离心风机喘振现象及及解决办法

合集下载

离心机喘振的解决方法

离心机喘振的解决方法

离心机喘振的解决方法
离心机是工业中常用的设备之一,但在使用中会出现一些问题,其中之一就是喘振现象。

喘振会造成设备的振动、噪音、甚至损坏,因此需要采取措施进行解决。

喘振的原因:
1.离心机叶轮或转子的不平衡或变形等问题。

2.系统的不稳定性,例如管道系统的质量不好或者管道的设计不合理,会导致气流过程中的不稳定。

3.离心机进口与出口之间的压力差异,有时候管道系统可能会堵塞导致压差增大。

解决方法:
1.增加离心机的支撑或是减小转子质量,使叶轮达到平衡状态,避免因叶轮不平衡造成的喘振。

2.管道系统质量要好,设计要合理,必要时可以加装阀门、减小管道长度、增加管道直径等方式来减少气体流动过程中的摩擦因素。

3.设置进口和出口通道,加强进出口的管道,减少管道堵塞的可能,降
低压力差。

4.调整离心机的工作条件,如调整叶轮转速、减少进口流量等方式来避免喘振。

5.安装机器振动监测仪器,及时监测离心机的工作情况,发现问题及时处理。

总之,离心机喘振是一种不可避免的现象,但是采取措施可以有效地解决喘振问题,避免设备运转中的故障和损害。

喘振的原因及解决方法

喘振的原因及解决方法

喘振的原因及解决方法喘振的原因及解决方法1、负荷过低喘振是离心式压缩机的固有特性。

当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。

但是系统管网的压力没有瞬间相应的降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向管网流动。

如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象。

离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。

压缩机排量减小,叶轮达到压头的能力也减小。

而冷凝温度由于冷却水温未改变而维持不变,则此时就可能发生旋转失速或喘振。

2、冷凝压力过高当机组负荷过高时,冷却水温度不能及时降低,就会造成冷凝温度增高,冷凝压力也就随之增高,当增加至接近于排气压力时,冷凝器内部分制冷剂气体会倒流,此时也会发生喘振。

对于任何一台离心式压缩机,当排量小到某一极度限点或冷凝压力高于某一极度限点时就会发生喘振现象。

冷水机组是否在喘振点区域运行,主要取决于机组的运行工况。

喘振运行时离心式制冷机的一种不稳定运行状态,会导致压缩机的性能显著恶化,能效降低;大大加剧整个机组的振动,喘振使压缩机的转子和定子原件经受交变力的动应力;压力失调引起强烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等;叶轮动应力加大。

1、改变压缩机转速对压缩机加装变频驱动装置,将恒速转动改为变速转动。

在低负荷状态运行时,通过同时调节倒流叶片开度和电机转速,调节机组运行状态,可控制离心机组迅速避开喘振点,避免喘振对机组的伤害,确保机组运行安全。

同时,变频离心机运行在部分负荷工况时,低转速运行,降低了电机噪音,并能缓解与建筑物产生共振现象。

2、降低冷凝温度发生喘振时,一般会认为是吸入口压力过低造成的,但机组在80%以上负荷运转时也会产生喘振,则是由于冷凝压力过高引起的,这时就要想法降低冷却水温度来降低冷凝压力。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指风机在运行过程中出现的振动现象,通常表现为风机整体或部分结构的不稳定振动,会导致设备损坏甚至危及人身安全。

喘振的出现往往会给生产和运行带来严重的影响,因此对于喘振现象的原因和处理方法,我们有必要进行深入的了解和研究。

一、原因分析。

1. 气动力失稳。

风机在运行时,由于叶片的设计不合理或叶片表面的腐蚀、磨损等因素,会导致风机叶片受到气动力的不稳定作用,从而引起振动。

2. 结构失稳。

风机的结构设计不合理、材料疲劳、连接螺栓松动等因素都会导致风机结构的失稳,从而引起喘振现象。

3. 惯性失稳。

风机在运行过程中,由于叶轮的不平衡或转子的不对称等因素,会导致风机的惯性失稳,从而引起振动现象。

二、现象表现。

1. 频率跳变。

风机在运行中,频率突然发生跳变,表现为振动频率明显变化,这是喘振现象的典型表现。

2. 声音异常。

风机在喘振时,会发出异常的噪音,通常是低频、深沉的嗡嗡声,这是喘振现象的另一种表现形式。

3. 振动幅值增大。

喘振时,风机的振动幅值会明显增大,甚至超出正常范围,这是喘振现象的直观表现。

三、处理方法。

1. 优化设计。

针对风机叶片和结构的设计不合理问题,可以通过优化设计来解决。

采用流场仿真、结构分析等技术手段,对风机进行全面的设计优化,提高风机的稳定性和抗振能力。

2. 定期检测。

针对风机结构的材料疲劳、连接螺栓松动等问题,需要定期进行检测和维护。

通过振动监测系统、结构健康监测技术等手段,及时发现并处理风机结构的失稳问题。

3. 动平衡调整。

针对风机惯性失稳问题,可以通过动平衡调整来解决。

对风机叶轮、转子等部件进行动平衡校正,提高风机的运行平稳性。

4. 加强管理。

在风机运行过程中,加强对风机的管理和维护,做好日常巡检和保养工作,及时发现并处理风机的异常现象,防止喘振现象的发生。

综上所述,风机喘振是一种常见的振动现象,其产生的原因复杂多样,需要我们对风机的设计、运行和维护进行全面的考虑和处理。

什么是风机喘振喘振的原因及如何解决喘振(2)

什么是风机喘振喘振的原因及如何解决喘振(2)

什么是风机喘振喘振的原因及如何解决喘振(2)减少并达到压缩机允许的最小值。

理论和实践证明:能够使离心压缩机工况点落入喘振区的各种因素,都是发生喘振的原因。

•进气温度升高,空气密度减少,夏季比冬季易发生喘振。

•进气压力下降,如入口过滤器堵塞或吸气负压值高。

•出口系统管网压力提高,即排气不畅造成出口堵塞喘振。

•离心压缩机出口工作压力值设定在喘振区边缘。

•离心机转速降低时易发生喘振。

四喘振的危害1. 喘振现象对压缩机的危害喘振现象对压缩机十分有害,主要表现在以下几个方面:•喘振时由于气流强烈的脉动和周期性震荡,会使供气参数(压力、流量等)大幅度地波动,破坏了工艺系统的稳定性。

•会使叶片强烈振动,叶轮应力大大增加,噪音加剧。

•引起动静部件的摩擦与碰撞,使压缩机的轴产生弯曲变形,严重时产生轴向窜动,碰坏叶轮。

•加剧轴承、轴颈的磨损,破坏润滑油膜的稳定性,使轴承合金产生疲劳裂纹,甚至烧毁。

•损坏压缩机的级间密封及轴封,使压缩机效率降低,甚至造成爆炸、火灾等事故。

•影响与压缩机相连的其他设备的正常运转,干扰操作人员的正常工作,使一些测量仪表仪器准确性降低,甚至失灵。

一般机组的排气量、压力比、排气压力和气体的密度越大,发生的喘振越严重,危害越大。

2. 轴流风机发生喘振时的危害当风机发生喘振时,风机的流量周期性地变化,变化幅度比较大,可能出现零甚至负值。

风机流量的这种剧烈的正负波动,会发生气流的猛烈撞击,使风机本身产生剧烈振动,同时风机工作的噪声加剧。

大容量、高压头风机发生喘振的危害很大,可能导致轴承和设备的损坏。

五影响压缩机喘振的因素1. 压缩机转速当离心压缩机转速变化时,其性能曲线也将随之。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指在风机运行过程中出现的振动现象,这种振动不仅会影响设备的正常运行,还会对设备的安全性和稳定性造成威胁。

因此,了解风机喘振的原因、现象及处理方法对于确保设备的正常运行至关重要。

一、风机喘振的原因。

1. 气动因素,风机在运行时,由于叶片和机壳之间的气流动态压力不稳定,会导致振动增大,从而引发喘振现象。

2. 结构因素,风机的结构设计不合理,或者叶片、轴承等零部件的制造质量不达标,都可能成为喘振的根本原因。

3. 运行条件,风机在运行过程中,如果受到外界环境因素的影响,如风速、气压等的变化,也会导致风机喘振的发生。

二、风机喘振的现象。

1. 声音异常,风机在运行时会发出异常的噪音,这种噪音往往是由于喘振引起的。

2. 振动加剧,风机在运行时振动加剧,甚至会引起设备的共振现象,严重影响设备的稳定性。

3. 能效降低,喘振会导致风机的运行效率降低,能耗增加,严重影响设备的经济性和可靠性。

三、风机喘振的处理方法。

1. 结构优化,对于风机的结构设计和零部件制造,应该严格按照相关标准和要求进行,确保结构合理、零部件质量可靠。

2. 运行监测,对于风机的运行条件进行实时监测,及时发现异常情况并进行调整,避免外界环境因素对风机运行的影响。

3. 振动控制,采用振动控制技术,对于风机的振动进行有效的控制,减小振动幅值,降低振动对设备的影响。

4. 气动优化,通过对风机的气动性能进行优化设计,降低气动因素对风机运行的影响,减小喘振的发生概率。

综上所述,风机喘振是风机运行过程中常见的问题,其原因主要包括气动因素、结构因素和运行条件等方面。

针对风机喘振的处理方法主要包括结构优化、运行监测、振动控制和气动优化等方面。

只有通过对风机喘振的原因和现象进行深入分析,并采取有效的处理方法,才能确保风机的正常运行和设备的安全稳定。

离心风机的振动原因分析及改进措施

离心风机的振动原因分析及改进措施

离心风机的振动原因分析及改进措施发表时间:2019-05-27T09:13:16.220Z 来源:《电力设备》2018年第35期作者:郑平倪冬[导读] 摘要:离心式风机的振动干扰问题是用户和制造厂家一直以来关注的问题,在对离心式风机的使用过程中,过度的振动就会造成轴承的温度上升,对机械的使用磨损程度会加强。

(中国核电工程有限公司华东分公司浙江省嘉兴市海盐县 314300)摘要:离心式风机的振动干扰问题是用户和制造厂家一直以来关注的问题,在对离心式风机的使用过程中,过度的振动就会造成轴承的温度上升,对机械的使用磨损程度会加强。

而减小离心式风机的振动,采取科学的措施实施就显得比较重要。

风机振动故障未能及时解决,容易导致风机设备损坏。

风机故障致使生产不能持续进行,影响生产系统设备的正常运行,造成较大的经济损失。

关键词:离心风机;震动原因;措施;分析引言:电厂众多辅助设备中相对主要同时也是耗电量较大的设备,离心式风机能否保证稳定运行,对电厂所开展发电工作的效率具有直接影响。

在实践过程中工作人员发现,风机振动是离心式风机在运行过程中较为常见的设备故障,想要在最大限度上降低该故障带来的不利影响,快速、精确的确定振动原因是十分重要的。

1.离心风机的振动原因1.1转子不平衡离心风机中最重要的部件是风机转子,在生产环节,往往会出现热处理变形、材质不均匀、形状加工与装配误差等情况,所以会在不同程度出现偏心质量。

在经过一段时间运行后,通常转子的振幅都会从小变大,而出现转子不平衡,导致振幅发生变化的原因主要有3个。

一是转子叶轮的铆钉由于叶片出现疲劳或腐蚀而脱落。

二是转子叶轮流道挂渣、受堵而加大了动不平衡力矩,从而加大了风机振动,导致机组运行受到破坏。

三是局部出现穿孔、不均匀腐蚀等。

因为转子不平衡而加剧了振动的特征表现为:振动转速和频率相同;在负荷与转速不断增加情况下振幅也会随之加剧;通过临界转速过程中振动会快速增大。

1.2喘振喘振是离心风机运行过程的自身特征,通常出现喘振现象的原因有2个方面:一是在特定条件下离心风机气流会产生“旋转脱离”,是导致喘振出现内在原因;二是联合离心鼓风机作业的管网系统特征则是导致其出现喘振的外在原因。

离心机出现喘振的原因以及解决办法

离心机出现喘振的原因以及解决办法

离心机出现喘振的原因以及解决办法离心机喘振是离心机的杀手,高速冷冻离心机和超高速冷冻离心机出现喘振的几率比较大,严重时会损坏离心机转子等配件。

离心机喘振原因1.冷凝器积垢:冷凝器换热管内表水质积垢(开式循环的冷却水系统最容易积垢),而导致传热热阻增大,换热效果降低,使冷凝温度升高或蒸发温度降低,另外,由于水质未经处理和维护不善,同样造成换热管内表面沉积沙土、杂质、藻类等物,造成冷凝压力升高而导致离心机喘振发生。

2.制冷系统有空气:当离心机组运行时,由于蒸发器和低压管路都处于真空状态,所以连接处极容易渗入空气,另外空气属不凝性气体,绝热指数很高,为1.4,当空气凝积在冷凝器上部时,造成冷凝压力和冷凝温度升高,而导致离心机喘振发生。

3.冷却塔冷却水循环量不足,进水温度过高等。

由于冷却塔冷却效果不佳而造成冷凝压力过高,而导致喘振发生。

4.蒸发器蒸发温度过低:由于系统制冷剂不足、制冷量负荷减小,球阀开启度过小,造成蒸发压力过低而喘振。

5.关机时未关小导叶角度和降低离心机排气口压力。

当离心机停机时,由于增压突然消失,蜗壳及冷凝器中的高压制冷剂蒸气倒灌,容易喘振。

6.叶轮摩擦外壳,轴承不平衡。

离心机喘振排除:1.冷凝器结垢:清除传热面的污垢和清洗冷却塔。

2.系统中空气排除:离心机采用K11(氨)制冷剂时,一般液体温度超过28℃时,表明系统中有空气存在。

排除方法:启动抽气回收装置,将不凝性气体排出,一般将制冷剂R11的压力抽到稍低于制冷荆液体温度相对应的饱和压力,即28℃以下的对应压力:117.68KMP以下即可。

3.启动后发生喘振:进行反喘振调节。

当能量调节大幅度减少时,造成吸气量不足,即蒸气不能均匀流入叶轮,导致排气压力陡然下降,压缩机处于不稳定工作区,而发生喘振。

为了防止喘振,可将一部分被压缩后的蒸气,由排气管旁通到蒸发器,不但可防喘振.而且对离心机启动时也有益:减少蒸气密度和启动时的压力,可减小启动功率。

如何应对离心机振喘问题原因篇 离心机解决方案

如何应对离心机振喘问题原因篇 离心机解决方案

如何应对离心机振喘问题原因篇离心机解决方案振喘,有人将其比方为人群中常见的哮喘疾病。

当仪器设备发生振喘问题时,则会表现为低频率、高振幅的振荡。

在离心机中,高速冷冻离心机和超高速冷冻离心机显现喘振的几率较大,严重时,还有可能损坏离心机转子等配件。

就此,我整理了离心机发生振喘问题的常见原因。

原因一:蒸发器蒸发温度太低当蒸发器蒸发温度过低时,使离心机制冷量负荷减小,从而引发球阀开启度过小,造成蒸发压力过低导致仪器发生振喘。

原因二:冷凝器积垢开式循环的冷却水系统较为简单积垢,由此引发导致传热热阻增大,换热效果变差,使得冷凝温度上升或蒸发温度降低。

原因三:冷却塔冷却水循环量不足这一情况简单导致进水温度过高,引发冷凝压力过高等问题。

原因四:制冷系统中存在空气离心机运行时,其蒸发器与低压管路都应当处于真空状态,而通过连接处渗入的空气,又属于不凝性气体,绝热指数很高。

当空气聚集于冷凝器上部时,便会引发离心机喘振问题。

原因五:关机时未关小导叶角度或未降低离心机排气口压力当离心机停机时,由于增压蓦地消失,蜗壳及冷凝器中的高压制冷剂蒸气倒灌,简单喘振。

离心机认真操作规程离心机是利用离心力使得需要被分别的不同物质得到加速从而分别的机器。

紧要分为沉降式离心机和过滤式离心机两大类。

沉降式离心机的紧要原理是通过转子高速旋转产生的强大的离心力,加快混合液中不同比重成分(固相或液相)的沉降速度,把样品中不同沉降系数和浮力密度的物质分别开。

过滤式离心机的紧要原理是通过高速运转的离心转鼓产生的离心力(搭配适当的滤材),将固液混合液中的液相加速甩出转鼓,而将固相留在转鼓内,达到分别固体和液体的效果,或者俗称脱水的效果。

离心机认真操作规程:1、离心样品密度要一样,离试管口保持3mm处。

2、密度相同、配平、管壁干燥的离心管对称状态置入挂篮内,拧紧对应的是试管盖,悬挂到对应的挂篮上上,空挂篮也要悬挂,为了使转子水平受力均匀,否则运行中会显现断轴的严重试验室事故。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指在运行过程中,风机叶片或整机出现振动,产生噪音,严重时甚至会引起设备损坏。

喘振现象给设备运行和生产带来了严重的隐患,因此对于风机喘振的原因和处理方法需要引起重视。

一、原因分析。

1.风机设计问题,风机叶片设计不合理或者风机结构设计存在缺陷,会导致风机在运行时产生振动。

2.风机安装问题,风机在安装过程中,如果安装不牢固或者安装位置选择不当,都会引起风机振动。

3.风机叶片损坏,风机叶片受到外部冲击或者长时间运行磨损,会导致叶片不平衡,产生振动。

4.风机运行环境,风机运行环境不稳定,比如风速突变或者风向改变,都会引起风机振动。

二、喘振现象。

1.噪音,风机在运行时会产生异常的噪音,这是喘振现象的一个主要表现。

2.振动,风机在运行时会出现明显的振动,可以通过观察风机叶片或者机体的晃动来判断。

3.设备损坏,严重的喘振现象会导致风机设备的损坏,严重影响设备的使用寿命和安全性。

三、处理方法。

1.优化设计,对于新购的风机设备,可以通过优化设计,改善叶片结构和整机结构,减少振动产生的可能。

2.加固安装,在风机安装过程中,需要加强对风机的固定,确保风机安装牢固,减少振动产生的可能。

3.定期检查,定期对风机设备进行检查和维护,及时发现叶片损坏或者设备松动等问题,做好维修和更换工作。

4.环境控制,对于风机运行环境,可以通过控制风速,改善风向等方式,减少风机振动产生的可能。

5.安全监控,在风机运行过程中,需要加强对设备的监控,及时发现异常振动,做好安全防护措施。

综上所述,风机喘振是一种常见的设备运行问题,对于喘振现象的原因分析和处理方法,需要我们引起重视。

通过优化设计、加固安装、定期检查、环境控制和安全监控等方式,可以有效减少风机喘振现象的发生,保障设备的安全运行和稳定生产。

希望本文对风机喘振问题有所帮助,谢谢阅读。

什么是风机喘振喘振的原因及如何解决喘振

什么是风机喘振喘振的原因及如何解决喘振

什么是风机喘振喘振的原因及如何解决喘振一喘振定义喘振,顾名思义就象人哮喘一样,风机出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏。

流体机械及其管道中介质的周期性振荡,是介质受到周期性吸入和排出的激励作用而发生的机械振动。

例如,泵或压缩机运转中可能出现的喘振过程是:流量减小到最小值时出口压力会突然下降,管道内压力反而高于出口压力,于是被输送介质倒流回机内,直到出口压力升高重新向管道输送介质为止;当管道中的压力恢复到原来的压力时,流量再次减少,管道中介质又产生倒流,如此周而复始。

喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。

一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。

为防止喘振,必须使流体机械在喘振区之外运转。

在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。

当多台机器串联或并联工作时,应有各自的防喘振调节装置。

二风机喘振的现象•风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也发生很大的波动。

•风机的电动机电流波动很大,最大波动值有50A左右。

•风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动。

•风机发出“呼噜、呼噜”的声音,使噪声剧增。

•风量、风压、电流、振动、噪声均发生周期性的明显变化,持续一个周期时间在8s左右。

三喘振原因根据对轴流式通风机做的大量性能试验来看,轴流式通风机的p -Q性能曲线是一组带有驼峰形状的曲线(这是风机的固有特性,只是轴流式通风机相对比较敏感),如左图所示。

当工况点处于B点(临界点)左侧B、C之间工作时,将会发生喘振,将这个区域划为非稳定区域。

发生喘振,说明其工况已落到B、C之间。

离心压缩机发生喘振,根本原因就是进气量。

离心泵喘振的原因及解决方法

离心泵喘振的原因及解决方法

离心泵喘振的原因及解决方法一、离心泵喘振的原因1.轴向不平衡:离心泵的转子轴向不平衡是最常见的原因之一、转子轴向不平衡主要表现为泵的振动频率与叶轮的转速相等,并且振动频率较高。

2.动静脉动的相互作用:当泵的进口流速较低,特别是在小流量和高扬程的工况下,会发生动静脉动的相互作用,从而引起泵腔内的压力变化,导致离心泵喘振。

3.气液两相流过程中的喘振:在一些工况下,如气体液体混输过程中,液体在离心力的作用下往外移动,而气体则往内运动。

当两相流速达到一定值时,会出现气液两相流相互干涉的现象,进而引起离心泵喘振。

4.叶轮与封水系统的不匹配:封水系统对离心泵的运行非常重要,当封水系统的适配性不合理时,如低压封水系统与高压封水系统不匹配,会导致泵体产生振动和喘振。

5.液力喘振:液力喘振是指由于液体在流动过程中产生的涡流紊乱,使得离心泵产生涡旋振动。

液力喘振是一种自激振荡,其频率与泵的工况有关。

二、离心泵喘振的解决方法1.检查并平衡转子轴向:对于转子轴向不平衡,可以使用动平衡仪进行检测和校正。

通过调整转轴位置,使转子在运转过程中保持平衡。

2.优化动静脉动的相互作用:针对动静脉动相互作用引起的喘振问题,可以通过改变进口流道结构、增大进口流速或采用消除泡沫和空气的措施来优化系统的流态,减少动静脉动的相互作用。

3.控制气液两相流:针对气液两相流引起的喘振问题,可以通过调整输送流量和改变流道结构来控制两相流的速度,从而减少喘振的可能性。

4.优化封水系统:封水系统的适配性非常重要,应根据泵的工况选择合适的封水系统,并确保封水系统的压力和流量匹配稳定,避免封水系统不匹配引起的喘振问题。

5.设计合理的阻振器:在离心泵的设计和安装中,可以采用一些阻振措施,如设置阻振器、减振装置等,对泵的振动进行控制。

综上所述,离心泵喘振的原因有很多,涉及到流体力学、结构力学和系统设计等多个方面。

针对不同的原因,需要采取相应的解决方法,以降低离心泵喘振的发生概率,确保泵的正常运行和使用寿命。

喘振原因分析及对策

喘振原因分析及对策

离心式鼓风机喘振原因分析及对策离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。

关键词:离心式鼓风机;喘振;对策1喘振1.1喘振产生的原因在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。

当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。

接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。

1.2影响喘振的主要因素①转速离心式压缩机转速变化时,其性能曲线也将随之改变。

当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。

反之,转速降低则使性能曲线下移。

随着转速的增加,喘振界限向大流量区移动。

②管网特性离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。

管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。

③进气状态在实际生产中,进气压力过低、背压过高、进(排)气量忽然减少、进气温度过高、鼓风机转速忽然降低、机械故障、进口风道过滤网堵塞、生物池污泥浓度过高、曝气头堵塞、喘振报警装置失灵等都会引起鼓风机喘振。

2喘振的判断及消除2.1喘振现象的判断①鼓风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也会发生很大的波动。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指风机在运行过程中出现的振动现象,通常伴随着噪音和机械损伤,严重影响设备的安全运行和使用寿命。

风机喘振的原因多种多样,主要包括风机结构设计不合理、叶片磨损、叶片不平衡、风机安装不稳定等因素。

本文将就风机喘振的原因现象及处理方法进行详细介绍。

一、原因分析。

1. 风机结构设计不合理,风机在设计过程中,如果叶轮、轴承座、叶片等部件的结构设计不合理,可能会导致风机在运行时产生共振现象,从而引发喘振。

2. 叶片磨损,风机叶片在长时间运行后会出现磨损,导致叶片的重量分布不均匀,叶片与风速之间的匹配不合理,从而引发喘振现象。

3. 叶片不平衡,叶片的不平衡也是风机喘振的常见原因之一,叶片在制造过程中存在偏差或者在使用过程中出现变形、损坏等情况,都会导致叶片的不平衡,从而引发喘振。

4. 风机安装不稳定,风机在安装过程中,如果安装不稳定或者基础不牢固,都会导致风机在运行时产生晃动,从而引发喘振现象。

二、处理方法。

1. 结构设计优化,在风机的设计过程中,应该优化叶轮、轴承座、叶片等部件的结构设计,确保结构合理、均衡,减少共振的产生。

2. 定期维护,定期对风机叶片进行检查,及时更换磨损严重的叶片,保证叶片的重量分布均匀,减少喘振的发生。

3. 动平衡校正,定期对风机叶片进行动平衡校正,确保叶片的平衡性,减少叶片不平衡带来的喘振现象。

4. 加固安装基础,在风机安装过程中,应该加固安装基础,确保安装稳定牢固,减少风机在运行时的晃动,降低喘振的发生。

5. 实时监测,安装实时监测设备,对风机的振动进行实时监测,一旦发现异常振动,立即停机检修,避免喘振带来的损失。

总之,风机喘振是一种常见的振动现象,对设备的安全运行和使用寿命造成严重影响。

通过对风机结构设计的优化、定期维护、动平衡校正、加固安装基础和实时监测等措施,可以有效减少风机喘振的发生,保证设备的安全稳定运行。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指风机在运行过程中出现的一种振动现象,通常会伴随着噪音和机械损坏。

喘振不仅会影响风机的正常运行,还可能对设备和人员造成安全隐患。

因此,及时有效地处理风机喘振问题至关重要。

一、原因分析。

1.风机设计问题,风机设计不合理或者制造工艺不当可能导致风机出现喘振现象。

例如,叶片的结构设计不合理、叶片强度不足、叶片与轴的连接方式不稳固等。

2.风机叶片问题,叶片表面积灰、积尘或者叶片损坏等问题都可能导致风机喘振。

这些问题会影响叶片的气动性能,导致风机振动加剧。

3.风机叶轮问题,叶轮不平衡或者叶轮叶片损坏等问题也是导致风机喘振的常见原因之一。

4.风机安装问题,风机的安装不稳固或者安装位置不合理也会导致风机振动加剧,从而出现喘振现象。

二、现象表现。

1.噪音,风机运行时出现异常噪音,尤其是高频噪音。

2.振动,风机运行时出现较大的振动,可以通过手感或者振动仪进行检测。

3.温度升高,风机运行时叶片或者叶轮温度异常升高。

4.机械损坏,风机运行一段时间后出现机械损坏,例如叶片断裂、叶轮变形等。

三、处理方法。

1.风机设计改进,针对风机设计问题,可以通过改进设计和优化制造工艺来解决。

例如,加强叶片结构设计、提高叶片强度、改进叶片与轴的连接方式等。

2.叶片清洁和维护,定期对叶片进行清洁和维护,保持叶片表面清洁,避免积灰和积尘,及时修复叶片损坏。

3.叶轮平衡和更换,定期对叶轮进行平衡校正,避免叶轮不平衡导致的振动问题。

另外,对于损坏严重的叶轮,需要及时更换。

4.风机安装调整,对于安装不稳固或者安装位置不合理的风机,需要进行调整和改进,保证风机运行时稳定性。

5.定期检测和维护,定期对风机进行振动、噪音和温度的检测,及时发现问题并进行维护。

结语。

风机喘振是一种常见的问题,但是通过合理的处理方法和定期的维护,可以有效地避免和解决这一问题。

对于风机制造商和使用者来说,需要重视风机喘振问题,加强对风机的设计、制造、安装和维护,保证风机的安全稳定运行。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指在风机运行时出现的振动现象,这种振动会对风机的正常运行造成影响,甚至会对风机设备造成损坏。

因此,对于风机喘振的原因、现象及处理方法,我们需要深入了解并采取有效的措施进行处理。

首先,我们来了解一下风机喘振的原因。

风机喘振的原因主要包括以下几个方面:1. 风机叶片设计不合理,风机叶片设计不合理会导致叶片在运行时受到不均匀的气流作用,从而引起振动现象。

2. 风机叶轮不平衡,风机叶轮不平衡会导致风机在运行时产生不稳定的振动,从而引起喘振现象。

3. 风机轴承故障,风机轴承故障会导致风机在运行时产生异常振动,进而引起喘振现象。

4. 风机基础不稳固,风机基础不稳固会导致风机在运行时产生不稳定的振动,从而引起喘振现象。

其次,我们来了解一下风机喘振的现象。

风机喘振的现象主要包括以下几个方面:1. 风机振动幅度增大,风机在运行时振动幅度明显增大,甚至超出正常范围。

2. 风机噪音增大,风机在运行时噪音明显增大,这是喘振现象的一个明显表现。

3. 风机运行不稳定,风机在运行时出现不稳定的现象,运行状态不平稳。

最后,我们来了解一下风机喘振的处理方法。

针对风机喘振的处理方法主要包括以下几个方面:1. 优化风机叶片设计,对风机叶片进行优化设计,减少叶片在运行时受到的不均匀气流作用,降低振动风险。

2. 动平衡风机叶轮,对风机叶轮进行动平衡处理,保证叶轮在运行时平衡稳定,减少振动现象。

3. 定期检查风机轴承,定期对风机轴承进行检查和维护,及时发现并处理轴承故障,减少振动风险。

4. 加固风机基础,对风机基础进行加固处理,保证风机在运行时基础稳固,减少振动风险。

总结而言,风机喘振是一种常见的振动现象,对风机设备的正常运行造成不利影响。

了解风机喘振的原因、现象及处理方法,对于保障风机设备的正常运行具有重要意义。

在实际操作中,我们应该根据具体情况采取相应的措施,及时处理风机喘振问题,确保风机设备的安全稳定运行。

离心冷水机组喘震现象的原因及避免方法1

离心冷水机组喘震现象的原因及避免方法1

离心冷水机组喘震现象的原因及避免方法满负荷不会出现喘震,原因是离心叶片能把气体以高速甩出,变成高温高压的气体。

如果是在低负荷下,吸入的气体过少,不足以将稀少的气体以同样的速度甩出去就造成喘震解决的方法,螺杆+离心满负荷!!冷凝压力高也要喘的。

负荷太小也要喘。

主要压比太大造成。

降低冷却水温度。

加装热气旁同、变频调速控制喘震概念:离心式压缩机出口的气体从冷凝器倒流返回叶轮,高温气体来回倒流产生撞击现象。

喘震危害:造成周期性地增大噪声和震动,高温气体来回倒流还引起壳体和轴承温度的升温。

损坏压缩机甚至整套制冷装置。

产生喘震的原因:冷凝压力过高或吸气压力过低。

负荷过小时,也会产生喘震,这就需要反喘震调节,旁通调节法是一种措施。

从压缩机的出口引出一部分气体,不经过冷凝器直接流入压缩机的戏入管,这样,可减少蒸发器的制冷剂流量,以减少制冷量,又不会使压缩机的排气量过小,从而防止喘震的发生。

机组运行时,一般冷负荷不低于满负荷的25%,就能避免喘震。

“从压缩机的出口引出一部分气体,不经过冷凝器直接流入压缩机的戏入管,这样,可减少蒸发器的制冷剂流量,以减少制冷量”是增加了蒸发器的热负荷,蒸发压力会升高,打开导流叶片防止喘震。

离心式压缩机和涡旋式压缩机及活塞式压缩机等不同,虽然能够压缩大流量的气体,但是通过压缩取得的压力上升值的上限被限制,如果超过这个上限值压缩,压缩的气体逆流入叶轮内,顺流和逆流反复进行产生很大的震动和噪音现象,我们称之为喘振现象。

由于震动会对机械产生不良影响,因此必须避免喘振现象。

一般情况下,冷水温度愈低冷却水温度愈高所必须的压力上升值也越大,就愈容易产生喘振。

冷水机设计在规格值的温度条件下不会产生喘振现象,冷却水稍微高过规格值也不会产生喘振。

但是,如果运行时冷却水温度高出规格值很多,传热管有污垢传热性能不好的场合,容易产生喘振现象。

因此,必须确保冷水机在冷却水规格值以下运行,定期清洗传热管。

另外,根据制冷负荷入口控制阀(入口导向阀)开闭的场合喘振产生的频率根据阀的开度大小而异,部分负荷时容易产生喘振现象。

离心机显现喘振现象的原因分析 离心机解决方案

离心机显现喘振现象的原因分析 离心机解决方案

离心机显现喘振现象的原因分析离心机解决方案离心机自问世以来,因经低速、调整、超速的变迁,其进展紧要体现在离心设备的离心技术两方面,它们二者是相辅相成的。

从转速方面来看,台式离心机基本属于低速、高速离心机的范畴,所以它具有低速和高速离心机的技术特点。

台式离心机的结构紧要是由电机驱动系统、制冷系统、机械系统、转头和系统掌控等几部分构成,与落地式离心机相比,只不过是尺寸和容量要小一点。

目前来讲,通过台式离心的进展已经模糊了低速、高速、微量和大容量离心机的界线,浩繁的转为科研人员供应相当广泛的应用范围,成为科学试验室机型。

一般来说,试验室用的离心机zui常显现的故障就是喘振现象。

离心机显现喘振现象是离心机的杀手。

对于高速冷冻离心机和超高速冷冻离心机显现喘振的几率比较大,假如喘振的严重时,还会损坏离心机离子等配件。

那么,为什么离心机会显现喘振呢?一方面,可能是由于冷凝器积垢,一旦冷凝器结垢,就会导致传热阻力增大,换热效果降低,这样就使冷凝温度上升或蒸发温度降低。

另外,假如水质没有经过处理或维护不到位,也一样会造成换热管内表面沉淀沙土、杂质、藻类等物,进而造成冷凝压力上升而导致离心机喘振发生。

另一方面,那可能是制冷系统有空气,当离心机组运行时,由于蒸发器和低压管路都处于真空状态,所以连接处极简单渗入空气,另外,空气属不凝性气体,绝热的指数是很高的,大约在1:4,所以当空气凝积在冷凝器上部时,造成冷凝压力和冷凝温度上升,也会导致离心机显现喘振现现象。

另外,假如冷却塔冷却水循环量不足,进水温度过高等,都可能导致离心机显现喘振现象。

同时,还有很多可能,比如蒸发器蒸发温度过低,或关机时没有把小导叶角度和降低离心机排气口压力,这都可能引起离心机喘振。

所以,一旦离心机显现喘振现象,确定要先找准原因,再对症下药,万不可盲目认为是哪一方面的原因,否则可能会个的损坏离心机。

高速冷冻离心机常见故障处理高速冷冻离心机仪器的故障分为必定性故障和偶然性故障。

离心风机喘振现象及原因

离心风机喘振现象及原因

关于风机喘振现象的原因和避免方法1、喘振现象及原因具有驼峰型特性的风机在运行过程中,当负荷减小,负载流量下降到某一定值时,出现工作不稳定现象。

这时流量忽多忽少,一会儿向负载排气,一会儿又从负载吸气,发出如同哮喘病人“喘气"的噪声,同时伴随着强烈振动,这种现象称之为喘振。

发生喘振现象的根源是离心风机所具有的驼峰型特性。

图一给出了具驼峰型特性的离心风机的工作特性曲线。

图中,曲线1是离心风机在某一转速下的特性曲线,代表出口绝压P2和入口绝压P1之比与风机流量之间的关系,是一个驼峰曲线,驼峰点M处的流量为Qm。

曲线2是管路特性曲线,正常工作点为A。

可以看出,在驼峰点右侧,工作是稳定的.因为任何偶然因素造成的工作点波动(例如流量增加),对于风机特性曲线1而言,压力会减小,而对于管路特性曲线2而言,压力会增加,这两个相互矛盾的结果最终会使工作点返回到原来的位置,在驼峰点M的左侧,这种情况正好相反,任何偶然因素造成的工作点波动将使沿风机特性曲线1上的压力变化趋势与沿管路特性曲线2上的压力变化趋势具有完全的一致性,其结果加剧了工作点的偏移,使之不能返回到原来的工作点上,风机的工作出现不稳定情况。

因此,驼峰点M右侧的区域为稳定工作区域,驼峰点M左侧的区域为不稳定工作区域。

负荷下降使处于驼峰右侧的工作点向驼峰点靠近,工作点越靠近驼峰点M,越会出现工作不稳定的可能性,驼峰型特性是发生喘振现象的主要原因.2、防喘振控制思路图二给出了风机在不同转速下的特性曲线,可以看出.转速不同,相应的驼峰点和驼峰流量也不同。

转速越低,驼峰点越向左移,驼峰流量越小。

把不同转速下的驼峰点连接起来,就构成了一条曲线,曲线右侧为稳定工作区,曲线左侧为喘振区。

我们称驼峰流量为极限流量,相应的驼峰点连接曲线被称为喘振极限线。

显然,只要在任何转速下,控制风机的流量,使其大于极限流量,则风机便不会发生喘振问题。

这就是防喘振控制的基本思想。

考虑到吸入气体的状态如压力、温度、密度等都会引起风机特性曲线的微小变化,因此应考虑一定的安全容量,确保实际工作点不至于太靠近喘振极限,以免发生喘振事故。

离心机组的喘振

离心机组的喘振

离心机组的喘振离心机组的喘振正如上面几位高手提到的,是单级离心机组的特性之一,它的产生是由于压缩机的排气压力小于冷凝器的压力,导致压缩机无法实现排气, 但压缩机又不断吸气,从而机组出现剧烈震动和噪音.1)一般来讲,机组负荷在低于机组总负荷的30%即会出现"喘振". 主要是由于机组运行负荷过低造成,一般来说,一是整个系统负荷过低,而采用离心机组必须运转时可能出现,可以采取的措施,如果已经采用了离心机组,可以在电脑系统进行设置,保证机组最低运转负荷在30%以上(这是最笨的办法)最好的解决办法是系统采用的机组大小搭配,即保证整个系统的最小负荷大于采用的最小的一台离心机组的30%负荷.或者采用离心机组和螺杆机组搭配的方案它是离心压缩机固有的特性,不过随着速度变化而喘振点后发生偏移。

产生是由于压缩机的排气压力小于冷凝器的压力,造成压力的倒灌从而对叶轮冲击。

高速的离心机特别易产生喘振(如开利,约克的单级离心机),一般是通过热气旁通的方式克服,另一种是通过限制导叶轮的开启度从而限制冷凝压力的增加。

对于低速的多级离心机由于速度较低一般为2900转,喘振点远离工作点,此种机型在运行时可以在10%的低负荷下运行(如特灵的多级离心机)喘振是离心机特有的,但不只是单级,多级离心机照样会喘,特灵三级离心机就不会喘吗?其原因是在低负荷时吸气量少,因而排气压力有可能低于冷凝压力,所以冷凝器气体回流造成反复。

特点是声音大,电流波动大。

2)冷凝压力过高也有可能是冷却系统回水温度过高,或者制冷剂过多,或者制冷剂含有空气或不可凝气体。

一般喘振是因为机组低负荷运行时容易产生或者是冷却水入口温度过高或吸气压力过低引起的,排除方法就是消除产生以上三个问题的原因,或做热气旁通。

基本同意,但热气旁通有两种:1.一种是排气口直接通到吸气口2.排气口通过蒸发器,以提高蒸发温度。

喘振控制可通过打开压缩机的旁路阀或直接将一部分气体放空以维持压缩机的最低流量来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档