2020年河北省廊坊市广阳区中考数学一模试卷(解析版)

合集下载

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省初中毕业生升学文化课模拟考试(一)数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷1I为非选择题.本试卷满分120分,考试时间为120分钟.卷I(选择题,共42分)注意事项:1.答卷I前.考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑答在试卷上无效.一、选择题(本大题共16个小题,共42分,1~I 0小题各3分;11~16小题各2分.在每小题给出的四个选项中只有项是符合题目要求的)1.下列各数中,比-2大2的数是()A.0 B.-4 C.2 D.42.把一个三角板按下图所示位置放置,∠1=40°,∠2=()A.40°B.45°C.50°D.60°3.下图中几何体的主视图是()A.B.C.D.4.下列对代数式1ab-的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数5.如图,直线a∥b∥c,45AB BC=,若DF=9,则EF的长度为()A .9B .5C .4D .3 6.下列变形正确的是( ) A .-2(a+2)=a -2 B .()121212a a --=-+ C .-a+1=-(a -1) D .1-a=-(a+1) 7.关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( ) A .a >0 B .a >-1 C .a <1 D .a <1且a ≠08.在新型冠状病毒防控期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片上:,把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知P (一次抽到36)=25,这5张卡片上数据的方差为( ) A .35.9 B .0.22 C .0.044 D .09.如图,五边形ABCDE 中,AE ∥BC ,BE 交于点O ,四边形OCDE 是平行四边形,若△ABE 的面积是5,四边形OCDE 的面积是6,则△AOE 的面积是( )A .2B .2.5C .3D .410.如图,点A (0,4),B (3,4),以原点O 为位似中心,把线段AB 缩短为原来的一半,得到线段CD ,其中点C 与点A 对应,点D 与点B 对应,则点D 的横坐标...为( )A .2B .2或-2C .32 D .32或32- 11.如图,在△ABC 中,AB <BC ,在BC 上取一点P ,使得PC=BC -PA .根据圆规作图的痕迹,可以用直尺成功找到点P 的是( )A.B.C.D.12.如图,四边形ABCD中,AD∥BC,AD=12BC,CD=BC,点E,F分别是BD,CD的中点,连接AE,EF,AF,若BC=2,AF=85,则BD=()A.35B.95C.125D.313.关于x方程2311x mx-=-的解是正数,m的值可能是()A.23B.12C.0 D.-114.如图,在6×6的正方形网格中,经过格点A,B,C,⊙O点P是ACB上任意一点,连接AP,BP,则tan∠APB的值为()A .12B C D 15.点(a ,b )是反比例函数2y x=-的图象上一点,若a <2,则b 的值不可能...是( ) A .-2 B .13- C .2 D .316.如图,在等边△ABC 中,AB=D 在△ABC 内或其边上,AD=2,以AD 为边向右作等边△ADE ,连接CD ,CE ,设CE 的最小值为m ;当ED 的延长线经过点B 时,∠DEC=n °,则m ,n 的值分别为( )A B C .2,55 D .2,60卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.若单项式212xyx 与n x y -是同类项,则n 的值为 . 18.定义新运算:对于任意实数a ,b ,都有a ⊕b=a (b+1)-b ,等式右边是通常的加法、减法及乘法运算,比如:3⊕2=3(2+1)-2=9-2=7. (1)2⊕(-3)= ;(2)若(-2)⊕x 的值等于-5,则x= .19.如图,ABCD 中,AB=7,BC=5,CH ⊥AB 于点H ,CH=4,点P 从点D 出发,以每秒1个单位长度的速度沿DC —CH 向点H 运动,到点H 停止,设点P 的运动时间为t .(1)AH= ;(2)若△PBC 是等腰三角形,则t 的值为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别为a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b -2c)的值.21.(本小题满分9分)发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352.例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(-11)=.探究:一个两位数,十位上的数字是m,个位上的数字为n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出....计算结果中十位上的数字.22.(本小题满分9分)自2020年初的新型冠状病毒疫情爆发以来,疫悄时时刻刻都在牵动全国人民的心.小明在做好自我防控的同时,也从数据分析的角度去看待疫情动态,他从2月10日起,连续7天记录了全国每天新增确诊病例人数,并绘制了如图所示的折线统计图.(注:本题所考查的人数均保留整数)(1)①小明关注这7天每天新增确诊病例人数的最高值、最低值和中位数,井计算了平均数.其中中位数是人,平均数是人;②上述哪个统计量能反映这7天新增确诊病例人数的一般水平?(2)小明又接着记录了连续5天的全国新增确诊病例人数,如下表:①请在图中补画出这5天每天新增确诊病例人数的折线统计图;②求2月10日至2月21日每天新增确诊病例人数的中位数.(3)请你分别通过对上述两个中位数的比较和全部折线图来说明每天新增确诊病例人数的升降趋势.23.(本小题满分9分)如图,Rt△ABC中,∠C=90°,AC=BC=4,P是BC上一点(不与B,C重合),连接AP,将AP绕点A逆时针旋转90°得到AQ,连接BQ,分别交AC,AP于点D,E,作QF⊥AC于点F.(1)求证:QF=AC;(2)若P是BC的中点,求tan∠ADQ的值;(3)若△AEQ的内心在QF上,直接写出....BP的长.24.(本小题满分10分)学校计划拿出一笔钱给一些班级配置篮球和排球.若给每班1个篮球和2个排球,花完这笔钱刚好配置30个班;若给每班2个篮球和1个排球,花完这笔钱刚好配置20个班.设每个篮球a元,每个排球b元.(1)用含b的代数式表示a;(2)现在给每班x个篮球和y个排球,花完这笔钱刚好配置10个班.①求y与x的函数解析式;②怎样的配置方案,可以使每班配置的排球最少?25.(本小题满分10分)如图,正方形ABCD中,AB=3,P使BC边上一点(不包括B,C),连接AP,点E,B关于直线AP对称,连接DE并延长交AP的延长线于点F,以点B为圆心,BF长为半径作圆,与BE交于点G.(1)当∠PAB=26°时,∠AED=°;(2)求证:直线DF时⊙B的切线;(3)当时,求GF的长;(4)若DE=4,直接写出....EF的长.26.(本小题满分12分)如图,抛物线y=ax2+bx+3经过点A(-3,0),B(1,0),顶点为点M,与y轴交于点C,点P是抛物线上一点,PH⊥y轴于点H,射线PH交抛物线的对称轴于点D.(1)求抛物线的解析式及顶点M的坐标;(2)若点P在第四象限,OH=5,求PD的长;(3)m>0,点E(m,y1),F(-1-m,y2)均在抛物线上,比较y1,y2的大小,并说明理由;(4)若点P在第二象限,连接PA,PC,AC,直接写出....△PAC面积的最大值.。

2020年河北省廊坊市中考数学模拟试卷(附解析)

2020年河北省廊坊市中考数学模拟试卷(附解析)

2020年河北省廊坊市中考数学模拟试卷一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性2.新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿3.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.4.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n5.一个几何体由四个棱长为1正方体搭成,从正面和从左面看到的形状如图所示.则从上面看这个几何体的形状(其中小正方形中的数字表示在该位置的小正方体的个数),不可能的是()A.B.C.D.6.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP7.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a=13b+23c D.3=ba+2c a8.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A.①②⑤B.①②③④C.②④⑤D.①③④⑤9.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁10.下列计算正确的是()A.22018•(﹣0.5)2017=﹣2B.a3+a3=a6C.a5•a2=a10D.−12a2b÷(−a)2=12b11.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O412.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)13.若3×32m×33m=321,则m的值为()A.2B.3C.4D.514.下列计算中,则正确的有()①4(m+n)4m+8mn+4n=1m+n;②x+y+1−x+y+1=−1;③(a+b)÷(a+b)•1a+b=a+b;④−−x+11−x2=−1x+1.A.1个B.2个C.3个D.4个15.如图,点I是Rt△ABC的内心,∠C=90°,AC=3,BC=4,将∠ACB平移使其顶点C与I重合,两边分别交AB于D、E,则△IDE的周长为()A.3B.4C.5D.716.已知函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=﹣1B.﹣l≤c<0或c=3C.﹣1≤c≤3D.﹣1<c≤3且c≠0二.填空题(本大题有3个小题,共11分,17、18小题每题4分:19小题每空1分,把答案写在题中横线上)17.当c=25,b=24时,√(c+b)(c−b)=.18.若a,b互为相反数,则a2﹣b2=.19.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=;r:b=;正六边形T1,T2的面积比S1:S2的值是.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知:2A﹣B=3a2+2ab,A=﹣a2+2ab﹣3.(1)求B;(用含a、b的代数式表示)(2)比较A与B的大小.21.(9分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?22.(9分)用黑白两种颜色的正六边形地砖按如图所示的方式,拼成若干个图案:(1)当黑色地砖有1块时,白色地砖有块,当黑色地砖有2块时,白色地砖有块;(2)第n(n为正整数)个图案中,白色地砖有块;(3)第几个图案中有2018块白色地砖?请说明理由.23.(9分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形.(1)如图①,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,延长BP到Q,使AQ=AP.求证:四边形AQBC是准平行四边形;(2)如图②,准平行四边形ABCD内接于⊙O,AB≠AD,BC=DC,若⊙O的半径为5,AB=6,求AC的长;(3)如图③,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,若四边形ABCD是准平行四边形,且∠BCD≠∠BAD,请直接写出BD长的最大值.24.(10分)如图,平面直角坐标系中,一次函数y=−12x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.25.(10分)定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.26.(12分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.答案解析一.选择题(共16小题)1.如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:D.2.新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿解:6.5993×109=65.993亿.故选:C.3.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.4.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.5.一个几何体由四个棱长为1正方体搭成,从正面和从左面看到的形状如图所示.则从上面看这个几何体的形状(其中小正方形中的数字表示在该位置的小正方体的个数),不可能的是()A.B.C.D.解:从正面看,这个几何体有两列,从左面看这个几何体有两行,结合正面和从左面看到的形状,可知第一行第二列不可能是2个,故选:D.6.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP解:如图所示:MN是AB的垂直平分线,则AP=BP,故∠PBA=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC =2∠ABC . 故选:B .7.已知等式3a =b +2c ,那么下列等式中不一定成立的是( ) A .3a ﹣b =2cB .4a =a +b +2cC .a =13b +23cD .3=b a +2ca解:A 、原等式两边都减去b 即可得3a ﹣b =2c ,此选项正确; B 、原等式两边都加上a 即可得4a =a +b +2c ,此选项正确; C 、原等式两边都除以3即可得a =13b +23c ,此选项正确; D 、在a ≠0的前提下,两边都除以a 可得3=b a +2ca,故此选项不一定成立; 故选:D .8.如图,AD 是△ABC 的角平分线,点E 是AB 边上一点,AE =AC ,EF ∥BC ,交AC 于点F .下列结论正确的是( )①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分∠DEF ;④AD 垂直平分CE ;⑤AD =CE .A .①②⑤B .①②③④C .②④⑤D .①③④⑤解:①∵AD 是△ABC 的角平分线, ∴∠EAD =∠CAD , 在△AED 和△ACD 中, {AE =AC∠EAD =∠CAD AD =AD, ∴△AED ≌△ACD , ∴∠ADE =∠ADC 故①正确;②∵△AED ≌△ACD , ∴ED =DC ,∴△CDE是等腰三角形;故②正确;③∵DE=DC,∴∠DEC=∠DCE,∵EF∥BC,∴∠DCE=∠CEF,∴∠DEC=∠CEF,∴CE平分∠DEF,故③正确;④∵DE=DC,∴点D在线段EC的垂直平分线上,∵AE=AC,∴点A在线段EC的垂直平分线上,∴AD垂直平分CE.故④正确;⑤∵AD垂直平分CE,∴当四边形ACDE是矩形时,AD=CE,故⑤不正确;故选:B.9.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=5.1,∴S甲2=S2丁>S乙2>S2丙,∴最合适的人选是丙.故选:C.10.下列计算正确的是()A.22018•(﹣0.5)2017=﹣2B.a3+a3=a6C.a5•a2=a10D.−12a2b÷(−a)2=12b解:A、原式=2×(﹣2×0.5)2017=﹣2,正确;B、原式=2a3,错误;C、原式=a7,错误;D、原式=−12b,错误,故选:A.11.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O4解:由题意知,若灯塔位于海岛A的南偏西30°、南偏西60°的方向上,如图所示,灯塔的位置可以是点O1,故选:A.12.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)解:由题意可得,若某商品的原价为x元(x>100),则购买该商品实际付款的金额是:80%x﹣20(元),故选:A.13.若3×32m×33m=321,则m的值为()A.2B.3C.4D.5解:已知等式整理得:35m+1=321,可得5m+1=21,解得:m=4,故选:C.14.下列计算中,则正确的有()①4(m+n)4m2+8mn+4n2=1m+n;②x+y+1−x+y+1=−1;③(a+b)÷(a+b)•1a+b=a+b;④−−x+11−x2=−1x+1.A.1个B.2个C.3个D.4个解:①原式=4(m+n)(2m+2n)2=1m+n,本选项正确;②原式不能约分,本选项错误;③原式=1•1a+b =1a+b,本选项错误;④原式=x−1(1+x)(1−x)=−x−1(x+1)(x−1)=−1x+1,本选项正确,则正确的个数为2个.故选:B.15.如图,点I是Rt△ABC的内心,∠C=90°,AC=3,BC=4,将∠ACB平移使其顶点C与I重合,两边分别交AB于D、E,则△IDE的周长为()A.3B.4C.5D.7解:连接AI、BI,∵∠C=90°,AC=3,BC=4,∴AB=√AC2+BC2=5∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5故选:C.16.已知函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=﹣1B.﹣l≤c<0或c=3C.﹣1≤c≤3D.﹣1<c≤3且c≠0解:把y=2x代入y=x2﹣c,整理得x2﹣2x﹣c=0,根据题意△=(﹣2)2+4c=0,解得c=﹣1,把x=﹣1代入y=2x与y=x2﹣c得,c=3,把x=2代入y=2x与y=x2﹣c得,c=0,由图象可知当0<c≤3或c=﹣1时,函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,故选:A.二.填空题(共3小题)17.当c=25,b=24时,√(c+b)(c−b)=7.解:当c=25,b=24时,√(c+b)(c−b)=√(25+24)(25−24)=7.故答案为:7.18.若a,b互为相反数,则a2﹣b2=0.解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.如图,有一个圆O 和两个正六边形T 1,T 2.T 1的6个顶点都在圆周上,T 2的6条边都和圆O 相切(我们称T 1,T 2分别为圆O 的内接正六边形和外切正六边形).若设T 1,T 2的边长分别为a ,b ,圆O 的半径为r ,则r :a = 1:1 ;r :b = √3:2 ;正六边形T 1,T 2的面积比S 1:S 2的值是 3:4 .解:连接OE 、OG ,OF , ∵EF =a ,且正六边形T 1,∴△OEF 为等边三角形,OE 为圆的半径r , ∴a :r =1:1;由题意可知OG 为∠FOE 的平分线,即∠EOG =12∠EOF =30°, 在Rt △OEG 中,OE =r ,OG =b , ∵OE OG=r b=cos ∠EOG =cos30°,即rb=√32, ∵r :a =1:1①;r :b =√3:2②;∴②:①得,a :b =√3:2,且两个正六边形T 1,T 2相似, ∴S 1:S 2=a 2:b 2=3:4.故答案为:r :a =1:1;r :b =√3:2;S 1:S 2=3:4.三.解答题(共7小题)20.已知:2A ﹣B =3a 2+2ab ,A =﹣a 2+2ab ﹣3. (1)求B ;(用含a 、b 的代数式表示) (2)比较A 与B 的大小.解:(1)B=2A﹣(3a2+2ab)=2(﹣a2+2ab﹣3)﹣3a2﹣2ab=﹣2a2+4ab﹣6﹣3a2﹣2ab=﹣5a2+2ab﹣6;(2)A﹣B=(﹣a2+2ab﹣3)﹣(﹣5a2+2ab﹣6)=﹣a2+2ab﹣3+5a2﹣2ab+6=4a2+3>0,∴A>B.21.两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)20元15元10元5元奖金金额获奖人数商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是10元,在乙超市摇奖的顾客获得奖金金额的众数是5元;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?解:(1)在甲超市摇奖的顾客获得奖金金额的中位数是10+102=10元,在乙超市摇奖的顾客获得奖金金额的众数5元, 故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为20×5+15×10+10×15+5×2050=10(元),在乙超市平均获奖为20×2+15×3+10×20+5×2550=8.2(元);(4)获得奖金10元的概率是360−144−72−36360=310.22.用黑白两种颜色的正六边形地砖按如图所示的方式,拼成若干个图案:(1)当黑色地砖有1块时,白色地砖有 6 块,当黑色地砖有2块时,白色地砖有 10 块;(2)第n (n 为正整数)个图案中,白色地砖有 4n +2 块; (3)第几个图案中有2018块白色地砖?请说明理由.解:(1)当黑色地砖有1块时,白色地砖有2+4=6块,当黑色地砖有2块时,白色地砖有2+4×2=10块, 故答案为:6、10;(2)根据题意知第n(n为正整数)个图案中,白色地砖有2+4n(块),故答案为:4n+2.(3)令4n+2=2018,解得:n=504,所以,第504个图案中有2018块白色地砖.23.定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD 中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形.(1)如图①,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,延长BP到Q,使AQ=AP.求证:四边形AQBC是准平行四边形;(2)如图②,准平行四边形ABCD内接于⊙O,AB≠AD,BC=DC,若⊙O的半径为5,AB=6,求AC的长;(3)如图③,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,若四边形ABCD是准平行四边形,且∠BCD≠∠BAD,请直接写出BD长的最大值.证明:(1)∵∠APC=∠CPB=60°,∴∠APQ=60°,且AQ=AP,∴△APQ是等边三角形,∴∠Q=60°=∠QAP,∵四边形APBC是圆内接四边形,∴∠QP A=∠ACB=60°,∵∠Q+∠ACB+∠QAC+∠QBC=360°,∴∠QAC+∠QBC=240°,且∠QAC=∠QAP+∠BAC+∠P AB=120°+∠P AB>120°,∴∠QBC<120°,∴∠QAC≠∠QBC,且∠QP A=∠ACB=60°=∠Q,∴四边形AQBC是准平行四边形;(2)如图②,连接BD,∵AB≠AD,BC=DC,∴∠ABD≠∠ADB,∠CBD=∠CDB,∴∠ABC≠∠ADC,∵四边形ABCD是准平行四边形,∴∠BAD=∠BCD,∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∠ABC+∠ADC=180°,∴∠BAD=∠BCD=90°,∴BD是直径,∴BD=10,∴AD=2−AB2=√100−36=8,将△ABC绕点C顺时针旋转90°得到△CDH,∴AB=DH=6,AC=CH,∠ACH=90°,∠ABC=∠CDH,∵∠ABC+∠ADC=180°,∴∠ADC+∠CDH=180°,∴点A,点D,点H三点共线,∴AH=AD+DH=14,∵AC2+CH2=AH2,∴2AC2=196∴AC=7√2;(3)如图③,作△ACD的外接圆⊙O,过点O作OE⊥AC于E,OF⊥BC于F,∵∠C=90°,∠A=30°,BC=2,∴∠ABC=60°,∠ABC=60°,AC=√3BC=2√3∵四边形ABCD是准平行四边形,且∠BCD≠∠BAD,∴∠ABC=∠ADC=60°,∴∠AOC=120°,且OE⊥AC,OA=OC,∴∠ACO=∠CAO=30°,CE=AE=√3,∴OE=1,CO=2OE=2,∵OE⊥AC,OF⊥BC,∠ECF=90°,∴四边形CFOE是矩形,∴CE=OF=√3,OE=CF=1,∴BF=BC+CF=3,∴BO=√BF2+OF2=√9+3=2√3,∵当点D在BO的延长线时,BD的长有最大值,∴BD长的最大值=BO+OD=2√3+2.24.如图,平面直角坐标系中,一次函数y=−12x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.解:(1)一次函数y=−12x+4的图象l1分别与x,y轴交于A,B两点,则点A、B的坐标分别为:(8,0)、(0,4),则OA=8,OB=4,将点C坐标代入上式得:3=−12m+4,解得:m=2,点C(2,3),设l2的表达式为:y=nx,将点C(2,3)代入上式得:3=2n,解得:n=3 2,故:l2的表达式为:y=32x;(2)S△AOC﹣S△BOC=12×OA×y C−12BO×x C=12×8×3−12×4×2=8;(3)当l1∥l3或l2∥l3时,l1,l2,l3不能围成三角形,即k=−12或32,当l3过点C时,将点C坐标代入上式并解得:k=1;故当l3的表达式为:y=−12x+1或y=32x+1或y=x+1.25.定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”.在Rt△ABC中,∵AB=5,BC=3,∴AC=√AB2−BC2=√52−32=4,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°∴∠A=∠CBE,∴△ABC ∽△BEC ,∴BC CE =AC BC, ∴CE =BC 2AC =94,(2)∵AB 是直径,∴∠ADB =90°,∵AD =5,AB =13,∴BD =√AB 2−AD 2=√132−52=12,①如图2中,当∠ABC +2∠C =90°时,作点D 关于直线AB 的对称点F ,连接F A ,FB .则点F 在⊙O 上,且∠DBF =∠DOA ,∵∠DBF +∠DAF =180°,且∠CAD =∠AOD ,∴∠CAD +∠DAF =180°,∴C ,A ,F 共线,∵∠C +∠ABC +∠ABF =90°∴∠C =∠ABF ,∴△F AB ∽△FBC ,∴FA FB =FB FC ,即512=1212+AC ,∴AC =1195.②如图3中,由①可知,点C ,A ,F 共线,当点E 与D 共线时,由对称性可知,BA 平分∠FBC ,∴∠C +2∠ABC =90°,∵∠CAD =∠CBF ,∠C =∠C ,∴△DAC ∽△FBC ,∴CD CF =AD BF,即CD AC+5=512, ∴CD =512(AC +5),在Rt △ADC 中,CD 2+AD 2=AC 2,∴AC =845119(舍去负值),综上所述,当△ABC 是“类直角三角形”时,AC 的长为1195或845119.26.如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道y =k x (x ≥1)交于点A ,且AB =1米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且t =1时h =5,M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设v =5.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及y =13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t 的值及v 乙的范围.解:(1)由题意,点A(1,18)代入y=k x得:18=k 1∴k=18设h=at2,把t=1,h=5代入∴a=5∴h=5t2(2)∵v=5,AB=1∴x=5t+1∵h=5t2,OB=18∴y=﹣5t2+18由x=5t+1则t=15(x−1)∴y=−15(x−1)2+18=−15x2+25x+895当y=13时,13=−15(x−1)2+18解得x=6或﹣4∵x≥1∴x=6把x=6代入y=18 xy=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米)(3)把y=1.8代入y=﹣5t2+18得t2=81 25解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰好落在滑道y=18 x上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.5。

2020年中考数学全真模拟试卷(河北专用)(一)原卷版+解析版

2020年中考数学全真模拟试卷(河北专用)(一)原卷版+解析版

2020年中考数学全真模拟试卷(河北) (一)数学(考试时间:90分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:初中全部内容。

一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国是世界上最早使用负数概念的国家。

数学家刘徽在《九章算术》注文中指出“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若水位升高3m 时记作+3m ,则-5m 表示水位( ).A .下降5mB .升高3mC .升高5mD .下降3m2.在下列某品牌恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )TA .B .C .D .3.目前,世界上能制造出的小晶体管的长度只有0.00000004将0.00000004用科学记数法表示为m ( )A .B .C .D .3410-⨯80.4 10⨯8410⨯8410-⨯4.小红每分钟踢毽子的次数正常范围为少于80次,但不少于50次,用不等式表示为( )A .50<x<80;B .50≤x≤80;C .50≤x<80;D .50<x≤80;5.如图,纸上画有一个数轴,对折纸面,使数轴上表示﹣3的点与表示4的点重合,那么同时重合的还有( )A .表示﹣1的点与表示3的点B .表示﹣2的点与表示2的点C .表示﹣的点与表示的点D .表示﹣的点与表示的点322352726.如图,点M 、N 分别是正五边形ABCDE的两边AB 、BC 上的点.且AM=BN ,点O 是正五边形的中心,则∠MON 的度数是( )A .45度B .60度C .72度D .90度7.由6个大小相同的正方体搭成的几何体如图所示,若小正方体的棱长为a ,关于它的视图和表面积,下列说法正确的是( )A .它的主视图面积最大,最大面积为4a 2B .它的左视图面积最大,最大面积为4a 2C .它的俯视图面积最大,最大面积为5a 2D .它的表面积为22a 28.已知:直线AB 和AB 外一点C (图3-45).作法:(1)任意取一点K ,使K 和C 在AB 的两旁.(2)以C 为圆心,CK 长为半径作弧,交AB 于点D 和E .(3)分别以D 和E 为圆心,大于DE 的长为半径作弧,两弧交于点F .12(4)作直线CF .直线CF 就是所求的垂线.这个作图是( )A .平分已知角B .作一个角等于已知角C .过直线上一点作此直线的垂线D .过直线外一点作此直线的垂线9.若关于的一元二次方程有两个相等的实数根,则的值是( )x 212302x x m -++=m A .B .C .D .28-4-2-10.体育老师统计了全班50名学生60秒跳绳的成绩,并列出了如下表所示的频数分布表,由表中的信息,则下列四个选项中不正确的是一项是( )次数x(次)60≤x<8080≤x<100100≤x<120120≤x<140140≤x<160160≤x<180频数41319752A .组距为20,组数为6B .成绩在160~180范围内的频数最小C .组距为6,组数为20D .成绩在100~120范围内的频数最大11.如图,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG 可以看成是把菱形ABCD 以点A 为中心( )A .逆时针旋转120°得到B .逆时针旋转60°得到C .顺时针旋转120°得到D .顺时针旋转60°得到12.解分式方程,去分母后得到的方程正确的是()2x x ‒2=1‒12‒x A .B .C .D .-2x =1‒(2‒x)‒2x =(2‒x)+12x =(2‒x)‒12x =(x ‒2)+113.如图所示是某游乐场“激流勇进”项目的示意图,游船从点水平运动到处后,沿着坡度为D A 3:1i =的斜坡到达游乐场项目的最高点,然后沿着俯角为,长度为的斜坡运动,最后沿斜坡AB B 03042m BC俯冲到达点,完成一次“激流勇进”.如果的长为,则斜坡CD D 037CDA AD ∠=,(52m +CD 的长约为( ).(参考数据:)000sin 370.6cos370.8tan 370.75≈≈≈,,A .B .C .D .36m 45m 48m 55m14.关于函数y=有如下结论:①函数图象一定经过点(-2, -3);②函数图象在第一、三象限;6x③函数值y 随x 的增大而减小;④当x≤-6时,函数y 的取值范围为-1≤y <0,这其中正确的有( )A .1个B .2个C .3个D .4个15.如图,点O 为等边三角形ABC 的外心,四边形OCDE 为正方形,其中E 点在△ABC 的外部,下列三角形中,外心不是点O 的是( )A .△CBEB .△ACDC .△ABED .△ACE16.如图1,将正方形ABCD 按图1所示置于平面直角坐标系中,AD 边与x 轴重合,顶点B ,C 位于x 轴上方,将直线l :y =x ﹣3沿x 轴向左以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t 秒,m 与t 的函数图象如图2所示,则a ,b 的值分别是( )A .6,B .6,C .7,D .7,二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.计算:a •a 2•a 3=______.18.任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P (x 1,y 1),Q(x 2,y 2)的对称中心的坐标为,如图.1212,22x x y y ++⎛⎫ ⎪⎝⎭(1)在平面直角坐标系中,若点P 1(0,-1),P 2(2,3)的对称中心是点A ,则点A 的坐标为________;(2)另取两点,.有一电子青蛙从点P 1处开始依次作关于点A ,B ,C 的循环对称跳(1,2)B -(10)C -,动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到点P 2关于点B 的对称点P 3处,第三次再跳到点P 3关于点C 的对称点P 4处,第四次再跳到点P 4关于点A 的对称点P 5处,…,则点的坐标为2019P ________.19.如图,在中,点是边上的动点,已知,,,现将沿ABCD E BC 4AB =6BC =60B ∠=︒ABE ∆折叠,点是点的对应点,设长为.AE 'B B CE x(1)如图1,当点恰好落在边上时,______;'B AD x =(2)如图2,若点落在内(包括边界),则的取值范围是______.'B ADE ∆x 三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.我们已经学过有理数的加减乘除以及乘方运算,下面再给出有理数的一种新运算—“运算”,定义是*.根据定义,解决下面的问题:*()a b ab a b =-+(1)计算:;3*4(2)我们知道,加法具有交换律,请猜想“运算”是否具有交换律,并说明你的猜想是否正确;*(3)类比数的运算,整式也有“运算”.若的值为,求.*34(2)12x *-*2x 21.发现任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数;验证:(1) 的结果是4的几倍?22(1)(3)---(2)设三个连续的整数中间的一个为n ,计算最大数与最小数这两个数的平方差,并说明它是4的倍数;延伸:说明任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数.22.某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值19.2m n根据以上信息,解答下列问题:(1)上表中m 、n 的值分别为 , ;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据 来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;(4)现决定从小王、小张、小李、小刘中选两人参加业务能手比赛,直接写出恰好选中小张、小李两人的概率.23.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?24.联想三角形内心的概念,我们可引入如下概念.定义:到三角形的两边距离相等的点,叫做此三角形的准内心.举例:如图1,若PD=PE ,则点P 为△ABC 的准内心.应用:如图2,BF 为等边三角形的角平分线,准内心P 在BF 上,且PF=BP ,求证:点P 是△ABC 的内12心.探究:已知△ABC 为直角三角形,∠C=90°,准内心P 在AC 上,若PC=AP ,求∠A 的度数.1225.如图,已知点、在直线上,且,于点,且,以为直径在的A O l 6AO =OD l ⊥O 6OD =OD OD 左侧作半圆,于,且.E AB AC ⊥A 60CAO ∠=︒(1)若半圆上有一点,则的最大值为________;E F AF (2)向右沿直线平移得到;l BAC ∠'''B A C ∠①如图,若截半圆的的长为,求的度数;''A C E GH π'A GO ∠②当半圆与的边相切时,求平移距离.E '''B A C ∠26.在平面直角坐标系中,抛物线(c 为常数)的对称轴如图所示,且抛物线过点.2y=x -2x+c ()C 0,c (1)当时,点在抛物线上,求的最小值:c=-3()11x ,y 2y=x -2x+c 1y (2)若抛物线与x 轴有两个交点,自左向右分别为点A 、B ,且,求抛物线的解析式:1OA=OB 2(3)当时,抛物线与x 轴有且只有一个公共点,直接写出c 的取值范围.-1<x<02020年中考数学全真模拟试卷(河北) (一)数学(考试时间:90分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

精品解析:2020年河北省九地市中考数学一模试题(解析版)

精品解析:2020年河北省九地市中考数学一模试题(解析版)

2020年河北省九地市中考数学一模试卷一.选择题(共16小题)1. 下列各数中最小的是()A. 0B. ﹣1C. ﹣3D. 2【答案】C【解析】【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】解:∵﹣3<﹣1<0<2,∴﹣3最小,故选:C.【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.2. 如图所示,已知直线a,b,c,在下列条件中,能够判定a∥b的是()A. ∠1=∠2B. ∠2=∠3C. ∠3=∠4D. ∠2=∠4【答案】B【解析】【分析】利用平行线的判定性质逐项判定即可.【详解】解:A、∠1=∠2,因为∠1、∠2不是直线a、b被直线c所截形成的同位角或内错角,所以不能够判定a∥b;B、∵∠2=∠3,∴a∥b(内错角相等,两直线平行),所以能够判定a∥b.C、∠3=∠4,因为∠3与∠4不是直线a、b被直线c所截形成的同位角或内错角,所以不能够判定a∥b;D、∠2=∠4,因为∠2、∠4不是直线a、b被直线c所截形成的同位角或内错角,所以不能够判定a∥b.故答案为B.【点睛】本题考查了平行线的判定定理,即①同位角相等,两直线平行;①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.3. 在下列图形中,其中是轴对称图形且有四条对称轴的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解.【详解】A.是轴对称图形且有两条对称轴,故本选项不合题意;B.是轴对称图形且有两条对称轴,故本选项不合题意;C.是轴对称图形且有4条对称轴,故本选项符合题意;D.不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4. 已知1nm=10﹣9m,将12nm用科学记数法表示为a×10n m(其中1≤a<10,n为整数)的形式,则n的值为()A. ﹣9B. ﹣8C. 8D. 9【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:12nm=12×10﹣9m=1.2×10﹣8m,∴n=﹣8,故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5. 下列运算正确的是()A. a﹣(﹣a)=0B. 22÷20=2C. 2×12=1 D. (﹣a2)3=﹣a6【答案】D【解析】【分析】直接利用合并同类项以及实数运算、积的乘方运算法则分别化简得出答案.【详解】A、a﹣(﹣a)=2a,故此选项错误;B、22÷20=4,故此选项错误;C、2×12=2×22=2,故此选项错误;D、(﹣a2)3=﹣a6,正确.故选:D.【点睛】此题主要考查了实数运算以及合并同类项、积的乘方运算,正确掌握相关运算法则是解题关键.6. 将图①中的小正方体沿箭头方向平移到图②位置,下列说法正确的是()A. 图①的主视图和图②的主视图相同B. 图①的主视图与图②的左视图相同C. 图①的左视图与图②的左视图相同D. 图①的俯视图与图②的俯视图相同【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,得出图①、图②的三视图即可.【详解】找到图①、图②从正面、侧面和上面看所得到的图形,可知图①的主视图与图②的左视图相同,图①的左视图与图②的主视图相同.故选B.【点睛】考查了简单组合几何体的三视图,解题关键是理解三视图的概念.7. 如图,是嘉淇同学做的练习题,他最后的得分是()A. 5分B. 10分C. 15分D. 20分【答案】B【解析】【分析】直接利用平方根以及立方根的定义、相反数的定义,无理数的定义分别分析得出答案.【详解】解:(1)﹣1没有平方根,故错误;(2)4=2,则4的相反数是﹣2,正确;(3)8的立方根是2,8是512的立方根,故错误;(4)请写出一个无理数﹣π,正确;故他最后的得分是:5×2=10.故选:B.【点睛】此题主要考查了实数,正确掌握相关定义是解题关键.8. 下列四种基本尺规作图分别表示,则对应选项中作法错误的是()A. 作一个角等于已知角B. 作一个角的平分线C. 作一条线段的垂直平分线D. 过直线外一点P 作已知直线的垂线【答案】C 【解析】 【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P 作已知直线的垂线的作法进而判断得出答案.【详解】解:①作一个角等于已知角的方法正确; ②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误; ④过直线外一点P 作已知直线的垂线的作法正确. 故选:C .【点睛】此题主要考查了基本作图,正确把握作图方法是解题关键.9. 已知关于x 、y 的二元一次方程组628ax y x by -=⎧⎨+=⎩的解是22x y =⎧⎨=-⎩,则a ﹣b 的值是( ) A. 4 B. 3C. 2D. 1【答案】A 【解析】 【分析】将x=2、y=-2代入方程求出a 、b 的值,再进一步代入计算可得. 【详解】将x =2、y =﹣2代入方程,得:226428a b +=⎧⎨-=⎩①②,由①,得:a =2, 由②,得:b =﹣2,所以a ﹣b =2﹣(﹣2)=4,故选:A.【点睛】本题主要考查二元一次方程组的解,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.10. 如图,将△ABC放在每个小正方形边长均为1的网格中,点A、B、C均落在格点上,若点B的坐标为(2,﹣1),则到△ABC三个顶点距离相等的点的坐标为()A. (0,1)B. (3,1)C. (1,﹣1)D. (0,0)【答案】D【解析】【分析】到△ABC三个顶点距离相等的点即为AB与AC的垂直平分线的交点,找到该点即可.【详解】解:平面直角坐标系如图所示,AB与AC的垂直平分线的交点为点O,∴到△ABC三个顶点距离相等的点的坐标为(0,0),故选:D.【点睛】本题考查了线段垂直平分线的性质定理,熟练掌握线段的垂直平分线的性质是解题的关键.11. 如图,已知轮船甲在A处沿北偏东65°的方向匀速航行,同时轮船乙在轮船甲的南偏东40°方向的点B处沿某一方向航行,速度与甲轮船的速度相同.若经过一段时间后,两艘轮船恰好相遇,则轮船乙的航行方向为()A. 北偏西40°B. 北偏东40°C. 北偏西35°D. 北偏东35°【答案】D【解析】【分析】设两船相遇于点C,如图,则△ABC是等腰三角形,即AC=BC,也就是∠CAB=∠B,根据方位角的概念,∠B=∠CAB=180°-65°-40°=75°,可得答案.【详解】解:设两船相遇于点C,如图,则△ABC是等腰三角形,即AC=BC,也就是∠CAB=∠B,根据题意得,∠B=∠CAB=180°﹣65°﹣40°=75°,75°﹣40°=35°,所以轮船乙的航行方向为北偏东35°.故选:D.【点睛】本题考查了方向角的知识点,等腰三角形的性质,解答本题的关键是理解确定一个点的位置需要两个量:一个是方向角,一个是距离.12. 某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数 6 7 8 9 10甲命中相应环数的次数0 1 3 1 0乙命中相应环数的次数 2 0 0 2 1关于以上数据,下列说法错误的是()A. 甲命中环数的中位数是8环B. 乙命中环数的众数是9环C. 甲的平均数和乙的平均数相等D. 甲的方差小于乙的方差【答案】B【解析】【分析】此题根据表格中的数据分别求出每一项的数据即可判断对错.【详解】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:15(7+8+8+8+9)÷5=8(环),乙的平均数是:15(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:15[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:15[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.【点睛】此题考查数据的处理,主要涉及平均数,中位数,众数和方差.13. 《九章算术》是我国古代著名数学著作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为O的直径,弦AB DC⊥于E,1ED=寸,10AB=寸,求直径CD的长.”则CD=A. 13寸B. 20寸C. 26寸D. 28寸【答案】C【解析】 【分析】连接AO ,根据垂径定理及勾股定理即可求出半径,即可求出CD 的长. 【详解】如图,连接AO ,设AO=OD=r , 故OE=r-1,∵AB=10,∴AE=5,由AO 2=AE 2+OE 2,即r 2=52+( r-1)2, 解得r=13,故CD=2r=26 故选C【点睛】此题主要考查垂径定理,解题的关键是根据勾股定理进行求解. 14. 如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=【 】A. 2:5B. 2:3C. 3:5D. 3:2【答案】B 【解析】 【分析】【详解】∵四边形ABCD 是平行四边形, ∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE ∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=::∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD,∴DE:EC=2:3故选B15. 在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.72- B.12- C. 1 D.12-或72-【答案】D【解析】【分析】根据抛物线y=﹣x2+4x+2m,得到顶点坐标为(2,2m+4),根据两条抛物线关于x轴对称,得到另一条抛物线顶点坐标为(2,﹣2m﹣4),根据两顶点相距6个单位长度,得到关于m的绝对值方程,解方程即可.【详解】解:∵一条抛物线的函数表达式为y=﹣x2+4x+2m,∴这条抛物线的顶点为(2,2m+4),∴关于x轴对称的抛物线的顶点∵它们的顶点相距6个单位长度.∴|2m+4﹣(﹣2m﹣4)|=6,∴4m+8=±6,当4m+8=6时,m=12 -,当4m+8=﹣6时,m=72 -,∴m的值是12-或72-.故选:D.【点睛】本题考查了求抛物线的顶点坐标,轴对称,坐标系内线段的表示,根据题意得到关于m的绝对值方程是解题关键.16. 如图,在四边形ABCD中,AB⊥AD,AD∥BC,且AB=BC=4,AD=2,点E是边BC上的一个动点,EF⊥BC交AD于点F,将四边形ABCD沿EF所在直线折叠,若两边重叠部分的面积为3,则BE的长为()A. 34或43- B. 43- C.34D.43或4+3【答案】A【解析】【分析】如图1,将四边形ABCD沿EF所在直线折叠,两边重叠部分为五边形EB′GDF,推出四边形ABEF是矩形,得到AB=EF=4,AF=BE,根据折叠的性质得到A′F=AF,B′E=BE,A′B′=AB=4,设BE=x,则AF=A′F=B′E=x,根据相似三角形的性质得到B′G=4(2-x),根据题意列方程得到12[(2-x)+(4-x)]×412-(4-2x)(8-4x)=3此方程无实数根,故这种情况不存在;如图2,将四边形ABCD沿EF所在直线折叠,两边重叠部分为矩形A′B′EF,设BE=x,则AF=A′F=B′E=x,根据题意列方程得到BE=34;如图3,将四边形ABCD沿EF所在直线折叠,两边重叠部分为△CEG,设BE=x,则AF=A′F=B′E=x,根据相似三角形的性质得到EG=2(4-x),根据题意列方程得到结论.【详解】解:如图1,将四边形ABCD沿EF所在直线折叠,两边重叠部分五边形EB′GDF,∵AB⊥AD,AD∥BC,EF⊥BC,∴四边形ABEF是矩形,∴AB=EF=4,AF=BE,∵将四边形ABCD沿EF所在直线折叠,∴A′F=AF,B′E=BE,A′B′=AB=4,设BE=x,则AF=A′F=B′E=x,∴DF=2﹣x,CE=4﹣x,∴A′D=2x﹣2,CB′=4﹣2x,∴△A′DG∽△B′CG,∴'''' ACAG BGBD=∴24'24'2xxB GB G-=--,∴B′G=4(2﹣x),∵两边重叠部分的面积为3,∴12[(2﹣x)+(4﹣x)]×4﹣12(4﹣2x)(8﹣4x)=3此方程无实数根,故这种情况不存在;如图2,将四边形ABCD沿EF所在直线折叠,两边重叠部分为矩形A′B′EF,设BE=x,则AF=A′F=B′E=x,∵两边重叠部分的面积为3,∴B′E•A′B′=4x=3,解得:x=34,∴BE=34;如图3,将四边形ABCD沿EF所在直线折叠,两边重叠部分为△CEG,设BE=x,则AF=A′F=B′E=x,∴DF=x﹣2,CE=4﹣x,∵DF∥CE,∴GDF CE FG E = ∴442x x EG EG -=--, ∴EG =2(4﹣x ),∵两边重叠部分的面积为3, ∴12×2(4﹣x )(4﹣x )=3,解得:x =4x =,综上所述,BE 的长为34或4 故选:A .【点睛】本题考查了翻折变换(折叠问题),相似三角形的判定和性质,矩形的性质,分类讨论思想的运用是解题的关键. 二.填空题(共3小题)17. 分解因式:(p+1)(p ﹣4)+3p =_____. 【答案】()()22p p +-【解析】【分析】先去括号再合并同类项,最后分解因式【详解】解:(p+1)(p ﹣4)+3p=p 2﹣3p ﹣4+3p=p 2﹣4=(p+2)(p ﹣2).故答案为:()()22p p +-【点睛】此题考查多项式的因式分解,能想到先将多项式展开化简,再分解因式是解题关键.18. 如图,正比例函数y =x 的图象与反比例函数y =k x的图象在第一象限交于点A ,将线段OA 沿x 轴向右平移3个单位长度得到线段O'A',其中点A 与点A'对应,若O'A'的中点D 恰好也在该反比例函数图象上,则k 的值为_____.【答案】4【解析】【分析】作DE∥x轴交OA于E,如图,先利用平移的性质得到OO′=3,OA=O′A′,再证明四边形OO′DE为平行四边形得到OE=O′D,接着判定OE= 12OA,设E(t,t),则A(2t,2t),D(t+3,t),根据反比例函数图象上点的坐标特征k=2t•2t=t(t+3),然后先求出t,从而得到k的值.【详解】解:作DE∥x轴交OA于E,如图,∵线段OA沿x轴向右平移3个单位长度得到线段O'A',∴OO′=3,OA=O′A′,∵OA∥O′A′,∴四边形OO′DE为平行四边形,∴OE=O′D,∵点D为O'A'的中点,∴O′D=12O′A′,∴OE=12 OA,设E(t,t),则A(2t,2t),D(t+3,t),∵A(2t,2t),D(t+3,t)在反比例函数y=kx的图象上,∴k=2t•2t=t(t+3),解得t=1,k=4.故答案为4.【点睛】本题考查了反比例函数与一次函数的交点问题,也考查了待定系数法求函数解析式,先判断出四边形OO′DE为平行四边形是解本题的关键.19. 将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是_____;(2)2022应排在A,B,C,D,E中_____的位置上.【答案】(1). 24(2). A【解析】【分析】根据图示信息找出A,B,C,D,E各个位置数据的表达式,代入即可【详解】解:(1)观察发现:峰n中,A位置的绝对值可以表示为:5n﹣3;B位置的绝对值可以表示为:5n﹣2;C位置(峰顶)的绝对值可以表示为:5n﹣1;D位置的绝对值可以表示为:5n;E位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×405﹣3,∴2022应排在A的位置.故答案为:(1)24;(2)A.【点睛】此题属于找规律题,考查提取信息和总结的能力.三.解答题(共7小题)20. 有一种用“☆”定义新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n的值是多少?【答案】(1)7;(2)2或32或2.【解析】【分析】(1)利用题中新定义列出方程,求出方程的解即可得到m的值;(2)利用新定义分两种情况列出方程,求出方程的解即可得到n的值.【详解】解:(1)根据题意可得:﹣m☆3=32﹣2m+1=﹣4,解得:m=7;故答案为:7;(2)当2n☆(n﹣2)=9时,即(n﹣2)2+4n+1=9,解得:n=2或﹣2,当(n﹣2)☆2n=9时,即4n2+2(n﹣2)+1=9,解得:n=﹣2或32,则n=﹣2或32或2.【点睛】此题考查了新定义运算,一元一次方程的解法,以及一元二次方程的解法,弄清题中的新定义是解本题的关键.21. 已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.【答案】(1)20(2)不正确【解析】试题分析:分析:(1)根据正多边形的每条边相等,可知边长=周长÷边数;(2)分别表示出a和b的代数式,让其相等,看是否有相应的值.试题解析:(1)a=60÷3=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a>b或a<b,但可令a=b,得607n n7=+,∴60n+420=67n,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b,即不符合这一说法的n的值为60.点睛:本题考查分式方程的应用,关键是以边长作为等量关系列方程求解,也考查了正多边形的知识点. 22. “五一”期间甲乙两商场搞促销活动,甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”“20元”“30元”“50元”,顾客每消费满300元就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品;乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”“30元”,顾客每消费满100元,就可从箱子里有放回地摸出1个球,根据小球所标金额可获相应价格的礼品.某顾客准备消费300元.(1)请用画树状图或列表法,求出该顾客在甲商场获得礼品的总价值不低于50元的概率;(2)判断该顾客去哪个商场消费使获得礼品的总价值不低于50元机会更大?并说明理由.【答案】(1)23;(2)在乙商场消费,理由见解析.【解析】【分析】(1)首先根据题意列出表格,然后由表格求得所有等可能的结果与该顾客在甲商场所获礼品的金额不低于50元的情况,再利用概率公式求解即可求得答案(2)利用树状图求出顾客去乙商场消费获得礼品的总价值不低于50元的概率,比较甲乙商场概率即可解题【详解】(1)在甲商场消费P(甲不低于50元)=82123(2)在乙商场消费:总 15 40 40 65 40 65 65 90P(乙不低于50元)=4182= P(甲不低于50元)>P(乙不低于50元)∴该顾客去甲商场消费,获得礼品的总价值不低于50元的概率大.【点睛】本题主要考查利用列表法或树状图计算概率,本题关键在于能够列出表格和画出树状图 23. (1)问题感知 如图1,在△ABC 中,∠C =90°,且AC =BC ,点P 是边AC 的中点,连接BP ,将线段PB 绕点P 顺时针旋转90°到线段PD .连接AD .过点P 作PE ∥AB 交BC 于点E ,则图中与△BEP 全等的三角形是 ,∠BAD = °;(2)问题拓展 如图2,在△ABC 中,AC =BC =43AB ,点P 是CA 延长线上一点,连接BP ,将线段PB 绕点P 顺时针旋转到线段PD ,使得∠BPD =∠C ,连接AD ,则线段CP 与AD 之间存在的数量关系为CP =43AD ,请给予证明; (3)问题解决 如图3,在△ABC 中,AC =BC =AB =2,点P 在直线AC 上,且∠APB =30°,将线段PB 绕点P 顺时针旋转60°到线段PD ,连接AD ,请直接写出△ADP 的周长.【答案】(1)△PAD ,90;(2)证明见解析;(3)623+.【解析】【分析】(1)由“SAS ”可证△PAD ≌△BEP ,可得∠PAD=∠BEP=135°,依据∠ABC=45°,可得∠BAD=90°; (2)过点P 作PH ∥AB ,交CB 的延长线于点H ,由“SAS ”可证△APD ≌△HBP ,可得PH=AD ,通过证明△CAB ∽△CPH ,可得HAC AB CP P =,即可得结论; (3)分两种情况讨论,由直角三角形的性质和相似三角形的性质可求解.【详解】证明:(1)∵点P是边AC的中点,PE∥AB,∴点E是BC的中点,∴CE=BE,∵AC=BC,∴BE=AP,∵将线段PB绕点P顺时针旋转90°到线段PD.∴PB=PD,∵∠APD+∠BPC=90°,∠EBP +∠BPC=90°,∴∠EBP=∠APD,又∵PB=PD,∴△PAD≌△BEP(SAS),∴∠PAD=∠BEP,∵∠C=90°,AC=BC,∴∠BAC=∠ABC=45°,∵PE∥AB,∴∠ABC=∠PEC=45°,∴∠BEP=135°,∴∠BAD=∠PAD﹣∠BAC=135°﹣45°=90°,故答案为:△PAD,90;(2)如图,过点P作PH∥AB,交CB的延长线于点H,∴∠CBA=∠CHP,∠CAB=∠CPH,∵CB=CA,∴∠CBA=∠CAB,∴∠CHP=∠CPH,∴CH=CP,∴BH=AP,∵将线段PB 绕点P 顺时针旋转90°到线段PD . ∴PB =PD ,∵∠BPD =∠C ,∴∠BPD+∠BPC =∠C+∠BPC ,∴∠PBH =∠APD ,∴△APD ≌△HBP (SAS ),∴PH =AD ,∵PH ∥AB ,∴△CAB ∽△CPH , ∴H AC PC AB P = ∴HAC AB CP P = ∵AC =BC =43AB , ∴43CP PH =, ∴CP =43PH =43AD ; (3)当点P 在CA 的延长线上时,∵AC =BC =AB =2,∴△ABC 是等边三角形,∴∠ACB =60°,∵将线段PB 绕点P 顺时针旋转60°到线段PD , ∴BP =PD ,∠BPD =60°=∠ACB ,过点P 作PE ∥AB ,交CB 的延长线于点E ,∵∠ACB =∠APB+∠ABP ,∴∠ABP =∠APB =30°,∴AB =AP =2,∴CP =4,∵AB ∥PE , ∴P AB PE CAC = ∴CP =PE =4, 由(2)得,PE =AD =4,∵∠APD =∠APB+BPD =90°,∴DP =2216423AD DP -=-=,∴△ADP 的周长=AD+AP+DP =23+6,当点P 在AC 延长线上时,如图,同理可求△ADP 的周长=6+3综上所述:△ADP 的周长为6+23【点睛】本题几何变换综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质以及含30°角的直角三角形的性质的运用,解决问题的关键是作辅助线构造全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例进行推算.24. 某月食品加工厂以2万元引进一条新的生产加工线.已知加工这种食品的成本价每袋20元,物价部门规定:该食品的市场销售价不得高于每袋35元,若该食品的月销售量y (千袋)与销售单价x (元)之间的函数关系为:y =600(2030)0.510(3035)x x x x ⎧<⎪⎨⎪+<⎩(月获利=月销售收入﹣生产成本﹣投资成本).(1)当销售单价定位25元时,该食品加工厂的月销量为多少千袋;(2)求该加工厂的月获利M (千元)与销售单价x (元)之间的函数关系式;(3)求销售单价范围在30<x ≤35时,该加工厂是盈利还是亏损?若盈利,求出最大利润;若亏损,最小亏损是多少.【答案】(1)24;(2)当20<x ≤30时,12000580M x =-,当30<x ≤35时,212202M x =-; (3)盈利, 39.25万元 .【解析】【分析】(1)根据题意带入函数表达式计算即可.(2)根据总利润=单件利润⨯ 销售数量列式即可.(3)根据当30<x ≤35时,M =12x 2﹣220,知M 最小大于0,所以是盈利的,再求出最大值即可. 【详解】解:(1)当x =25时,y =60025=24千袋, 所以当销售单价定位25元时,该食品加工厂的月销量为24千袋;(2)当20<x ≤30时,M =600x (x ﹣20)﹣20=580﹣12000x; 当30<x ≤35时,M =(0.5x+10)(x ﹣20)﹣20=12x 2﹣220; (3)当30<x ≤35时,M =12x 2﹣220, 213022023002M >⨯-=> , 所以此时盈利,当x =35时,w 最大,则w =12×352﹣220=392.5(千元)=39.25(万元), 答:此时该加工厂盈利,最大利润为:39.25万元.【点睛】此题考查函数在实际中的应用,涉及到二次函数求最值,根据题意表示出M 与x 之间的函数关系是解题关键.25. 如图1,扇形OAB 的半径为4,∠AOB =90°,P 是半径OB 上一动点,Q 是AB 上一动点. (1)连接AQ 、BQ 、PQ ,则∠AQB 的度数为 ;(2)当P 是OB 中点,且PQ ∥OA 时,求AQ 的长;(3)如图2,将扇形OAB 沿PQ 对折,使折叠后的QB '恰好与半径OA 相切于点C .若OP =3,求点O 到折痕PQ 的距离.【答案】(1)135︒;(2)23π;(3)6.【解析】【分析】(1)如图,补全图形,运用圆内接四边形的性质求解即可;(2)要想求AQ弧长,就得求AQ所对的圆心角的度数,所以要连接OQ,构成圆心角,利用直角三角形直角边是斜边的一半,则这条直角边所对的锐角为30°求出∠1=30°,再利用平行线截得内错角相等得出∠2的度数,代入弧长公式计算即可.(3)先找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,证明四边形OCO′B是矩形,由勾股定理求O′B,从而求出OO′的长,则OM=12OO′=6.【详解】(1)补全图形如图所示,∵∠AOB=90°,∴∠BCA=45°,∵四边形ACBQ是圆内接四边形,∴∠AQB+∠C=180°,∴∠AQB=180°-∠C=135°故答案为:135°;(2)如图1,连接OQ,∵扇形OAB的半径为4且P是OB中点,∴OP=2,OQ=4,∵PQ∥OA,∴∠BPQ=∠AOB=90°,∴∠OQP=30°,∴∠AOQ=∠OQP=30°,∴AQ的长=304180π⨯=23π;(3)如图2,找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,ON,则OM=O′M,OO′⊥PQ,O′P=OP=3,点O′是B Q'所在圆的圆心,∴O′C=OB=4,∵折叠后的弧QB′恰好与半径OA相切于C点,∴O′C⊥AO,∴O′C∥OB,∴∠POO'=∠CO'M=∠PO'M,∵∠PMO'=∠QMO'=90°,∴∠O'PM=∠MNO',∴O'P=O'N=OP=3,∴四边形OPO'N是平行四边形,∴O'P=ON,∵O与O'关于PQ对称,∴ON=O'N=3,∴BP=CN=4﹣3=1,∵PN⊥OO',∴∠MNO'=∠MNO,∴∠BPO'=∠CNO,∴△O'BP≌△OCN(SAS),∴∠O'BP=∠OCN=90°,∴四边形OCO′B 是矩形,在Rt △O′BP 中,O′B =2231-=22,在Rt △OBO′中,OO′=224(22)+=26,∴OM =12OO′=12×26=6, 即O 到折痕PQ 的距离为6.【点睛】本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.26. 平面直角坐标系xOy 中,对于任意的三个点A 、B 、C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的“三点矩形”.在点A ,B ,C 的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A ,B ,C 的“最佳三点矩形”.如图1,矩形DEFG ,矩形IJCH 都是点A ,B ,C 的“三点矩形”,矩形IJCH 是点A ,B ,C 的“最佳三点矩形”.如图2,已知M (4,1),N (﹣2,3),点P (m ,n ).(1)①若m =1,n =4,则点M ,N ,P 的“最佳三点矩形”的周长为 ,面积为 ;②若m =1,点M ,N ,P 的“最佳三点矩形”的面积为24,求n 的值;(2)若点P 在直线y =﹣2x +4上.①求点M ,N ,P 的“最佳三点矩形”面积的最小值及此时m 的取值范围;②当点M ,N ,P 的“最佳三点矩形”为正方形时,求点P 的坐标;(3)若点P (m ,n )在抛物线y =ax 2+bx +c 上,且当点M ,N ,P 的“最佳三点矩形”面积为12时,﹣2≤m ≤﹣1或1≤m ≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②1n =-或5;(2)①最小值为12,1322m ≤≤;②点P 的坐标为3,72⎛⎫- ⎪⎝⎭或7,32⎛⎫- ⎪⎝⎭;(3)21344y x =+,或211344y x =-+. 【解析】【分析】 (1)①根据题意,易得M 、N 、P 的“最佳三点矩形”的周长和面积②先求出M N x x -和M N y y -的值,再根据m=1以及M 、N 、P 的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n 的值(2)①结合图形,易得M 、N 、P 的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m 的取值范围②当M 、N 、P 的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P 点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P 做直线AB 平行于x 轴,过N 做直线AC 平行于y 轴,过M 做MB 平行于y 轴,分别交于点A (-2,4)、C (-2,1)、B (4,1)则AC=BM=3,AB=CM=6故周长=(3+6)2⨯=18,面积=36⨯=18故M 、N 、P 的“最佳三点矩形”的周长和面积分别为18,18;② ∵M (4,1),N (-2,3)∴6M N x x -=,2M N y y -=又∵m=1,点M 、N 、P 的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,① 易得点M 、N 、P 的“最佳三点矩形”的面积的最小值为12; 分别将y=3,y=1代入y=-2x+4,可得x 分别为12,32 结合图象可知:1322m ≤≤ ②当点M 、N 、P 的“最佳三点矩形”为正方形,边长为6, 分别将y=7,y=-3代入y=-2x+4 ,可得x 分别为32-,72 ∴点P 的坐标为(32- ,7)或(72,-3) (3)如图2,y=214x +34或y=214x -+134【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键。

2020年中考数学全真模拟试卷(河北) (一)(解析版)

2020年中考数学全真模拟试卷(河北) (一)(解析版)

2020年中考数学全真模拟试卷(河北) (一)数学(考试时间:90分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名.考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:初中全部内容.一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国是世界上最早使用负数概念的国家.数学家刘徽在《九章算术》注文中指出“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若水位升高3m时记作+3m,则-5m表示水位( ).A.下降5m B.升高3m C.升高5m D.下降3m【答案】A【解析】由于“升高”和“下降”相对,若水位升高3m记作+3m,则-5m表示水位下降5m.故选A.2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )A.B.C.D.【答案】C【解析】A. 运用了轴对称也利用了旋转对称,故本选项错误;B. 运用了轴对称也利用了旋转对称,故本选项错误;C. 没有运用旋转,也没有运用轴对称,故本选项正确;D. 运用了轴对称,故本选项错误,故选C.3.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯ B .80.4 10⨯C .8410⨯D .8410-⨯【答案】D【解析】0.000 000 04=4×10-8,故选:D .4.小红每分钟踢毽子的次数正常范围为少于80次,但不少于50次,用不等式表示为( ) A .50<x<80; B .50≤x≤80; C .50≤x<80; D .50<x≤80; 【答案】C【解析】依题意正常范围为少于80次,但不少于50次,即大于等于50,小于80, 50≤x<80,选C.5.如图,纸上画有一个数轴,对折纸面,使数轴上表示﹣3的点与表示4的点重合,那么同时重合的还有( )A .表示﹣1的点与表示3的点B .表示﹣2的点与表示2的点C .表示﹣32的点与表示23的点 D .表示﹣52的点与表示72的点【答案】D【解析】(﹣3+4)÷2=0.5,∵0.5﹣(﹣1)=1.5≠3﹣0.5=2.5, 0.5﹣(﹣2)=2.5≠2﹣0.5=1.5,0.5﹣(﹣32)=2≠32﹣0.5=16,0.5﹣(﹣52)=72﹣0.5=3.故同时重合的还有表示﹣52的点与表示72的点.故选:D .6.如图,点M.N 分别是正五边形ABCDE 的两边AB.BC 上的点.且AM=BN,点O 是正五边形的中心,则∠MON 的度数是( )A .45度B .60度C .72度D .90度【答案】C【解析】连接OA .OB .OC ,∴∠AOB =03605=72°,∵∠AOB =∠BOC ,OA =OB ,OB =OC ,∴∠OAB =∠OBC ,在△AOM 和△BON 中,OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON (SAS )∴∠BON =∠AOM ,∴∠MON =∠AOB =72°,故选C .7.由6个大小相同的正方体搭成的几何体如图所示,若小正方体的棱长为a ,关于它的视图和表面积,下列说法正确的是( )A .它的主视图面积最大,最大面积为4a 2B .它的左视图面积最大,最大面积为4a 2C.它的俯视图面积最大,最大面积为5a2D.它的表面积为22a2【答案】C【解析】主视图有4个小正方形,故面积为4a2,左视图有4个小正方形,故面积为4a2,俯视图有5个小正方形,故面积为5a2,因此俯视图的面积最大.其表面积为5a2+5a2+4a2+4a2+4a2+4a2=26a2.8.已知:直线AB和AB外一点C(图3-45).作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于12DE的长为半径作弧,两弧交于点F.(4)作直线CF.直线CF就是所求的垂线.这个作图是( )A.平分已知角B.作一个角等于已知角C.过直线上一点作此直线的垂线D.过直线外一点作此直线的垂线【答案】D【解析】这是一道作图题中的基本作图,过直线外一点作已知直线的垂线,故选D.9.若关于x的一元二次方程212302x x m-++=有两个相等的实数根,则m的值是( ) A.8-B.4-C.2-D.2【答案】B【解析】Q 一元二次方程212302x x m -++=有两个相等的实数根, 2214(2)4+302b ac m ⎛⎫∴-=--⨯= ⎪⎝⎭,解得4m =-. 故选B.10.体育老师统计了全班50名学生60秒跳绳的成绩,并列出了如下表所示的频数分布表,由表中的信息,则下列四个选项中不正确的是一项是( )A .组距为20,组数为6B .成绩在160~180范围内的频数最小C .组距为6,组数为20D .成绩在100~120范围内的频数最大【答案】C【解析】根据题意,得组距为20,组数为6.C 选项不正确.故答案选C.11.如图,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG 可以看成是把菱形ABCD 以点A 为中心( )A .逆时针旋转120°得到B .逆时针旋转60°得到C .顺时针旋转120°得到D .顺时针旋转60°得到【答案】A【解析】根据旋转的意义,观察图片可知,菱形AEFG 可以看成是把菱形ABCD 以A 为中心逆时针旋转120°得到.故选A .12.解分式方程2xx−2=1−12−x ,去分母后得到的方程正确的是( )A .-2x =1−(2−x)B .−2x =(2−x)+1C .2x =(2−x)−1D .2x =(x −2)+1 【答案】D【解析】去分母得:2x=(x -2)+1,故选:D .13.如图所示是某游乐场“激流勇进”项目的示意图,游船从D 点水平运动到A 处后,沿着坡度为3:1i =的斜坡AB 到达游乐场项目的最高点B ,然后沿着俯角为030,长度为42m 的斜坡BC 运动,最后沿斜坡CD 俯冲到达点D ,完成一次“激流勇进”.如果037CDA AD ∠=,的长为(52m +,则斜坡CD 的长约为( ).(参考数据:000sin 370.6cos370.8tan 370.75≈≈≈,,)A .36mB .45mC .48mD .55m【答案】B 【解析】在直角三角形BCG 中,30BCG ∠=︒;AF=x,BF=3x, CE=3x -21,DE=52-x,在直角三角形CDE 中,0tan370.75≈=CE DE ,即3321=452x x-- , 解得:x=16,则CE=27,CD=27453sin 375CE ==︒.故选B. 14.关于函数y=6x 有如下结论:①函数图象一定经过点(-2, -3);②函数图象在第一.三象限;③函数值y 随x 的增大而减小;④当x≤-6时,函数y 的取值范围为-1≤y <0 ,这其中正确的有( )A.1个B.2个C.3个D.4个【答案】D【解析】①正确,根据反比例函数k=xy的特点可知(-2)×(-3)=6符合题意,故正确;②正确,因为此函数中k=6>0,所以函数图象在第一.三象限;③正确,因为k=6>0,所以函数值y随x的增大而减小;④正确,当x≤-6时,函数y的取值范围为-1≤y<0.所以,①②④两个正确;故选D.15.如图,点O为等边三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,下列三角形中,外心不是点O的是()A.△CBE B.△ACD C.△ABE D.△ACE【答案】B【解析】如图,连接OA.OB.OD.∵O是△ABC的外心,∴OA=OB=OC.∵四边形OCDE是正方形,∴OA=OB=OE,∵OB=OE=OC,∴O是△CBE的外心,故A不符合题意;∵OA=OC≠OD,∴O不是△ACD的外心,故B符合题意;∵OA=OB=OE,∴O是△ABE的外心,故C不符合题意;∵OA=OE=OC,∴O是△ACE的外心,故D不符合题意.故选B.16.如图1,将正方形ABCD按图1所示置于平面直角坐标系中,AD边与x轴重合,顶点B,C位于x轴上方,将直线l:y=x﹣3沿x轴向左以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t秒,m与t的函数图象如图2所示,则a,b的值分别是()A.6,B.6,C.D.【答案】D【解析】如图1,直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=1222+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=,即当a=7时,b=:D.二.填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.计算:a •a 2•a 3=______. 【答案】a 6【解析】a •a 2•a 3= 1236a a ++=.18.任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P (x 1,y 1),Q (x 2,y 2)的对称中心的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,如图.(1)在平面直角坐标系中,若点P 1(0,-1),P 2(2,3)的对称中心是点A ,则点A 的坐标为________;(2)另取两点(1,2)B -,(10)C -,.有一电子青蛙从点P 1处开始依次作关于点A ,B ,C 的循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到点P 2关于点B 的对称点P 3处,第三次再跳到点P 3关于点C 的对称点P 4处,第四次再跳到点P 4关于点A 的对称点P 5处,…,则点2019P 的坐标为________. 【答案】(1,1) (4,1)-【解析】(1)∵点P 1(0,-1),P 2(2,3)∴A 的坐标为0213(,)(1,1)22+-+= (2)由题意可知12(0,1),(2,3)P P - ∵点P 2 , P 3关于点B 对称3(4,1)P ∴- ∵点P 3,P 4关于点C 对称4(2,1)P ∴- 同理可求567(0,3),(2,1),(0,1)P P P --L所以六次一个循环201963363÷=Q L 2019(4,1)P ∴-故答案为:(1,1);(4,1)-.19.如图,在ABCD Y 中,点E 是BC 边上的动点,已知4AB =,6BC =,60B ∠=︒,现将ABE ∆沿AE 折叠,点'B 是点B 的对应点,设CE 长为x .(1)如图1,当点'B 恰好落在AD 边上时,x =______;(2)如图2,若点'B 落在ADE ∆内(包括边界),则x 的取值范围是______.【答案】2; 22x ≤≤【解析】(1)∵折叠,∴'BAE B AE ∠=∠.∵AD BC ∥,∴'B AE AEB ∠=∠, ∴BAE AEB ∠=∠,∴4AB BE ==,∴2CE BC BE =-=. (2)当'B 落在DE 上时,过点A 作AH DE ⊥于点H . ∵'60AB H B ∠=∠=︒,'4==AB AB ,∴1''22HB AB ==,∴AH =在Rt ADH ∆中,DH ==,∴''2DB DH HB =-=.∵AD BC ∥,∴DAE AEB AED ∠=∠=∠,∴6DE AD ==.∴()'628EB BE ==-=-∴(682EC BC BE =-=--=,∴22x ≤≤.三.解答题(本大题有7个小题,共67分.解答应写出文字说明.证明过程或演算步骤)20.我们已经学过有理数的加减乘除以及乘方运算,下面再给出有理数的一种新运算—“*运算”,定义是*()a b ab a b =-+.根据定义,解决下面的问题:(1)计算:3*4;(2)我们知道,加法具有交换律,请猜想“*运算”是否具有交换律,并说明你的猜想是否正确; (3)类比数的运算,整式也有“*运算”.若34(2)12x *-*的值为2,求x . 解: (1)()3434341275*=⨯-+=-=.(2)由题意得()*()b a ba b a ab a b a b =-+=-+=*, 故“*运算”也具有交换律. (3)34(2)12x *-* ()3342421122x x ⎡⎤⎛⎫=⨯-+-⨯-+ ⎪⎢⎥⎝⎭⎣⎦3584222x x =---+63x =-由题意得632x -=, 解得: 56x =21.发现任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数; 验证:(1) 22(1)(3)---的结果是4的几倍?(2)设三个连续的整数中间的一个为n,计算最大数与最小数这两个数的平方差,并说明它是4的倍数; 延伸:说明任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数. 解:发现:22(1)(3)1984(2)---=-=-=⨯- 即22(1)(3)---的结果是4的()2-倍;(2) 设三个连续的整数中间的一个为n ,则最大的数为(1)n +,最小的数为(n )1-2222(1)(1)21214n n n n n n n +--=++-+-=又∵n 是整数,∴任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数;延伸:设中间一个数为n ,则最大的奇数为2n +,最小的奇数为2n -2222(2)(2)44448n n n n n n n +--=++-+-=又∵n 是整数∴任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数22.某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数.众数.中位数如表所示:根据以上信息,解答下列问题:(1)上表中m .n 的值分别为 , ;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据 来确定奖励标准比较合适(填“平均数”.“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;(4)现决定从小王.小张.小李.小刘中选两人参加业务能手比赛,直接写出恰好选中小张.小李两人的概率.解:(1)由条形图知,数据18出现的次数最多,所以众数m=18;中位数是第10.11个数据的平均数,而第10.11个数据都是19,所以中位数n=19+192=19,故答案为:18,19;(2)由题意可得,如果想让60%左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)若该部门有300名工人,估计该部门生产能手的人数为300×2+420=90(人);(4)将小王.小张.小李.小刘分别记为甲.乙.丙.丁,画树状图如下:∵共有12种等可能性的结果,恰好选中乙.丙两位同学的有2种,∴恰好选中小张.小李两人的概率为21= 126.23.为了提高服务质量,某宾馆决定对甲.乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲.乙两种套房每套提升费用各多少万元?(2)如果需要甲.乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲.乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?解:(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x﹣3)万元,则6257003x x=-,解得x=28.经检验:x=28是分式方程的解,答:甲.乙两种套房每套提升费用为25.28万元;(2)设甲种套房提升a套,则乙种套房提升(80﹣a)套,则2090≤25a+28(80﹣a)≤2096,解得48≤a≤50.∴共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升50套,乙种套房提升30套.设提升两种套房所需要的费用为y万元,则y=25a+28(80﹣a)=﹣3a+2240,∵k=﹣3,∴当a取最大值50时,即方案三:甲种套房提升50套,乙种套房提升30套时,y最小值为2090万元.24.联想三角形内心的概念,我们可引入如下概念.定义:到三角形的两边距离相等的点,叫做此三角形的准内心.举例:如图1,若PD=PE,则点P为△ABC的准内心.应用:如图2,BF为等边三角形的角平分线,准内心P在BF上,且PF=12BP,求证:点P是△ABC的内心.探究:已知△ABC为直角三角形,∠C=90°,准内心P在AC上,若PC=12AP,求∠A的度数.解:应用:∵△ABC 是等边三角形,∴∠ABC=60°,∵BF 为角平分线,∴∠PBE=30°,∴PE=12PB,∵BF 是等边△ABC 的角平分线,∴BF ⊥AC, ∵PF=12BF,∴PE=PD=PF,∴P 是△ABC 的内心; 探究:根据题意得:PD=PC=12AP,∵112sin 2APPD A AP AP ===, ∴∠A 是锐角,∴∠A=30°.25.如图,已知点A .O 在直线l 上,且6AO =,OD l ⊥于O 点,且6OD =,以OD 为直径在OD 的左侧作半圆E ,AB AC ⊥于A ,且60CAO ∠=︒.(1)若半圆E 上有一点F ,则AF 的最大值为________; (2)向右沿直线l 平移BAC ∠得到'''B A C ∠;①如图,若''A C 截半圆E 的GH u u u r的长为π,求'A GO ∠的度数;②当半圆E 与'''B A C ∠的边相切时,求平移距离. 解:(1)当点F 与点D 重合时,AF 最大, AF 最大=AD故答案为:(2)①连接EG .EH .∵¼3180GEHGHππ∠=⨯⨯=,∴60GEH ∠=︒. ∵GE GH =,∴GEH ∆是等边三角形,∴60HGE EHG ∠=∠=︒. ∵''60C A O HGE ∠=︒=∠,∴//'EG A O ,∴'180GEO EOA ∠+∠=︒, ∵'90EOA ∠=︒,∴90GEO ∠=︒,∵GE EO =,∴45EGO EOG ∠=∠=︒,∴'75A GO ∠=︒.②当''C A 切半圆E 于Q 时,连接EQ ,则'90EQA ∠=︒.∵'90EOA ∠=︒,∴'A O 切半圆E 于O 点,∴''30EA O EA Q ∠=∠=︒.∵3OE =,∴'A O =,∴平移距离为'6AA =- 当''B A 切半圆E 于N 时,连接EN 并延长l 于P 点, ∵''150OA B ∠=︒,'90ENA ∠=︒,'90EOA ∠=︒, ∴30PEO ∠=︒,∵3OE =,∴EP =∵3EN =,∴3NP =,∵'30NA P ∠=︒,∴'6A N =-∵''6A O A N ==-∴'A A =26.在平面直角坐标系中,抛物线2y=x -2x+c (c 为常数)的对称轴如图所示,且抛物线过点()C 0,c . (1)当c=-3时,点()11x ,y 在抛物线2y=x -2x+c 上,求1y 的最小值: (2)若抛物线与x 轴有两个交点,自左向右分别为点A.B,且1OA=OB 2,求抛物线的解析式: (3)当-1<x<0时,抛物线与x 轴有且只有一个公共点,直接写出c 的取值范围.解:(1)当c =﹣3时,抛物线为y =x 2﹣2x ﹣3, ∴抛物线开口向上,有最小值,∴y 最小值=()()2241324ac 44b a ⨯⨯----==﹣4, ∴y 1的最小值为﹣4; (2)抛物线与x 轴有两个交点,①当点A.B 都在原点的右侧时,如解图1,设A(m,0),∵OA=12 OB,∴B(2m,0),∵二次函数y=x2﹣2x+c的对称轴为x=1,由抛物线的对称性得1﹣m=2m﹣1,解得m=2 3 ,∴A(23,0),∵点A在抛物线y=x2﹣2x+c上,∴0=49﹣43+c,解得c=89,此时抛物线的解析式为y=x2﹣2x+89;②当点A在原点的左侧,点B在原点的右侧时,如解图2,设A(﹣n,0),∵OA=12OB,且点A.B在原点的两侧,∴B(2n,0),由抛物线的对称性得n+1=2n﹣1,解得n=2,∴A(﹣2,0),∵点A在抛物线y=x2﹣2x+c上,∴0=4+4+c,解得c=﹣8,此时抛物线的解析式为y=x2﹣2x﹣8,综上,抛物线的解析式为y=x2﹣2x+89或y=x2﹣2x﹣8;(3)∵抛物线y=x2﹣2x+c与x轴有公共点,∴对于方程x2﹣2x+c=0,判别式b2﹣4ac=4﹣4c≥0,∴c≤1.当x=﹣1时,y=3+c;当x=0时,y=c,∵抛物线的对称轴为x=1,且当﹣1<x<0时,抛物线与x轴有且只有一个公共点,∴3+c>0且c<0,解得﹣3<c<0,综上,当﹣3<c<0时,抛物线与x轴有且只有一个公共点.。

〖汇总3套试卷〗廊坊市2020年中考一模数学试题

〖汇总3套试卷〗廊坊市2020年中考一模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012 B .8×1013C .8×1014D .0.8×1013【答案】B【解析】80万亿用科学记数法表示为8×1. 故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.2.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮 【答案】D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A 、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时, ∴小亮骑自行车的平均速度为:24÷2=12(km/h ),故正确;B 、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时), ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C 、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时, ∴小亮走的路程为:1×12=12km ,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.3.不等式组302xx+>⎧⎨-≥-⎩的整数解有()A.0个B.5个C.6个D.无数个【答案】B【解析】先解每一个不等式,求出不等式组的解集,再求整数解即可.【详解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式组的解集为﹣3<x≤2,∴整数解有:﹣2,﹣1,0,1,2共5个,故选B.【点睛】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.4.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°【答案】A【解析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.5.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±2 【答案】D【解析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8x的图象上,可得:24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 6.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【答案】B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.7.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A.1 B.3 C.14-D.74【答案】D【解析】先解方程组求出74x y-=,再将,,x ay b=⎧⎨=⎩代入式中,可得解.【详解】解:3, 354,x yx y+=⎧⎨-=⎩①②得447x y -=, 所以74x y -=, 因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型. 8.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π【答案】A【解析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可. 【详解】∵AB BC CD ==, ∴∠AOB=∠BOC=∠COD=60°. ∴阴影部分面积=2606=6360⨯ππ.故答案为:A. 【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°. 9.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A .甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.10.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.22B.1 C2D2﹣l【答案】D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=22AC′=1,∴DC′=AC′2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×2-1)22-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.二、填空题(本题包括8个小题)11.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.【答案】1 3【解析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是515=13,故答案为13.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.12.写出一个一次函数,使它的图象经过第一、三、四象限:______.【答案】y=x﹣1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).13.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,OE3=OA5,则EFGHABCDSS四边形四边形=_____.【答案】925【解析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴EFAB =OEOA=35,则EFGHABCDSS四边形四边形=2()OEOA=23()5=925.故答案为925.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.14.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.【答案】1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.15.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.【答案】2【解析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC 底边上的高线,依据三角形的面积为12可求得AD的长.【详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得AD=1,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值1.∴△BDM的周长的最小值为DB+AD=2+1=2.【点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.16.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.【答案】35.【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化简得y=4x,∴sin∠EAB=3355 BE y x xAE y x x-===+.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义17.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为_____.【答案】1【解析】过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,12),C(1,k),D(2,2k),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【详解】解:过A作x轴垂线,过B作x轴垂线,点A ,B 在反比例函数y =1x(x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴, ∴C (1,k ),D (2,2k ), ∵△OAC 与△ABD 的面积之和为32, 111112222OACCOMAOMk SSSk ∴=-=⨯-⨯⨯=-, S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=, ∴k =1, 故答案为1. 【点睛】本题考查反比例函数的性质,k 的几何意义.能够将三角形面积进行合理的转换是解题的关键.18.如图,在矩形ABCD 中,E 、F 分别是AD 、CD 的中点,沿着BE 将△ABE 折叠,点A 刚好落在BF 上,若AB=2,则AD=________.【答案】22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点, ∴AE=ED ,CF=DF=12CD=12AB=1,由折叠的性质可得AE=A′E , ∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA EDEF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ), ∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3, 在Rt △BCF 中,BC=22223122BF CF -=-=. ∴AD=BC=22 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可. 三、解答题(本题包括8个小题)19.小明对A ,B ,C ,D 四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A 超市有女工20人.所有超市女工占比统计表 超市 ABCD女工人数占比62.5%62.5%50%75%A 超市共有员工多少人?B 超市有女工多少人?若从这些女工中随机选出一个,求正好是C 超市的概率;现在D 超市又招进男、女员工各1人,D 超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由. 【答案】(1)32(人),25(人);(2)13;(3)乙同学,见解析. 【解析】(1)用A 超市有女工人数除以女工人数占比,可求A 超市共有员工多少人;先求出D 超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B 超市有女工多少人;(2)先求出C 超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解; (3)先求出D 超市有女工人数、共有员工多少人,再得到D 超市又招进男、女员工各1人,D 超市有女工人数、共有员工多少人,再根据概率的定义即可求解. 【详解】解:(1)A 超市共有员工:20÷62.5%=32(人), ∵360°-80°-100°-120°=60°,∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,∴B 超市有女工:20×54=25(人); (2)C 超市有女工:20×64=30(人). 四个超市共有女工:20×45634+++=90(人). 从这些女工中随机选出一个,正好是C 超市的概率为3090=13. (3)乙同学.理由:D 超市有女工20×34=15(人),共有员工15÷75%=20(人), 再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为1622=811≠75%. 【点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,菱形ABCD 中,,E F 分别是,BC CD 边的中点.求证:AE AF =.【答案】证明见解析.【解析】根据菱形的性质,先证明△ABE ≌△ADF ,即可得解.【详解】在菱形ABCD 中,AB =BC =CD =AD ,∠B =∠D.∵点E ,F 分别是BC ,CD 边的中点,∴BE =12BC ,DF =12CD , ∴BE =DF.∴△ABE ≌△ADF ,∴AE =AF.21.观察猜想:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在边BC 上,连接AD ,把△ABD 绕点A 逆时针旋转90°,点D落在点E 处,如图①所示,则线段CE 和线段BD 的数量关系是 ,位置关系是 .探究证明:在(1)的条件下,若点D 在线段BC 的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC ,∠ACB=45°,AC=2,其他条件不变,过点D 作DF ⊥AD 交CE 于点F ,请直接写出线段CF 长度的最大值.【答案】(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD ,∠ACE=∠B ,∴∠BCE=90°,即CE ⊥BD ,∴线段CE ,BD 之间的位置关系和数量关系分别为:CE=BD ,CE ⊥BD .(3)如图3,过A 作AM ⊥BC 于M ,EN ⊥AM 于N ,∵线段AD 绕点A 逆时针旋转90°得到AE∴∠DAE=90°,AD=AE ,∴∠NAE=∠ADM ,易证得Rt △AMD ≌Rt △ENA ,∴NE=AM ,∵∠ACB=45°,∴△AMC 为等腰直角三角形,∴AM=MC ,∴MC=NE ,∵AM ⊥BC ,EN ⊥AM ,∴NE ∥MC ,∴四边形MCEN 为平行四边形,∵∠AMC=90°,∴四边形MCEN 为矩形,∴∠DCF=90°,∴Rt △AMD ∽Rt △DCF , ∴MD AM CF DC=, 设DC=x ,∵∠ACB=45°,2,∴AM=CM=1,MD=1-x , ∴11x CF x-=, ∴CF=-x 2+x=-(x-12)2+14,∴当x=12时有最大值,CF 最大值为14. 点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质. 22.如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.【答案】(1)152y x =+;(2)1或9. 【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩, 解得412b k =⎧⎪⎨=⎪⎩, 所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.23.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y 与x 的函数关系式,并写出自变量x 的取值范围.求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【答案】(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b ,根据题意得806010050k b k b =+⎧⎨=+⎩解得:k 2b 200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x -30)(-2x+200)-450=-2x 2+260x -6450=-2(x -65)2 +2000)(3)W =-2(x -65)2 +2000∵30≤x≤60∴x=60时,w 有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.24.如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.【答案】(1)y 1=2x;y 2=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.在第三象限,当y1>y2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.25.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②1.【解析】(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO.∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,3∴3∴22,AB AC∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=1BC=3,2故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO 是矩形,∵OD=OC ,∴矩形DECO 是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 【答案】21x +;2. 【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()222121112x x x x x x x ---⋅++-- =()21211x x x x --++ =21x + 2x ≤的非负整数解有:2,1,0,其中当x 取2或1时分母等于0,不符合条件,故x 只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .【答案】D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A 、在角∠BAC 内作作∠CAD=∠B,交BC 于点D,根据余角的定义及等量代换得出∠B +∠BAD=90°,进而得出AD ⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A 不符合题意;B 、以点A 为圆心,略小于AB 的长为半径,画弧,交线段BC 两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A 点作直线,该直线是BC 的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C 、以AB 为直径作圆,该圆交BC 于点D ,根据圆周角定理,过AD 两点作直线该直线垂直于BC ,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C 不符合题意;D 、以点B 为圆心BA 的长为半径画弧,交BC 于点E ,再以E 点为圆心,AB 的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A 点作直线,该直线不一定是BE 的垂线;从而就不能保证两个小三角形相似;D 符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.2.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个【答案】B 【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确; ∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 22x 22=+=-,(舍去). ∴使得M=2的x 值是1或22+.∴④错误.综上所述,正确的有②③2个.故选B .3.如图所示,数轴上两点A ,B 分别表示实数a ,b ,则下列四个数中最大的一个数是( )A .aB .bC .1aD .1b【答案】D 【解析】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a <b <1b, 故选D .4.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A.15°B.30°C.45°D.60°【答案】B【解析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.5.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.32C3D.3【答案】C【解析】连接AE,OD,OE.∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°.又∵点E 为BC 的中点,∠AED=90°,∴AB=AC .∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半2,高是3. ∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =23=32∆⋅⋅.故选C . 6.如图,经过测量,C 地在A 地北偏东46°方向上,同时C 地在B 地北偏西63°方向上,则∠C 的度数为( )A .99°B .109°C .119°D .129°【答案】B 【解析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF 与∠BCF 的度数,∠ACF 与∠BCF 的和即为∠C 的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.43【答案】A【解析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC ﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.9.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°【答案】D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则CDM周长的最小值为()A.6 B.8 C.10 D.12【答案】C【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二、填空题(本题包括8个小题)11.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影。

河北省廊坊市2019-2020学年中考一诊数学试题含解析

河北省廊坊市2019-2020学年中考一诊数学试题含解析

河北省廊坊市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.1cm 2的电子屏上约有细菌135000个,135000用科学记数法表示为( ) A .0.135×106B .1.35×105C .13.5×104D .135×1032.如图1,在△ABC 中,AB=BC ,AC=m ,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE.设AP=x ,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是( )A .PDB .PBC .PED .PC3.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()A .215B .8C .210D .2134.不等式﹣12x+1>3的解集是( ) A .x <﹣4B .x >﹣4C .x >4D .x <45.如图,AB ∥CD ,FH 平分∠BFG ,∠EFB =58°,则下列说法错误的是( )A .∠EGD =58°B .GF =GHC .∠FHG =61°D .FG =FH6.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 7.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A.8 B.8-C.4 D.4-8.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-9.对于代数式ax2+bx+c(a≠0),下列说法正确的是()①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a2x+bx+c=a(x-p)(x-q)②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+cA.③B.①③C.②④D.①③④10.一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C. D.11.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )A.EA EGBE EF=B.EG AGGH GD=C.AB BCAE CF=D.FH CFEH AD=12.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度二、填空题:(本大题共6个小题,每小题4分,共24分.)13.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.14.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为__________.15.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC 于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.16.如果m,n互为相反数,那么|m+n﹣2016|=___________.17.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.18.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC.如果AD=2,BD=6,那么△ADC的周长为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD 与⊙O 的位置关系,并证明你的结论;(2)若E 是»AC的中点,⊙O 的半径为1,求图中阴影部分的面积. 20.(6分)如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.21.(6分)如图,已知二次函数24y x 49=-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C e 的半径为5,P 为C e 上一动点.()1点B ,C 的坐标分别为B(______),C(______);()2是否存在点P ,使得PBC V 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; ()3连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值=______.22.(8分)如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:AM 2=MF.MH(2)若BC 2=BD .DM ,求证:∠AMB =∠ADC .23.(8分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.24.(10分)如图,在平面直角坐标系中,圆M经过原点O,直线364y x=--与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S △PDE=110S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.25.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若23DFFO=,求证:CD=DH.26.(12分)已知关于x 的一元二次方程x 2+(2m+3)x+m 2=1有两根α,β求m 的取值范围;若α+β+αβ=1.求m 的值.27.(12分)已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】根据科学记数法的表示形式(a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数). 【详解】解:135000用科学记数法表示为:1.35×1. 故选B . 【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.3.D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴2222BE AE AB1086=--=.在Rt△BCE中,∵BE=6,BC=1,∴2222CE BE BC64213=+=+=D.4.A【解析】【分析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【详解】移项得:−12x>3−1,合并同类项得:−12x>2,系数化为1得:x<-4. 故选A.本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法. 5.D 【解析】 【分析】根据平行线的性质以及角平分线的定义,即可得到正确的结论. 【详解】解:AB CD EFB 58∠︒Q P ,=,EGD 58=∠∴︒,故A 选项正确;FH BFG ∠Q 平分, BFH GFH ∠∠∴=, 又AB CD Q P BFH GHF ∠∠∴=, GFH GHF ∠∠∴=, GF GH =,∴故B 选项正确; BFE 58FH ∠︒Q =,平分BFG ∠,()118058612BFH ︒︒︒∴∠=-=, AB CD Q PBFH GHF 61∠∠∴︒==,故C 选项正确;FGH FHG ∠∠≠Q ,FG FH ∴≠,故D 选项错误;故选D . 【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 6.A 【解析】 【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.解:A 、(ab 2)2=a 2b 4,故此选项正确; B 、a 2+a 2=2a 2,故此选项错误; C 、a 2•a 3=a 5,故此选项错误; D 、a 6÷a 3=a 3,故此选项错误; 故选:A. 【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键. 7.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.8.D 【解析】 【分析】根据分式的基本性质,x ,y 的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案. 【详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍, A 、23233x x x y x y ++≠--,错误;B 、22629y yx x≠,错误;C 、3322542273y y x x≠,错误; D 、()()22221829y y x y x y --=,正确;故选D . 【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心. 9.A 【解析】设2(0)y ax bx c a =++≠(1)如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则说明在2(0)y ax bx c a =++≠中,当x=p 和x=q 时的y 值相等,但并不能说明此时p 、q 是2(0)y ax bx c a =++≠与x 轴交点的横坐标,故①中结论不一定成立;(2)若am 2+bm+c=an 2+bn+c=as 2+bs+c ,则说明在2(0)y ax bx c a =++≠中当x=m 、n 、s 时,对应的y 值相等,因此m 、n 、s 中至少有两个数是相等的,故②错误;(3)如果ac <0,则b 2-4ac>0,则2(0)y ax bx c a =++≠的图象和x 轴必有两个不同的交点,所以此时一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c ,故③在结论正确;(4)如果ac >0,则b 2-4ac 的值的正负无法确定,此时2(0)y ax bx c a =++≠的图象与x 轴的交点情况无法确定,所以④中结论不一定成立. 综上所述,四种说法中正确的是③. 故选A. 10.B 【解析】 【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2bx a=->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案. 【详解】解:∵一次函数y=ax+b 图像过一、二、四, ∴a <0,b >0,。

2020年河北省九地市中考数学一模试卷 (含解析)

2020年河北省九地市中考数学一模试卷 (含解析)

2020年河北省九地市中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.下列各数中,最小的数是()A. 3B. −4C. 4D. −52.若∠1=∠2,则下列四个图形中,能够判定AB//CD的是()A. B.C. D.3.下列四个表情图中为轴对称图形的是()A. B. C. D.4.将数字0.0000208用科学记数法可表示为a×10n(1≤a<10,n为整数)的形式,则n的值为()A. 4B. −4C. 5D. −55.下列计算,正确的是()A. a6÷a3=a3(a≠0)B. 3xy−3x=yC. 40=0D. (−13xy2)2=16x2y46.如图,在正方体上放一个圆柱,将其看成一个几何体,将圆柱沿虚线从左向右在正方体上平移.平移前后几何体的三视图中不变的是()A. 主视图B. 左视图C. 俯视图D. 主视图和俯视图7. 给出下列说法:①−6是36的平方根;②16的平方根是4;③−√−233=2;④√273是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有( )A. ①③⑤B. ②④C. ①③D. ①8. 下列选项中的尺规作图,能推出PA =PC 的是( )A.B.C.D.9. 已知方程组{x −by =1ax +y =3的解是{x =2y =−1,那么a,b 的值分别为( )A. 2,−1B. −1,2C. 1,−2D. −2,110. 到△ABC 三个顶点距离相等的点是( )A. 三边中线的交点B. 三条角平分线的交点C. 三边上高的交点D. 三边中垂线的交点11. 如图,两轮船同时从O 点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A ,B 点,则此时两轮船行进路线的夹角∠AOB 的度数是( )A. 165°B. 155°C. 115°D. 105°12.为了了解某校七年级学生的课外阅读量,随机调查了该校15名七年级学生,统计如下:阅读量(单位:本/周) 0 1 2 3 4人数(单位:人) 1 4 6 2 2则下列说法错误的是()A. 中位数是2B. 平均数是2C. 众数是2D. 方差是213.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A. 6B. 8C. 10D. 12BC,AM与BD相交于点N,那么S△BMN:S□ABCD 14.如图,在□ABCD中,点M在BC边上,且BM=13为()A. 1:3B. 1:9C. 1:12D. 1:2415.将抛物线C1:y=x2−2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A. y=−x2−2B. y=−x2+2C. y=x2−2D. y=x2+216.如图,图①是一个四边形纸条ABCD,其中AB//CD,E,F分别为边AB,CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=26°,则∠EFC的度数为()A. 52°B. 64°C. 102°D. 128°二、填空题(本大题共3小题,共12.0分)17.分解因式:x2−36=______ .(x>0)的图象交于点A,18.如图,一次函数y=kx+3与反比例函数y=3x与y轴交于点M,与x轴交于点N,且AM:MN=2:3,则k=______.19.将一组数√3,√6,3,2√3,√15,…,3√10,按下面的方式进行排列:√3,√6,3,2√3,√15;3√2,√21,2√6,3√3,√30;…若2√3的位置记为(1,4),2√6的位置记为(2,3),则这组数中最大的有理数的位置记为_________.三、解答题(本大题共7小题,共66.0分)20.对于实数a、b定义运算.(1)求(−2)#3的值;(2)通过计算比较3#(−2)与(−2)#3的大小关系;(3)若x#(−4)=9,求x的值.21.当n为正整数时,代数式(n2−5n+5)2的值都等于1吗?22.元旦期间,某商场对购物的顾客开展抽奖活动,设置了如图所示的转盘,让顾客通过转动转盘来抽奖(如果指针停在分割线则重新转).有两种抽奖方案:方案1,顾客转动一次转盘,指针停留在数字几的区域就得相应数字2倍的礼品;方案2,顾客转动两次转盘,两次指针停留数字之和是几就得几份礼品.(1)求顾客按方案1获得6件礼品的概率;(2)哪种方案获得5件及以上礼品的概率高?23.如图①,Rt△ABC和Rt△BDE重叠放置在一起,∠ABC=∠DBE=90°,且AB=2BC,BD=2BE.(1)观察猜想:图①中线段AD与CE的数量关系是______,位置关系是______;(2)探究证明:把△BDE绕点B顺时针旋转到图②的位置,连接AD,CE,判断线段AD与CE的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC=√5,BE=1,当旋转角α=∠ACB时,请直接写出线段AD的长度.24.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:(1)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式,(2)若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?25.如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连结BD并延长至点C,使得CD=BD,连结AC交⊙O于点F,连接BE,DE,DF.(1)若∠E=35°,求∠BDF的度数.(2)若DF=4,cos∠CFD=2,E是AB⏜的中点,求DE的长.326.如图1,抛物线经过A(−1,0)、B(2,0)、C(0,4)三点.(1)求抛物线的解析式;(2)如图2,在x轴上是否存在这样的点P,使▵BCP为等腰三角形,若存在,求出点P的坐标;若不存在,请说明理由.【答案与解析】1.答案:D解析:解:−5<−4<3<4,则最小的数是−5,故选:D.根据有理数大小比较的法则解答即可.本题考查的是有理数的大小比较,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.答案:C解析:此题主要考查了平行线的判定,关键是掌握同位角相等,两直线平行.根据两条直线被第三条所截,如果同位角相等,那么这两条直线平行可得只有C答案中∠1,∠2是AB和DC是被AD所截而成的同位角.解:若∠1=∠2,则下列四个图形中,能够判定AB//CD的是C,故A,B,D错误,C正确.故选C.3.答案:A解析:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后重合即可.结合轴对称图形的概念进行求解即可.解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选A.4.答案:D解析:本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000208=2.08×10−5,故n=−5.故选:D.5.答案:A解析:本题考查合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握运算法则是解题关键.直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.解:A、a6÷a3=a3(a≠0),正确;B、3xy−3x,不是同类项,无法合并,故此选项错误;C、40=1,故此选项错误;D、(−13xy2)2=19x2y4,故此选项错误.故选:A.6.答案:B解析:此题主要考查了平移的性质和应用,以及简单组合体的三视图,要熟练掌握,解答此题的关键是掌握主视图、俯视图以及左视图的观察方法.主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图.故选B.7.答案:A解析:解:−6是36的平方根,∴①正确;16的平方根是±4,∴②错误;3=2,∴③正确;−√−233=3是有理数,∴④错误;√27一个无理数不是正数就是负数,∴⑤正确;正确的有①③⑤.故选:A.根据平方根的定义即可判断①②;根据立方根的定义计算③④即可;根据无理数的定义判断⑤即可.本题主要考查对无理数、平方根、立方根等知识点的理解和掌握,能熟练地运用这些定义进行判断是解此题的关键.8.答案:D解析:解:A.由此作图知CA=CP,不符合题意;B.由此作图知BA=BP,不符合题意;C.由此作图知∠ABP=∠CBP,不符合题意;D.由此作图知PA=PC,符合题意;故选D.根据角平分线和线段中垂线的尺规作图方法作出选择.本题考查了基本作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题关键是熟悉基本几何图形的性质,把复杂作图拆解成基本作图,逐步操作.9.答案:A解析:本题考查了二元一次方程组的解,熟练掌握解题方法是解本题的关键.将x与y的值代入方程组即可求出a与b的值.解:将{x =2y =−1代入方程组得:{2+b =12a −1=3, 解得:a =2,b =−1.故选A .10.答案:D解析:本题主要考查了垂直平分线的性质,垂直平分线上的点到线段两个端点的距离相等,到三角形任意一条边的两个端点的距离相等的点都在一条边的中垂线上,故到三个顶点的距离相等的点应在三边中垂线的交点,由此可得答案.解:根据线段垂直平分线的性质:中垂线上的点到两端点距离相等,所以到三角形三个顶点距离相等点应该是三条边垂直平分线的交点;故选D .11.答案:B解析:此题主要考查了方向角,关键是理清角之间的关系.根据题意可得:∠1=50°,∠2=25°,再根据角的和差关系可得答案.解:由题意得:∠1=50°,∠2=25°,∴∠AOB =90°−∠1+90°+∠2=40°+90°+25°=155°,故选B .12.答案:D解析:解:A 、把这些数字从小到大排列,最中间的数是2,则中位数是2,故本选项正确; B 、平均数是:115(1×4+2×6+3×2+4×2)=2,故本选项正确;C 、2出现了6次,出现的次数最多,则众数是2,故本选项正确;D 、方差是:115[(0−2)2+4(1−2)2+6(2−2)2+2(3−2)2+2(4−2)2]=1.2,故本选项错误; 故选D .根据方差、中位数、众数和平均数的计算公式分别进行计算,即可得出答案.本题考查了方差、中位数、众数和平均数的知识,掌握各知识点的计算公式和概念是解题的关键.13.答案:C解析:解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC−1,CE=3,∴OC2=(OC−1)2+32,∴OC=5,∴AB=10.故选:C.连接OC,根据题意OE=OC−1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.14.答案:D解析:本题考查了平行四边形的性质,相似三角形的性质和判定的应用,能灵活运用定理进行变形是解此题的关键,注意:相似三角形的面积之比等于相似比的平方.根据平行四边形的性质得出AD=BC,AD//BC,求出BC=3BM=AD,根据相似三角形的判定得出△AND∽△MNB,求出DN:BN=AD:BM=3:1,根据相似三角形的性质和三角形的面积即可得出答案.解:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,BC,∵BM=13∴BC=3BM,∵AD//BC,∴△AND∽△MNB,∴DN:BN=AD:BM=3:1,∴SΔBMNSΔAND =(13)2=19,SΔABNSΔBMN=3,∴S△ABN=3S△BMN,S△AND=9S△BMN,∴S平行四边形ABCD=2S△ABD=2(S△AND+S△ABN)=24S△BMN,即S△BMN:S▵ABCD=1:24.故选D.15.答案:A解析:解:∵抛物线C1:y=x2−2x+3=(x−1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,−2),∴抛物线C3的解析式为y=−x2−2,故选:A.根据抛物线C1的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线C2的顶点坐标,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的函数表达式.本题主要考查了二次函数图象的平移问题,只需看顶点坐标是如何平移得到的即可,关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数,难度适中.16.答案:C解析:本题考查了平行线的性质、翻折变换的性质等知识;熟练掌握平行线和翻折变换的性质得出相等的角是解决问题的关键.先由折叠得:∠BEF=∠FEM=26°,由平行线的性质得∠EFM=26°,如图③中,根据折叠和平行线的性质得,∠MFC=128°,根据角的差可得结论.解:如图①,由折叠得:∠BEF=∠FEM=26°,如图②,∵AE//DF,∴∠EFM=26°,∠BMF=∠DME=52°,∵BM//CF,∴∠CFM+∠BMF=180°,∴∠CFM=180°−52°=128°,由折叠得:如图③,∠MFC=128°,∴∠EFC=∠MFC−∠EFM=128°−26°=102°,故选C.17.答案:(x+6)(x−6)解析:此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.解:原式=(x+6)(x−6).故答案为(x+6)(x−6).18.答案:103解析:解:过点A作AB⊥x轴于点B,如图所示.∵AB⊥x轴,MO⊥x轴,∴AB//MO,∴△NMO∽△NAB,∴MOAB =NONB=MNAN.∵AM:MN=2:3,∴MN:AN=3:(2+3)=3:5.令一次函数y=kx+3中x=0,则y=3,∴MO=3.∵MOAB =35,∴AB=5,令反比例函数y=3x 中y=5,则5=3x,解得:x=35.∴点A的坐标为(35,5).将点A(35,5)代入一次函数y=kx+3中,得:5=35k+3,解得:k=103.故答案为103.过点A作AB⊥x轴于点B,通过AB//MO得出△NMO∽△NAB,根据相似三角形的性质得出MOAB =NONB=MNAN,再根据AM:MN=2:3以及OM=3可求出AB的长度,由此得出点A的坐标,结合点A的坐标利用待定系数法即可求出k值.本题考查了反比例函数与一次函数的交点问题、相似三角形的判定及性质以及待定系数法求函数解析式,解题的关键是求出点A的坐标.19.答案:(6,2)解析:本题考查了数字的变化规律题,发现被开方数之间的关系是解题关键.根据观察,可得第n个数为√3n,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解:3√10=√90,根据观察,可得第n个数为√3n,最大的有理数是√81=9,每行5个数,∵81÷3=27,27÷5=5······2,√81在第6行的第2个,即(6,2),故答案为(6,2).20.答案:解:(1)(−2)#3=(−2)×3−(−2)−1=−6+2−1=−5;(2)∵3#(−2)=3×(−2)−3−1=−6−3−1=−10,而(−2)#3=−5,∴3#(−2)<(−2)#3;(3)∵x#(−4)=9,∴−4x−x−1=9,解得:x=−2.解析:本题主要考查实数的运算,解题的关键是掌握新定义及实数的混合运算顺序和运算法则,也考查解一元一次方程的能力.(1)将a=−2,b=3代入公式计算可得;(2)依据公式计算出3#(−2)的值,比较大小即可得;(3)由原等式得出关于x的方程,解之可得答案.21.答案:解:当n=1时,(n2−5n+5)2=12=1;当n=2时,(n2−5n+5) 2=(−1)2=1;当n=3时,(n2−5n+5)2=(−1)2=1;当n=4时,(n2−5n+5)2=12=1;当n=5时,(n2−5n+5)2=52=25≠1.所以,当n为正整数时,代数式(n2−5n+5)2的值不一定都等于1.解析:此题考查的是代数式的求值,取n的几个正整数的值,分别代入代数式求值,由结果可得结论.22.答案:解:(1)转动一次有6个可能情况,分别是1,2,2,3,3,3,相应的礼品数为2,4,4,6,6,6,其中获得6件礼品有3种,概率为P=36=12;(2)转动2次情况如下:共有36种等可能结果,其中获得5件及以上礼品有21种,概率为P=2136=712,∵12<712,∴方案2获得5件及以上礼品的概率高.解析:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)利用概率公式即可求得答案;(2)下用列表法得出所有可能情况,求出获得5件及以上礼品的概率,再比较,即可解答.23.答案:解:(1)AD=2DE;AD⊥CE;(2)AD=2DE,AD⊥CE,理由:∵把△BDE绕点B顺时针旋转到图②的位置,∴∠CBE=∠ABD,∵AB=2BC,BD=2BE.∴BDBE =ADCE=2,∴△BCE∽△BAD,∴ADCE =BDBE=2,∠BEC=∠BDA,∴AD=2CE,延长CE交AD于H,∴∠CEB+∠BEH=180°,∴∠BEH+∠BDA=180°,∴∠DHE+∠DBE=180°,∵∠DBE=90°,∴∠DHE=90°,∴CE⊥AD;(3)如图③,过D作DG⊥AB于G,由(2)知,△BCE∽△BAD ,∴BD BE =AB BC =2,∠CBE =∠ABD ,∵BC =√5,BE =1,∴AB =2√5,BD =2,∴AC =√BC 2+AB 2=5,∵∠CBE =∠ACB =∠ABD ,∠DGB =∠ABC =90°,∴△ABC∽△DGB ,∴DG AB =BG BC =BD AC , ∴2√5=√5=25,∴BG =2√55,DG =4√55, ∴AG =2√5−2√55=8√55, ∴AD =√AG 2+DG 2=√(8√55)2+(4√55)2=4.解析:此题主要考查了几何变换综合题,直角三角形的性质,相似三角形的判定和性质,勾股定理,正确作出辅助线是解题关键.(1)根据相似三角形的判定定理得到△BDE∽△BAC ,求得∠BDE =∠A ,得到DE//AC ,求得BD BE =AD CE =2,于是得到结论;(2)根据旋转的性质得到∠CBE =∠ABD ,求得△BCE∽△BAD ,得到AD CE =BD BE =2,∠BEC =∠BDA ,延长CE 交AD 于H ,于是得到结论;(3)过D 作DG ⊥AB 于G ,根据相似三角形的判定和性质定理以及勾股定理即可得到结论.解:(1)∵AB=2BC,BD=2BE,∴ABBC =BDBE=2,∵∠ABC=∠DBE=90°,∴△BDE∽△BAC,∴∠BDE=∠A,∴DE//AC,∴BDBE =ADCE=2,∵∠B=90°,∴AD⊥CE,故答案为:AD=2DE,AD⊥CE;(2)见答案;(3)见答案.24.答案:解:(1)由表可知,xy=60,∴y=60x(x>0),根据题意,得:W=(x−2)·y=(x−2)·60 x=60−120x;(2)W=60−120 x设t=−120x∵−120<0∴t随x的增大而增大∴W随x的增大而增大∵x≤10,∴当x=10时,W取得最大值,W最大值=60−12=48(元),答:当日销售单价x定为10元/个时,才能获得最大日销售利润,最大利润是48元.解析:本题主要考查反比例函数的应用,解题的关键是掌握反比例函数的性质、根据题意确定相等关系并据此列出函数解析式.(1)由表知xy=60,据此可得y=60(x>0),根据总利润=每个贺卡的利润×贺卡的日销售数量可得x函数解析式;(2)根据反比例函数的性质求解可得.25.答案:解:(1)如图1,连接EF,BF,∵AB是⊙O的直径,∴∠AFB=∠BFC=90°,∵CD=BD,∴DF=BD=CD,∴DF⏜=BD⏜,∴∠DEF=∠BED=35°,∴∠BEF=70°,∴∠BDF=180°−∠BEF=110°;(2)如图2,连接AD,OE,过B作BG⊥DE于G,∵∠CFD=∠ABD,∴cos∠ABD=cos∠CFD=2,3在Rt△ABD中,BD=DF=4,∴AB=6,∵E是AB⏜的中点,AB是⊙O的直径,∴∠AOE=90°,∵BO=OE=3,∴BE=3√2,∴∠BDE=∠ADE=45°,BD=2√2,∴DG=BG=√22∴GE=√BE2+BG2=√10,∴DE=DG+GE=2√2+√10.解析:(1)连接EF ,BF ,由AB 是⊙O 的直径,得到∠AFB =∠BFC =90°,推出DF ⏜=BD ⏜,得到∠DEF =∠BED =35°,根据圆内接四边形的性质即可得到结论;(2)连接AD ,OE ,过B 作BG ⊥DE 于G ,解直角三角形得到AB =6,由E 是AB⏜的中点,AB 是⊙O 的直径,得到∠AOE =90°,根据勾股定理即可得到结论.本题考查了圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.26.答案:(1)解:设抛物线的解析式为y =ax 2+bx +c(a ≠0),把A(−1,0)、B(2,0)、C(0,4)三点坐标代入解析式,得{a −b +c =04a +2b +c =0c =4,解得 {a =−2b =2c =4,∴抛物线的解析式为y =−2x 2+2x +4;(2)如图2,存在点P ,理由如下:分三种情况讨论:①当P 1C =P 1B 时,设P 1点坐标(x,0),∵B(2,0),C(0,4),∴OB =2,OC =4,由勾股定理得P 1C 2=OP 12+OC 2=(−x )2+42,∵(P 1B)2=(OP 1+OB)2=(−x +2)2,∴(−x )2+42=(−x +2)2,解得x =−3,∴点P 1的坐标为(−3,0),②当CP 2=BC 时,设P 2坐标为(x,0),此时点P 2与点B 关于原点O 对称,∵点B 的坐标是(2,0),∴点P 2的坐标是(−2,0),③当BP =BC 时,设P 的坐标是(x,0),∵OB =2,OC =4,∴BC =√22+42=2√5,此时点P 有两种情况,在点B 的左侧和点B 的右侧,∴点P 的坐标是P 3(2−2√5,0),P 4(2+2√5,0),综上所述,在x 轴上存在点P ,使▵BCP 为等腰三角形,且点P 的坐标是:P 1(−3,0),P 2(−2,0),P 3(2−2√5,0),P 4(2+2√5,0).解析:本题主要考查二次函数图象和性质、待定系数法求二次函数的解析式、等腰三角形的性质、分类讨论的数学思想等知识点,解答本题的关键是熟练掌握二次函数的图象和性质以及等腰三角形的性质.(1)设抛物线的解析式为y =ax 2+bx +c(a ≠0) ,把A(−1,0)、B(2,0)、C(0,4)三点的坐标代入解析式,得出{a −b +c =04a +2b +c =0c =4,求出a ,b ,c 的值,即可求出抛物线的解析式;(2)存在这样的点P ,使△BCP 为等腰三角形,分三种情况讨论:①当P 1C =P 1B 时,②当CP 2=BC 时,③当BP =BC 时,根据勾股定理、二次函数的性质,分别求出P 点坐标,即可求解.。

河北省廊坊市2019-2020学年中考数学模拟试题(1)含解析

河北省廊坊市2019-2020学年中考数学模拟试题(1)含解析

河北省廊坊市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣182.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且BC,CD,DE所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出D.立交桥总长为150m3.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.4.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样5.关于x 的一元二次方程x 2-4x+k=0有两个相等的实数根,则k 的值是( ) A .2B .-2C .4D .-46.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相平分的四边形是正方形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形7.观察下列图形,则第n 个图形中三角形的个数是( )A .2n+2B .4n+4C .4n ﹣4D .4n8.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )A .4B .4.5C .5D .5.59.如图,⊙O 的半径OA=6,以A 为圆心,OA 为半径的弧交⊙O 于B 、C 点,则BC=( )A .63B .62C .33D .3210.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3π C .4π D .π11.如图,已知点A (0,1),B (0,﹣1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC等于()A.90°B.120°C.60°D.30°12.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________cm.14.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.15.长城的总长大约为6700000m,将数6700000用科学记数法表示为______16.如图,在平面直角坐标系中,已知C(12),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.17.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)18.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一0~18(含18) 1.901.00 阶梯二18~25(含25)2.85阶梯三25以上 5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议20.(6分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下 (1)样本中D 级的学生人数占全班学生人数的百分比是 ; (2)扇形统计图中A 级所在的扇形的圆心角度数是 ; (3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数之和.21.(6分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?22.(8分)A 粮仓和B 粮仓分别库存粮食12吨和6吨,现决定支援给C 市10吨和D 市8吨.已知从A 粮仓调运一吨粮食到C 市和D 市的运费分别为400元和800元;从B 粮仓调运一吨粮食到C 市和D 市的运费分别为300元和500元.设B 粮仓运往C 市粮食x 吨,求总运费W (元)关于x 的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?23.(8分)化简:()()2a b a 2b a -+-.24.(10分)如图,∠BAO=90°,AB=8,动点P 在射线AO 上,以PA 为半径的半圆P 交射线AO 于另一点C ,CD ∥BP 交半圆P 于另一点D ,BE ∥AO 交射线PD 于点E ,EF ⊥AO 于点F ,连接BD ,设AP=m . (1)求证:∠BDP=90°. (2)若m=4,求BE 的长. (3)在点P 的整个运动过程中.①当AF=3CF 时,求出所有符合条件的m 的值. ②当tan ∠DBE=512时,直接写出△CDP 与△BDP 面积比.25.(10分)已知:在△ABC 中,AC=BC ,D ,E ,F 分别是AB ,AC ,CB 的中点.求证:四边形DECF 是菱形.26.(12分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少? 27.(12分)已知:如图,在梯形ABCD 中,DC ∥AB ,AD =BC ,BD 平分∠ABC ,∠A =60°. 求:(1)求∠CDB 的度数;(2)当AD =2时,求对角线BD 的长和梯形ABCD 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】互为相反数的两个数是指只有符号不同的两个数,所以18-的相反数是18, 故选C . 2.C 【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:538s +=,故正确. B.3段弧的长度都是:()105320,m ⨯-=从F 口出比从G 口出多行驶40m ,正确. C.分析图2可知甲车从G 口出,乙车从F 口出,故错误. D.立交桥总长为:1033203150.m ⨯⨯+⨯=故正确. 故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键. 3.D 【解析】【分析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.故选D.【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.4.B【解析】【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.5.C【解析】【分析】【详解】对于一元二次方程a2x+bx+c=0,当Δ=2b-4ac=0时,方程有两个相等的实数根.即16-4k=0,解得:k=4.考点:一元二次方程根的判别式6.D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.7.D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.考点:规律型:图形的变化类.8.B【解析】试题分析:根据平行线分线段成比例可得AC BDCE DF,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.故选B考点:平行线分线段成比例9.A【解析】试题分析:根据垂径定理先求BC一半的长,再求BC的长.解:如图所示,设OA与BC相交于D点.∵AB=OA=OB=6,∴△OAB是等边三角形.又根据垂径定理可得,OA 平分BC ,利用勾股定理可得=所以BC=2BD=. 故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O 与圆A 的半径相等,从而得出△OAB 是等边三角形,为后继求解打好基础. 10.A 【解析】 试题解析:如图,∵在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°,AB=2∴S △ABC =12 根据旋转的性质知△ABC ≌△AB′C′,则S △ABC =S △AB′C′,AB=AB′. ∴S 阴影=S 扇形ABB′+S △AB′C′-S △ABC=2452360π⨯=2π. 故选A .考点:1.扇形面积的计算;2.旋转的性质. 11.C 【解析】解:∵A (0,1),B (0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt △AOC 中,cos ∠BAC=OA AC =12,∴∠BAC=60°.故选C .点睛:本题考查了垂径定理的应用,关键是求出AC 、OA 的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧. 12.C 【解析】 【分析】过点B 作BD ⊥x 轴于点D ,易证△ACO ≌△BCD (AAS ),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与A 的坐标即可得知平移的单位长度,从而求出C 的对应点. 【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3105【解析】【分析】根据题意作图,可得AB=6cm ,设正方体的棱长为xcm ,则AC=x ,BC=3x ,根据勾股定理对称62=x 2+(3x )2,解方程即可求得.【详解】解:如图示,根据题意可得AB=6cm ,设正方体的棱长为xcm ,则AC=x ,BC=3x ,根据勾股定理,AB 2=AC 2+BC 2,即()22263x x =+,解得3105x =3105 【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键.14.(3,2).【解析】【分析】根据题意得出y 轴位置,进而利用正多边形的性质得出E 点坐标.【详解】解:如图所示:∵A (0,a ),∴点A 在y 轴上,∵C ,D 的坐标分别是(b ,m ),(c ,m ),∴B ,E 点关于y 轴对称,∵B 的坐标是:(﹣3,2),∴点E 的坐标是:(3,2).故答案为:(3,2).【点睛】此题主要考查了正多边形和圆,正确得出y 轴的位置是解题关键.15.6.7×106【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:6700000用科学记数法表示应记为6.7×106,故选6.7×106. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数;表示时关键要正确确定a 的值以及n 的值.16.510)【解析】【分析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC 与△DEF 位似,原点O 是位似中心,要使△DEF 的面积是△ABC 面积的5倍, 则△DEF 的边长是△ABC 5∴点F 的坐标为(1×52×5510),故答案为:510).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .17.//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.18.1【解析】【分析】过A 作x 轴垂线,过B 作x 轴垂线,求出A (1,1),B (2,12),C (1,k ),D (2,2k ),将面积进行转换S △OAC =S △COM ﹣S △AOM ,S △ABD =S 梯形AMND ﹣S 梯形AAMNB 进而求解.【详解】解:过A 作x 轴垂线,过B 作x 轴垂线,点A ,B 在反比例函数y =1x (x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴,∴C (1,k ),D (2,2k ), ∵△OAC 与△ABD 的面积之和为32, 111112222OAC COM AOM k S S S k ∴=-=⨯-⨯⨯=-, S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=, ∴k =1,故答案为1.【点睛】本题考查反比例函数的性质,k 的几何意义.能够将三角形面积进行合理的转换是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.【解析】试题分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x≤24,即小明家每月的用水量不要超过24立方米.试题解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x≤24,∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.20.(1)10%; (2)72; (3)5,见解析; (4)330.【解析】【分析】【详解】解:(1)根据题意得:D级的学生人数占全班人数的百分比是:1-20%-46%-24%=10%;(2)A级所在的扇形的圆心角度数是:20%×360°=72°;(3)∵A等人数为10人,所占比例为20%,∴抽查的学生数=10÷20%=50(人),∴D级的学生人数是50×10%=5(人),补图如下:(4)根据题意得:体育测试中A 级和B 级的学生人数之和是:500×(20%+46%)=330(名),答:体育测试中A 级和B 级的学生人数之和是330名.【点睛】本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.21.(1)购买A 型学习用品400件,B 型学习用品600件.(2)最多购买B 型学习用品1件【解析】【分析】(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.【详解】解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得x y 100020x 30y 26000+=⎧⎨+=⎩,解得:x 400y 600=⎧⎨=⎩. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤210,解得:a≤1.答:最多购买B 型学习用品1件22.(1)w =200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D 市3台;方案三:从B 市调运到C 市2台,D 市4台;从A 市调运到C 市8台,D 市4台;(3)从A 市调运到C 市10台,D 市2台;最低运费是8600元.【解析】【分析】(1)设出B 粮仓运往C 的数量为x 吨,然后根据A ,B 两市的库存量,和C ,D 两市的需求量,分别表示出B 运往C ,D 的数量,再根据总费用=A 运往C 的运费+A 运往D 的运费+B 运往C 的运费+B 运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B 粮仓运往C 市粮食x 吨,则B 粮仓运往D 市粮食6﹣x 吨,A 粮仓运往C 市粮食10﹣x 吨,A 粮仓运往D 市粮食12﹣(10﹣x )=x+2吨,总运费w =300x+500(6﹣x )+400(10﹣x )+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D 市3台;方案三:从B 市调运到C 市2台,D 市4台;从A 市调运到C 市8台,D 市4台;(3)w =200x+8600k >0,所以当x =0时,总运费最低.也就是从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.23.2b【解析】【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.24.(1)详见解析;(2)BE 的长为1;(3)m 或CDP 与BDP 面积比为813或1813. 【解析】【分析】()1由PA PC PD ==知PDC PCD ∠=∠,再由//CD BP 知BPA PCD ∠=∠、BPD PDC ∠=∠,据此可得BPA BPD ∠=∠,证BAP ≌BDP 即可得;()2易知四边形ABEF 是矩形,设BE AF x ==,可得4PF x =-,证BDE ≌EFP 得PE BE x ==,在Rt PFE 中,由222PF FE PE +=,列方程求解可得答案; ()3①分点C 在AF 的左侧和右侧两种情况求解:左侧时由3AF CF =知CF AP PC m ===、2PF m =、3PE BE AF m ===,在Rt PEF 中,由222PF EF PE +=可得关于m 的方程,解之可得;右侧时,由3AF CF =知111222CF AP PC m ===、12PF m =、32PE BE AF m ===,利用勾股定理求解可得.②作DG AC ⊥于点G ,延长GD 交BE 于点H ,由BAP ≌BDP 知12BDP BAP S S AP AB ==⋅,据此可得1212CDPBDP PC DG S DG S AB AP AB ⋅==⋅,再分点D 在矩形内部和外部的情况求解可得.【详解】()1如图1,PA PC PD ==,PDC PCD ∴∠=∠,//CD BP ,BPA PCD ∴∠=∠、BPD PDC ∠=∠,BPA BPD ∴∠=∠,BP BP =,BAP ∴≌BDP ,90BDP BAP ∴∠=∠=.()290BAO ∠=,//BE AO ,90ABE BAO ∴∠=∠=,EF AO ⊥,90EFA ∴∠=,∴四边形ABEF 是矩形,设BE AF x ==,则4PF x =-,90BDP ∠=,90BDE PFE ∴∠==∠,//BE AO ,BED EPF ∴∠=∠, BAP ≌BDP ,8BD BA EF ∴===,BDE ∴≌EFP ,PE BE x ∴==,在Rt PFE 中,222PF FE PE +=,即222(4)8x x -+=,解得:10x =, BE ∴的长为1.()3①如图1,当点C 在AF 的左侧时,3AF CF =,则2AC CF =,CF AP PC m ∴===,2PF m ∴=,3PE BE AF m ===,在Rt PEF 中,由222PF EF PE +=可得222(2)8(3)m m +=, 解得:85(5m =负值舍去); 如图2,当点C 在AF 的右侧时,3AF CF =,4AC CF ∴=,111222CF AP PC m ∴===, 1122PF m m m ∴=-=,1322PE BE AF m m m ===+=, 在Rt PEF 中,由222PF EF PE +=可得22213()8()22m m +=,解得:42(m =负值舍去); 综上,m 的值为855或42; ②如图3,过点D 作DG AC ⊥于点G ,延长GD 交BE 于点H ,BAP ≌BDP ,12BDP BAP SS AP AB ∴==⋅, 又12CDP S PC DG =⋅,且AP PC =, 1212CDPBDP PC DG SDG S AB AP AB ⋅∴==⋅, 当点D 在矩形ABEF 的内部时, 由5tan 12DH DBE BH ∠==可设5DH x =、12BH x =, 则13BD BA GH x ===,8DG GH DH x ∴=-=,则881313CDPBDP S DG x S AB x ===; 如图4,当点D 在矩形ABEF 的外部时,由5tan 12DH DBE BH ∠==可设5DH x =、12BH x =, 则13BD BA GH x ===,18DG GH DH x ∴=+=,则18181313 CDPBDPS DG xS AB x===,综上,CDP与BDP面积比为813或1813.【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.25.见解析【解析】【详解】证明:∵D、E是AB、AC的中点∴DE=BC,EC=AC∵D、F是AB、BC的中点∴DF=AC,FC=BC∴DE=FC=BC,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四边形DECF是菱形26.(1)14;(2)12;(3)x=1.【解析】【分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=14;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=612=12;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95, ∴34x x ++ =0.95, 解得:x=1.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.27.:(1) 30º;(2)ABCD S 梯形=【解析】分析:(1)由已知条件易得∠ABC=∠A=60°,结合BD 平分∠ABC 和CD ∥AB 即可求得∠CDB=30°;(2)过点D 作DH ⊥AB 于点H ,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,式求出梯形ABCD 的面积了.详解:(1) ∵在梯形ABCD 中,DC ∥AB ,AD =BC ,∠A =60°,∴∠CBA=∠A=60º,∵BD 平分∠ABC ,∴∠CDB=∠ABD=12∠CBA=30º, (2)在△ACD 中,∵∠ADB=180º–∠A –∠ABD=90º.∴BD=AD tan ⋅A=2tan60º过点D 作DH ⊥AB ,垂足为H ,∴AH=AD sin ⋅A=2sin60º∵∠CDB=∠CBD=12∠CBD=30º, ∴DC=BC=AD=2∵AB=2AD=4∴()(ABCD 11S AB CD DH 4222=+⋅=+=梯形.点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.。

河北省廊坊市2019-2020学年中考数学一模考试卷含解析

河北省廊坊市2019-2020学年中考数学一模考试卷含解析

河北省廊坊市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0.555×104 B .5.55×103 C .5.55×104 D .55.5×1032.下列运算正确的是( )A .x 2•x 3=x 6B .x 2+x 2=2x 4C .(﹣2x )2=4x 2D .( a+b )2=a 2+b 23.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +9 4.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠CAD=2.其中正确的结论有( )A .4个B .3个C .2个D .1个5.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD =2,BC =5,则△ABC 的周长为( )A .16B .14C .12D .106.计算(x -l)(x -2)的结果为( )A .x 2+2B .x 2-3x +2C .x 2-3x -3D .x 2-2x +27.二次函数2y ax bx c =++()0a ≠的图象如图所示,则下列各式中错误的是( )A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=08.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.59.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=2:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有()A.2个B.3个C.4个D.5个10.下列计算正确的是()A.a3•a3=a9 B.(a+b)2=a2+b2 C.a2÷a2=0 D.(a2)3=a611.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=12∠ACD D.∠A=12∠BOD12.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)14.8的立方根为_______.15.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ABC.V 求作:ABC V 的内切圆.小明的作法如下:如图2,()1作ABC ∠,ACB ∠的平分线BE 和CF ,两线相交于点O ;()2过点O 作OD BC ⊥,垂足为点D ;()3点O 为圆心,OD 长为半径作O.e 所以,O e 即为所求作的圆.请回答:该尺规作图的依据是______.16.若一次函数y=kx ﹣1(k 是常数,k≠0)的图象经过第一、三、四象限,则是k 的值可以是_____.(写出一个即可).17.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.18.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm ),计算出这个立体图形的表面积.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.20.(6分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.21.(6分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.22.(8分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A (2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.23.(8分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)△ABC的面积等于_____;(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.24.(10分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.25.(10分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1 图2 图3(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D ,G 三点共线. 易证△AFG ≅ ,故EF ,BE ,DF 之间的数量关系为 ;(2)类比引申如图2,在图1的条件下,若点E ,F 由原来的位置分别变到四边形ABCD 的边CB ,DC 的延长线上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系,并给出证明. (3)联想拓展如图3,在△ABC 中,∠BAC=90°,AB=AC ,点D ,E 均在边BC 上,且∠DAE=45°. 若BD=1,EC=2,则DE 的长为 .26.(12分)解不等式()()41223x x ---> ,并把它的解集表示在数轴上.27.(12分)如图,在菱形ABCD 中,E 、F 分别为AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G ,求证:点G 在BD 上.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:5550=5.55×1. 故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C【解析】【分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A 、x 2•x 3=x 5,故A 选项错误;B 、x 2+x 2=2x 2,故B 选项错误;C 、(﹣2x)2=4x 2,故C 选项正确;D 、( a+b)2=a 2+2ab+b 2,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键3.D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x 2-6x+9=(x-3)2.故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法.4.A【解析】【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②正确.由AD ∥BC ,推出△AEF ∽△CBF ,推出AE BC =AF CF ,由AE=12AD=12BC ,推出AF CF =12,即CF=2AF ;③正确.只要证明DM 垂直平分CF ,即可证明;④正确.设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有 b a =2a b,即a ,可得tan∠CAD=CDAD=2ba=22.【详解】如图,过D作DM∥BE交AC于N.∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFCF.∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF.∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=2a,∴tan∠CAD=CDAD=2ba=22.故④正确.故选A.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.5.B【解析】【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.6.B【解析】【分析】根据多项式的乘法法则计算即可.【详解】(x -l)(x -2)= x 2-2x -x +2= x 2-3x +2.故选B.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.7.B【解析】【分析】根据二次函数的图象与性质逐一判断即可.【详解】解:由图象可知抛物线开口向上,∴0a >,∵对称轴为1x =, ∴12b a-=, ∴20b a =-<,∴20a b +=,故D 正确,又∵抛物线与y 轴交于y 轴的负半轴,∴0c <,∴0abc >,故A 正确;当x=1时,0y <,即0a b c ++<,故B 错误;当x=-1时,0y >即0a b c -+>,∴a c b+>,故C正确,故答案为:B.【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.8.D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D9.C【解析】【分析】由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否. 【详解】解:由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;∵△AEF是等腰直角三角形,有:1,故此选项②正确;∵△AEF与△AHF不相似,∴AF2=FH·FE不正确.故此选项③错误,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此选项⑤正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.10.D.【解析】试题分析:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D考点:整式的混合运算11.D【解析】【分析】根据垂径定理判断即可.【详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=12∠BOD.故选D.【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π. 故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.14.2.【解析】【分析】【详解】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.15.到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】【分析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.16.1【解析】【分析】由一次函数图象经过第一、三、四象限,可知k >0,﹣1<0,在范围内确定k 的值即可.【详解】解:因为一次函数y=kx ﹣1(k 是常数,k≠0)的图象经过第一、三、四象限,所以k >0,﹣1<0,所以k 可以取1.故答案为1.【点睛】根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.17.18块(4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块,第n个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.18.100 mm1【解析】【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【详解】根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,下面的长方体长8mm,宽6mm,高1mm,∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案为100 mm1.【点睛】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.20.见解析【解析】【分析】【详解】证明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC 和△DAE 中,∵CAB ADE{AB DA B DAE∠=∠=∠=∠,∴△ABC ≌△DAE (ASA ).∴BC=AE .【点睛】根据两直线平行,内错角相等求出∠CAB=∠ADE ,然后利用“角边角”证明△ABC 和△DAE 全等,再根据全等三角形对应边相等证明即可.21.(1)y=x2+2x ﹣3;(2)258;(3)详见解析. 【解析】试题分析:(1)先利用抛物线的对称性确定出点B 的坐标,然后设抛物线的解析式为y=a (x+3)(x-1),将点D 的坐标代入求得a 的值即可;(2)过点E 作EF ∥y 轴,交AD 与点F ,过点C 作CH ⊥EF ,垂足为H .设点E (m ,m 2+2m-3),则F (m ,-m+1),则EF=-m 2-3m+4,然后依据△ACE 的面积=△EFA 的面积-△EFC 的面积列出三角形的面积与m 的函数关系式,然后利用二次函数的性质求得△ACE 的最大值即可;(3)当AD 为平行四边形的对角线时.设点M 的坐标为(-1,a ),点N 的坐标为(x ,y ),利用平行四边形对角线互相平分的性质可求得x 的值,然后将x=-2代入求得对应的y 值,然后依据2y a +=052+,可求得a 的值;当AD 为平行四边形的边时.设点M 的坐标为(-1,a ).则点N 的坐标为(-6,a+5)或(4,a-5),将点N 的坐标代入抛物线的解析式可求得a 的值.试题解析:(1)∴A(1,0),抛物线的对称轴为直线x =-1,∴B(-3,0),设抛物线的表达式为y =a(x +3)(x -1),将点D(-4,5)代入,得5a =5,解得a =1,∴抛物线的表达式为y =x 2+2x -3;(2)过点E 作EF ∥y 轴,交AD 与点F ,交x 轴于点G ,过点C 作CH ⊥EF ,垂足为H.设点E(m ,m 2+2m -3),则F(m ,-m +1).∴EF =-m +1-m 2-2m +3=-m 2-3m +4.∴S△ACE=S△EFA-S△EFC=12EF·AG-12EF·HC=12EF·OA=-12(m+32)2+258.∴△ACE的面积的最大值为258;(3)当AD为平行四边形的对角线时:设点M的坐标为(-1,a),点N的坐标为(x,y).∴平行四边形的对角线互相平分,∴12x-+=()142+-,2y a+=052+,解得x=-2,y=5-a,将点N的坐标代入抛物线的表达式,得5-a=-3,解得a=8,∴点M的坐标为(-1,8),当AD为平行四边形的边时:设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,∴M(-1,16),将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,∴M(-1,26),综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.22.(1) B(-1.2);(2) y=57x?66x-;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA 解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB 为等腰三角形,∴AO=BO ,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD ,在△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ),∵A (2,1),∴OD=AC=1,BD=OC=2,∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==, ∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP ,∴可知点P 在线段OA 的下方,过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.6 作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G【解析】【分析】(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.【详解】解:(1)4×3÷2=6,故△ABC的面积等于6.(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG 即为所求正方形.故答案为:6,作出∠ACB 的角平分线交AB 于F,再过F 点作FE ⊥AC 于E,作FG ⊥BC 于G .【点睛】本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.24.(1)AD 2=AC•CD .(2)36°.【解析】试题分析:(1)通过计算得到=,再计算AC·CD ,比较即可得到结论;(2)由,得到,即,从而得到△ABC ∽△BDC ,故有,从而得到BD=BC=AD ,故∠A=∠ABD ,∠ABC=∠C=∠BDC .设∠A=∠ABD=x ,则∠BDC=2x ,∠ABC=∠C=∠BDC=2x ,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴==.∵AC=1,∴CD==,∴;(2)∵,∴,即,又∵∠C=∠C ,∴△ABC ∽△BDC ,∴,又∵AB=AC ,∴BD=BC=AD ,∴∠A=∠ABD ,∠ABC=∠C=∠BDC .设∠A=∠ABD=x ,则∠BDC=∠A+∠ABD=2x ,∴∠ABC=∠C=∠BDC=2x ,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.25.(1)△AFE. EF=BE+DF.(2)BF=DF-BE ,理由见解析;(35【解析】试题分析:(1)先根据旋转得:90ADG A ∠=∠=o ,计算180FDG ∠=︒,即点F D G 、、共线,再根据SAS 证明△AFE ≌△AFG ,得EF=FG ,可得结论EF=DF+DG=DF+AE ;(2)如图2,同理作辅助线:把△ABE绕点A逆时针旋转90o至△ADG,证明△EAF≌△GAF,得EF=FG,所以EF=DF−DG=DF−BE;(3)如图3,同理作辅助线:把△ABD绕点A逆时针旋转90o至△ACG,证明△AED≌△AEG,得DE EG=,先由勾股定理求EG的长,从而得结论.试题解析:(1)思路梳理:如图1,把△ABE绕点A逆时针旋转90o至△ADG,可使AB与AD重合,即AB=AD,由旋转得:∠ADG=∠A=90o,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=90o+90o=180o,即点F. D. G共线,∵四边形ABCD为矩形,∴∠BAD=90o,∵∠EAF=45o,∴904545BAE FAD∠+∠=-=o o o,∴45FAD DAG FAG∠+∠=∠=o,∴45EAF FAG∠=∠=o,在△AFE和△AFG中,∵AE AGEAF FAG AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案为:△AFE,EF=DF+AE;(2)类比引申:如图2,EF=DF−BE,理由是:把△ABE绕点A逆时针旋转90o至△ADG,可使AB与AD重合,则G在DC上,由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=90o,∴∠BAE+∠BAG=90o,∵∠EAF=45o,∴∠FAG=90o−45o=45o,∴∠EAF=∠FAG=45o,在△EAF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF−DG=DF−BE;(3)联想拓展:如图3,把△ABD绕点A逆时针旋转90o至△ACG,可使AB与AC重合,连接EG,由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=90o,AB=AC,∴∠B=∠ACB=45o,∴∠ACG=∠B=45o,∴∠BCG=∠ACB+∠ACG=45o+45o=90o,∵EC=2,CG=BD=1,由勾股定理得:22125EG=+,∵∠BAD=∠CAG ,∠BAC=90o ,∴∠DAG=90o ,∵∠BAD+∠EAC=45o ,∴∠CAG+∠EAC=45o =∠EAG ,∴∠DAE=45o ,∴∠DAE=∠EAG=45o ,∵AE=AE ,∴△AED ≌△AEG , ∴ 5.DE EG ==26.x <5;数轴见解析【解析】【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.【详解】移项,得 ()1x 213-<, 去分母,得 x 23-<,移项,得x 5<,∴不等式的解集为x 5<,在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.27.见解析【解析】【分析】先连接AC ,根据菱形性质证明△EAC ≌△FCA,然后结合中垂线的性质即可证明点G 在BD 上.【详解】证明:如图,连接AC.∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA, ∴△EAC≌△FCA,∴∠ECA=∠FAC, ∴GA=GC,∴点G在AC的中垂线上,∴点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.。

河北省廊坊广阳区七校联考2020届数学中考模拟试卷

河北省廊坊广阳区七校联考2020届数学中考模拟试卷

河北省廊坊广阳区七校联考2020届数学中考模拟试卷一、选择题1.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣5,0),对称轴为直线x =﹣2,给出四个结论:①abc >0;②4a+b =0;③若点B(﹣3,y 1)、C(﹣4,y 2)为函数图象上的两点,则y 2<y 1;④a+b+c =0.其中,正确结论的个数是( )A.1B.2C.3D.42.如图是将一多边形剪去一个角,则新多边形的内角和( )A .比原多边形少180°B .与原多边形一样C .比原多边形多360°D .比原多边形多180°3.若关于x 的一元一次不等式组()2132x x x m⎧-<-⎨>⎩的解集是5x >,则实数m 的取值范围是( ) A .5≤mB .5m <C .5m ≥D .5m >4.若反比例函数2k y x-=的图象经过点(1,2),则k 的值为( ) A.2-B.0C.2D.45.在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x ,然后从余下的两张中再抽出一张,记为y ,则点(x ,y )在直线y=-x-1上的概率为( ) A.12B.13C.23D.16.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出( )A .50元B .100元C .150元D .200元7.如图,△ABC 中,下面说法正确的个数是( )个. ①若O 是△ABC 的外心,∠A =50°,则∠BOC =100°; ②若O 是△ABC 的内心,∠A =50°,则∠BOC =115°; ③若BC =6,AB+AC =10,则△ABC 的面积的最大值是12;④△ABC 的面积是12,周长是16,则其内切圆的半径是1.A .1B .2C .3D .48.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:A .众数是60B .平均数是21C .抽查了10个同学D .中位数是509.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45°,侧得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 为( )A .B .C .D .105的大小关系是( )A5B 5C .5D .511.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是112-=﹣1,﹣1的差倒数是()111--=12,已知a 1=﹣13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,以此类推,a 2009的值为( ) A .﹣13B .34C .4D .4312.如图,下列条件中,不能判定//AD BC 的是( )A.12∠=∠B.180BAD ADC ︒∠+∠=C.34∠=∠D.180ADC DCB ︒∠+∠=二、填空题13.已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 12+x 22<a 2+b 2;④当a+b =ab 时,方程有一根为1.则正确结论的序号是_____.(填上你认为正确结论的所有序号)14.如图,在Rt ABC ∆中,90C ∠=︒,AC =4BC =,点D 是AC 的中点,点F 是边AB 上一动点,沿DF 所在直线把ADF ∆翻折到A DF '∆的位置,若线段A D '交AB 于点E ,且BA E '∆为直角三角形,则BF 的长为______.15.在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣4,3),C (﹣1,1).写出各点关于原点的对称点的坐标_____,_____,_____.16.函数y=11x-x 的取值范围是_____. 17.如图,在矩形ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若17DG GA =,则AD AB=__.18.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题19.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨? 20.完成下列表格,并回答下列问题,的值逐渐,的值逐渐,渐.(2)sin30°=cos ,sin =cos60°;(3)sin230°+cos230°=;(4)sin30tancos 30︒︒=;(5)若sinα=cosα,则锐角α=.21.已知a+1a=3(a>1),求242241111()()()()a a a aa a a a-⨯+⨯+⨯-的值.22.如图,大楼AC的一侧有一个斜坡,斜坡的坡角为30°.小明在大楼的B处测得坡面底部E处的俯角为33°,在楼顶A处测得坡面D处的俯角为30°.已知坡面DE=20m,CE=30m,点C,D,E在同一平面内,求A,B两点之间的距离.(结果精确到1mcos33°≈0.84,tan33°≈0.65)23.如图,是由边长为1的小正方形构成的网格,点A,B是格点,根据要求,选择格点,画出符合要求的图形.(1)在图1、图2中分别找出符合要求的1个格点C,并画出相应的格点三角形,使得∠ACB=45°.(2)在图3中画出符合要求的1个格点D,并画出相应的格点三角形使得tan∠ADB=12,并求出△ABD的面积.24.据新华社北京2019年4月10日报道:神秘天体黑洞终于被人类 “看到”了。

2020年河北省廊坊市中考数学一模试卷(带答案解析)

2020年河北省廊坊市中考数学一模试卷(带答案解析)

人民币,720 亿用科学记数法可表示为___元.( )
Байду номын сангаас
A.7.2×1010
B.0.72×1011
C.7.2×1011
D.7.2×109
4.(3 分)(2020•廊坊一模)为了增强学生体质,学校发起评选“健步达人”活动,小明用
计步器记录自己一个月(30 天)每天走的步数,并绘制成如下统计表:
步数(万步)
A.7 海里
B.14 海里
C.7 海里
10.(3 分)(2020•廊坊一模)如果 a﹣3b=0,那么代数式(a﹣
是( )
A.
B.
C.
D.14 海里 )÷
的值
D.1
11.(3 分)(2020•廊坊一模)关于 x 的不等式组
有三个整数解,则 a 的取
值范围是( )
A.
B.
C.
D.
12.(2 分)(2020•廊坊一模)将若干个大小相等的正五边形排成环状,如图所示是前 3 个 五边形,要完成这一圆环还需_______个正五边形( )
的坐标为(1,1),弧 是以点 B 为圆心,BA 为半径的圆弧;
是以点 O 为圆心,
OA1 为半径的圆弧;
是以点 C 为圆心,CA2 为半径的圆弧;
是以点 A 为圆心,
AA3 为半径的圆弧,继续以点 B,O,C,A 为圆心按上述作法得到的曲线 AA1A2A3A4A5…
称为正方形的“渐开线”,则点 A4 的坐标是
为使游戏公平,凳子应放的最恰当的位置是△ABC 的( )
A.三条高的交点
B.重心
C.内心
D.外心
6.(3 分)(2020•廊坊一模)在△ABC 中,点 D 是边 BC 上的点(与 B,C 两点不重合),

【精选3份合集】河北省廊坊市2020年中考一模数学试卷有答案含解析

【精选3份合集】河北省廊坊市2020年中考一模数学试卷有答案含解析

A.13
B.14
C.15
D.16
解析:C
【解析】
【详解】
的值,确定出两直角边,即可求出三角形面积.
【详解】
如图所示,
由 tanA= ,
设 BC=12x,AC=5x,根据勾股定理得:AB=13x, 由题意得:12x+5x+13x=60, 解得:x=2, ∴BC=24,AC=10, 则△ABC 面积为 120, 故选 D. 【点睛】 此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键. 7.一个六边形的六个内角都是 120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的 周长是( )
∠GOE=90°-∠AOG=90°-30°=60°,
∴△OGE 是等边三角形,故(3)正确;
设 AE=2a,则 OE=OG=a,
C.3
D.4
由勾股定理得,AO= AE2 OE2 = 2a2 a2 = 3a ,
∵O 为 AC 中点,
∴AC=2AO=2 3a ,
∴BC= 1 AC= 3a , 2
在 Rt△ABC 中,由勾股定理得,AB=
一、选择题
1.如图,一次函数 y1
ax
b 和反比例函数
y2
k x
的图象相交于
A,
B
两点,则使
y1
y2 成立的
x

值范围是( )
A. 2 x 0 或 0 x 4
B. x 2 或 0 x 4
C. x 2 或 x 4
D. 2 x 0 或 x 4
解析:B
【解析】
【分析】
根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.

2020年河北省廊坊市广阳区中考数学一模试卷(含答案解析)

2020年河北省廊坊市广阳区中考数学一模试卷(含答案解析)

2020年河北省廊坊市广阳区中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.15的相反数为()A. 5B. −15C. 15D. −52.下列四个图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个3.原子的一般直径是0.00000001cm,这个数据可以用科学记数法表示为()A. 1×10−8B. 1−8C. 1×108D. 184.如图,AB//CD,∠1=30°,则∠2的大小是()A. 30°B. 120°C. 130°D. 150°5.若|3−a|+√b+6=0,则a+b的值是()A. −9B. −3C. 3D. 96.若⊙O的直径为9,圆心O到直线m的距离为6,则直线m与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定7.如图所示的三视图表示的几何体是()A.B.C.D.8.如图,已知△ABC(AC<BC),用尺规在BC边上确定一点P。

使PA+PC=BC,则下列四种不同的作图方法中正确的是A. B.C. D.9.下列运算正确的是()A. (3x2)3=9x6B. x6÷x2=x4C. (ab)3=ab3D. (a−b)2=2a2−4ab+b210.在反比例函数y=1−k的图象的任一支上,y都随x的增大而增大,则k的值可以是()xA. −1B. 0C. 1D. 211.下列叙述正确的是()A. “如果a,b是实数,那么a+b=b+a”是不确定事件B. 某种彩票的中奖概率为1,是指买7张彩票一定有一张中奖7C. 为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适D. “某班50位同学中恰有2位同学生日是同一天”是随机事件12.如图,25的倒数在数轴上表示的点位于下列两个点之间正确的是()A. 点E和点FB. 点F和点GC. 点G和点HD. 点H和点I13.一个家庭有两个孩子,两个都是女孩的概率是()A. 12B. 13C. 14D. 无法确定14.九年级(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x千米/时,根据题意列方程得()A. 150x −30=1501.2xB. 150x+30=1501.2xC. 150x −12=1501.2xD. 150x+12=1501.2x15.如图1所示,在等边△ABC中,点D是BC边的中点,点P为AB边上的一个动点,设AP=x,DP=y,若y与x的关系图象如图2所示,则等边△ABC的面积为()A. 2√3B. 4√3C. 3√3D. 416.如图,在平行四边形ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E.连接BE,若AE=AB,则∠EBC的度数为()A. 30°B. 40°C. 60°D. 80°二、填空题(本大题共3小题,共10.0分)17.64的平方根是______.18.如图,AB为⊙O直径,点C、D在⊙O上,已知∠BOC=70°,AD//OC,则∠AOD=______度.19.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是√5,且AB=BC,则A点表示的数是______.三、计算题(本大题共1小题,共8.0分)20.计算:(x−2)(x2+2x+4)−2(x+1)2.四、解答题(本大题共6小题,共60.0分)21.如图,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:AP是∠BAC的角平分线.22.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的距离(即AB的长).(结果保留根号)23.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动(k>0)的图象点(F不与A,B重合),过点F的反比例函数y=kx与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积为2.324.学校开展“阳光体育”活动,学生会为了解同学对四项球类运动的喜好程度:A.足球、B.乒乓球、C.篮球、D.羽毛球.随机抽取了一部分同学进行调查(每位同学只选择一个喜欢的项目),并将调查结果绘制成如下两个不完整的统计图,如图1,图2,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了________名同学;(2)在图1扇形统计图中,项目“D”的圆心角的度数是________度;(3)求喜欢篮球的同学占被抽查人数的百分比,并补全频数分布条形统计图.25.如图,在四边形ABCD中,AD//BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上是任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)求sin B的值;(2)若P是AB的中点,求点E所经过的路径长EQ⌢及PE扫过的面积(结果保留π);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.26.如图,抛物线y=−x2+bx+c经过A(−1,0),C(0,3)两点,点B是抛物线与x轴的另一个交点.点M是抛物线上一动点,过点M作MD⊥x轴,垂足为点D,交直线BC于点N,连结CM.设点M 的横坐标为m,MN的长度为d.(1)求抛物线的解析式;(2)当0<m<3时,求d关于m的函数关系式,并求出d的最大值.【答案与解析】1.答案:B解析:解:15的相反数为−15.故选:B .依据相反数的定义求解即可.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键. 2.答案:B解析:【试题解析】本题考查了轴对称与中心对称图形.判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.根据轴对称图形与中心对称图形的概念对各图形进行逐一判断即可.解:前两个图形既是轴对称图形,也是中心对称图形;第三个图是轴对称图形,不是中心对称图形;第四个图是中心对称图形,不是轴对称图形.因此既是轴对称图形,又是中心对称图形的有2个.故选B .3.答案:A解析:解:0.00000001=1×10−8.故选:A .绝对值小于1的负数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.解析:解:如图,∵AB//CD,∴∠1=∠CEF=30°,又∵∠2+∠CEF=180°,∴∠2=180°−30°=150°,故选:D.依据AB//CD,即可得到∠1=∠CEF=30°,再根据∠2+∠CEF=180°,即可得到∠2=180°−30°= 150°.本题主要考查了平行线的性质,两直线平行,同位角相等.5.答案:B解析:直接利用绝对值的性质以及算术平方根的非负性得出a,b的值,进而得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.【详解】解:∵|3−a|+√b+6=0,∴3=a,b=−6,则a+b=−3.故选B.6.答案:C解析:本题考查了直线与圆的位置关系:判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.先确定圆的半径,然后根据直线与圆的位置关系得判断方法可判断直线m与⊙O的位置关系.解:∵⊙O的直径为9,即圆的半径为4.5,圆心O到直线m的距离为6,∴点到直线的距离大于圆的半径,∴直线m与⊙O相离.故选C.解析:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选B.由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.主视图和左视图的大致轮廓为长方形的几何体为柱体.8.答案:D解析:此题主要考查了复杂作图,正确掌握线段垂直平分线的性质是解题关键,直接利用线段垂直平分线的性质作出AC的垂直平分线进而得出答案.解:用尺规在BC上确定一点P,使PA+PC=BC,∵PB+PC=BC,∴就是要作PA=PB,如图所示:,先做出AB的垂直平分线,即可得出PA=PB,即可得出PB+PC=PA+PC=BC.故选D.9.答案:B解析:解:A、(3x2)3=27x6,故此选项错误;B、x6÷x2=x4,正确;C、(ab)3=a3b3,故此选项错误;D、(a−b)2=a2−2ab+b2,故此选项错误;故选:B.直接利用积的乘方运算法则以及完全平方公式和同底数幂的除法运算法则分别化简得出答案. 此题主要考查了积的乘方运算以及完全平方公式和同底数幂的除法运算,正确掌握相关运算法则是解题关键.10.答案:D解析:本题考查了反比例函数的性质以及解一元一次不等式,解题的关键是得出1−k <0.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质找出关于k 的不等式是关键.根据反比例函数的单调性结合反比例函数的性质可得出关于k 的一元一次不等式,解不等式即可得出k 的取值范围,再结合四个选项即可得出结论.解:∵在反比例函数y =1−k x 的图象的任一支上,y 都随x 的增大而增大,∴1−k <0,解得:k >1.故选D .11.答案:D解析:解:A 、“如果a ,b 是实数,那么a +b =b +a ”是必然事件,选项错误;B 、某种彩票的中奖概率为17,是指中奖的机会是17,故选项错误;C 、为了了解一批炮弹的杀伤力,调查具有破坏性,应采用抽样调查的方式比较合适;D 、正确.故选D .根据确定事件、随机事件的定义,以及概率的意义即可作出判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 12.答案:C解析:本题考查倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 根据倒数的定义求出25的倒数,再判断在数轴上的位置即可.解:25的倒数是 52,2<52<3. ∴ 52在G 和H 之间.故选C . 13.答案:C解析:解:画树状图得:∵共有4种等可能的结果,两个都是女孩的有1种情况,∴两个都是女孩的概率是:14.故选:C .首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个都是女孩的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 14.答案:C解析:解:设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时,根据题意可得:150x −12=1501.2x .故选:C .设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可.本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.15.答案:B解析:本题考查动点问题的函数图象,三角形的面积,等边三角形的性质的有关知识.解答本题的关键是明确题意,求出等边三角形的边长,利用数形结合的思想解答.根据函数图象可以求得BC的长,从而可以求得△ABC的面积.解:由图象可得,点D到AB的最短距离为√3,√BD2−(BD2)2=√3,∴BD=2,∵点D是BC的中点,∴BC=4,△ABC的高ℎ=√BC2−(BC2)2=2√3∴△ABC的面积是:2√3×42=4√3,故选B.16.答案:A解析:此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理,由平行四边形的性质得出∠ABC=∠D=100°,AB//CD,得出∠BAD=180°−∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB//CD,∴∠BAD=180°−∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°−40°)÷2=70°,∴∠EBC=∠ABC−∠ABE=30°.故选A.17.答案:±8解析:解:∵(±8)2=64,∴64的平方根是±8.故答案为:±8.直接根据平方根的定义即可求解.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.答案:40解析:此题比较简单,主要考查了平行线的性质、圆周角定理,三角形内角和定理,等腰三角形的性质,综合利用它们即可解决问题.首先由AD//OC可以得到∠BOC=∠DAO,又由OD=OA得到∠ADO=∠DAO,由此即可求出∠AOD的度数.解:∵AD//OC,∴∠BOC=∠DAO=70°,又∵OD=OA,∴∠ADO=∠DAO=70°,∴∠AOD=180°−70°−70°=40°.19.答案:2−√5解析:解:设A点表示x,∵B点表示的数是1,C点表示的数是√5,且AB=BC,∴1−x=√5−1.解得:x=2−√5故答案为:2−√5.设A点表示x,再根据数轴上两点间距离的定义即可得出结论.本题考查的是数轴,熟知数轴上两点间距离公式是解答此题的关键.20.答案:解:原式=x³+2x²+4x−2x²−4x−8−2x²−4x−2=x³−2x²−4x−10.解析:本题主要考查整式的混合运算.先用多项式乘以多项式的乘法法则以及完全平方公式去括号,再合并同类项.21.答案:解:∵PE⊥AB,PF⊥AC,∴∠AFP=∠AEP=90°.在Rt△AFP与Rt△AEP中,{AP=APAF=AE,∴Rt△AFP≌Rt△AEP(HL),∴PF=PE,∴AP是∠BAC的角平分线.解析:根据HL定理得出Rt△AFP≌Rt△AEP,由此可得出结论.本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.22.答案:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=1OA=2km.2在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB−∠AOB=75°−30°=45°,∴BD=AD=2km,∴AB=√2AD=2√2km.故该船航行的距离为2√2km.解析:本题考查了解直角三角形的应用−方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.过点A作AD⊥OB于D,先解Rt△AOD,得出AD=12OA=2km,再由△ABD是等腰直角三角形得出BD=AD=2km,则AB=√2AD=2√2km.23.答案:解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=kx(k>0)的图象上,∴k=3,∴该函数的解析式为y=3x;(2)由题意知E,F两点坐标分别为E(k2,2),F(3,k3),∴S△EFA=12AF⋅BE=12×13k(3−12k),=12k−112k2∵△EFA的面积为23.∴12k−112k2=23.整理,得k2−6k+8=0,解得k1=2,k2=4,∴当k的值为2或4时,△EFA的面积为23.解析:(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的方程,通过解方程求得k的值即可.此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,熟练掌握待定系数法是解本题的关键.24.答案:解:(1)100;(2)36;(3)100−30−40−10=20(人),20÷100=20%;补图如下:解析:本题考查条形统计图和扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.(1)根据A组有30人,对应的百分比是30%,据此即可求得总人数,调查的总人数是30÷30%=100(名),故答案是100.(2)利用360°乘以对应的比例即可求得D组对应的扇形的圆心角度数,“D”部分所对应的圆心角等于360°×10100=36°.(3)利用总人数减去其它组的人数即可求得C组的人数,再利用C组人数÷总人数即可得喜欢篮球的同学占被抽查人数的百分比,根据C组人数补全频数分布条形统计图,见答案.25.答案:解:(1)如图1,作AM⊥BC于M,DN⊥BC于N,∵AD//BC,∴AM=DN,∵AB=CD=13,∠AMB=∠DNC=90°,∴Rt△AMB≌Rt△DNC(HL),∴BM=CN=(21−11)÷2=5,∴AM=√AB2−BM2=√132−52=12,∴sinB=AMAB =1213;(2)如图1,连接AC,∵P是AB的中点,E是BC的中点,∴PE是△ABC的中位线,∴PE=12AC,∵MC=21−5=16,AM=12,∴AC=√122+162=20,∴PE=10,∴点E所经过的路径EQ⏜的长为:90π×10180=5π,PE扫过的面积为:90π×102360=25π;(3)如图2,当点Q落在直线AB上时,∵sinB=1213,∴设PE=12m.则BE=13m=212,∴m=2126,∴BP=5m=10526,如图3,当点Q落在DA的延长线上时,过P作PH⊥AD交DA的延长线于H,延长HP交BC于G,设BP=x,则AP=13−x∵AD//BC,∴∠B=∠HAP,∴PH=1213(13−x),BG=513x,∵∠PGE=∠QHP=90°,∠GPE=90°−∠HPQ=∠HQP,PE=PQ,∴△PGE≌△QHP(AAS),∴EG=PH,∴212−513x=1213(13−x),解得BP=x=3914.解析:本题考查三角形全等的判定和性质,锐角三角函数的定义,弧长和扇形面积的计算。

河北省廊坊市2020版中考数学一模试卷(II)卷

河北省廊坊市2020版中考数学一模试卷(II)卷

河北省廊坊市2020版中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) |﹣9|的值是()A . 9B . -9C .D . -2. (2分)(2020·盐城模拟) 下列等式不成立的是()A .B .C .D .3. (2分)(2016·衢州) 据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A . 3.19×105B . 3.19×106C . 0.319×107D . 319×1064. (2分)下列事件中,是必然事件是()A . 一个星期有9天B . 小红在元月调考中,数学会获得满分120分C . 今天是星期一,明天是星期二D . 明天武汉市一定下雨5. (2分)(2020·椒江模拟) 如图是由两个小正方体和一个圆锥组成的立体图形,其主视图是()A .B .C .D .6. (2分)(2020·北辰模拟) 下面的图形,既可以看作是轴对称图形,又可以看作是中心对称图形的是().A .B .C .D .7. (2分) (2015九上·宁波月考) 如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A . 30≤x≤60B . 30≤x≤90C . 30≤x≤120D . 60≤x≤1208. (2分)已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A,B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2 ,一次函数的解析式()A . y1=x﹣6B . y1=x+6C . y1=x﹣5D . y1=x+5二、填空题 (共10题;共10分)9. (1分)若x的平方根是 4,则的值是________.10. (1分)(2019·镇海模拟) 若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为________11. (1分)(2020·青羊模拟) 已知的值为0,则 ________.12. (1分)在中,,,它的内切圆半径为,则的周长为________13. (1分)如果、是两个不相等的实数,且满足,,那么代数式=________.14. (1分) (2018九上·武汉期末) 如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=________.15. (1分)(2011·宿迁) 如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为________.16. (1分)(2017·磴口模拟) 若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长________.17. (1分) (2019六下·哈尔滨月考) 观察下列一组数,按规律在横线上填写适当的数,,﹣,,﹣,……,第10个数是________.18. (1分) (2018八上·河南期中) 若点 P(﹣3,a),Q(2,b)在直线 y=﹣3x+c 的图象上,则 a 与 b 的大小关系是________.三、解答题 (共10题;共99分)19. (10分) (2016八下·嘉祥期中) 计算(1)(2015﹣π)0+| ﹣2|+ +()﹣1;(2)先化简,再求值:(a﹣)(a+ )﹣a(a﹣6),其中a= + .20. (10分) (2019七下·哈尔滨期中)(1)解不等式,并在数轴上表示数集:(2)21. (11分) (2019七下·洛川期末) 某社区组织“献爱心手拉手”捐款活动.对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图和统计表(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.捐款户数分组统计表(1)本次调查了________户;(2)补全“捐款户数分组统计表”和“捐款户数分组统计图1”;(3)若该社区有2000户住户,请根据以上信息,估计全社区捐款不少于150元的户数.22. (18分)(2019·芜湖模拟) 在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是________.其中m=________,n=________.(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.23. (10分)(2019·山西模拟) 如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.(1)求证: .(2)若,,求DG的长.24. (5分) (2019七下·白水期末) 被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作。

河北省廊坊市2020版中考数学一模考试试卷C卷

河北省廊坊市2020版中考数学一模考试试卷C卷

河北省廊坊市2020版中考数学一模考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题选对得4分.) (共12题;共48分)1. (4分)实数-3的相反数是()A .B .C . -3D . 32. (4分) (2016八上·连州期末) 下面各式中,计算正确的是()A .B .C .D . (﹣1)3=﹣33. (4分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A .B .C .D .4. (4分) (2017七下·山西期末) 下列各式不能成立的是()A . (x =xB . xC . (xD . x5. (4分)关于分式,有下列说法,错误的有()个:(1)当x取1时,这个分式有意义,则a≠3;(2)当x=5时,分式的值一定为零;(3)若这个分式的值为零,则a≠﹣5;(4)当x取任何值时,这个分式一定有意义,则二次函数y=x2﹣4x+a与x轴没有交点.A . 0B . 1C . 2D . 36. (4分)(2018·宣化模拟) 如图,直线∥ ,直线与、都相交,如果∠1=50°,那么∠2的度数是()A . 50°B . 100°C . 130°D . 150°7. (4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有()A . a>0,b>0B . a>0,c>0C . b>0,c>0D . a,b,c都小于08. (4分) (2018八上·洛阳期末) 分式方程的解为()A . x=-2B . x=-3C . x=2D . x=39. (4分) (2018八上·抚顺期末) 已知关于x的分式方程 =1的解是非负数,则m的取值范围是()A . m 1B . m 1C . m -1旦m≠0D . m -110. (4分)如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P是切点,AB=12 ,OP=6,则大圆的半径长为()A . 6B . 6C . 6D . 1211. (4分)如图,点A是反比例函数y=-(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C 在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A . 1B . 3C . 6D . 1212. (4分)(2019·河南模拟) 在平面直角坐标系中,把一条抛物线先向上平移1个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6.则原抛物线的顶点坐标是()A .B .C .D .二、填空题:(本大题共6小题,共24分.) (共6题;共24分)13. (4分) (2019九下·江苏月考) 分解因式:2a2-2=________.14. (4分) (2020九上·南岗期末) 港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为________.15. (4分)分式方程的解法:(1)方程两边都乘________,去分母,化为________方程;(2)解这个________方程;(3) ________.16. (4分)(2017·老河口模拟) 如图,在△ABC中,AC=3cm,∠ACB=90°,∠ABC=60°,将△AB C绕点B 顺时针旋转至△A′BC′,点C′在直线AB上,则边AC扫过区域(图中阴影部分)的面积为________ cm2 .17. (4分)一元二次方程x2+bx+c=0的两根互为倒数,则c=________.18. (4分) (2017九上·浙江月考) 如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为: y=x−1 ,则tanA的值是________.三、解答题:本大题共7小题,共78分. (共7题;共78分)19. (10分)计算:(1)(x+3)2+x(x﹣6)(2)(x+1﹣)÷ .20. (10.0分)(2014·福州) 设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,α=________%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为________度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?21. (10分) (2015八下·成华期中) 如图,点A的坐标是(﹣2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.22. (10分)(2017·广陵模拟) 【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB,C为公路BD 上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D选在何处时,所用时间最短?【特例分析】若n=2,则时间t= + ,当a为定值时,问题转化为:在BC上确定一点D,使得AD+的值最小.如图②,过点C做射线CM,使得∠BCM=30°.(1)过点D作DE⊥CM,垂足为E,试说明:DE= ;(2)【问题解决】请在图②中画出所用时间最短的登陆点D′,并说明理由.(3)【模型运用】请你仿照“特例分析”中的相关步骤,解决图①中的问题(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等).(4)如图③,海面上一标志A到海岸BC的距离AB=300m,BC=300m.救生员在C点处发现标志A处有人求救,立刻前去营救,若救生员在岸上跑的速度都是6m/s,在海中游泳的速度都是2m/s,求救生员从C点出发到达A处的最短时间.23. (12分) (2018九上·永定期中) 如图,的内角平分线与外角平分线分别交及的延长线于点, .(1)求的度数;(2)若点为的中点,求证:.24. (12分)(2017·呼兰模拟) 如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣3a与x 轴交于A、B两点,与y轴交于点C,BO=CO.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一动点,连接AP,交y轴于点D,连接CP,设P点横坐标为t,△CDP的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点P作PE⊥x轴于点E,连接PB,过点A作AF⊥PB于点F,交线段PE于点G,若点H在x轴负半轴上,PH=2GE,点M(0,m)在y轴正半轴上,连接PM、PH,∠HPM=2∠BHP,PH=2PM,求m的值.25. (14.0分)(2017·连云港模拟) 在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(﹣3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动.(1)求该抛物线的解析式;(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12小题,每小题选对得4分.) (共12题;共48分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题:(本大题共6小题,共24分.) (共6题;共24分)13-1、14、答案:略15-1、15-2、15-3、16-1、17-1、18-1、三、解答题:本大题共7小题,共78分. (共7题;共78分) 19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年河北省廊坊市广阳区中考数学一模试卷一、选择题(本大题有16个小题共42分1-10小题各3分,11-16小题各2分,每小题给出的四个选项中只有一项符合题目要求请把正确选项写在答题纸对应的位置上)1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.估算+÷的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间3.港珠澳大桥是世界最长的跨海大桥整个大桥造价超过720亿元人民币,720亿用科学记数法可表示为___元.()A.7.2×1010B.0.72×1011C.7.2×1011D.7.2×1094.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步) 1.0 1.2 1.1 1.4 1.3天数335712在每天所走的步数这组数据中,众数和中位数分别是()A.1.3,1.1B.1.3,1.3C.1.4,1.4D.1.3,1.45.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点B.重心C.内心D.外心6.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形7.如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点DE为圆心,大于DE的长为半径作弧两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K使K和B在AC的两侧;所以BH就是所求作的高.其中顺序正确的作图步骤是()A.①②③④B.④③①②C.②④③①D.④③②①8.下列命题为假命题的是()A.若a=b,则a﹣2020=b﹣2020B.若a=b,则C.若a>b,则a2>abD.若a<b,则a﹣2c<b﹣2c9.如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A.7海里B.14海里C.7海里D.14海里10.如果a﹣3b=0,那么代数式(a﹣)÷的值是()A.B.C.D.111.关于x的不等式组有三个整数解,则a的取值范围是()A.B.C.D.12.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.913.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E 是半圆弧的三等分点,的长为,则图中阴影部分的面积为()A .B .C .D .14.若正整数按如图所示的规律排列则第十一行第五列的数字是( )A .121B .113C .115D .11715.如图,已知边长为4的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交∠BCD 的外角平分线于F ,设BE =x ,△ECF 的面积为y ,下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .16.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),给出以下五个结论:①AE =CF ;②∠APE =∠CPF ;③连接EF ,△EPF 是等腰直角三角形;④EF =AP ;⑤S 四边形AFPE =S △APC ,其中正确的有几个( )A.2个B.3个C.4个D.5个二、填空題(本大题3个小題,前两个小题每题3分,19题每空2分,共10分,请把相应答案写在答题纸上)17.已知a>0,那么=.18.分解因式:=.19.如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧;是以点C为圆心,CA2为半径的圆弧;是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A 为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,则点A4的坐标是,那么A4n+1的坐标为.三、解答题(本大题共7题共计68分解答应写出文字说明证明过程或演算步骤)20.(7分)观察下列等式:2×=2+,3×=3+,4×=4+,…(1)按此规律写出第5个等式;(2)猜想第n个等式,并说明等式成立的理由.21.(9分)如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状.并说明理由.22.(9分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率A a0.2B120.24C8bD200.4(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.23.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y =(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB ,求S △AOC ﹣S △BOC 的值;(3)点E 是x 轴上一点,且△AOE 是等腰三角形请直接写出满足条件的E 点的个数(写出个数即可,不必求出E 点坐标).24.(9分)例1:在等腰三角形ABC ,∠A =120°,求B 的度数.例2:在等腰三角形ABC 中,∠A =50°,求∠B 的度数.王老师启发同学们进行变式,小兰编了如下一题:变式等腰三角形ABC 中,∠A =70°,求∠B 的度数;(1)请你解答小兰的变式题;(2)解完(1)后,小兰发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A =x °;①当∠B 的度数唯一时请你探索x 的取值范围并用含x 的式子表示∠B 的度数;②当∠B 有三个不同的度数时请你探索x 的取值范围,并用含x 的式子表示∠B 的度数. 25.(11分)某种蔬菜的售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价﹣成本);(2)设每千克该蔬菜销售利润为P,请列出x与P之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.求4、5两个月的销售量分别是多少万千克?26.(12分)如图①.抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于A(﹣1,0)、B(3,0)、C三点.(1)求a和b的值;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD、CD,在对称轴左侧的抛物线上存在一点P,满足∠PBC=∠DBC,请求出点P的坐标;(3)如图②,在(2)的条件下将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B'O'C'在平移过程中,△B'O'C'与△BCD重叠部分的面积记为S,设平移的时问为t秒,请直接写出S与t之间的函数关系式(并注明自变量的取值范围).2020年河北省廊坊市广阳区中考数学一模试卷参考答案与试题解析一、选择题(本大题有16个小题共42分1-10小题各3分,11-16小题各2分,每小题给出的四个选项中只有一项符合题目要求请把正确选项写在答题纸对应的位置上)1.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.【点评】本题综合考查了中心对称图形及其作图的方法,学生做这些题时找对称点是关键.2.【分析】首先按照运算法则运算,再利用夹逼法估算即可.【解答】解:原式=2,∵2<3,∴4<5,故选:D.【点评】本题主要考查了无理数的估算,首先按照运算法则运算是解答此题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:720亿=7.2×1010,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】在这组数据中出现次数最多的是1.3,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【解答】解:在这组数据中出现次数最多的是1.3,即众数是1.3.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.3,所以中位数是1.3.故选:B.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.5.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:D.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.6.【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.【点评】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.7.【分析】根据直线外一点作已知直线的垂线的方法作BH⊥AC即可.【解答】解:用尺规作图作△ABC边AC上的高BH,做法如下:④取一点K使K和B在AC的两侧;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;①分别以点D、E为圆心,大于DE的长为半径作弧两弧交于F;②作射线BF,交边AC于点H;故选:B.【点评】此题主要考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.8.【分析】根据等式的性质、不等式的性质进行判断即可.【解答】解:A、若a=b,则a﹣2020=b﹣2020,是真命题;B、若a=b,则,是真命题;C、若a>b,当a>0时,则a2>ab;a<0时,a2<ab,是假命题;D、若a<b,则a﹣2c<b﹣2c,是真命题;故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解等式的性质、不等式的性质,属于基础定义,难度不大.9.【分析】过点B作BN⊥AM于点N,由已知可求得BN的长;再根据三角函数求BM的长.【解答】解:由已知得,AB=×28=14海里,∠A=30°,∠ABM=105°.过点B作BN⊥AM于点N.∵在直角△ABN中,∠BAN=30°∴BN=AB=7海里.在直角△BNM中,∠MBN=45°,则直角△BNM是等腰直角三角形.即BN=MN=7海里,∴BM===7海里.故选:A.【点评】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.10.【分析】根据分式的运算法则即可求出答案.【解答】解:当a﹣3b=0时,即a=3b∴原式=•=•===故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.11.【分析】先求出不等式组的解集,根据已知得出关于a的不等式组,求出不等式组的解集即可.【解答】解:∵解不等式①得:x>,8,解不等式②得:x<2﹣4a,∴不等式组的解集为8<x<2﹣4a,∵关于x的不等式组有三个整数解,∴11<2﹣4a≤12,解得:﹣≤a<﹣,故选:A.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a的不等式组是解此题的关键.12.【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.13.【分析】首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC ,AC 的长,利用S △ABC ﹣S 扇形BOE =图中阴影部分的面积求出即可.【解答】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =30°,∴BE ∥AD ,∵的长为π, ∴=,解得:R =4,∴AB =AD cos30°=4, ∴BC =AB =2, ∴AC =BC =6,∴S △ABC =×BC ×AC =×2×6=6, ∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =6﹣=6﹣.故选:D .【点评】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△BOE和△ABE面积相等是解题关键.14.【分析】观察数据的排列规律得到每一行的第一列的数字为行数的平方,在第n列中,前n行的规律:每多一行,数字大1.【解答】解:由题意可得每行的第一列数字为行数的平方,所以第十一行第1列的数字为112=121,则第十一行第5列的数字是121﹣5+1=117,故选:D.【点评】此题考查数字的变化规律,找出数字之间的排列规律,利用规律解决问题.15.【分析】过E作EH⊥BC于H,求出EH=CH,求出△BAP∽△HPE,得出=,求出EH =x,代入y=×CP×EH求出解析式,根据解析式确定图象即可.【解答】解:过E作EH⊥BC于H,∵四边形ABCD是正方形,∴∠DCH=90°,∵CE平分∠DCH,∴∠ECH=∠DCH=45°,∵∠H=90°,∴∠ECH=∠CEH=45°,∴EH=CH,∵四边形ABCD是正方形,AP⊥EP,∴∠B=∠H=∠APE=90°,∴∠BAP+∠APB=90°,∠APB+∠EPH=90°,∴∠BAP=∠EPH,∵∠B=∠H=90°,∴△BAP∽△HPE,∴=,∴=,∴EH=x,∴y =×CP ×EH=(4﹣x )•xy =2x ﹣x 2,故选:B .【点评】本题考查了动点问题的函数图象,正方形性质,角平分线定义,相似三角形的性质和判定的应用,关键是能用x 的代数式把CP 和EH 的值表示出来.16.【分析】①②③连接AP ,证明△AEP ≌△CFP (ASA )即可判断;EF 不是中位线,所以EF ≠AP ;证明△AFP ≌△BEP (SAS ),S 四边形AFPE =S △BPE +S △CPF ,即可判断⑤;【解答】解:①如图1:连接AP ,∵AB =AC ,∠BAC =90°,P 是BC 中点,∴AP =CP ,∠BAP =∠C =45°,∵∠EPF =90°,∴∠EPA +∠APF =90°,∠APF +∠CPF =90°,∴∠APE =∠CPF ,∴△AEP ≌△CFP (ASA ),∴AE =CF ;∴①②正确;③由△AEP ≌△CFP (ASA ),∴EP =PF ,∴△EPF 是等腰直角三角形,∴③正确;④∵EF 不是中位线,∴EF ≠AP ;故①②③正确;⑤∵AE =CP ,AP =BP ,∠B =∠FAP =45°,∴△AFP ≌△BEP (SAS ),∴S 四边形AFPE =S △BPE +S △CPF ,⑤错误;故选:B .【点评】本题考查等腰三角形的性质,全等三角形的判定和性质;熟练掌握全等三角形的性质和判定是解决问题的关键.二、填空題(本大题3个小題,前两个小题每题3分,19题每空2分,共10分,请把相应答案写在答题纸上)17.【分析】当a >0时,,|a |=a ,于是可对原式进一步化简即可.【解答】解:∵a >0,∴,|a |=a , 于是|2a ﹣|=|2a ﹣a |=|a |=a 故答案为a .【点评】本题考查的是绝对值与二次根式的化简,根据二次根式的性质与绝对值的定义进行化简是解题的关键.18.【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【解答】解: x +x 3﹣x 2,=x (x 2﹣x +),=x (x ﹣)2.故答案为:x (x ﹣)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.【分析】根据作图方法,结合图形,分别得出点A,A1,A2,A3,A4,A5,A6,A7,A8,的坐…标,即可看出规律,从而得解.【解答】解:观察,找规律:A(1,1),A1(2,0),A2(0,﹣2),A3(﹣3,1),A4(1,5),A5(6,0),A6(0,﹣6),A7(﹣7,1),A8(1,9)…,∴A4n(1,4n+1),A4n+1(4n+2,0)…,故答案为:(1,5);(4n+2,0).【点评】本题属于平面直角坐标系中点的坐标找规律的问题,需要仔细把前面点的坐标得出来,就能看出循环类的规律,从而解决问题.三、解答题(本大题共7题共计68分解答应写出文字说明证明过程或演算步骤)20.【分析】观察等式左边的特点,即第几个式子就是几分之(几加1)乘以自己的分子;右边的特点即左边两个因数相加.【解答】解:(1);(2)猜想:(n+1)•=(n+1)+(n是正整数).∵左边=(n+1)•=,右边=(n+1)+==,左边=右边∴.【点评】此题考查数字的变化规律,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.该规律实质上是运用了分式的加法运算法则.21.【分析】(1)根据SAS即可证明△BDE≌△BCE.(2)根据四边相等的四边形是菱形即可判定.【解答】解:(1)证明:∵由旋转可知,AB=EB,AD=EC,BD=BC,∠ABD=∠EBC,∠ABE =∠DBC=60°,∵AB⊥BC,∴∠ABC=90°,∴∠ABD=∠EBC=∠DBE=30°,在△BDE和△BCE中,,∴△BDE≌△BCE.(SAS).(2)结论:四边形ABDE是菱形.理由:∵△BDE≌△BCE,∴DE=CE,∵BE=CE,AB=EB,AD=EC,∴AB=EB=DE=AD,∴四边形ABED是菱形.【点评】本题考查全等三角形的判定和性质、菱形的判定、旋转变换等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.22.【分析】(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,(2)用360°乘以D观点的频率即可得;(3)画出树状图,然后根据概率公式列式计算即可得解【解答】解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为:50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为=.【点评】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)先根据锐角三角函数求出OD,求出点A坐标,进而求出反比例函数解析式,再求出点B坐标,最后将点A,B坐标代入直线解析式中,即可得出结论;(2)先求出点C坐标,进而用三角形的面积公式求解即可得出结论;(3)分三种情况,利用等腰三角形的性质,建立方程求解即可得出结论.【解答】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A (﹣2,3),直线AB 的解析式为y =﹣x +2,令y =0,∴﹣x +2=0,∴x =4,∴C (4,0),∴S △AOC ﹣S △BOC =OC •|y A |﹣OC •|y B |=×4(3﹣1)=4;(3)设E (m ,0),由(1)知,A (﹣2,3),∴OA 2=13,OE 2=m 2,AE 2=(m +2)2+9,∵△AOE 是等腰三角形,∴①当OA =OE 时,∴13=m 2,∴m =±, ∴E (﹣,0)或(,0),②当OA =AE 时,13=(m +2)2+9,∴m =0(舍)或m =4,∴E (4,0),③当OE =AE 时,m 2=(m +2)2+9,∴m =﹣, ∴E (﹣,0),即:满足条件的点P 有四个.【点评】此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数,三角形面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.24.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)①当90≤x <180时,∠A 只能为顶角,∠B 的度数只有一个,根据三角形的内角和即可得到结论;②分两种情况:当90≤x <180;当0<x <90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=55°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×70°=40°;若∠A为底角,∠B为底角,则∠B=70°;故∠B=55°或40°或70°;(2)①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个,∴∠B=(180°﹣x°)=90°﹣x°(90°≤x<180°);②分两种情况:当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个,当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.25.【分析】(1)找出当x=6时,y1、y2的值,二者做差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者做差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,P的值,设4月份的销售量为t千克,则5月份的销售量为(t+20000)千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:(1)当x=6时,y1=3,y2=1,∵y1﹣y2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y1=mx+n,y2=a(x﹣6)2+1.将(3,5)、(6,3)代入y1=mx+n,得,解得:,∴y1=﹣x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=,∴y2=(x﹣6)2+1=x2﹣4x+13.∴P=y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.∵﹣<0,∴当x=5时,P取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大.(3)当x=4时,P=﹣x2+x﹣6=2.设4月份的销售量为t千克,则5月份的销售量为(t+20000)千克,根据题意得:2t+(t+20000)=220000,解得:t=40000,∴t+20000=60000.答:4月份的销售量为40000千克,5月份的销售量为60000千克.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.26.【分析】(1)将点A、B代入解析式即可求出a、b的值.(2)根据已知条件求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形求出点G的坐标,求出直线BP的解析式,联立二次函数解析式,求出点P的坐标.(3)分两种情况,第一种情况重叠面积为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形的面积公式求得.【解答】解:(1)将点A(﹣1,0),B(3,0)代入抛物线,,解得a=﹣1,b=2.(2)存在,将点D代入抛物线的解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如图1所示,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中,∴△CDB≌△CGB(ASA),∴CG=GD=2,∴OG=1,∴G(0,1),设直线BP:y=kx+1,代入点B,∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式,解得或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如图2所示,设直线B′C′:y=﹣(x﹣t)+3,联立直线BD求得F(,),S==﹣t2+3t.当2<t≤3时,如图3所示,H(t,﹣3t+9),I(t,﹣t+3),S=×(3﹣t)=t2﹣6t+9,综上所述:.【点评】此题考查了待定系数法求函数解析式,全等三角形的性质及其判定,动态问题和二次函数的结合,第二问找到全等三角形为解题关键.。

相关文档
最新文档