半导体器件物理课后习题解答

合集下载

半导体物理课后习题解答

半导体物理课后习题解答

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h=112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dk E d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dkE d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 210dk =aqE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

半导体器件物理习题答案

半导体器件物理习题答案

半导体器件物理习题答案1、简要的回答并说明理由:①p+-n结的势垒宽度主要决定于n 型一边、还是p型一边的掺杂浓度?②p+-n结的势垒宽度与温度的关系怎样?③p+-n结的势垒宽度与外加电压的关系怎样?④Schottky 势垒的宽度与半导体掺杂浓度和温度分别有关吗?【解答】①p+-n结是单边突变结,其势垒厚度主要是在n型半导体一边,所以p+-n结的势垒宽度主要决定于n型一边的掺杂浓度;而与p型一边的掺杂浓度关系不大。

因为势垒区中的空间电荷主要是电离杂质中心所提供的电荷(耗尽层近似),则掺杂浓度越大,空间电荷的密度就越大,所以势垒厚度就越薄。

②因为在掺杂浓度一定时,势垒宽度与势垒高度成正比,而势垒高度随着温度的升高是降低的,所以p+-n结的势垒宽度将随着温度的升高而减薄;当温度升高到本征激发起作用时,p-n结即不复存在,则势垒高度和势垒宽度就都将变为0。

③外加正向电压时,势垒区中的电场减弱,则势垒高度降低,相应地势垒宽度也减薄;外加反向电压时,势垒区中的电场增强,则势垒高度升高,相应地势垒宽度也增大。

④Schottky势垒区主要是在半导体一边,所以其势垒宽度与半导体掺杂浓度和温度都有关(掺杂浓度越大,势垒宽度越小;温度越高,势垒宽度也越小)。

2、简要的回答并说明理由:①p-n结的势垒高度与掺杂浓度的关系怎样?②p-n结的势垒高度与温度的关系怎样?③p-n结的势垒高度与外加电压的关系怎样?【解答】①因为平衡时p-n结势垒(内建电场区)是起着阻挡多数载流子往对方扩散的作用,势垒高度就反映了这种阻挡作用的强弱,即势垒高度表征着内建电场的大小;当掺杂浓度提高时,多数载流子浓度增大,则往对方扩散的作用增强,从而为了达到平衡,就需要更强的内建电场、即需要更高的势垒,所以势垒高度随着掺杂浓度的提高而升高(从Fermi 能级的概念出发也可说明这种关系:因为平衡时p-n结的势垒高度等于两边半导体的Fermi 能级的差,当掺杂浓度提高时,则Fermi能级更加靠近能带极值[n型半导体的更靠近导带底,p型半导体的更靠近价带顶],使得两边Fermi能级的差变得更大,所以势垒高度增大)。

半导体器件物理课后习题(施敏)

半导体器件物理课后习题(施敏)

1 1 (3) 从(111)面上看,每个面上有 × 3 + × 3 = 2 个原子 6 2
所以,每平方厘米的原子数=
2 4 = ≈ 7.83×1014 3 ⋅ ( 2a)2 3 × (5.43×10−8 )2 4
2.
假如我们将金刚石晶格中的原子投影到底部, 假如我们将金刚石晶格中的原子投影到底部,原 子的高度并以晶格常数为单位表示,如下图所示。 子的高度并以晶格常数为单位表示,如下图所示。 找出图中三原子( Z)的高度。 找出图中三原子(X, Y, Z)的高度。
根据题意,有 用ρn和ρp相除,最后得 NA=100ND
11. 一个本征硅晶样品从一端掺杂了施主,而使得 一个本征硅晶样品从一端掺杂了施主, ND = Noexp (-ax)。(a)在ND >> ni的范围中,求在平 的范围中, 。 在 衡状态下内建电场E(x)的表示法。(b)计算出当 = 的表示法。 计算出当 计算出当a 衡状态下内建电场 的表示法 1µm-1时的 µ 时的E(x)
2
ρ≈
1 1 = ≈ 2 .78 cm ⋅ Ω qp µ p 1 . 6 × 10 −19 × 5 × 10 15 × 450
注意:双对数坐标! 注意:如何查图?NT?
(b) 2×1016硼原子 硼原子/cm3及1.5×1016砷原子 砷原子/cm3 × ×
p ≈ NA − ND = 2 ×1016 −1.5×1016 = 5×1015cm−3
(69.72 + 74.92) = 2.2 ×10 × g / cm3 6.02 ×10 23
22
2.2×144.64 = g / cm3 60.2
≈ 5.29g / cm3
(b)一砷化镓化镓样品掺杂锡 的位置,那么锡是施主还是受主? 为什么? 的位置,那么锡是施主还是受主 为什么 此 半导体是n型还是 型还是p型 半导体是 型还是 型?

半导体物理与器件课后练习题含答案

半导体物理与器件课后练习题含答案

半导体物理与器件课后练习题含答案1. 简答题1.1 什么是p型半导体?答案: p型半导体是指通过加入掺杂物(如硼、铝等)使得原本的n型半导体中含有空穴,从而形成的半导体材料。

具有p型性质的半导体材料被称为p型半导体。

1.2 什么是n型半导体?答案: n型半导体是指通过加入掺杂物(如磷、锑等)使得原本的p型半导体中含有更多的自由电子,从而形成的半导体材料。

具有n型性质的半导体材料被称为n型半导体。

1.3 什么是pn结?答案: pn结是指将p型半导体和n型半导体直接接触形成的结构。

在pn结的界面处,p型半导体中的空穴和n型半导体中的自由电子会相互扩散,形成空间电荷区,从而形成一定的电场。

当外加正向电压时,电子和空穴在空间电荷区中相遇,从而发生复合并产生少量电流;而当外加反向电压时,电场反向,空间电荷区扩大,从而形成一个高电阻的结,电流几乎无法通过。

2. 计算题2.1 若硅片的掺杂浓度为1e16/cm³,电子迁移率为1350 cm²/Vs,电离能为1.12 eV,则硅片的载流子浓度为多少?解题过程:根据硅片的掺杂浓度为1e16/cm³,可以判断硅片的类型为n型半导体。

因此易知载流子为自由电子。

根据电离能为1.12 eV,可以推算出自由电子的有效密度为:n = N * exp(-Eg / (2kT)) = 6.23e9/cm³其中,N为硅的密度,k为玻尔兹曼常数(1.38e-23 J/K),T为温度(假定为室温300K),Eg为硅的带隙(1.12 eV)。

因此,载流子浓度为1e16 + 6.23e9 ≈ 1e16 /cm³。

2.2 假设有一n+/p结的二极管,其中n+区的掺杂浓度为1e19/cm³,p区的掺杂浓度为1e16/cm³,假设该二极管在正向电压下的漏电流为1nA,求该二极管的有效面积。

解题过程:由于该二极管的正向电压下漏电流为1nA,因此可以利用肖特基方程计算出它的开启电压:I = I0 * (exp(qV / (nkT)) - 1)其中,I0为饱和漏电流(假定为0),q为电子电荷量,V为电压,n为调制系数(一般为1),k为玻尔兹曼常数,T为温度。

半导体器件物理课后习题解答

半导体器件物理课后习题解答

半导体器件物理课后作业第二章对发光二极管(LED)、光电二极管(PD)、隧道二极管、齐纳二极管、变容管、快恢复二极管和电荷存储二极管这7个二端器件,请选择其中的4个器件,简述它们的工作原理和应用场合。

解:发光二极管它是半导体二极管的一种,是一种固态的半导体器件,可以把电能转化成光能;常简写为LED。

工作原理:发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。

当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。

不同的半导体材料中电子和空穴所处的能量状态不同。

当电子和空穴复合时释放出的能量多少是不同的,释放出的能量越多,则发出的光的波长越短;反之,则发出的光的波长越长。

应用场合:常用的是发红光、绿光或黄光的二极管,它们主要用于各种LED显示屏、彩灯、工作(交通)指示灯以及居家LED节能灯。

光电二极管光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性,但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。

工作原理:普通二极管在反向电压作用时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光,而电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。

光电二极管是在反向电压作用下工作的,没有光照时,反向电流极其微弱,叫暗电流;当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子—空穴对,称为光生载流子。

它们在反向电压作用下参加漂移运动,使反向电流迅速增大到几十微安,光的强度越大,反向电流也越大。

这种特性称为“光电导”。

光电二极管在一般照度的光线照射下,所产生的电流叫光电流。

如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。

半导体物理 课后习题答案

半导体物理 课后习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体物理课后习题答案(精)

半导体物理课后习题答案(精)

第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。

试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。

*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体物理课后习题集解答

半导体物理课后习题集解答

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n202022382322m h m h m h dk E d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dkE d V -=,∴0222'61/m dk E d h m Vn -==④准动量的改变量h △k =h (k min -k max )=ahk h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 21dk =aqE h 21代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

半导体物理 课后习题答案

半导体物理 课后习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体物理课后习题答案(精)

半导体物理课后习题答案(精)

半导体物理课后习题答案(精)第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k22(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。

试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14 (3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。

*22mLn31*2V(2mng(E)=(E-EC)2解 232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1VZ0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2 Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)半导体物理习题解答目录1-1.(P32)设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E v(k)分别为: (2)1-2.(P33)晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

(3)3-7.(P81)①在室温下,锗的有效状态密度Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试求锗的载流子有效质量mn*和mp*。

(3)3-8.(P82)利用题7所给的Nc和Nv数值及Eg=0.67eV,求温度为300k和500k时,含施主浓度ND=5×1015cm-3,受主浓度NA=2×109cm-3的锗中电子及空穴浓度为多少? (4)3-11.(P82)若锗中杂质电离能△ED=0.01eV,施主杂质浓度分别为ND=1014cm-3及1017cm-3,计算(1)99%电离,(2)90%电离,(3)50%电离时温度各为多少? (5)3-14.(P82)计算含有施主杂质浓度ND=9×1015cm-3及受主杂质浓度为1.1×1016cm-3的硅在300k 时的电子和空穴浓度以及费米能级的位置。

(6)3-18.(P82)掺磷的n型硅,已知磷的电离能为0.04eV,求室温下杂质一般电离时费米能级的位置和磷的浓度。

(7)3-19.(P82)求室温下掺锑的n型硅,使EF=(EC+ED)/2时的锑的浓度。

已知锑的电离能为0.039eV。

(7)3-20.(P82)制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型的外延层,再在外延层中扩散硼、磷而成。

①设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300k时的EF位于导带底下面0.026eV处,计算锑的浓度和导带中电子浓度。

(8)4-1.(P113)300K时,Ge的本征电阻率为47Ω.cm,如电子和空穴迁移率分别为3900cm2/V.S和1900cm2/V.S,试求本征Ge的载流子浓度。

半导体物理 课后习题答案

半导体物理 课后习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体物理与器件第三版)课后练习题含答案

半导体物理与器件第三版)课后练习题含答案

半导体物理与器件第三版课后练习题含答案1. 对于p型半导体和n型半导体,请回答以下问题:a. 哪些原子的掺入能够形成p型半导体?掺入三价元素(如硼、铝等)能够形成p型半导体。

b. 哪些原子的掺入能够形成n型半导体?掺入五价元素(如磷、砷等)能够形成n型半导体。

c. 请说明掺杂浓度对于导电性有何影响?掺杂浓度越高,导电性越强。

因为高浓度的杂质能够带来更多的杂质离子和电子,从而提高了载流子浓度,增强了半导体的导电性。

d. 在p型半导体中,哪些能级是占据态,哪些是空的?在p型半导体中,价带能级是占据态,而导带能级是空的。

e. 在n型半导体中,哪些能级是占据态,哪些是空的?在n型半导体中,导带能级是占据态,而价带能级是空的。

2. 硅p-n结的温度系数是大于零还是小于零?请解释原因。

硅p-n结的温度系数是负的。

这是因为在给定的工作温度下,少子寿命的下降速率与载流子浓度的增长速率之间存在一个平衡。

当温度升高时,载流子浓度增长的速率加快,因而少子寿命下降的速率也会变大。

这一现象会导致整体导电性下降,即硅p-n结中的电流减少。

因此,硅p-n结的温度系数为负。

3. 在半导体器件中,为什么p-n结击穿电压很重要?请简要解释。

p-n结击穿电压是指在一个p-n结器件中施加的足以导致电流大幅增加的电压。

在普通的工作条件下,p-n结是一个非导电状态,而电流仅仅是由热激发和少数载流子扩散引起。

但是,当施加的电压超过了击穿电压时,大量的载流子会被电流激发和扩散,从而导致电流剧增,从而损坏器件或者破坏电路的运行。

因此,掌握p-n结的击穿电压非常重要,可以保证器件稳定和电路的可靠性。

汇总半导体物理课后习题解答..doc

汇总半导体物理课后习题解答..doc

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求:①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dk E d V -=,∴0222'61/m dk E d h m Vn-== ④准动量的改变量h △k =h (k min -k max )= ah k h 83431=[毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 210dk =aqE h 21 代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

半导体器件物理课后习题答案中文版(施敏)

半导体器件物理课后习题答案中文版(施敏)
g
E�
2 3
2 1
得�简化并式上入代
)
2
h / T k n m �2 ( 21 �
C
N和2/3)2h/Tkpm�2(2≡ VN将
DN=iN�时度温征本
3�
mc 01 � D N
51
,)Tk2/ g E-( pxe v N c N
� i n 有意题据根�解

。度温征本的品样硅的米厘 方立/子原磷 5101杂掺出找。度温的时度浓质杂于 等度浓子流载征本当为度温征本的体导半一 .41

) 2/3-aT : a�( = ) 2/3-T : n�( �解 。2度浓质杂总为TN中其 �化变而 TN/2/3T 着随为视可上论理 I�率移迁的成造所射散质 杂由。少减式方的 2/3-T 随将 L�率移迁的成造所射散格晶示 显析分论理。�页94书�系关例比的 2/3-T与L�用利以可实其

��
) x ( 散扩n J

��E
)x ( E � � �
移漂 n
J
式形分微的律定姆欧据根
移漂n
0 � nJ �
散扩n
J�
J
有以所�动流净的子流载有没部内品样�时衡平热为因
)x(E的时1-m�1 = a当出算计)b(。法示表的)x(E场电建内下态状衡 平在求�中围范的in >> DN在)a(。)xa-( pxeoN = DN 得使而�主施了杂掺端一从品样晶硅征本个一 .11
1

� pq
1
。之示表DN以并AN求�05 = pD/nD若。阻电 的1R 5.0个一了生产而��DN>>AN�AN主受的量知 未个一了杂掺又后之体导半个一同。1R阻电一有具且 �质杂的�in >> DN�DN为度浓了杂掺体导半个一 .9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体器件物理课后作业第二章对发光二极管(LED)、光电二极管(PD)、隧道二极管、齐纳二极管、变容管、快恢复二极管和电荷存储二极管这7个二端器件,请选择其中的4个器件,简述它们的工作原理和应用场合。

解:发光二极管它是半导体二极管的一种,是一种固态的半导体器件,可以把电能转化成光能;常简写为LED。

工作原理:发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。

当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。

不同的半导体材料中电子和空穴所处的能量状态不同。

当电子和空穴复合时释放出的能量多少是不同的,释放出的能量越多,则发出的光的波长越短;反之,则发出的光的波长越长。

应用场合:常用的是发红光、绿光或黄光的二极管,它们主要用于各种LED显示屏、彩灯、工作(交通)指示灯以及居家LED节能灯。

光电二极管光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性,但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。

工作原理:普通二极管在反向电压作用时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光,而电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。

光电二极管是在反向电压作用下工作的,没有光照时,反向电流极其微弱,叫暗电流;当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子—空穴对,称为光生载流子。

它们在反向电压作用下参加漂移运动,使反向电流迅速增大到几十微安,光的强度越大,反向电流也越大。

这种特性称为“光电导”。

光电二极管在一般照度的光线照射下,所产生的电流叫光电流。

如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。

光电二极管有多种类型,用途也不尽相同,主要有以下几种:PN型特性:优点是暗电流小,一般情况下,响应速度较低。

用途:照度计、彩色传感器、光电三极管、线性图像传感器、分光光度计、照相机曝光计。

PIN型特性:缺点是暗电流大,因结容量低,故可获得快速响应用途:高速光的检测、光通信、光纤、遥控、光电三极管、写字笔、传真发射键型特性:使用Au薄膜与N型半导体结代替P型半导体用途:主要用于紫外线等短波光的检测雪崩型特性:响应速度非常快,因具有倍速做用,故可检测微弱光用途:高速光通信、高速光检测隧道二极管隧道二极管(Tunnel Diode)又称为江崎二极管,它是以隧道效应电流为主要电流分量的晶体二极管。

隧道二极管是采用砷化镓(GaAs)和锑化镓(GaSb)等材料混合制成的半导体二极管,其优点是开关特性好,速度快、工作频率高;缺点是热稳定性较差。

工作原理:隧道二极管的工作符合发生隧道效应具备的三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);③简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。

隧道二极管的工作原理是量子力学领域的隧道效应。

所谓“遂道效应”就是指粒子通过一个势能大于总能量的有限区域。

这是一种量子力学现象,按照经典力学是不可能出现的。

应用场合:隧道二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。

齐纳二极管工作原理:齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,反向偏置的PN结中只有一个很小的电流,这个漏电流一直保持一个常数,直到反向电压超过某个特定的值,即当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线。

如果没有一些外在的措施来限制电流的话,它可能导致器件的损坏。

反向击穿通常设置了固态器件的最大工作电压。

然而,如果采取适当的预防措施来限制电流的话,反向击穿的结可以作为一个非常稳定的参考电压。

图一齐纳二极管的反向击穿电流电压曲线导致反向击穿的一个机制是avalanche multiplication。

考虑一个反向偏置的PN结。

耗尽区随着偏置上升而加宽,但还不够快到阻止电场的加强。

强大的电场加速了一些载流子以非常高的速度穿过耗尽区。

当这些载流子碰撞到晶体中的原子时,他们撞击松的价电子且产生了额外的载流子。

因为一个载流子能通过撞击来产生额外的成千上外的载流子就好像一个雪球能产生一场雪崩一样,所以这个过程叫avalanche multiplication。

反向击穿的另一个机制是Tunneling。

Tunneling是一种量子机制过程,它能使粒子在不管有任何障碍存在时都能移动一小段距离。

如果耗尽区足够薄,那么载流子就能靠Tunneling 跳跃过去。

Tunneling电流主要取决于耗尽区宽度和结上的电压差。

Tunneling引起的反向击穿称为齐纳击穿。

应用场合:齐纳二极管多被应用于稳压以及静电防治的场合。

当用作稳压管时通常需串联一降压电阻( R )后才接至电源,但电压源(E)一定要高于期纳二极管的崩溃电压,否则就无法发挥齐纳二极管的稳压作用。

变容二极管变容二极管(Varactor Diodes)为特殊二极管的一种,也称为压控变容器,是根据所提供的电压变化而改变结电容的半导体。

工作原理:我们可以把它看成一个PN结,当外加正向偏压时,有大量电流产生,PN (正负极)结的耗尽区变窄,电容变大,产生扩散电容效应;如果在PN结上加一个反向电压V(变容二极管是反向来用的),则N型半导体内的电子被引向正极,P型半导体内的空穴被引向负极,然后形成既没有电子也没有空穴的耗尽层,该耗尽层的宽度我们设为d,随着反向电压V的变化而变化。

如此一来,反向电压V增大,则耗尽层d变宽,二极管的电容量C就减少(根据C=kS/d),而耗尽层宽d变窄,二极管的电容量变变大。

反向电压V 的改变引起耗尽层的变化,从而改变了压控变容器的结容量C并达到了目的。

应用场合:作为可变电容器,可以被应用于FM调谐器及TV调谐器等谐振电路和FM 调制电路中。

快恢复二极管快恢复二极管(FRD)是一种具有开关特性好、反向恢复时间短特点的半导体二极管,它的最主要特点是它的反向恢复时间(trr)在几百纳秒(ns)以下,超快恢复二极管甚至能达到几十纳秒。

所谓反向恢复时间(trr),它的定义是:电流通过零点由正向转换成反向,再由反向转换到规定低值的时间间隔。

它是衡量高频续流及整流器件性能的重要技术指标。

反向恢复电流的波形如图2所示。

图中IF为正向电流,IRM为最大反向恢复电流,Irr为反向恢复电流,通常规定Irr=0.1IRM。

当t≤t0时,正向电流I=IF。

当t>t0时,由于整流管上的正向电压突然变成反向电压,因此,正向电流迅速减小,在t=t1时刻,I=0。

然后整流管上的反向电流IR逐渐增大;在t=t2时刻达到最大反向恢复电流IRM值。

此后受正向电压的作用,反向电流逐渐减小,并且在t=t3时刻达到规定值Irr。

从t2到t3的反向恢复过程与电容器放电过程有相似之处。

由t1到t3的时间间隔即为反向恢复时间trr。

应用场合:用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。

5V 图示TTL 电路,当输入V i 分别为3.6V 和0.3V 时,试定性分析电路中各晶体管的工作状态(四种工作模式之一),说明该电路的逻辑功能。

设晶体管发射结的导通压降为0.7V 。

定性分析该电路的动态特性:输入电压V i 波形如图所示,试画出输出电压V 0波形,解释原因。

解:当输入V i 为3.6V 时,T 1管和T 2管都同时导通,T 1管工作在放大状态,T 2管工作在深度饱和状态;若不考虑T 2的存在,T 1的基极电压V B ≈V IH +V ON =3.6V ,但当T2存在的情况下,T 2的发射结必然会导通,此时T 1的基极电压被钳制在了1.4V ,所以T 1的基极电压实际上不可能是3.6V ,只能是1.4V 左右,T 2管导通后处于深度饱和状态,它的集电极和发射极之间的饱和压降V CE (sat )≈0,故输出V 0=0。

当输入V i 为0.3V 时,T 1管导通T 2管截止,T 1管工作在深度饱和状态,T 2管工作在截止状态;此时T 1管的发射结必然导通,导通后T 1管的基极电压被钳制在V B ≈V IH +V ON =1.0V ,由于T 1管的集电极回路电阻是R C 和T 2管的b-c 结反向电阻之和,阻值非常大,因而T 1管工作在深度饱和状态,使集电极和发射极之间的饱和压降V CE (sat )≈0,因此T 2管的发射结不会导通,故T 2管工作在截止状态,R C 上几乎无电流通过,故输出V 0=+5V 。

由以上分析可知,当输入为高电平是输出为低电平,而输入为低电平时输出为高电平,因此输入与输出之间是反相关系,所以该电路的逻辑功能就是一个反相器(非门)。

在动态情况下,亦即三极管在截止与饱和导通两种状态间迅速转换时,三极管内部电荷的建立和消散都需要一定的时间,因而集电极电流i C 的变化将滞后于输入电压V i 的变化。

在接成三极管电路以后,电路的输出电压V 0的变化也必然滞后于输入电压V i 的变化,故输出波形如图3:3.6V0.3V V iV 0 +V CC (+5V)R B R C T 1 T 2 V i3.6Vt 0V 00 t V i3.6Vt 0 V 0 0 t图3说明HEMT (高电子迁移率晶体管)相对于MESFET (金属—半导体场效应晶体管)的主要优点,解释原因。

解:砷化嫁(GaAs )晶体是一种电学性能优越的III —V 族化合物半导体材料,以其为衬底制作的半导体器件及其集成电路由于具有信息处理速度快、超高频、低功耗、低噪声等突出的优点而得到广泛应用。

HEMT (高电子迁移率晶体管)和MESFET (金属—半导体场效应晶体管)是GaAs 电路中最常用,也是最成熟的器件。

HEMT 的主要优点是:①有优良的迁移率 →可使电路实现超高频、超高速而且噪音低。

②在极低温度下都不会“冻结”→不会复合消失。

③沟道中的电子集中在紧靠界面的很小(10~20nm) 范围内→短沟道效应很弱,有利于缩短沟道。

④低压工作。

图4 异质结能带图由图4可以看出:当势阱较深时,电子基本上被限制在势阱宽度所决定的薄层内,电子(或空穴)在平行于界面的平面内可自由运动,而在垂直于界面的方向受到限制,有量子化的能级。

相关文档
最新文档