(沪科版)七年级数学上册专题复习 二元一次方程组及其解法例题与解析
沪科版七年级上册数学6.解题技巧专题:解二元一次方程组精品专题
解题技巧专题:解二元一次方程组——学会选择最优的解法◆类型一 解未知数系数含有1或-1的方程组一、直接运用或变形后运用代入法解方程组1.方程组⎩⎪⎨⎪⎧y =2x -1,x +2y =8的解是________. 2.解方程组:⎩⎪⎨⎪⎧x +3y =5①,2x +5y =9②.二、两个方程中某一未知数都含有系数1或-1,运用加减法解方程组3.二元一次方程组⎩⎪⎨⎪⎧2x +y =3,x -y =3的解为( ) A .⎩⎪⎨⎪⎧x =2,y =1 B .⎩⎪⎨⎪⎧x =2,y =-1 C .⎩⎪⎨⎪⎧x =-2,y =-1 D .⎩⎪⎨⎪⎧x =-2,y =1 4.方程组⎩⎪⎨⎪⎧x -2y =-3,x +3y =2的解为________. 5.解方程组:(1)⎩⎪⎨⎪⎧x +y =5①,3x -y =3②;(2)⎩⎪⎨⎪⎧x -2y =1①,x +5y =8②.◆类型二 解两个方程中某一未知数系数为倍数关系的方程组6.二元一次方程组⎩⎪⎨⎪⎧2x +3y =7,x -y =1的解为( ) A .⎩⎪⎨⎪⎧x =4,y =3 B .⎩⎪⎨⎪⎧x =2,y =1 C .⎩⎪⎨⎪⎧x =-4,y =3 D .⎩⎪⎨⎪⎧x =2,y =-1 7.解方程组:(1)⎩⎪⎨⎪⎧a +3b =5①,3a +2b =8②;(2)⎩⎪⎨⎪⎧x +2y =11①,6x +y =22②.◆类型三 解两个方程中未知数系数成对称关系的方程组一、解未知数系数成对称关系的方程组8.解方程组:⎩⎪⎨⎪⎧2x +3y =10①,3x +2y =15②.二、不解方程组求字母或式子的值9.若x ,y 满足方程组⎩⎪⎨⎪⎧3x +5y =10,5x +3y =12,则x -y 的值为________. 10.已知a ,b 的值同时满足方程a +2b =8和2a +b =10,则a +b =________.11.若方程组⎩⎪⎨⎪⎧3x +y =1+3a ①,x +3y =1-a ②的解满足x +y =0,求a 的值.◆类型四 含字母系数的方程组的运用12.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的值为( ) A .2 B .3 C .4 D .513.若方程组⎩⎪⎨⎪⎧x +ay =4,x -y =-5的解也是方程2x +3y =5的解,则a 的值为________. 14.有一个代数式ax +by ,当x =5,y =2时,它的值是1;当x =1,y =3时,它的值是-5,试求当x =7,y =-5时,代数式ax +by 的值.15.已知关于x ,y 的二元一次方程(a -1)x +(a -2)y +5-2a =0,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.16.已知方程组⎩⎪⎨⎪⎧2x +y =-2,ax +by =-4和方程组⎩⎪⎨⎪⎧3x -y =12,bx +ay =-8的解相同,求(5a +b)2的值.参考答案与解析1.⎩⎪⎨⎪⎧x =2,y =32.解:由①得x =5-3y ③,把③代入②,得2(5-3y )+5y =9,解得y =1.把y =1代入③,得x =2.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =1. 3.B 4.⎩⎪⎨⎪⎧x =-1,y =15.解:(1)由①+②,得4x =8,解得x =2.把x =2代入①,得y =3.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =3. (2)由②-①,得7y =7,解得y =1.把y =1代入②,得x =3.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =1. 6.B7.解:(1)①×3-②,得7b =7,解得b =1.把b =1代入①,得a +3=5,解得a =2.所以原方程组的解为⎩⎪⎨⎪⎧a =2,b =1. (2)②×2-①,得11x =33,解得x =3.把x =3代入①,得3+2y =11,解得y =4.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =4. 8.解:①+②,得5x +5y =25,所以x +y =5③.①-③×2,得y =0.把y =0代入③,得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =0. 9.1 解析:两个方程相减,得2x -2y =2,所以x -y =1.10.6 解析:两个方程相加,得3a +3b =18,所以a +b =6.11.解:①+②,得4x +4y =2+2a ,所以x +y =1+a 2.因为x +y =0,所以1+a 2=0,解得a =-1.12.C 解析:将⎩⎪⎨⎪⎧x =2,y =1代入原方程组,得⎩⎪⎨⎪⎧2m +n =8,2n -m =1,解得⎩⎪⎨⎪⎧m =3,n =2,所以2m -n =2×3-2=4.故选C.13.2 解析:解方程组⎩⎪⎨⎪⎧x -y =-5,2x +3y =5,得⎩⎪⎨⎪⎧x =-2,y =3.将⎩⎪⎨⎪⎧x =-2,y =3代入方程x +ay =4,得-2+3a =4,解得a =2.14.解:由题意得⎩⎪⎨⎪⎧5a +2b =1,a +3b =-5,解得⎩⎪⎨⎪⎧a =1,b =-2.所以ax +by =x -2y .当x =7,y =-5时,x -2y =7-2×(-5)=17.15.解:当a =3时,原方程为2x +y -1=0.当a =4时,原方程为3x +2y -3=0.解方程组⎩⎪⎨⎪⎧2x +y -1=0,3x +2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =3. 16.解:解方程组⎩⎪⎨⎪⎧2x +y =-2,3x -y =12,得⎩⎪⎨⎪⎧x =2,y =-6.将⎩⎪⎨⎪⎧x =2,y =-6代入⎩⎪⎨⎪⎧ax +by =-4,bx +ay =-8,得⎩⎪⎨⎪⎧2a -6b =-4,2b -6a =-8,解得⎩⎨⎧a =74,b =54,所以(5a +b )2=⎝⎛⎭⎫5×74+542=102=100.。
沪科版七年级数学上册复习资料-二元一次方程组及其解法例题与解析
3.3 二元一次方程组及其解法1.二元一次方程组 (1)二元一次方程含有两个未知数的一次方程叫做二元一次方程,如5x +3y =34就是二元一次方程. 注意:“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.不要把2xy +2=4,2x +y =5误当成二元一次方程,实际上2xy +2=4含未知数的项的次数是2,而2x+y =5中2x不是整式,我们将会在后面的学习中遇到它.(2)二元一次方程组①联立在一起的几个方程,称为方程组.②由两个二元一次方程联立起来得到的方程组叫做二元一次方程组.实际上,在二元一次方程组中,两个方程中可以有方程是一元一次方程,方程的个数也可以超过两个,同一个字母必须代表同一数值,这样才能组合在一起.如下列方程组都是二元一次方程组:⎩⎪⎨⎪⎧x +5y =1,y -3=0,⎩⎪⎨⎪⎧x =2,y =-3,⎩⎪⎨⎪⎧x -y =1,x +3y =9,2x -y =4.【例1-1】 下列方程中,是二元一次方程的个数是( ). ①2x +3y =5;②xy =1;③3x -y2=1;④2⎝ ⎛⎭⎪⎫m -23+1=14m -2;⑤1-2m 3=n ; ⑥1-23m =n ;⑦y =2x -3;⑧s =12vt.A .1B .2C .3D .4解析:题中①③⑤⑦都含有两个未知数,并且含未知数的项的次数是1,因此它们4个是二元一次方程,②含未知数的项的次数是2,④是一元一次方程,⑥不是整式方程,⑧含有3个未知数,因此它们都不是二元一次方程,故应选D.答案:D【例1-2】 下列方程组中,不是二元一次方程组的是( ).A .⎩⎪⎨⎪⎧x =2y +1,3x -4z =6B .⎩⎪⎨⎪⎧x -y =1,x +y =4C .⎩⎪⎨⎪⎧x +y =5,x =5D .⎩⎪⎨⎪⎧x 2+y2=2y ,y =23x解析:本题应根据二元一次方程组定义来判断,选项A 中每一个方程虽然都是一次方程,但是未知数的个数有三个,故否定A ;选项B ,D 只含有两个未知数且都是一次方程,符合二元一次方程组的定义,故都是二元一次方程组;选项C 中的第二个方程虽然是一元一次方程,但方程组中的第一个方程是二元一次方程,故它们也能组成二元一次方程组.所以不是二元一次方程组的是A.答案:A2.二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.如⎩⎪⎨⎪⎧x =12,y =5既是方程x +y =17的解又是方程5x +3y =75的解,这时我们就说⎩⎪⎨⎪⎧x =12,y =5是二元一次方程组⎩⎪⎨⎪⎧x +y =17,5x +3y =75的解.谈重点 理解二元一次方程组的解(1)二元一次方程组的解实质上是组成方程组的每个二元一次方程的公共解,也就是说,方程组的解一定是组成此方程组的每个方程的解,而组成此方程组的每个方程的解却不一定是方程组的解.(2)二元一次方程的解是一对数值,必须用大括号合在一起.【例2】 二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解是( ).A.⎩⎪⎨⎪⎧ x =1y =6B.⎩⎪⎨⎪⎧ x =-1y =4C.⎩⎪⎨⎪⎧ x =-3y =2D.⎩⎪⎨⎪⎧x =3y =2解析:选项A ,将⎩⎪⎨⎪⎧x =1,y =6代入方程①,左边=2×1+6=8,右边=2,左边≠右边,所以⎩⎪⎨⎪⎧x =1,y =6不是方程组的解;选项B ,将⎩⎪⎨⎪⎧x =-1,y =4代入方程①得,左边=2×(-1)+6=4,右边=4,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程①的解,将⎩⎪⎨⎪⎧x =-1,y =4代入方程②得,左边=-(-1)+4=5,右边=5,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程②的解,所以⎩⎪⎨⎪⎧x =-1,y =4是二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解;按照以上方法对选项C ,D 加以判断,都不是方程组的解,故应选B.答案:B 3.代入消元法 (1)消元思想二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程.这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入消元法的概念从二元一次方程组的一个方程中求出某一个未知数的表达式(即将一个未知数用含另一未知数的式子表示出来),再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.解技巧 用代入法解二元一次方程组(1)用代入法解方程组一般将系数较小的方程变形,且用系数较大的未知数表示系数较小的未知数.(2)当方程组中有一个方程的某一个未知数的系数绝对值是1或有一个方程的常数项是0时,一般用代入法来解.(3)用代入消元法解二元一次方程组的步骤①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式;②将y =ax +b (或x =ay +b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值; ⑤用“{”联立两个未知数的值,得到方程组的解. 谈重点 运用代入法需注意的问题运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.【例3-1】 已知方程x -2y =6,用x 表示y ,则y =__________;用y 表示x ,则x =__________.解析:(1)因为x -2y =6,移项,得x -6=2y ,两边都除以2,得12x -3=y ,即y =12x-3;(2)因为x -2y =6,移项,得x =6+2y .答案:12x -3 6+2y【例3-2】 解方程组⎩⎪⎨⎪⎧3x -5y =6,①x +4y =-15.②分析:观察方程组中的每个方程,发现第二个方程中的x 的系数为1,所以选择将其变形,用含y 的代数式表示x ,得x =-15-4y ,然后把x =-15-4y 代入第一个方程,求出y 的值,再把y 的值代入变形后的方程x =-15-4y 中,求出x 的值.解:由②,得x =-15-4y ,③ 把③代入①,得3(-15-4y )-5y =6, 解得y =-3,把y =-3代入③,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-3.4.加减消元法 (1)加减消元法的概念两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,消去一个未知数的方法,叫做加减消元法,简称加减法.(2)用加减法解二元一次方程组的一般步骤用加减消元法解二元一次方程组的基本思路仍然是“消元”.第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.析规律 解二元一次方程组的方法(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. (2)通过两个方程相减消去未知数比通过两个方程相加消去未知数更易出错,所以一般是将两个方程中同一个未知数的系数化成互为相反数,然后相加消去一个未知数.【例4】 解方程组:⎩⎪⎨⎪⎧3x +2y =5,①2x -y =8.②分析:经观察发现,①和②中y 的系数是倍数关系,若将方程②×2,可使两个方程中y 的系数互为相反数,再将两方程相加,便可消去y ,只剩关于x 的方程,问题便很容易解决了.解:将方程②×2,得 4x -2y =16,③ ③+①,得 7x =21, 解得x =3. 把x =3代入②,得 2×3-y =8,y =-2.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-2.5.解二元一次方程组的策略解二元一次方程组的关键就在于将“二元”转化为“一元”,如何消元,要根据系数特点合理选择使用代入消元法和加减消元法.解二元一次方程组,关键要在根本上把握方程组的系数特点,若遇到不能直接看出系数特点的,应该先化简,化简后系数的特点比较明显.对于不能直接运用消元法的方程组,应通过观察,找到一个系数较小的,利用等式性质,通过扩大相应倍数变成具有相同系数或互为相反数的系数,然后再使用加减法来解决问题.(1)对于一般形式的二元一次方程组,用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程;④方程组中某一未知数的系数成整数倍,选择小系数方程.(2)对于一般形式的二元一次方程组,用加减消元法求解关键是选择消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择系数是1或-1的未知数;②若未知数系数都不是1或-1,选系数的绝对值较小的未知数;③选方程组中系数成整数倍的未知数.【例5-1】 解方程组:⎩⎪⎨⎪⎧3x -1y +5,5y -13x +5.分析:通过观察,发现方程组比较复杂,因此应先化简,方程组中的两个方程化为⎩⎪⎨⎪⎧3x -y =8,5y -3x =20,通过观察决定使用加减法来解.解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变.解:原方程组化简,得⎩⎪⎨⎪⎧3x -y =8,①5y -3x =20.②①+②,得4y =28,y =7.把y =7代入①得3x -7=8,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =7.【例5-2】 解方程组:⎩⎪⎨⎪⎧53x +47y =112,①47x +53y =88.②分析:本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x ,y 的系数都是100、常数项是200的方程100x +100y =200,两边都除以100,得x +y =2,而此方程x +y =2与方程组中的①和②都同解.这样,用这个方程与原方程组中任何一个方程组成方程组,此时求解就使问题变得比较简单了.解:①+②,得100x +100y =200, 化简,得x +y =2, ③于是原方程变为⎩⎪⎨⎪⎧53x +47y =112,①x +y =2,③由③,得x =2-y , ④把④代入①,得53(2-y )+47y =112, 106-53y +47y =112,-6y =6,所以y =-1. 把y =-1代入④,得x =3,所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1.6.构造二元一次方程组解题 常见的考查方式有:(1)已知二元一次方程组的解,求方程中的待定系数的值.我们知道使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.解决此类问题的方法通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.例如⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧x +y =a ,x -y =b 的解,把⎩⎪⎨⎪⎧x =1,y =1代入方程组可得a =2,b=0.(2)学习了二元一次方程组后,同学们应从前面所学的内容中挖掘涉及二元一次方程组的隐含条件,构造二元一次方程组解决许多问题,从而达到既沟通了知识之间的内在联系,又提高了同学们分析问题和解决问题的能力的目的.如同类项的概念等,解答此类题目的关键是真正理解概念,利用概念中的相关词语列出关系式.(3)同解问题,两个方程组的解相同,其实就是说这两个方程组的解是这两个方程组中四个二元一次方程的公共解.解技巧 用整体代入法解二元一次方程组当我们把二元一次方程组的解代入原方程后,通常得到关于未知系数的新的方程组,但有时可以不解方程组,整体代入求解.【例6-1】 已知2ay +3b 3x和-3a 2x b 8-2y 是同类项,则x =__________,y =__________.解析:根据同类项的定义可知,若2a y +3b 3x和-3a 2x b 8-2y 是同类项,则必有y +3=2x ,3x=8-2y ,将这两个二元一次方程合在一起组成方程组⎩⎪⎨⎪⎧2x =y +3,3x =8-2y ,即可求出x =2,y =1. 答案:2 1【例6-2】 已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2xm -1y =2,nx +y =1的解,则m +n 的值是__________.解析:因为⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2x m -1y =2,①的解,nx +y =1②所以⎩⎪⎨⎪⎧ x =2,y =1同时满足方程①和方程②,将⎩⎪⎨⎪⎧x =2,y =1分别代入方程①和方程②,可得⎩⎪⎨⎪⎧4+m -1=2,③2n +1=1.④由③和④可分别求出m ,n 的值为⎩⎪⎨⎪⎧m =-1,n =0.所以m +n =-1+0=-1. 答案:-1【例6-3】 已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b的值.解:解方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解这个方程组,得⎩⎪⎨⎪⎧a =52,b =1.7.求二元一次方程的正整数解任何一个二元一次方程都有无数组解,但是二元一次方程的整数解是有限的. 一般应用二元一次方程解决实际问题时所列出的二元一次方程的解应当是有限的.因为我们必须保证其解有意义.析规律 注重实际问题中的隐含条件生活中的实际问题常隐含着一个条件:(1)数量的取值为正整数;(2)最终的答案可能不止一个,只要符合条件即可.【例7】 甲种书每本3元,乙种书每本5元,38元可买两种书各几本? 分析:先根据题意列出二元一次方程,再求其正整数解. 解:设甲种书买x 本,乙种书买y 本,根据题意得 3x +5y =38(x ,y 都是正整数). 用含y 的代数式表示x 为x =38-5y3,当y =1时,x =11; 当y =4时,x =6; 当y =7时,x =1. 原方程所有的正整数解为⎩⎪⎨⎪⎧x =1,y =7,⎩⎪⎨⎪⎧x =6,y =4,⎩⎪⎨⎪⎧x =11,y =1.答:甲、乙两种书可分别买1本和7本或6本和4本或11本和1本. 8.列方程组解决实际问题(1)解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,正确的列出一个(或几个)方程,再组成方程组.(2)列方程组解应用题,常遇到隐含的等量关系,如:和、差、倍、分问题;行程问题;调配问题;工程问题;浓度问题;形积问题等等.我们在列方程(组)解应用题时,要注意充分挖掘这些关系.【例8】 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.求1个大餐厅、1个小餐厅分别可供多少名学生就餐?解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,则根据题意,得⎩⎪⎨⎪⎧x +2y =1 680,2x +y =2 280.解这个方程组,得⎩⎪⎨⎪⎧x =960,y =360.答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.。
2024七年级数学上册第3章一次方程与方程组练素养1.二元一次方程组)的解的常见应用课件新版沪科版
即 a , b 的值分别为-4,1.
1
2
3
4
5
6
7
8
9
10
应用5
已知二元一次方程组的错解,求字母的值
+ = ,
7. 在解方程组ቊ
时,由于粗心,甲看错了方程
− =
= ,
组中的 a ,得解为ቐ
= − ;
乙看错了方程组中的 b ,得
= ,
解为ቊ
= − .
ቊ
可化为ቊ
+ = ,
(+)+( − ) =
− = ,
= ,
因为ቊ
的解是ቊ
所以
= ,
+ =
+ = ,①
ቊ
− = ,②
1
①+②,得2 a =3,所以 a = .
2
3
4
5
6
7
8
9
10
把 a = 代入①,得 b =- .
已知二元一次方程组的解之间的关系,求字母的值
4. [2024·重庆一中月考]已知关于 x , y 的二元一次方程组
− = ,
ቊ
的解满足 x - y =10,则 a 的值
− = −
11
为
.
1
2
3
4
5
6
7
8
9
10
【点拨】
− = ,①
൝
− = − ,②
1
2
3
4
5
6
7
9
10
应用2
的值
已知二元一次方程组与二元一次方程共解,求字母
2024七年级数学上册第3章3.4二元一次方程组及其解法第1课时二元一次方程(组)课件新版沪科版
= + ,
理由:把ቊ
代入方程3 x -5 y +4=0的左
= +
边,得15 m +6-15 m -10+4=0,而方程右边=0,
所以左边=右边,即小明发现的结论正确.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
返回
15. [新考法 创设情境法]某城市出租车的收费标准:行程不
【解】由题意,得 m2-4=0, m +2≠0且 m +1≠0,
解得 m =2,故当 m =2时,方程为二元一次方程.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
13. 某学校的篮球数比排球数的2倍少3个,篮球数与排球数
的比是3∶2,求两种球各多少个.(只需列出二元一次方程
组,不必求解)
【解】设排球有 x 个,篮球有 y 个,由题意,得
超过3 km收起步价,超过部分每千米收费若干元(不足
1 km的按1 km计算).某天,林老师第一次乘出租车的行程
为8 km,花了12元;第二次乘出租车的行程为11 km,
花了15.6元.请你编写适当的问题,并列出相应的二元一
次方程组.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
【解】答案不唯一,如:起步价是多少?超过3 km后每
返回
1
2
3
HK沪科版 初一七年级数学 上册第一学期秋季(专题复习练习题)二元一次方程组及其解法例题与解析
3.3 二元一次方程组及其解法1.二元一次方程组 (1)二元一次方程含有两个未知数的一次方程叫做二元一次方程,如5x +3y =34就是二元一次方程. 注意:“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.不要把2xy +2=4,2x +y =5误当成二元一次方程,实际上2xy +2=4含未知数的项的次数是2,而2x+y =5中2x不是整式,我们将会在后面的学习中遇到它.(2)二元一次方程组①联立在一起的几个方程,称为方程组.②由两个二元一次方程联立起来得到的方程组叫做二元一次方程组.实际上,在二元一次方程组中,两个方程中可以有方程是一元一次方程,方程的个数也可以超过两个,同一个字母必须代表同一数值,这样才能组合在一起.如下列方程组都是二元一次方程组:⎩⎪⎨⎪⎧x +5y =1,y -3=0,⎩⎪⎨⎪⎧x =2,y =-3,⎩⎪⎨⎪⎧x -y =1,x +3y =9,2x -y =4.【例1-1】 下列方程中,是二元一次方程的个数是( ). ①2x +3y =5;②xy =1;③3x -y2=1;④2⎝ ⎛⎭⎪⎫m -23+1=14m -2;⑤1-2m 3=n ; ⑥1-23m =n ;⑦y =2x -3;⑧s =12vt.A .1B .2C .3D .4解析:题中①③⑤⑦都含有两个未知数,并且含未知数的项的次数是1,因此它们4个是二元一次方程,②含未知数的项的次数是2,④是一元一次方程,⑥不是整式方程,⑧含有3个未知数,因此它们都不是二元一次方程,故应选D.答案:D【例1-2】 下列方程组中,不是二元一次方程组的是( ).A .⎩⎪⎨⎪⎧x =2y +1,3x -4z =6B .⎩⎪⎨⎪⎧x -y =1,x +y =4C .⎩⎪⎨⎪⎧x +y =5,x =5D .⎩⎪⎨⎪⎧x 2+y2=2y ,y =23x解析:本题应根据二元一次方程组定义来判断,选项A 中每一个方程虽然都是一次方程,但是未知数的个数有三个,故否定A ;选项B ,D 只含有两个未知数且都是一次方程,符合二元一次方程组的定义,故都是二元一次方程组;选项C 中的第二个方程虽然是一元一次方程,但方程组中的第一个方程是二元一次方程,故它们也能组成二元一次方程组.所以不是二元一次方程组的是A.答案:A2.二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.如⎩⎪⎨⎪⎧x =12,y =5既是方程x +y =17的解又是方程5x +3y =75的解,这时我们就说⎩⎪⎨⎪⎧x =12,y =5是二元一次方程组⎩⎪⎨⎪⎧x +y =17,5x +3y =75的解.谈重点 理解二元一次方程组的解(1)二元一次方程组的解实质上是组成方程组的每个二元一次方程的公共解,也就是说,方程组的解一定是组成此方程组的每个方程的解,而组成此方程组的每个方程的解却不一定是方程组的解.(2)二元一次方程的解是一对数值,必须用大括号合在一起.【例2】 二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解是( ).A.⎩⎪⎨⎪⎧ x =1y =6B.⎩⎪⎨⎪⎧ x =-1y =4C.⎩⎪⎨⎪⎧ x =-3y =2D.⎩⎪⎨⎪⎧x =3y =2解析:选项A ,将⎩⎪⎨⎪⎧x =1,y =6代入方程①,左边=2×1+6=8,右边=2,左边≠右边,所以⎩⎪⎨⎪⎧x =1,y =6不是方程组的解;选项B ,将⎩⎪⎨⎪⎧x =-1,y =4代入方程①得,左边=2×(-1)+6=4,右边=4,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程①的解,将⎩⎪⎨⎪⎧x =-1,y =4代入方程②得,左边=-(-1)+4=5,右边=5,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程②的解,所以⎩⎪⎨⎪⎧x =-1,y =4是二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解;按照以上方法对选项C ,D 加以判断,都不是方程组的解,故应选B.答案:B 3.代入消元法 (1)消元思想二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程.这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入消元法的概念从二元一次方程组的一个方程中求出某一个未知数的表达式(即将一个未知数用含另一未知数的式子表示出来),再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.解技巧 用代入法解二元一次方程组(1)用代入法解方程组一般将系数较小的方程变形,且用系数较大的未知数表示系数较小的未知数.(2)当方程组中有一个方程的某一个未知数的系数绝对值是1或有一个方程的常数项是0时,一般用代入法来解.(3)用代入消元法解二元一次方程组的步骤①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式;②将y =ax +b (或x =ay +b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值; ⑤用“{”联立两个未知数的值,得到方程组的解. 谈重点 运用代入法需注意的问题运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.【例3-1】 已知方程x -2y =6,用x 表示y ,则y =__________;用y 表示x ,则x =__________.解析:(1)因为x -2y =6,移项,得x -6=2y ,两边都除以2,得12x -3=y ,即y =12x-3;(2)因为x -2y =6,移项,得x =6+2y .答案:12x -3 6+2y【例3-2】 解方程组⎩⎪⎨⎪⎧3x -5y =6,①x +4y =-15.②分析:观察方程组中的每个方程,发现第二个方程中的x 的系数为1,所以选择将其变形,用含y 的代数式表示x ,得x =-15-4y ,然后把x =-15-4y 代入第一个方程,求出y 的值,再把y 的值代入变形后的方程x =-15-4y 中,求出x 的值.解:由②,得x =-15-4y ,③ 把③代入①,得3(-15-4y )-5y =6, 解得y =-3,把y =-3代入③,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-3.4.加减消元法 (1)加减消元法的概念两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,消去一个未知数的方法,叫做加减消元法,简称加减法.(2)用加减法解二元一次方程组的一般步骤用加减消元法解二元一次方程组的基本思路仍然是“消元”.第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.析规律 解二元一次方程组的方法(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. (2)通过两个方程相减消去未知数比通过两个方程相加消去未知数更易出错,所以一般是将两个方程中同一个未知数的系数化成互为相反数,然后相加消去一个未知数.【例4】 解方程组:⎩⎪⎨⎪⎧3x +2y =5,①2x -y =8.②分析:经观察发现,①和②中y 的系数是倍数关系,若将方程②×2,可使两个方程中y 的系数互为相反数,再将两方程相加,便可消去y ,只剩关于x 的方程,问题便很容易解决了.解:将方程②×2,得 4x -2y =16,③ ③+①,得 7x =21, 解得x =3. 把x =3代入②,得 2×3-y =8,y =-2.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-2.5.解二元一次方程组的策略解二元一次方程组的关键就在于将“二元”转化为“一元”,如何消元,要根据系数特点合理选择使用代入消元法和加减消元法.解二元一次方程组,关键要在根本上把握方程组的系数特点,若遇到不能直接看出系数特点的,应该先化简,化简后系数的特点比较明显.对于不能直接运用消元法的方程组,应通过观察,找到一个系数较小的,利用等式性质,通过扩大相应倍数变成具有相同系数或互为相反数的系数,然后再使用加减法来解决问题.(1)对于一般形式的二元一次方程组,用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程;④方程组中某一未知数的系数成整数倍,选择小系数方程.(2)对于一般形式的二元一次方程组,用加减消元法求解关键是选择消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择系数是1或-1的未知数;②若未知数系数都不是1或-1,选系数的绝对值较小的未知数;③选方程组中系数成整数倍的未知数.【例5-1】 解方程组:⎩⎪⎨⎪⎧3x -1y +5,5y -13x +5.分析:通过观察,发现方程组比较复杂,因此应先化简,方程组中的两个方程化为⎩⎪⎨⎪⎧3x -y =8,5y -3x =20,通过观察决定使用加减法来解.解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变.解:原方程组化简,得⎩⎪⎨⎪⎧3x -y =8,①5y -3x =20.②①+②,得4y =28,y =7.把y =7代入①得3x -7=8,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =7.【例5-2】 解方程组:⎩⎪⎨⎪⎧53x +47y =112,①47x +53y =88.②分析:本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x ,y 的系数都是100、常数项是200的方程100x +100y =200,两边都除以100,得x +y =2,而此方程x +y =2与方程组中的①和②都同解.这样,用这个方程与原方程组中任何一个方程组成方程组,此时求解就使问题变得比较简单了.解:①+②,得100x +100y =200, 化简,得x +y =2, ③于是原方程变为⎩⎪⎨⎪⎧53x +47y =112,①x +y =2,③由③,得x =2-y , ④把④代入①,得53(2-y )+47y =112, 106-53y +47y =112,-6y =6,所以y =-1. 把y =-1代入④,得x =3,所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1.6.构造二元一次方程组解题常见的考查方式有:(1)已知二元一次方程组的解,求方程中的待定系数的值.我们知道使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.解决此类问题的方法通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.例如⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧x +y =a ,x -y =b的解,把⎩⎪⎨⎪⎧x =1,y =1代入方程组可得a =2,b=0.(2)学习了二元一次方程组后,同学们应从前面所学的内容中挖掘涉及二元一次方程组的隐含条件,构造二元一次方程组解决许多问题,从而达到既沟通了知识之间的内在联系,又提高了同学们分析问题和解决问题的能力的目的.如同类项的概念等,解答此类题目的关键是真正理解概念,利用概念中的相关词语列出关系式.(3)同解问题,两个方程组的解相同,其实就是说这两个方程组的解是这两个方程组中四个二元一次方程的公共解.解技巧 用整体代入法解二元一次方程组当我们把二元一次方程组的解代入原方程后,通常得到关于未知系数的新的方程组,但有时可以不解方程组,整体代入求解.【例6-1】 已知2ay +3b 3x和-3a 2x b 8-2y 是同类项,则x =__________,y =__________.解析:根据同类项的定义可知,若2a y +3b 3x和-3a 2x b 8-2y 是同类项,则必有y +3=2x ,3x=8-2y ,将这两个二元一次方程合在一起组成方程组⎩⎪⎨⎪⎧2x =y +3,3x =8-2y ,即可求出x =2,y =1. 答案:2 1【例6-2】 已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2xm -1y =2,nx +y =1的解,则m +n 的值是__________.解析:因为⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2xm -1y =2,①的解,nx +y =1②所以⎩⎪⎨⎪⎧x =2,y =1同时满足方程①和方程②,将⎩⎪⎨⎪⎧x =2,y =1分别代入方程①和方程②,可得⎩⎪⎨⎪⎧4+m -1=2,③2n +1=1.④由③和④可分别求出m ,n 的值为⎩⎪⎨⎪⎧m =-1,n =0.所以m +n =-1+0=-1. 答案:-1【例6-3】 已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b的值.解:解方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解这个方程组,得⎩⎪⎨⎪⎧a =52,b =1.7.求二元一次方程的正整数解任何一个二元一次方程都有无数组解,但是二元一次方程的整数解是有限的. 一般应用二元一次方程解决实际问题时所列出的二元一次方程的解应当是有限的.因为我们必须保证其解有意义.析规律 注重实际问题中的隐含条件生活中的实际问题常隐含着一个条件:(1)数量的取值为正整数;(2)最终的答案可能不止一个,只要符合条件即可.【例7】 甲种书每本3元,乙种书每本5元,38元可买两种书各几本? 分析:先根据题意列出二元一次方程,再求其正整数解. 解:设甲种书买x 本,乙种书买y 本,根据题意得 3x +5y =38(x ,y 都是正整数). 用含y 的代数式表示x 为x =38-5y3,当y =1时,x =11; 当y =4时,x =6; 当y =7时,x =1. 原方程所有的正整数解为⎩⎪⎨⎪⎧x =1,y =7,⎩⎪⎨⎪⎧x =6,y =4,⎩⎪⎨⎪⎧x =11,y =1.答:甲、乙两种书可分别买1本和7本或6本和4本或11本和1本. 8.列方程组解决实际问题(1)解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,正确的列出一个(或几个)方程,再组成方程组.(2)列方程组解应用题,常遇到隐含的等量关系,如:和、差、倍、分问题;行程问题;调配问题;工程问题;浓度问题;形积问题等等.我们在列方程(组)解应用题时,要注意充分挖掘这些关系.【例8】 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.求1个大餐厅、1个小餐厅分别可供多少名学生就餐?解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,则根据题意,得⎩⎪⎨⎪⎧x +2y =1 680,2x +y =2 280.解这个方程组,得⎩⎪⎨⎪⎧x =960,y =360.答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.。
2024年秋沪科版七年级数学上册 3-4 二元一次方程组及其解法(课件)
,叫做二元一次方程组的解.
两个未知数的
代入消元法
【归纳总结】从一个方程中求出
式
某一个未知数的表达
,再把它“代入”另一个方程,进行求解,这种方法叫做
代入消元法,简称
代入法 .
代入消元法的一般步骤为:(1)求表达式;(2)代入消元;(3)
回代求解.
1.在解二元一次方程组时,我们的基本思路是“消元”,即
[变式演练]若方程2xm+1-3yn-3+3=0是关于x、y的二元一
次方程,则m=
0 ,n=
4 .
方法归纳交流 二元一次方程要含有 两个
未知数的系数
未知数,且
不等于 0,且等号两边都是 整式
.
二元一次方程组的概念
2.下列方程组中,是二元一次方程组的是( C )
= + ,
A.
− =
通过“代入法”或“加减法”将“二元”化为“一元”,这个
过程体现的数学思想是( B )
A.类比思想
B.转化思想
C.分类讨论思想
D.数形结合思想
2.方程3x-5y=9,用含x的代数式表示y为( D )
−
A.y=
−
B.x=
+
C.x=
−
D.y=
根据二元一次方程用其中一个未知数
− = ,
A.
− =
= ,
B.
+=
− = ,
C.
−=
+ = ,
D.
=
2.若(a+1)x|a|+3y=1是关于x,y的二元一次方程,则a=
1 .
2024年沪科版七年级数学上册 3.4 第1课时 二元一次方程与二元一次方程组(课件)
1 二元一次方程组的定义
探究:有若干只鸡兔同在一个笼子里,从上面数有 35 个头,从下面数有 94 只脚. 问笼中各有多少只鸡和兔?
(1) 找出,上述趣题中的等量关系: (1) 兔的只数+鸡的只数=35; (2) 兔的脚数+鸡的脚数=94.
(2) 若设兔有 x 只,鸡有 y 只,你能根据两个等量 关系列出两个方程吗?
(4) 2x2 - x + 1 = 0 ;(5)2(x + y) - 3(x - y) = 1;(6)2x + 5 = 10.
答:(1)是;(2)不是,y 出现在分母中;(3)不是,是
二元二次方程;(4) x 的最高次数是 2,不是1;(5)是;
(6)不是,是一元一次方程.
2. 若 x2m1 y 0 是关于 x,y 的二元一次方程,则 m = 1 .
总结 判断要点:
①是否为整式方程;②是否含两个未知数;③未知
数次数是否为 1;④化简后未知数的系数不为 0.
典例精析
例2 已知 |m-1| x|m|+y2n-1 = 3 是关于 x、y 的二元 一次方程,则 m+n =___0__.
| m |=1
|m-1|≠0 2n-1 = 1
m = -1
n=1
m+n =0
练一练
1. 若 x2m-1 + 5y3n-2m = 7 是关于 x、y 的二元一次方程, 则 m =__1__,n =__1__.
2m - 1 = 1 ∠m1 ==∠12 3n - 2m = 1
n=1
知识要点
如何解决上述“鸡兔同笼”问题呢?
x+y=35 4x+2y=94
两个等量关系需要 同时成立.
3. 根据题意及题中给出的未知数,列二元一次方程组.
沪科版七年级上3.31二元一次方程组及其解法—二元一次方程
∴兔有35-23=12 答:鸡有23只,兔有12只
我国古代算书《孙子算经》中有一题:今有雉
(鸡)兔同笼,上有35头,下有94足,问雉、兔各
几何?
如果我们设鸡有x只,兔有y只,根据题意,如何列方程呢?
x+y=35 ① 2x+4y=94 ②
问题:你知道这两个 方程与我们以前学过 的方程有什么相同与 不同吗?
二元一次方程的定义: 含有两个未知数且未知数项的次数均为1次的整式方程叫 二元一次方程
探究:
问题2:
某班同学在植树节时植樟树和白杨树 共45棵。已知樟树苗每棵2元,白杨树苗 每棵1元,购买这些树苗用了60元。问樟 树苗、白杨树苗各买了多少棵?
例3、若 x a 是方程组 2x+y=0的解,则6a+3b+2= 2 . yb
练习
1、下列方程组中,是二元一次方程组的是( A )
A、x30 3x2y7
B、2xy3 3xy8
C、x y3 x z 5
D 、
x
2 4 y
2 x 3 y 5
2、已知x=1,y=2是关于x,y的二元一次方程3x+6y-7k=1的解,则
根据老牛和小马的对 话,你能求出它们各 驮了多少个包裹吗?
情景: 问题1:
我国古代算书《孙子算经》中有一题:
今有雉(鸡)兔同笼,上有35头,下有 94足,问雉、兔各几何?
能否用我们学过的 一元一次方程来解 这道题?那又如何 设未知数呢?
我国古代算书《孙子算经》中有一题:今有雉 (鸡)兔同笼,上有35头,下有94足,问雉、兔各 几何?
沪科版七年级数学上册复习资料-解题技巧专题:解二元一次方程组
解题技巧专题:解二元一次方程组——学会选择最优的解法◆类型一 解未知数系数含有1或-1的方程组一、直接运用或变形后运用代入法解方程组1.方程组⎩⎪⎨⎪⎧y =2x -1,x +2y =8的解是________. 2.解方程组:⎩⎪⎨⎪⎧x +3y =5①,2x +5y =9②.二、两个方程中某一未知数都含有系数1或-1,运用加减法解方程组3.二元一次方程组⎩⎪⎨⎪⎧2x +y =3,x -y =3的解为( ) A .⎩⎪⎨⎪⎧x =2,y =1 B .⎩⎪⎨⎪⎧x =2,y =-1C .⎩⎪⎨⎪⎧x =-2,y =-1D .⎩⎪⎨⎪⎧x =-2,y =1 4.方程组⎩⎪⎨⎪⎧x -2y =-3,x +3y =2的解为________. 5.解方程组:(1)⎩⎪⎨⎪⎧x +y =5①,3x -y =3②;(2)⎩⎪⎨⎪⎧x -2y =1①,x +5y =8②.◆类型二 解两个方程中某一未知数系数为倍数关系的方程组6.二元一次方程组⎩⎪⎨⎪⎧2x +3y =7,x -y =1的解为( ) A .⎩⎪⎨⎪⎧x =4,y =3 B .⎩⎪⎨⎪⎧x =2,y =1 C .⎩⎪⎨⎪⎧x =-4,y =3 D .⎩⎪⎨⎪⎧x =2,y =-1 7.解方程组:(1)⎩⎪⎨⎪⎧a +3b =5①,3a +2b =8②;(2)⎩⎪⎨⎪⎧x +2y =11①,6x +y =22②.◆类型三 解两个方程中未知数系数成对称关系的方程组一、解未知数系数成对称关系的方程组8.解方程组:⎩⎪⎨⎪⎧2x +3y =10①,3x +2y =15②.二、不解方程组求字母或式子的值9.若x ,y 满足方程组⎩⎪⎨⎪⎧3x +5y =10,5x +3y =12,则x -y 的值为________. 10.已知a ,b 的值同时满足方程a +2b =8和2a +b =10,则a +b =________.11.若方程组⎩⎪⎨⎪⎧3x +y =1+3a ①,x +3y =1-a ②的解满足x +y =0,求a 的值.◆类型四 含字母系数的方程组的运用12.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的值为( ) A .2 B .3 C .4 D .513.若方程组⎩⎪⎨⎪⎧x +ay =4,x -y =-5的解也是方程2x +3y =5的解,则a 的值为________. 14.有一个代数式ax +by ,当x =5,y =2时,它的值是1;当x =1,y =3时,它的值是-5,试求当x =7,y =-5时,代数式ax +by 的值.15.已知关于x ,y 的二元一次方程(a -1)x +(a -2)y +5-2a =0,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.16.已知方程组⎩⎪⎨⎪⎧2x +y =-2,ax +by =-4和方程组⎩⎪⎨⎪⎧3x -y =12,bx +ay =-8的解相同,求(5a +b)2的值.参考答案与解析1.⎩⎪⎨⎪⎧x =2,y =3 2.解:由①得x =5-3y ③,把③代入②,得2(5-3y )+5y =9,解得y =1.把y =1代入③,得x =2.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =1. 3.B 4.⎩⎪⎨⎪⎧x =-1,y =1 5.解:(1)由①+②,得4x =8,解得x =2.把x =2代入①,得y =3.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =3. (2)由②-①,得7y =7,解得y =1.把y =1代入②,得x =3.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =1. 6.B7.解:(1)①×3-②,得7b =7,解得b =1.把b =1代入①,得a +3=5,解得a =2.所以原方程组的解为⎩⎪⎨⎪⎧a =2,b =1. (2)②×2-①,得11x =33,解得x =3.把x =3代入①,得3+2y =11,解得y =4.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =4. 8.解:①+②,得5x +5y =25,所以x +y =5③.①-③×2,得y =0.把y =0代入③,得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =0. 9.1 解析:两个方程相减,得2x -2y =2,所以x -y =1.10.6 解析:两个方程相加,得3a +3b =18,所以a +b =6.11.解:①+②,得4x +4y =2+2a ,所以x +y =1+a 2.因为x +y =0,所以1+a 2=0,解得a =-1.12.C 解析:将⎩⎪⎨⎪⎧x =2,y =1代入原方程组,得⎩⎪⎨⎪⎧2m +n =8,2n -m =1,解得⎩⎪⎨⎪⎧m =3,n =2,所以2m -n =2×3-2=4.故选C.13.2 解析:解方程组⎩⎪⎨⎪⎧x -y =-5,2x +3y =5,得⎩⎪⎨⎪⎧x =-2,y =3.将⎩⎪⎨⎪⎧x =-2,y =3代入方程x +ay =4,得-2+3a =4,解得a =2.14.解:由题意得⎩⎪⎨⎪⎧5a +2b =1,a +3b =-5,解得⎩⎪⎨⎪⎧a =1,b =-2.所以ax +by =x -2y .当x =7,y =-5时,x -2y =7-2×(-5)=17.15.解:当a =3时,原方程为2x +y -1=0.当a =4时,原方程为3x +2y -3=0.解方程组⎩⎪⎨⎪⎧2x +y -1=0,3x +2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =3. 16.解:解方程组⎩⎪⎨⎪⎧2x +y =-2,3x -y =12,得⎩⎪⎨⎪⎧x =2,y =-6.将⎩⎪⎨⎪⎧x =2,y =-6代入⎩⎪⎨⎪⎧ax +by =-4,bx +ay =-8,得⎩⎪⎨⎪⎧2a -6b =-4,2b -6a =-8,解得⎩⎨⎧a =74,b =54,所以(5a +b )2=⎝⎛⎭⎫5×74+542=102=100.。
沪科版七年级上册数学第三章3.4 二元一次方程组的应用(阶段复习)
答:船在静水中的速度及水流的速度 分别为50km/h、10km/h
二、工程问题
工作量=工作时间×工作效率 工作时间=工作量/工作效率
工作效率=工作量/工作时间、
例1.某工人原计划在限定时间内加工一批 零件.如果每小时加工10个零件,就可以超 额完成3 个;如果每小时加工11个零件就可 以提前1h完成.问这批零件有多少个?按原 计划需多少小时 完成?
同时异地追及问题
乙的路程-甲的路程=甲乙之间的距离
T(
V 乙
- V甲 )=s
t
乙 甲
S
例1.某站有甲、乙两辆汽车,若甲车先出发1h后乙车出 发,则乙车出发后5h追上甲车;若甲车先开出30km后 乙车出发,则乙车出发4h后乙车所走的路程比甲车所走 路程多10km.求两车速度.
例1.某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙 车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车 出发4h后乙车所走的路程比甲车所走路程多10km.求两车速度 .:设甲乙两车的速度分别为 解
230m 甲 乙 220m
230m
甲 乙
220m
450m 18s
例3.甲、乙两人在周长为400m的环形跑道上练跑,如 果相向出发,每隔2.5min相遇一次;如果同向出发,每 隔10min相遇一次,假定两人速度不变,且甲快乙慢, 求甲、乙两人的速度.
例3.甲、乙两人在周长为400m的环形跑道上练跑,如果相向出 发,每隔2.5min相遇一次;如果同向出发,每隔10min相遇一次, 假定两人速度不变,且甲快乙慢,求甲、乙两人的速度.
例2.某工地需雪派48人去挖土和运土,如果 每人每天平均挖土5方或运土3方,那么应该 怎样安排人员,正好能使挖的土能及时运走?
沪科版数学七年级上册复习二元一次方程组及其解法精品PPT
(复习)
关于定义
1、二元一次方程:
含有两个未知数,未知项的次数是1,且等式两 边都是整式(分母不含未知数)的方程。
2、二元一次方程组:
由两个一次方程组成的含两个未知数的方程组。
3、二元一次方程的解:
使二元一次方程两边相等的两个未知数的取值叫 做二元一次方程的解。
4、二元一次方程组的解:
y=-2.5
把y=-2.5代入(1)得
3x+2×(-2.5)=4
3x=9
x=3
x=3 ∴ y=-2.5是原方程的解
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
1.解二元一次方程组的基本思路是 消元 .
2.用加减法解方程组{ 2x-5y=7①由①与②
解,只有把它们组合在一起,才是二元一次方
程 x + y = -5的一个解.
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
x 2,
1、已知
y
3
是方程3x-3y=m和5x+y=n的公共
解,则m2-3n= 246.
沪科版数学七年级上册复习二元一次 方程组 及其解 法精品 课件
下列是二元一次方程组的是 (B )
1 x
+
y
=3
(A)
2x+y =0
3x -1 =0
(B) 2y =5
x + y = 7
(C) 3y + z= 4
5x2 - y = -2
(D) 3y + x = 4
初中数学沪科版七年级上册二元一次方程组的解法——代入消元法
3、把这个未知数的值代入一 次式,求得另一个未知数的值
4、写出方程组的解
例1 解方程组 3x – 2y = 19 2x + y = 1
解: 3x – 2y = 19 ① 2x + y = 1 ②
由②得:y = 1 – 2x ③
x = y -1
例1 解方程组 2y – 3x = 1 x = y -1
解: 2y – 3x = 1 ① x=y-1 ②
把②代入①得: 2y – 3(y – 1)= 1 2y – 3y + 3 = 1 2y – 3y = 1 - 3 -y=-2 y= 2
把y = 2代入②,得 x = y – 1= 2 – 1 = 1 ∴ x=1 y=2
口答题
x =1, x = 2, x = -1, 1、指出 y = 2, y = -2, y = 2,三对数值分别是下面哪一 个方程组的解.
y + 2x = 0 ① x + 2y = 3
x–y=4 ② x+y=0
y = 2x ③ x+y=3
解: ①(
②(
③(
x =1, )是方程组(
y = 2, x = 2,
把③代入①得:
3x – 2(1 – 2x)= 19 3x – 2 + 4x = 19 3x + 4x = 19 + 2 7x = 21 x=3
把x = 3代入③,得 y = 1 – 2x = 1 - 2×3= - 5
∴ x=3 y = -5
用代入法解二元一次 方程组的一般步骤
1、将方程组里的一个方程变 形,用含有一个未知数的一次 式表示另一个未知数
初中数学沪科版七年级上册二元一次方程组的解法——加减消元法
怎样解下面的二元一次方程组呢?
3x 2 y 13 ① 3x 2 y 5 ②
标准的代 入消元法
把②变形得:
x 2y 5 3
x 代入①,消去 了!
还有别的方法吗?
认真观察此方程组中各个未知数的系数有什 么特点,还有没有其它的解法呢?先看一段视频.
学习了本节课你有 哪些收获?
第三章 一次方程与方程组
3.3 二元一次方程组及其解法 (第三课时)
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程组的主要步骤是什么?
1.变
用含有一个未知数的代数式
表示另一个未知数
2.代
消去一个元
3.解 4.写
分别求出两个未知数的值 写出方程组的解
怎样解下面的二元一次方程组呢?
程 组
1x51y08 ②
y=0.2
代入
x=0.4
解得x
②- ①
一元一次方程
11x=4.4
两方程相减,消未知数y
加减消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路: 加减消元: 二元
一元
主要步骤:
变形
将同一个未知数的系数 化为相同或互为相反数
加减 求解 写解
消去一个元 分别求出两个未知数的值 写出方程组的解
3x 2 y 13 ① 3x 2 y 5 ②
例 解方程组:
4x y 14 ① (1) 8x 3y 30 ②
4x 2 y 5 ① (2) 5x 3y 9 ②
用加减法解下列方程组(P103页)
2x 3 y 5 (1)2x 2 y 2
x 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(沪科版)七年级数学上册专题复习 二元一次方程组及其解法例题与解析1.二元一次方程组 (1)二元一次方程含有两个未知数的一次方程叫做二元一次方程,如5x +3y =34就是二元一次方程. 注意:“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.不要把2xy +2=4,2x +y =5误当成二元一次方程,实际上2xy +2=4含未知数的项的次数是2,而2x+y =5中2x不是整式,我们将会在后面的学习中遇到它.(2)二元一次方程组①联立在一起的几个方程,称为方程组.②由两个二元一次方程联立起来得到的方程组叫做二元一次方程组.实际上,在二元一次方程组中,两个方程中可以有方程是一元一次方程,方程的个数也可以超过两个,同一个字母必须代表同一数值,这样才能组合在一起.如下列方程组都是二元一次方程组:⎩⎪⎨⎪⎧x +5y =1,y -3=0,⎩⎪⎨⎪⎧x =2,y =-3,⎩⎪⎨⎪⎧x -y =1,x +3y =9,2x -y =4.【例1-1】 下列方程中,是二元一次方程的个数是( ). ①2x +3y =5;②xy =1;③3x -y2=1;④2⎝ ⎛⎭⎪⎫m -23+1=14m -2;⑤1-2m 3=n ; ⑥1-23m =n ;⑦y =2x -3;⑧s =12vt.A .1B .2C .3D .4解析:题中①③⑤⑦都含有两个未知数,并且含未知数的项的次数是1,因此它们4个是二元一次方程,②含未知数的项的次数是2,④是一元一次方程,⑥不是整式方程,⑧含有3个未知数,因此它们都不是二元一次方程,故应选D.答案:D【例1-2】 下列方程组中,不是二元一次方程组的是( ).A .⎩⎪⎨⎪⎧x =2y +1,3x -4z =6B .⎩⎪⎨⎪⎧x -y =1,x +y =4C .⎩⎪⎨⎪⎧x +y =5,x =5D .⎩⎪⎨⎪⎧x 2+y2=2y ,y =23x解析:本题应根据二元一次方程组定义来判断,选项A 中每一个方程虽然都是一次方程,但是未知数的个数有三个,故否定A ;选项B ,D 只含有两个未知数且都是一次方程,符合二元一次方程组的定义,故都是二元一次方程组;选项C 中的第二个方程虽然是一元一次方程,但方程组中的第一个方程是二元一次方程,故它们也能组成二元一次方程组.所以不是二元一次方程组的是A.答案:A2.二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.如⎩⎪⎨⎪⎧x =12,y =5既是方程x +y =17的解又是方程5x +3y =75的解,这时我们就说⎩⎪⎨⎪⎧x =12,y =5是二元一次方程组⎩⎪⎨⎪⎧x +y =17,5x +3y =75的解.谈重点 理解二元一次方程组的解(1)二元一次方程组的解实质上是组成方程组的每个二元一次方程的公共解,也就是说,方程组的解一定是组成此方程组的每个方程的解,而组成此方程组的每个方程的解却不一定是方程组的解.(2)二元一次方程的解是一对数值,必须用大括号合在一起.【例2】 二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解是( ).A.⎩⎪⎨⎪⎧ x =1y =6B.⎩⎪⎨⎪⎧ x =-1y =4C.⎩⎪⎨⎪⎧ x =-3y =2D.⎩⎪⎨⎪⎧x =3y =2解析:选项A ,将⎩⎪⎨⎪⎧x =1,y =6代入方程①,左边=2×1+6=8,右边=2,左边≠右边,所以⎩⎪⎨⎪⎧x =1,y =6不是方程组的解;选项B ,将⎩⎪⎨⎪⎧x =-1,y =4代入方程①得,左边=2×(-1)+6=4,右边=4,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程①的解,将⎩⎪⎨⎪⎧x =-1,y =4代入方程②得,左边=-(-1)+4=5,右边=5,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程②的解,所以⎩⎪⎨⎪⎧x =-1,y =4是二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解;按照以上方法对选项C ,D 加以判断,都不是方程组的解,故应选B.答案:B 3.代入消元法 (1)消元思想二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程.这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入消元法的概念从二元一次方程组的一个方程中求出某一个未知数的表达式(即将一个未知数用含另一未知数的式子表示出来),再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.解技巧 用代入法解二元一次方程组(1)用代入法解方程组一般将系数较小的方程变形,且用系数较大的未知数表示系数较小的未知数.(2)当方程组中有一个方程的某一个未知数的系数绝对值是1或有一个方程的常数项是0时,一般用代入法来解.(3)用代入消元法解二元一次方程组的步骤①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式;②将y =ax +b (或x =ay +b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值; ⑤用“{”联立两个未知数的值,得到方程组的解. 谈重点 运用代入法需注意的问题运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.【例3-1】 已知方程x -2y =6,用x 表示y ,则y =__________;用y 表示x ,则x =__________.解析:(1)因为x -2y =6,移项,得x -6=2y ,两边都除以2,得12x -3=y ,即y =12x-3;(2)因为x -2y =6,移项,得x =6+2y .答案:12x -3 6+2y【例3-2】 解方程组⎩⎪⎨⎪⎧3x -5y =6,①x +4y =-15.②分析:观察方程组中的每个方程,发现第二个方程中的x 的系数为1,所以选择将其变形,用含y 的代数式表示x ,得x =-15-4y ,然后把x =-15-4y 代入第一个方程,求出y 的值,再把y 的值代入变形后的方程x =-15-4y 中,求出x 的值.解:由②,得x =-15-4y ,③ 把③代入①,得3(-15-4y )-5y =6, 解得y =-3,把y =-3代入③,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-3.4.加减消元法 (1)加减消元法的概念两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,消去一个未知数的方法,叫做加减消元法,简称加减法.(2)用加减法解二元一次方程组的一般步骤用加减消元法解二元一次方程组的基本思路仍然是“消元”.第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.析规律 解二元一次方程组的方法(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. (2)通过两个方程相减消去未知数比通过两个方程相加消去未知数更易出错,所以一般是将两个方程中同一个未知数的系数化成互为相反数,然后相加消去一个未知数.【例4】 解方程组:⎩⎪⎨⎪⎧3x +2y =5,①2x -y =8.②分析:经观察发现,①和②中y 的系数是倍数关系,若将方程②×2,可使两个方程中y 的系数互为相反数,再将两方程相加,便可消去y ,只剩关于x 的方程,问题便很容易解决了.解:将方程②×2,得 4x -2y =16,③ ③+①,得 7x =21, 解得x =3. 把x =3代入②,得 2×3-y =8,y =-2.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-2.5.解二元一次方程组的策略解二元一次方程组的关键就在于将“二元”转化为“一元”,如何消元,要根据系数特点合理选择使用代入消元法和加减消元法.解二元一次方程组,关键要在根本上把握方程组的系数特点,若遇到不能直接看出系数特点的,应该先化简,化简后系数的特点比较明显.对于不能直接运用消元法的方程组,应通过观察,找到一个系数较小的,利用等式性质,通过扩大相应倍数变成具有相同系数或互为相反数的系数,然后再使用加减法来解决问题.(1)对于一般形式的二元一次方程组,用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程;④方程组中某一未知数的系数成整数倍,选择小系数方程.(2)对于一般形式的二元一次方程组,用加减消元法求解关键是选择消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择系数是1或-1的未知数;②若未知数系数都不是1或-1,选系数的绝对值较小的未知数;③选方程组中系数成整数倍的未知数.【例5-1】 解方程组:⎩⎪⎨⎪⎧3x -1=y +5,5y -1=3x +5.分析:通过观察,发现方程组比较复杂,因此应先化简,方程组中的两个方程化为⎩⎪⎨⎪⎧3x -y =8,5y -3x =20,通过观察决定使用加减法来解.解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变.解:原方程组化简,得⎩⎪⎨⎪⎧3x -y =8,①5y -3x =20.②①+②,得4y =28,y =7.把y =7代入①得3x -7=8,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =7.【例5-2】 解方程组:⎩⎪⎨⎪⎧53x +47y =112,①47x +53y =88.②分析:本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x ,y 的系数都是100、常数项是200的方程100x +100y =200,两边都除以100,得x +y =2,而此方程x +y =2与方程组中的①和②都同解.这样,用这个方程与原方程组中任何一个方程组成方程组,此时求解就使问题变得比较简单了.解:①+②,得100x +100y =200, 化简,得x +y =2, ③于是原方程变为⎩⎪⎨⎪⎧53x +47y =112,①x +y =2,③由③,得x =2-y , ④把④代入①,得53(2-y )+47y =112, 106-53y +47y =112,-6y =6,所以y =-1. 把y =-1代入④,得x =3, 所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1.6.构造二元一次方程组解题 常见的考查方式有:(1)已知二元一次方程组的解,求方程中的待定系数的值.我们知道使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.解决此类问题的方法通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.例如⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧x +y =a ,x -y =b 的解,把⎩⎪⎨⎪⎧x =1,y =1代入方程组可得a =2,b=0.(2)学习了二元一次方程组后,同学们应从前面所学的内容中挖掘涉及二元一次方程组的隐含条件,构造二元一次方程组解决许多问题,从而达到既沟通了知识之间的内在联系,又提高了同学们分析问题和解决问题的能力的目的.如同类项的概念等,解答此类题目的关键是真正理解概念,利用概念中的相关词语列出关系式.(3)同解问题,两个方程组的解相同,其实就是说这两个方程组的解是这两个方程组中四个二元一次方程的公共解.解技巧 用整体代入法解二元一次方程组当我们把二元一次方程组的解代入原方程后,通常得到关于未知系数的新的方程组,但有时可以不解方程组,整体代入求解.【例6-1】 已知2ay +3b 3x和-3a 2x b 8-2y 是同类项,则x =__________,y =__________.解析:根据同类项的定义可知,若2a y +3b 3x和-3a 2x b 8-2y 是同类项,则必有y +3=2x ,3x=8-2y ,将这两个二元一次方程合在一起组成方程组⎩⎪⎨⎪⎧2x =y +3,3x =8-2y ,即可求出x =2,y =1. 答案:2 1【例6-2】 已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2x +m -1y =2,nx +y =1的解,则m +n 的值是__________.解析:因为⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2x +m -1y =2,①的解,nx +y =1②所以⎩⎪⎨⎪⎧x =2,y =1同时满足方程①和方程②,将⎩⎪⎨⎪⎧x =2,y =1分别代入方程①和方程②,可得⎩⎪⎨⎪⎧4+m -1=2,③2n +1=1.④由③和④可分别求出m ,n 的值为⎩⎪⎨⎪⎧m =-1,n =0.所以m +n =-1+0=-1. 答案:-1【例6-3】 已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b的值.解:解方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解这个方程组,得⎩⎪⎨⎪⎧a =52,b =1.7.求二元一次方程的正整数解任何一个二元一次方程都有无数组解,但是二元一次方程的整数解是有限的. 一般应用二元一次方程解决实际问题时所列出的二元一次方程的解应当是有限的.因为我们必须保证其解有意义.析规律 注重实际问题中的隐含条件生活中的实际问题常隐含着一个条件:(1)数量的取值为正整数;(2)最终的答案可能不止一个,只要符合条件即可.【例7】 甲种书每本3元,乙种书每本5元,38元可买两种书各几本? 分析:先根据题意列出二元一次方程,再求其正整数解. 解:设甲种书买x 本,乙种书买y 本,根据题意得 3x +5y =38(x ,y 都是正整数). 用含y 的代数式表示x 为x =38-5y3,当y =1时,x =11; 当y =4时,x =6; 当y =7时,x =1. 原方程所有的正整数解为⎩⎪⎨⎪⎧x =1,y =7,⎩⎪⎨⎪⎧x =6,y =4,⎩⎪⎨⎪⎧x =11,y =1.答:甲、乙两种书可分别买1本和7本或6本和4本或11本和1本.8.列方程组解决实际问题(1)解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,正确的列出一个(或几个)方程,再组成方程组.(2)列方程组解应用题,常遇到隐含的等量关系,如:和、差、倍、分问题;行程问题;调配问题;工程问题;浓度问题;形积问题等等.我们在列方程(组)解应用题时,要注意充分挖掘这些关系.【例8】 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.求1个大餐厅、1个小餐厅分别可供多少名学生就餐?解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,则根据题意,得⎩⎪⎨⎪⎧x +2y =1 680,2x +y =2 280.解这个方程组,得⎩⎪⎨⎪⎧x =960,y =360.答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.。