生物统计学教案(5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物统计学教案
第五章统计推断
教学时间:5学时
教学方法:课堂板书讲授
教学目的:重点掌握两个样本的差异显著性检验,掌握一个样本的差异显著性检验,了解二项分布的显著性检验。
讲授难点:一个、两个样本的差异显著性检验
统计假设检验:首先对总体参数提出一个假设,通过样本数据推断这个假设是否可以接受,如果可以接受,样本很可能抽自这个总体,否则拒绝该假设,样本抽自另外总体。
参数估计:通过样本统计量估计总体参数。
5.1 单个样本的统计假设检验
5.1.1 一般原理及两种类型的错误
例:已知动物体重服从正态分布N(μ,σ2),实验要求动物体重μ=10.00g。已知总体标准差σ=0.40g,总体平均数μ未知,为了得出对总体平均数μ的推断,以便决定是否接受这批动物,随机抽取含量为n的样本,通过样本平均数,推断μ。
1、假设:
H0: μ=μ0或H0: μ-μ0=0
H A: μ>μ0 μ<μ0 μ≠μ0三种情况中的一种。
本例的μ0=10.00g,因此
H0: μ=10.00
H A: μ>10.00或μ<10.00或μ≠10.00
2、小概率原理小概率的事件,在一次试验中几乎是不会发生的,若根据一定的假设条件计算出来该事件发生的概率很小,而在一次试验中,它竟然发生了,则可以认为假设的条件不正确,从而拒绝假设。
从动物群体中抽出含量为n的样本,计算样本平均数,假设该样本是从N(10.00,0.402)中抽取的,标准化的样本平均数
服从N (0,1)分布,可以从正态分布表中查出样本抽自平均数为μ的总体的概率,即P (U >u ), P (U <-u ), 以及P (|U |>u )的概率。如果得到的值很小,则
x 抽自平均数为μ
0的总体的事件是一个小概率事件,它在一次试验中几乎是不会发生的,但实际上它
发生了,说明假设的条件不正确,从而拒绝零假设,接受备择假设。
显著性检验:根据小概率原理建立起来的检验方法。
显著性水平:拒绝零假设时的概率值,记为α。通常采用α=0.05和α=0.01两个水平,当P < 0.05时称为差异显著,P < 0.01时称为差异极显著。
3、临界值
例 从上述动物群体中抽出含量n =10的样本,计算出x =10.23g ,并已知
该批动物的总体平均数μ绝不会小于10.00g ,规定的显著水平α=0.05。根据以上条
件进行统计推断。
H 0: μ=10.00 H A : μ>10.00 根据备择假设,为了得到x 落在上侧尾区的概率P (U > u ),将x 标准化,求出
u 值。
P (U >1.82)=0.03438,P < 0.05,拒绝H 0,接受 H A 。
在实际应用中,并不直接求出概率值,而是建立在α水平上H 0的拒绝域。从
正态分布上侧临界值表中查出P (U > u α)= α时的u α值,U > u α的区域称为在α水平上的H 0拒绝域,而U < u α的区域称为接受域。接受域的端点一般称为临界值。本例的u =1.82,从附表3可以查出u 0.05=1.645, u > u α,落在拒绝域内,拒绝H 0而接受H A 。
4、单侧检验和双侧检验
上尾单侧检验:上例中的H A :μ>μ0,相应的拒绝域为U > u α。对应于H A :μ>μ0时的检验称为上尾单侧检验。
下尾单侧检验:对应于H A :μ<μ0时的检验称为下尾单侧检验。 其拒绝域为U <-u α。
双侧检验:对应于H A :μ≠μ0时的检验称为双侧检验。双侧检验的拒绝域为
n
x n
x u 40
.000.100
-=
-=
σ
μ82
.110
40
.000
.1023.100
=-=
-=
n
x u σ
μ
|U | >u α/2 。
5、单侧检验和双侧检验的效率:在样本含量和显著水平相同的情况下,单侧检验的效率高于双侧检验。这是因为在做单侧检验
利用了已知有一侧是不可能这一条件,从而提高了它的辨别力。所以,在可能的条件下尽量做单侧检验。
例 上例已经计算出u =1.82,上尾单侧检验的临界值u 9,0.05=1.645,u > u α,结论是拒绝零假设。在做双侧检验时u 仍然等于1.82,双侧检验的临界值为u 9, 0.05/2 =1.96, |u |
6、两种类型的错误
(1)I 型错误,犯I 型错误的概率记为α
α=P (I 型错误)=P (拒绝H 0|H 0是正确的,μ=μ0) (2)II 型错误,犯II 型错误的概率记为β
βμ1=P (II 型错误)=P (接受H 0|H 0是错误的,μ=μ1) 例 继续上例,抽出n =10的样本,
x =10.20g ,检验假设
H 0:μ=10.00g H A :μ >10.00g
标准化的样本平均数
临界值u 0.05 =1.645,u < u 0.05, P > 0.05。结论是不能拒绝H 0。
以样本平均数表示的临界值,可由下式得出
在下图中0x 的位置已用竖线标出。犯I 型错误的概率α,由竖线右侧μ0=10.00曲线下面积给出。犯II 型错误的概率由竖线左侧μ1=10.30曲线下面积给出。
10.2010.00 1.58
0.40u -=
=0010.001.64510.208
0.40x x -=
=