第i段载流直导线在O点的磁感强度为
大学物理课后习题答案

P.30 1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t= s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫⎝⎛-+++=4321)53(2(m) (2) 第一秒内位移j y y i x x r)()(01011-+-=∆(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V∴ )s m (73)34(314-⋅+=++=j i j i V (5) 前4秒平均加速度(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV aP.31 1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。
解:23d d 23++==t t t xv当t =2时x =4代入求证 c =-12 即1224134-++=t t t x将t =3s 代入证P .31 1—9 一个半径R=1.0 m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。
在重力作用下,物体A 从静止开始均匀加速的下滑,在∆t=2.0 s 内下降的距离h=0.4 m 。
川师大学物理第十一章-恒定电流的磁场习题解

第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。
(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。
(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。
…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC I B dμββ=-^IB21图11–2图11–1…B(a )AE(b )0(cos30cos150)4π/3Ih μ︒︒=-=方向垂直于纸面向外。
另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。
因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。
(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。
由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=-031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ=-】方向垂直纸面向里。
半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ===方向垂直纸面向里。
因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π22π26I I I I B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。
物理学第3版习题解答_第6章稳恒磁场

I 2 dr
FBC 方向垂直 BC 向上,大小
FBc
d
0 I1 0 I1 I 2 d a ln 2r 2 d
d a
I 2 dl
0 I1 2r
∵
dl FBC
d a
dr cos 45
∴
a
0 I 2 I1dr II d a 0 1 2 ln 2r cos 45 d 2
B dl 8
a
0
ba
B dl 8 0
B dl 0
c
(1)在各条闭合曲线上,各点 B 的大小不相等. (2)在闭合曲线 C 上各点 B 不为零.只是 B 的环路积分为零而非每点 B 为零
图 6-25 思考题
6-4 图
1
6-5 安培定律 dF Idl B 有任意角度?
线,试指出哪一条是表示顺磁质?哪一条是表示抗磁质?哪一条是表示铁磁质? 答: 曲线Ⅱ是顺磁质,曲线Ⅲ是抗磁质,曲线Ⅰ是铁磁质.
图 6-27
思考题-6-8
2
习题
6-1 如图 6-28 所示的正方形线圈 ABCD,每边长为 a,通有电流 I.求正方形中心 O 处 的磁感应强度。 I A D 解 正方形每一边到 O 点的距离都是 a/2,在 O 点产生的磁场 大小相等、方向相同.以 AD 边为例,利用直线电流的磁场公式:
I1 电阻R2 . I 2 பைடு நூலகம்阻R1 2
I 1 产生 B1 方向 纸面向外
B1
0 I 1 (2 ) , 2R 2
I 2 产生 B2 方向 纸面向里
毕奥-萨伐尔定律 磁通量 磁场的高斯定理

解:(1)判断电流元产生 每个电流元产生磁场同方向
磁场的方向是否一致
z
D
2
z r 0 cot
dz
I
z
1
r
r0
x
C
o
r0 dz d 2 sin dB r0 又r * y P sin 0 Idl sin (1) 大小 dB 2 4 r
B
0 I
2πr
I
B
I
X
B
电流与磁感强度成右手螺旋关系
2013-7-5
10
[例14-2] 圆电流轴线上的磁场。
0 Idl 解: dB sin 90 2 4 r 0 Idl B dB sin 90 2 4 r
x 因为圆线圈上各个电流元在P点产生的磁感应强度 的方向是不同的,所以只能用它的矢量表示:
第五版
四.运动电荷的磁场
7-4
毕奥-萨伐尔定律
考虑一段导体,其截面积为S,其 中载流子的密度为n,载流子带电 q,以漂移速度 v 运动。
毕奥—萨伐尔定律:
0 Idl r dB 4 π r3 0 nSdlqv r dB 3 4π r
P r dB Idl j Sdl nSdlqv
z
o
r
Idl
y
R
0 I dl sin x 2 2 2 r2 r R z 4 2 2 R 0 IR 0 I sin dl 3 2 0 2 2 4 r 2( R z ) 2
B
0 IR
2
2 2 32
2( R z )
《大学物理学》习题解答(第13章 稳恒磁场)(1)

【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R
(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,
大学物理题四

24、如图所示,磁感强度 B 沿闭合曲线L的
环流 B d l _________________________. 0 ( I 2 2I1 )
L
I1 L
I1
I2
第四篇
磁场
25
浙江理工大学理学院物理系
制作:石永锋
25、有一同轴电缆,其尺寸如图所示,它的内 外两导体中的电流均为I,且在横截面上均匀分 布,但二者电流的流向正相反,则
I (a) 0 t
ε
(b) 0
(A)
ε
t 0
(B)
ε
(C)
ε
t 0
(D) t
t 0
第四篇
磁场
19
浙江理工大学理学院物理系
制作:石永锋
19、真空中两根很长的相距为2a的平行直导线与 电源组成闭合回路如图。已知导线中的电流为I, 则在两导线正中间某点P处的磁能密度为 1 0 I 2 1 0 I 2 ( ) . ( ) . (A) (B) 0 2a 2 0 2a 1 0 I 2 ( ) . (C) (D) 0. 2 0 a
轴线的距离r的关系如图所示.正确的图是
B (A) r O a b O a b B (B) r O a b B B (C) r (D) r O a b
第四篇
磁场
4
浙江理工大学理学院物理系
制作:石永锋
4、在图(a)和(b)中各有一半径相同
的圆形回路L1 、L2 ,圆周内有电流I1 、
I2 ,其分布相同,且均在真空中,但 在(b)图中L2 回路外有电流I3 ,P1 、P2
O x y
右手螺旋关系.则由此形成的磁场在O点的方向 z 为 ______________________________________________. 两单位矢量 j 和 k之和,即 ( j k )的方向.
几种典型电流的磁感应强度公式

几种典型电流的磁(一)感应强度公式(1)一段载流I 、长为L 的直导线的磁场为:。
)( 4210θθπμCos Cos a I B -=磁场B 的方向与电流方向构成右手螺旋关系。
上式中a 为场点到载流直导线的垂直距离,1θ和2θ分别为导线的电流流入端和流出端电流元与矢径之间的夹角。
无限长直线载流导线的磁场为:(即:当1θ=0,2θ=π时)a IB 20πμ=无 。
磁场B 的方向与电流I 方向构成右手螺旋关系。
(2)载流I 的圆形导线在其轴线上(距圆心为x 处)的磁场为:。
或写成矢量式:。
)(2 )(2232220232220i x R IR B x R IR B +•=+•=μμ 其中R 为圆形导线的圆周半径,x 为其圆心到轴线上场点的距离,今I R p m 2 π=, 称为该圆电流的磁矩,轴线上远处(x >>R ) 的磁场为:303024 24x p B x p B m m •=•=πμπμ或写成矢量式:。
。
上式在形式上与电偶极子的在其延长线上远处的电场强度的表达式相似。
圆电流在圆心(x =0)处的磁场为:R I B 20μ= 。
磁场B 的方向沿圆电流面积的法线方向0n 或圆电流磁矩m p 的方向。
(3)载流I 的无限长直导体圆柱形导体在距柱轴为r 处的磁场为:: 20 2R Ir B πμ=。
(柱内) r I B 20πμ= 。
(柱外)(4)载流I 的无限长直导体圆筒状导体在距轴线为r 处的磁场为: 0=B 。
(柱内)r I B 20πμ= 。
(柱外)(5)载流I 密绕直螺线管内的磁场及载流I 的无限长直螺线管在管内的磁场为: )cos (cos 21120ββμ-=nI B ; 式中:n 为单位长度的匝数。
。
0nI B μ= (式中:n 为单位长度的匝数。
)以上诸式为必须记忆的公式,注意直线或直的圆柱电流,其公式的系数中有π,但圆电流的系数中无π。
(6)一无限长薄金属板均匀通有电流I ,金属板宽度为a 。
电磁学第四章习题答案

第四章 习题一(磁场)1、一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于导线外有绝缘层,在A 处两导线并不短路,则在圆心处磁感应强度B的大小为( C )(A) I (μ0+1)/(2πR) (B) μ0πI /(2πR) (C) μ0I(1+π)/(2πR) (D) μ0I(1+π)/(4πR)2、载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为a 的半圆,则圆心处的磁感应强度B的大小为( D )(A) μ0I /(4a ) + μ0I /(4πa )(B))8/(2)4/()4/(a I a I a I o o o πμπμμ++(C) ∞(D))4/(2)4/()4/(a I a I a I o o o πμπμμ+-3、如图,电流I 均匀地自下而上通过宽度为a 的 无限长导体薄平板,求薄平板所在平面上距板的一 边为d 的P 点的磁感应强度。
解:该薄板可以看成是由许多无限长的细直载流 导线组成的,每一条载流线的电流为dI =Idx /a , 根据无限长直载流线磁场公式,它们在P 点产 生的磁感应强度的大小为xdxa πI μx πdI μdB 2200==,B d 的方向⊗ ∴ dad a πI μx dx a πI μdB B a d d ad d+===⎰⎰++ln 2200,B 的方向⊗PB4、电流均匀地自下而上通过宽为2a 的无限长导体薄平板,电流为I ,通过板的中线并与板面垂直的平面上有一点P ,P 到板的垂直距离为x ,设板厚可略去不计,求P 点磁感应强度B 。
解:面电流线密度a I j 2/=在离轴线y 处取一宽为dy 的窄条,其电流为dy a Ijdy dI 2==, 22y x r +=P 点B d的方向如图所示。
r πdI μdB 20=220044yx dy a πI μr dy a πI μ+== 22cos sin yx x rx φθ+===,22sin cos yx y ry φθ+===2204cos y x ydya πI μθdB dB x +==,2204sin y x xdy a πI μθdB dB y+== 04220=+==⎰⎰--a a aa x x yx ydya πI μdB Bxaa πI μx y a πI μy x dy aπIx μdB B aa aa aa y y arctan 2arctan 4400220==+==---⎰⎰ y y y x x e x a aπIμe B e B B ⎪⎭⎫ ⎝⎛=+=arctan 205、求上题当a →∞,但维持aIj 2=(单位宽度上的电流,叫做电流线密度)为一常量时P 点的磁感应强度。
大学物理(第四版)课后习题及答案 磁场

习题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。
题10.2:已知地球北极地磁场磁感强度B的大小为6.0⨯10-5 T。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R,通过的电流均为I,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d等于线圈的半径R时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O,两线圈中心连线为x轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。
题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。
西安工业大学大学物理试题集

35.如图所示,有一劈尖(θ很小)薄膜,在垂直入射光λ照射下,若n1=n3,则在反射光中观察劈尖边缘O处是暗纹;若n1<n2<n3,则反射光中观察O处是亮纹;两相邻明纹对应的薄膜处的厚度差为λ/2n2;两相邻明条纹的间距为λ/2n2θ。
答:区别一:静电场产生于静止的电荷的,涡旋电场产生于变化的磁场。
区别二:静电场的电场线不闭合;涡旋电场的电场线闭合。
区别三:静电场的电场强度沿任意环流积分恒为0,即无旋场;而涡旋电场的环流积分一般不为0,即有旋场。
区别四:静电场的电场强度的任意闭曲面积分一般不为0,即有源场;而涡旋电场的该积分恒为0,即无源场。
联系一:静电场和涡旋电场对电荷均有作用力,进而可以做功;
联系二:静电场和涡旋电场对导体均有感应作用;
联系三:静电场和涡旋电场对介质有极化作用。
三.计算题
1.求如图所示的无限长载流导线(电流为I)在O点的磁感应强度 (注意指明方向)。
解:如图带电体在O点产生的磁感应强度 = ,
取 为正方向。因为 ,
所以 = ,方向垂直纸面向外。
4.半径为R的圆形线圈,载有电流I,可绕OO’轴转动,放在均匀磁场 中,如图,线圈磁矩的大小为 ,对于OO’轴线圈所受的力矩大小是 ,方向是沿OO’向下。
5.当载流平面线圈的面积一定时,在均匀磁场中所受的力矩大小于其形状无关;与线圈相对于磁场的方向有关(选题“有关”或“无关”)
6.对于电磁感应中所产生的两类电动势,其中感生电动势可以用涡旋电场假设来解释其产生,动生电动势可以用洛仑兹力来解释其产生的机制。
9.如图所示有一无限长通电流的扁铜片,宽度为a,厚度不计,电流I在铜片上均匀分布,求在与铜片共面、离铜片右边缘为b的p点的磁感应强度 。
大学物理答案第11章

第十一章 恒定磁场11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22(D ) αB r cos π2题 11-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).11-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B≠题 11-4 图分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速. 分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNec I =,可解出环中的电子数.解 通过分析结果可得环中的电子数10104⨯==ecIlN 11-7 已知铜的摩尔质量M =63.75 g·mol -1,密度ρ =8.9 g · cm -3,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kTπ8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN M j ne j m m d ρv (2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=edd m kTv v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的. 11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.题 11-8 图分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I都相等,因此可得rlI j π2=解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m A μ3.13π2-⋅==rlIj 11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度()RIRR IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRBI 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B . 解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0.解 (a) 长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度R IμB π40=,磁感强度的方向依照右手定则确定.点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加. 解 根据磁场的叠加 在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中,k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中,k j i B RIμR I μR I μπ4π4830000---= 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l xId π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==Φ211200lnπ2d π2d dd d Ilx l xIμμ 11-14 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR IrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2I μr B 022π=⋅rI μB 2π02=R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B01=BR 2 >r >R 1NI μr B 022π=⋅rNI μB 2π02=r >R 202π3=⋅r B 03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNIμB 2π0≈11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πR Irμr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解 由分析可得单位长度导线内的磁通量4πd 2π0020Iμr R Ir μΦR==⎰11-18 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. (2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m /s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k11-21 从太阳射来的速度为0.80×108m/s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少? 解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .题 11-22图分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为d lI I μF π22103=()b d l I I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.11-23 一直流变电站将电压为500kV 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F ·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dIμB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为d I μBI F B π220==dεU C λE F E 022π2== 由0=+E BF F 可得dεU C d I μ02220π2π2=解得A 105.4300⨯==μεCUI (2) 输出功率W 1025.29⨯==IU N11-24 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π20h a m L ==v 可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i ==在圆心处,即质子所在处的磁感强度为02a i μB =解 由分析可得,电子绕核运动的速率π2ma h=v其等效圆电流2020π4/π2ma he v a e i ==该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma heμa i μB 11-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.题 11-25 图分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理⎰∑=⋅fI d l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=fπ2I r H对r <R 1221f ππrR I I =∑ 得2112πR IrH =忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR IrμB =对R 2 >r >R 1I I=∑f得rI H 2π2=填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 30=-=∑I I If得04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅= ()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.。
电磁学部分习题解答

电磁学部分习题解答一、判断题1、磨擦起电只能发生在绝缘体上( × )2、试探电荷的电量0q 应尽可能小,其体积应尽可能小( √ )3、一对量值相等的正负点电荷总可以看作是电偶极( × )4、电场线如图所示,P 点电势比Q 点电势低 ( √ )5、如果库仑定律公式分母中r 的指数不是2,而是其它数,则高斯定理不成立( √ )6、电荷沿等势面移动时,电场力永远不作功( √ )7、由公式0εσ=E 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该点场强仅由该点附近的导体上的面上的面电荷产生的。
( × )8、一导体处静电场中,静电平衡后导体上的感应电荷分布如图,根据电场线的性质,必有一部分电场线从导体上的正电荷发出,并终止在导体的负电荷上。
( × )9、一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。
( × )10、孤立带电导体圆盘上的电荷应均匀分布在圆盘的两个圆面上。
( √ ) 11、通过某一截面上的电流密度0=j ,通过该截面的电流强度必为零 ( √)12、如果电流是由几种载流子的定向运动形成的,则每一种载流子的定向运动对电流都有贡献(√ ) 13、若导体内部有电流,则导体内部电荷体密度一定不等于零( × ) 14、在全电路中,电流的方向总是沿着电势降落的方向( × )15、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I0放在空间任意一点都不受力,则该空间不存在磁场(× )16、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示( √ ) 17、安培环路定理反映了磁场的有旋性( × )18、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B( × )19、若感应电流的方向与楞次定律所确定的方向相反,将违反能量守恒定律( √ ) 20、楞次定律实质上是能量守恒定律的反映( √ ) 22、自感系数IL φ=,说明通过线圈的电流强度越小,自感系数越大( × )24、对一定的点,电磁波中的电能密度和磁能密度总相等( √ )25、一根长直导线载有电流I ,I 均匀分布在它的横截面上,导线内部单位长度的磁场能量为πμ1620I ( √ ) 26、在真空中,只有当电荷作加速运动时,它才可能发射电磁波(√ )27、当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的rε1倍( × )28、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷( √) 29、电介质可以带上自由电荷,但导体不能带上极化电荷( √ )30、电位移矢量D 仅决定于自由电荷( × )31、通过某一截面上的电流密度0=j ,通过该截面的电流强度必为零( √)32、如果电流是由几种载流子的定向运动形成的,则每一种载流子的定向运动对电流都有贡献(√) 33、若导体内部有电流,则导体内部电荷体密度一定不等于零( × ) 34、在全电路中,电流的方向总是沿着电势降落的方向( × )二、单选题1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( C ) (A )金属导体因静电感应带电,总电量为-Q(B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q (C )金属导体两端带等量异号电荷,且电量q<Q(D )当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量2、两块无限大平行面上的电荷面密度分别为σ±,图中所示的三个区域的电场强度大小为( D )(A ) 02εσ=ⅠE 0εσ=ⅡE 02εσ=ⅢE (B ) 02εσ=ⅠE 0 E Ⅱ= 02εσ=ⅢE(C ) 0εσ=ⅠE 0 E Ⅱ= 0εσ=ⅢE(D ) 0=ⅠE 0εσ=ⅡE 0=ⅢE3、关于场强线有以下几种说法( C ) (A )电场线是闭合曲线 (B )任意两条电场线可以相交 (C )电场线的疏密程度代表场强的大小 (D )电场线代表点电荷在电场中的运动轨迹4、两个点电荷21q q 和固定在一条直线上。
大学物理简明教程习题解答第7章201091

第7章 恒定磁场7-1在闪电中电流可高达2⨯104A ,若将闪电电流视作长直电流,问距闪电电流1.0m 处的磁感应强度有多大?解 根据安培环路定理∑⎰=⋅iiLI0d μl B ,与长直电流相距r 处的磁感应强度为 I rB 0π2μ= 解得相距1.0m 处的磁感应强度的大小 T 104π230-⨯==rIB μ7-2 如图所示,两根无限长直导线互相垂直地放置,相距d =2.0⨯10-2m 。
设两根导线通过的电流均为I =10A ,求两导线垂直距离中点P 处的磁感应强度。
解 两根载有相同电流的无限长直导线在P 处的磁感应强度的大小相同,由安培环路定理∑⎰=⋅iiLI0d μl BI B d02π2μ=得 T 102/2π24021-⨯===d IB B μ1B 和2B 的方向分别指向x 轴的负方向和z 轴的正方向。
由磁场叠加原理,P 处磁感应强度的大小为 T 108.22d π2402221-⨯==+=IB B B P μB P 的方向在x -z 平面内,与z 轴正方向和x 轴负方向均成45°夹角。
7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的形状。
求使o 点的磁感应强度为零的半径a 和b 的比值。
解 该载流系统由三部分组成,o 点的磁感应强度为载有相同电流的无限长直导线及两个半径分别为a 和b 的圆环分别在该处激发的磁感应强度的矢量和。
设磁场方向以垂直纸面向内为正,向外为负。
由安培环路定理∑⎰=⋅iiLI0d μl B无限长载流直导线在o 点的磁感应强度为 I bB 0π2μ=直线,bIB π20μ=直线根据毕奥–萨伐尔定律,电流元I d l 在o 点的磁感应强度02d sin d 4πI l B r μθ=,其中2π=θ,对两载流圆环分别积分,有 ===⎰⎰2π20020d π4d π4blI rlI B b lμμ大环bI20μ题7-2图题7-3图aIalI rlI B al2d π4d π402π20020μμμ===⎰⎰小环由磁场叠加原理 小环大环直线B B B B -+=022π2000=-+=aIbIbIμμμ解得 1ππ+=b a7-4 如图所示,两导线沿半径方向引到铁环上a 、b 两点,并与远处的电源相连,已知环的粗细均匀,求环中心o 的磁感应强度。
物理习题答案(zhuan)

载流直导线AB 所受到的安培力的大小为01222I I F I Bl l aμπ==,方向垂直AB 水平向右 (b) 载流直导线AB 与无限长载流直导线垂直放置时,AB 上各处的磁感应强度不同。
以长直导线为原点作OX 坐标轴,根据安培环路定律,距长直导线为x 处的磁感应强度xI B πμ210=该处电流元d I x 所受安培力的大小为 2d d f I B x =整条载流直导线AB 所受合力为: 0120120122d d d ln ln(1)222a l a la la aaI I I I I I l F f I B x x x x aμμμπππ+++=====+⎰⎰⎰方向垂直AB 竖直向上。
习题十(P288)3.波长为690nm 的光波垂直投射到一双缝上,距双缝处置一屏幕。
如果屏幕上21个明条纹之间共宽10-2m ,试求两缝间的距离。
解:已知690nm λ= D=,相邻两条纹的间距为 22.31020x -⨯∆= 求缝宽b x D b λ∆= 所以7426.9101.06102.31020b D m xλ---⨯===⨯⨯∆9.有一单缝宽度a = 10-4m ,如垂直投射光为 =500nm 的绿光,试确定 =1时,在屏幕上所得条纹是明还是暗解:由衍射公式:sin a k ϕλ= 代入数据 得 47sin 2.010sin1 6.987510a k ϕλ--⨯⨯===≈⨯o为奇数所以得到的是暗条纹。
x D bλ∆= 所以 7426.9101.06102.31020b D m x λ---⨯===⨯⨯∆10.=的钠黄光垂直照射一狭缝,在距离80cm 的光屏上所呈现的中央亮带的宽度为10-3m ,求狭缝的宽度。
解:由衍射公式 sin a ϕλ= 有图可知:sin x Dϕ=所以 943589.3100.84.71102.0102D a xλ---⨯⨯===⨯⨯m 11.在双缝干涉实验中,若两条缝宽相等,单条缝(即把另一条缝遮住)的衍射条纹光强分布如何双缝同时打开时条纹光强分布又如何答:光强分布按衍射图案分布,且明暗条纹位置有的与干涉位置相同有的不同。
大学物理第11章习题课选讲例题

(1) B1 0 , B2 0
I B1
(2)
B1 0 , B2 2
20I
πl
a
I
b
(3)
B1 2
20I
πl
,
B2
0
B2
cd I
(4) B1 2
20I
πl
,
B2
2
20I
πl
例 如图,流出纸面的电流为 2I ,流进纸面的电
流为 I ,则下述各式中哪一个是正确的? ()
每一无限长直线电流在 O 点
的磁感强度 B B1 B2 B3 B4
B 0I 0I
2π 2l 2 2πl
B0 4Bcos45
2R
解:dN = π N2dq
dB =
0I y 2 2(x 2+y 2)3
dN
2
=π(
0 NI x 2+
y y
2
2 )3
2
dq
=π(R2c0oNsI2qR+2cRo2ssi2qn2q )3 2 dq
=
0NI
πR
cos 2q dq
B=
0NI
πR
π
2 0
cos 2q dq
=
0NI 4R
(A)2倍 (B)4倍 (C)1/2倍 (D)1/4倍
例 在均匀磁场中,有两个平面线圈,其面积 A1 =
2A2,通有电流 I1 = 2I2,它们所受到的最大磁力矩之比
M1 / M2等于
(A)1
(B)2
(C)4
(D)1 / 4
例:电流均匀地流过宽度为 b 的无限 长平面导体薄板,电流为 I ,沿板长方向流 动。求:
§13 怎样计算磁感应强度

§13 怎样计算磁感应强度在稳恒磁场中的磁感应强度,可用毕奥-沙伐尔定律和安培环路定律来求解。
毕奥-沙伐尔定律在成块中的地位,好像静电场中的库仑定律一样,是很重要的。
它是计算磁感应强度最普遍、最基本的方法。
安培环路定律,是毕奥-沙伐尔定律的基础上加上载流导线无限长等条件而推导出来的。
困此,用安培环路定律遇到较大的限制。
但是,有一些场合,应用安培环路定律往往给我们带来不少方便。
一、用毕奥-沙伐尔定律计算真空中有一电流元Idl ,在与它相距r 处的地方所产生的磁感应强度dB ,由毕奥-沙伐尔定律决定。
03(1)4Idl r dB r μπ⨯=式中,r 是由电流元Idl 指向求B 点的距离矢量。
式(1)是矢量的矢积,故dB 垂直于dl 与r 组成的平面,而且服从右手螺旋法则。
真空的磁导率70410/H m μπ-=⨯。
B 是一个可叠加的物理量,因此,对于一段(弯曲的或直的)载流导线L 所产生的B 磁感应强度为:03(2)4LIdl rB r μπ⨯=⎰1、 基本题例在磁场的计算中,许多习题是载流直导线和圆弧导线不同组合而成的。
因此,必须熟练掌握一段载流的长直导线和一段载流的圆弧导线的磁场的计算公式。
图2-13-1所示为一段长直载流导线,它的磁感应强度的计算公式为:()012cos cos 4B aμθθπ=- 或:()021cos cos 4B aμββπ=- 当载流直导线“无限长”时,02IB aμπ=;半无限长时,04IB aμπ=运用时,应注意a 是求B 点到载流导线的垂直距离;辨认θ与β的正负,请辨认图2-13-2中的θ,β的正负。
一段载流圆弧,半径为R ,在圆心O 点的磁感应强度为:004I B Rμθπ=方向由右手螺旋法则决定。
当2πθ=时, 002IB R μ=当θπ=时, 004IB Rμ=2、 组合题例[例1]已知如图2-13-3所示,求P 点的磁感应强度。
[解法一]由图可见,此载流导线由两根半无限长载流导线和一个半圆弧组成。
安培环路定理(大学物理)

lI
2π r
哈尔滨工程大学 姜海丽
安培环路定理
第1章 稳恒磁场
练习题 1、如图,流出纸面的电流为2I,流进纸面的电流为I, 则下述各式中哪一个是正确的? (B) H d l I (A) H d l 2 I 答案:D L L
稳恒磁场安培环路定理16安培环路定理设闭合回路为圆形回路载流长直导线的磁感强度为哈尔滨工程大学稳恒磁场安培环路定理若回路绕向化为逆时针时则对任意形状的回路稳恒磁场安培环路定理稳恒磁场安培环路定理多电流情况以上结果对任意形状的闭合电流伸向无限远的电流均成立
安培环路定理
第1章 稳恒磁场
1.6 安培环路定理 载流长直导线的磁感强度为
c a I c I⊙
.
I1 L
I1 I2
0 ( I 2 2I1 ) 4、如图所示,磁感强度沿闭合曲线L的环流________.
哈尔滨工程大学 姜海丽
安培环路定理
第1章 稳恒磁场
5、半径为R的圆柱体上载有电流I,电流在其横截面上均 匀分布,一回路L通过圆柱内部将圆柱体横截面分为两部 dl 分,其面积大小分别为S1、S2如图所示,则 H _______.
安培环路定理
哈尔滨工程大学 姜海丽
安培环路定理
第1章 稳恒磁场
安培环路定理
n B dl 0 Ii i 1
即在真空的稳恒磁场中,磁感应强度 B 沿任 一闭合路径的积分的值,等于 0 乘以该闭合路径 所包围的各电流的代数和.
注意 电流 I 正负的规定 :I 与 L 成右螺旋时, I 为正;反之为负.
PM
B MN 0 n MN I
B 0 nI
上海交大版大学物理答案7稳恒磁场习题思考题解读

习题77-1.如图所示的弓形线框中通有电流,求圆心处的磁感应强度。
解:圆弧在O点的磁感应强度:,方向:;直导线在O点的磁感应强度:,方向:;∴总场强:,方向。
7-2.如图所示,两个半径均为R的线圈平行共轴放置,其圆心O1、O2相距为a,在两线圈中通以电流强度均为I的同方向电流。
(1)以O1O2连线的中点O为原点,求轴线上坐标为x的任意点的磁感应强度大小;(2)试证明:当时,O点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:。
(1)左线圈在x处点产生的磁感应强度:,右线圈在x处点产生的磁感应强度:,和方向一致,均沿轴线水平向右,∴点磁感应强度:;(2)因为随变化,变化率为,若此变化率在处的变化最缓慢,则O点处的磁场最为均匀,下面讨论O点附近磁感应强度随变化情况,即对的各阶导数进行讨论。
对求一阶导数:当时,,可见在O点,磁感应强度有极值。
对求二阶导数:当时,,可见,当时,,O点的磁感应强度有极小值,当时,,O点的磁感应强度有极大值,当时,,说明磁感应强度在O点附近的磁场是相当均匀的,可看成匀强磁场。
【利用此结论,一般在实验室中,用两个同轴、平行放置的匝线圈,相对距离等于线圈半径,通电后会在两线圈之间产生一个近似均匀的磁场,比长直螺线管产生的磁场方便实验,这样的线圈叫亥姆霍兹线圈】7-3.无限长细导线弯成如图所示的形状,其中部分是在平面内半径为的半圆,试求通以电流时点的磁感应强度。
解:∵a段对O点的磁感应强度可用求得,有:,∴b段的延长线过点,,c段产生的磁感应强度为:,∴则:O点的总场强:,方向如图。
7-4.在半径的无限长半圆柱形金属片中,有电流自下而上通过,如图所示。
试求圆柱轴线上一点处的磁感应强度的大小。
解:将半圆柱形无限长载流薄板细分成宽为的长直电流,有:,利用。
在P点处的磁感应强度为:,∴,而因为对称性,那么,。
7-5.如图所示,长直电缆由半径为R1的导体圆柱与同轴的内外半径分别为R2、R3的导体圆筒构成,电流沿轴线方向由一导体流入,从另一导体流出,设电流强度I都均匀地分布在横截面上。
大学物理2磁学与电磁感应试题及答案(新)

磁学练习答案: 磁学练习(打*为选做题)一. 选择题:1. 在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 [ A ](A) -πr 2B cos α.(B) -πr 2B sin α. (C) 2 πr 2B . (D) πr 2B . 2. 通有电流I 的无限长直导线有如图三种形状,则C ,O ,A 各点磁感强度的大小B C ,B O ,B A 间的关系为:[ B ] (A) B O > B A > B C . (B) B O > B C > B A (C )B C > B O > B A .(D) B A > B C > B O . 3.无限长的载流导体电流密度均匀,电流沿导体长度方向流动,其在空间产生的磁场如图中曲线表示B -x 的关系(半径为导体R ,x 坐标轴垂直导体轴线,原点在中心轴线),此载流导体为[ B ] (A )无限长圆柱体 (B )空心长圆筒形导体 (C )无限长直导线 (D )无限长半圆柱体4. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅Ll Bd 等于[ A ](B)I 0μ.(C) 3/20I μ. (D) 6/0I μ . [ A ]5.2063一均匀磁场,磁场方向垂直纸面向里,有四个质量、电荷大小均相等的带电粒子,在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹如图,四个粒子中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ B ] 6.2464xRO把通电的直导线放在蹄形磁铁磁极的上方,如图所示.导线可以自由活动,且不计重力.当导线内通以如图所示的电流时,导线将(A) 不动.(B) 顺时针方向转动(从上往下看).(C) 逆时针方向转动(从上往下看),然后下降.(D) 顺时针方向转动(从上往下看),然后下降.(E) 逆时针方向转动(从上往下看),然后上升.[ D ]7. 2518有甲乙两个带铁芯的线圈如图所示.接通甲线圈电源后,抽出甲中铁芯,则乙线圈中产生感生电流情况,则(A) 无感生电流产生.(B) 感生电流的方向a到b方向.(C) 感生电流的方向b到a方向.[ C ]8.2314如图所示,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd(A) 向左移动.(B) 向右移动.(C) 不动.(D) 转动.[ B ]9. 5138在一自感线圈中通过的电流I随时间t的变化规律如图(a)所示,若以I的正流向作为 的正方向,则代表线圈内自感电动势 随时间t变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个?[ C ]10.2564甲乙bNtt ttt(b)(a)如图,两根导线沿半径方向引到铁环(半径为r )的上A 、B 两点,并在很远处与电源相连,则环中心的磁感强度为 (A)2032rI μ (B) 0(C)r I 80μ (D) 22rI πμ [ B ]11.2420在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB 导线中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. [ D ] 12.2148半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为 (A)t I Rrωωμcos 202π (B) t I R r ωωμcos 2020π-(C)t I Rrωωμsin 202π (D) t I Rrωωμsin 202π-[ B ]13.2690一根直导线长为L 在磁感强度为B 的均匀磁场中以速度 v运动切割磁力线.导线中对应于非静电力的场强(称作非静电场场强)KE为:(A) B V⨯ (B) V B ⨯(C) VBL (D) l d B V L⋅⨯⎰)( [ A ]14. 5468电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1在O 点产生的磁感强度为1B, 2和三角形框中的电流在框中心O 点产生的磁感强度分别用2B 和3B表示,则O 点的磁感强度大小(A)B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B = 0,因为B 1 = B 2 = B 3 = 0.(D) B ≠ 0,因为虽然021≠+B B ,但3B≠ 0. [ A ]15. 5121在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠.(D) =⎰⋅1d L l B⎰⋅2d L l B ,21P P B B ≠. [ D ]16. 2059一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的动量大小必然不同. (B) 两粒子的运动周期必然不同.(C) 粒子的电荷可以同号也可以异号.(D) 两粒子的电荷必然同号. [ C ]17 2092L 1 2I 3(a)(b)⊙两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) 0 . (B)RrI I 22210μ.(C) rR I I 22210πμ. (D)Rr I I 22210πμ. [ A ]18. 2315如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点间的电势差U a – U c 为 (A)ε =0, U a – U c =221l B ω. (B)ε =2l B ω,U a – U c =221l B ω. (C)ε =2l B ω,U a – U c =221l B ω-.(D) ε =0,U a – U c =221l B ω-. [ D ]二、填空题1.2004磁场中某点的磁感强度为B ,在该点放一个小的载流试验线圈(可以确定该点的磁感强度,其大小等 于放在该点处试验线圈所受的__最大磁力矩___和线圈的_磁矩___的比值. *2.2558在真空中,半径为R 的细导线环中的通有电流,离环上所有点的距离皆等于r (r ≥R )的一点处的磁感强度大小为B 0 ,则细导线环中通有的电流I =2302Rr B μ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:作截面Oxy与线圈正交,由于导线单层均匀覆盖 在半球面上,沿圆周单位长度的线圈匝数为N/(0.5πR). 现将半球面分割为无数薄圆盘片,则任一薄圆盘片均
可等效为一个圆电流,由于每个薄圆盘片上的电流在 球心O产生的磁感强度方向一致,则球心O的磁感强度 为所有薄圆盘片的磁感强度的总和。
任一薄圆盘片中的电流为:dI IdN 2N Rd I R
dr
0I 4
11-18 如图所示,一根半径为R 的无限长载流直导体,在导体上 有一半径为R'的圆柱形空腔,其 轴与直导体的轴平行,两轴相距 为d。导体中有电流I沿轴向流过, 并均匀分布在横截面上。试用安 培环路定理求空腔中心的磁感强 度。你能证明空腔中的磁场是均 匀磁场吗?
2
)]
2
Bi
0I 2r
sin( )
2
Bi的方向垂直纸面向外,n段等长的载流直导线在点
O激发的磁场方向相同,因而点O的磁感强度大小为:
由几何关系r=Rcos(BΔφ/2)n和BΔiφ=2π/n,代入并整理,得
B
nBi
0nI 2R
tg( )
n
(2)当n →∞时,正n边形趋于半径为R的外接圆,由上
11-4 如图所示,几种载流导线在平面内分布,电 流均为I,它们在点O的磁感强度各为多少?
解: (a)长直电流对点O而言,有Idℓ r=0,因此它在点
O产生的磁场零,则点O处总的磁感强度为1/4圆弧
电流所激发,故有
B0
0I
8R
方向垂直纸面向外。
(b)将载流导线看作圆电流和长直电流,由叠加原理得
r
B2 dS B2 2r 0I
B2
0I 2r
R2 r R3
B3
dS
B3
2r
0[I
(r 2 R22 )I (R32 R22 )
]
r R3
B3
0I 2r
R32 r 2 R32 R22
B4 dS B4 2r 0 B4 0
B
R1 R2 R3
r O
R1 R2 R3
解:同轴电缆到体内的电流均匀分布,其磁场呈轴 对称,取半径为r的同心圆为积分路径,则有
B dS B 2r 0 I
r R1 R1 r R2
B1
dS
B1
2r
0I R12
r
2
B1
0I 2R12
0 R
4R
磁感强度B的方向由电流的流向根据右手定则确定。
11-8 如图所示,一宽为b的薄金属板,其电流为I,试 求在薄板的平面上,距板的一边为r的点P的磁感强度。
解:在薄金属板所在的平面内,以点P为原点O,作Ox轴, 如下图所示,现将薄金属板分割成宽度为dx的长直线电流, 其电流为dI =Idx/b,该线电流在点P激发的磁感强度
I
I
l
d1
O
dx x
d2
解:在矩形平面上取一矩形面元dS=ldx,如图所示,
载流长直导线的磁场穿过该面元的磁通量为
d
B dS
0I
ldx
2x
矩形平面的总磁通量:
d2 0I ldx 0Il ln d2
d1 2x
2 d1
11-13 有一同轴电缆,其尺寸如图所示,两导体 中的电流均为I,但电流的流向相反,导体的磁性可 不考虑。试计算以下各处的磁感强度: (1)r<R1; (2)R1<r<R2; (3)R2<r<R3; (4) r>R3;画出B-r图线。
B 0nI tg( ) 2R n
(2)证明当n →∞时,B等于载流圆环中心的磁感强度.
证: (1)将载流导线 分解成如图所示的n段 等长的载流直导线,根 据磁场的叠加原理,可 求得点O的磁感强度B。
第i段载流直导线 在O点的磁感强度为:
Bi
0I 4r
[cos(
2
2
)
cos(
式可得点O的磁感强度B的值为
B lim n
Bi
lim n
0nI 2R
tg( ) lim
n n
0I
2R
1
cos(
)
sin( )
n
( )
0I
2R
nn
11-7 如图所示,半径为R的木球上绕有密集的细导 线,线圈平面彼此平行,且以单层线圈覆盖住半个球 面,设线圈的总匝数为N,通过线圈的电流为I,求球 心O处的磁感强度。
B 0I ln r b 0I ln(1 b ) 0I [b 1 (b )2 ...]
2b r 2b
r 2b r 2 r
0I 2r
这表明,在b<<r时,可将宽度为b的载流薄金属板 视为载流线。B的分布曲线如上图所示。
11-10 如图所示,载流长直导线的电流为I,试求通 过矩形面积的磁通量。
dI I
Px
b
dx
r
B 0I 2r
P
0I ln(1 b)
2r
r
O
dB 0dI 2x
O
r
所有线电流在点P激发的磁场方向均相同,因而点P的磁感强度B为:
B dB rb 0I dx 0I ln r b
r 2bx 2b r
磁感强度的方向垂直纸面向里。
若金属导体板的宽度b<<r,则
任一该圆电流在球心O处激发的磁场为:
dB
0
2
(x2
y2 y2)2/3
dI
(第11 2节例2结论)
球心O处总的磁感强度 B为:B
0
/2
0
2
(x2
y2I y2)2/3
2N
R
Rd
又由于:x R cos,y R sin
B /2 0NI sin2 d 0NI
磁感强度B(r)的分布曲线如图所示。
11-15 电流I均匀地流过半径为R的圆形长直导线, 试计算单位长度导线内的磁场通过图中所示剖面的磁 通量。
解:由题11-12可得导线内部距轴线为r处的磁感强度
B(r)
0Ir 2R2
;
而dS ldr
单位长度导线内的磁通量为:
R 0
0Ir 2R2
B0
0I
2R
0I 2R
方向垂直纸面向里。
(c)将载流导线看作1/2圆电流和两段半无限长直电流, 由叠加原理可得
B0
0I
4R
0I 4R
0I 4R
0I
4R
0I 2R
方向垂直纸面向外。
11-5 由导线弯成的n边正多边形,其外接圆半径 为R,假设导线内的电流强度为I.(1)证明中心O处的 磁感强度B为