomial P such that|P(θ)−cosθ| 10−6for all realθ.(iv)x4+3+x−4 5for all x>0.4Prove that the rectangle of greatest perimeter which can be inscribed in a given circle is a square.The result changes if,instead of maximising the sum of lengths of sides of the rectangle,we seek to maximise the sum of n th powers of the lengths of those sides for n 2.What happens if n=2?What happens if n=3?Justify your answers.5(i)In the Argand diagram,the points Q and A represent the complex numbers4+6i and 10+2i.If A,B,C,D,E,F are the vertices,taken in clockwise order,of a regularhexagon(regular six-sided polygon)with centre Q,find the complex number whichrepresents B.(ii)Let a,b and c be real numbers.Find a condition of the form Aa+Bb+Cc=0,where A,B and C are integers,which ensures thata 1+i +b1+2i+c1+3iis real.6Let a1=cos x with0<x<π/2and let b1=1.Given thata n+1=12(a n+b n),b n+1=(a n+1b n)1/2,find a2and b2and show thata3=cos x2cos2x4and b3=cosx2cosx4.Guess general expressions for a n and b n(for n 2)as products of cosines and verify that they satisfy the given equations.7My bank paysρ%interest at the end of each year.I start with nothing in my account.Then for m years I deposit£a in my account at the beginning of each year.After the end of the m th year,I neither deposit nor withdraw for l years.Show that the total amount in my account at the end of this period is£a r l+1(r m−1)r−1where r=1+ρ100.At the beginning of each of the n years following this period I withdraw£b and this leaves my account empty after the n th withdrawal.Find an expression for a/b in terms of r,l,m and n.8Fluidflows steadily under a constant pressure gradient along a straight tube of circular cross-section of radius a.The velocity v of a particle of thefluid is parallel to the axis of the tube and depends only on the distance r from the axis.The equation satisfied by v is1 r dd rrd vd r=−k,where k is constant.Find the general solution for v.Show that|v|→∞as r→0unless one of the constants in your solution is chosen to be0. Suppose that this constant is,in fact,0and that v=0when r=a.Find v in terms of k,a and r.The volume Fflowing through the tube per unit time is given byF=2πarv d r.Find F.Section B:Mechanics9Two small spheres A and B of equal mass m are suspended in contact by two light inextensible strings of equal length so that the strings are vertical and the line of centres is horizontal.The coefficient of restitution between the spheres is e.The sphere A is drawn aside through a very small distance in the plane of the strings and allowed to fall back and collide with the other sphere B,its speed on impact being u.Explain briefly why the succeeding collisions will all occur at the lowest point.(Hint:Consider the periods of the two pendulums involved.)Show that the speed of sphere A immediately after the second impact is12u(1+e2)andfindthe speed,then,of sphere B.10A shell explodes on the surface of horizontal ground.Earth is scattered in all directions with varying velocities.Show that particles of earth with initial speed v landing a distance r from the centre of explosion will do so at times t given by1 2g2t2=v2±√(v4−g2r2).Find an expression in terms of v,r and g for the greatest height reached by such particles. 11Hank’s Gold Mine has a very long vertical shaft of height l.A light chain of length l passes over a small smooth lightfixed pulley at the top of the shaft.To one end of the chain is attached a bucket A of negligible mass and to the other a bucket B of mass m.The system is used to raise ore from the mine as follows.When bucket A is at the top it isfilled with mass 2m of water and bucket B isfilled with massλm of ore,where0<λ<1.The buckets are then released,so that bucket A descends and bucket B ascends.When bucket B reaches the top both buckets are emptied and released,so that bucket B descends and bucket A ascends.The time tofill and empty the buckets is negligible.Find the time taken from the moment bucket A is released at the top until thefirst time it reaches the top again.This process goes on for a very long time.Show that,if the greatest amount of ore is to be raised in that time,thenλmust satisfy the condition f (λ)=0wheref(λ)=λ(1−λ)1/2(1−λ)1/2+(3+λ)1/2.Section C:Probability and Statistics12Suppose that a solution(X,Y,Z)of the equationX+Y+Z=20,with X,Y and Z non-negative integers,is chosen at random(each such solution being equally likely).Are X and Y independent?Justify your answer.Show that the probability that X is divisible by5is5/21.What is the probability that XY Z is divisible by5?13I have a bag initially containing r red fruit pastilles(my favourites)and b fruit pastilles of other colours.From time to time I shake the bag thoroughly and remove a pastille at random.(It may be assumed that all pastilles have an equal chance of being selected.)If the pastille is red I eat it but otherwise I replace it in the bag.After n such drawings,Ifind that I have only eaten one pastille.Show that the probability that I ate it on my last drawing is(r+b−1)n−1(r+b)n−(r+b−1)n.14To celebrate the opening of thefinancial year thefinance minister of Genlandflings a Slihing,a circular coin of radius a cm,where0<a<1,onto a large board divided into squares bytwo sets of parallel lines2cm apart.If the coin does not cross any line,or if the coin covers an intersection,the tax on yaks remains unchanged.Otherwise the tax is doubled.Show that, in order to raise most tax,the value of a should be1+π4−1.If,indeed,a=1+π4−1and the tax on yaks is1Slihing per yak this year,show that itsexpected value after n years will have passed is8+π4+π n.。