初二数学(北京版)-一次函数的应用(第三课时)-1教案

合集下载

数学北师大八年级上册(2013年新编)《一次函数的应用(1)》教案3

数学北师大八年级上册(2013年新编)《一次函数的应用(1)》教案3

《一次函数的应用(1)》教案一、教学目标①会借助图、表等手段分析题目中的数量关系或根据函数图象获取信息确定一次函数的解析式并画出函数图象. 能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数,结合自变量取值范围、函数图象解决实际问题。

渗透函数思想、数形结合的思想。

②让学生通过自主、合作、探究构建实际问题的数学模型,培养学生运用一次函数模型解决实际生活问题的能力,体会并感知数学建模的过程和一般思想。

③通过一次函数的应用教学,让学生体会数学的抽象性和广泛应用性,使他们在“问题解决”的过程中,充分体会数学与自然及社会生活的密切联系,了解数学的价值,增进对数学的理解和应用数学的信心,激发学生学习数学的兴趣。

二、教学重点、难点重点:根据实际问题抽象出数学模型,利用一次函数解析式,以及其图象与性质解决实际问题难点:寻找实际问题中的一次函数关系,通过确定一次函数,利用其解析式、图象与性质,以及自变量的取值范围,解决实际问题.三、教学过程:(一)回顾已知,引入课题(2012江苏连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.【分析】由题意得:y1=4x+400;y2=2x+820。

(因为是复习课,此处函数关系比较简单,所以让学生直接思考,一次函数的应用离不开求函数解析式,此处通过写函数解析式,承上启下)(二)自主学习,合作探究上述问题中你认为选用哪种运输方式较好,为什么?(此处让学生分组讨论,通过合作探究解决问题,讨论后请学生回答,学生评价)【分析】令4x+400=2x+820,解得x=210。

∴当运输路程小于210千米时,y1<y2,选择邮车运输较好;当运输路程等于210千米时,y1=y2,两种方式一样;当运输路程大于210千米时,y1>y2,选择火车运输较好。

4.4.3一次函数的应用第3课时(教案)

4.4.3一次函数的应用第3课时(教案)
5.激发学生的创新意识:鼓励学生在解决实际问题时,运用一次函数进行创新思考,寻求解决问题的新方法。
三、教学难点与重点
1.教学重点
-理解一次函数表达式y=kx+b中的k和b在实际问题中的意义,如速度与时间关系中的斜率k代表速度,截距b代表初始位置。
-学会通过给定条件或图表信息建立一次函数模型,如根据距离和时间的关系确定物体运动的速度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b是常数,它描述了两个变量之间的线性关系。一次函数在生活中的应用非常广泛,如速度与时间的关系、单价与总价的关系等。
2.案例分析:接下来,我们来看一个具体的案例。假设小华骑自行车以每小时10公里的速度行驶,我们如何根据时间来计算他行驶的距离。这个案例展示了如何建立一次函数模型来解决实际问题。
4.4.3一次函数的应用第3课时(教案)
一、教学内容
《4.4.3一次函数的应用第3课时》
1.理解并掌握一次函数在实际问题中的建模过程。
2.应用一次函数解决实际生活中的问题,如速度与时间、单价与总价等关系。
3.通过实例,使学生能够:
a.确定问题中的变量关系,建立一次函数模型。
b.利用一次函数模型进行问题求解,并解释结果的实际意义。
c.能够根据图表或实际情境,分析一次函数的增减性及其在实际问题中的应用。
4.教材案例:结合教材中关于一次函数应用的问题,如“小明骑自行车行驶,速度与时间的关系”、“某商品打折后的价格与原价的关系”等,进行深入讲解与练习。
二、核心素养目标
1.培养学生的模型建构能力:通过实际问题,让学生学会运用一次函数建立数学模型,提高解决实际问题的能力。

八年级数学一次函数图象的应用(3)教案 北师大版 八年级数学一次函数图象的应用教案[整理三套]北师大

八年级数学一次函数图象的应用(3)教案 北师大版 八年级数学一次函数图象的应用教案[整理三套]北师大

一次函数图象的应用(3)●教学目标(一)教学知识点(1)函数的概念.(2)一次函数的概念.一次函数与正比例函数的关系.(3)一次函数的不同表示方式.(4)一次函数,正比例函数的图象各有什么特征.(5)确定一次函数表达式.(6)一次函数图象的应用.(二)能力训练要求2.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力.3.经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和能力.4.经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力.经历函数图象信息的识别与应用过程,发展学生的形象思维能力.5.能根据所给信息确定一次函数表达式,会作一次函数的图象,并利用它们解决简单的实际问题.(三)情感与价值观要求通过本章内容的回顾与思考,培养学生的归纳,整理等能力,建立自信心,养成敢于质疑和独立思考的习惯,培养良好的学习品质.●教学重点本章知识的网络结构.一次函数图象的特征.一次函数图象的应用.●教学难点一次函数图象的应用.●教学方法归纳教学法.●教具准备投影片四X:第一X:知识网络结构(记作§6.6 A);第二X:例题(记作§6.6 B);第三X:例题(记作§6.6 C);第四X:例题(记作§6.6 D).●教学过程Ⅰ.导入[师]本章的内容已全部学完,请大家先回忆一下,本章学了哪些内容?[生]函数,一次函数的概念;一次函数图象的概念及特征;确定一次函数表达式;一次函数图象的应用.[师]本节将对这些内容进行系统的归纳、总结.Ⅱ.讲授新课[师]1.请看本章知识网络结构图.投影片(§6.6 A)[师]下面我们根据网络结构图,把主要知识点再回顾一下.(1)函数的概念及举例.[生]一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.如某人骑自行车的速度为v,则他在t小时内走过的路程S就是t的函数,表达式为S=vt,其中t是自变量,S是因变量.(2)一次函数,正比例函数的概念及联系[生]若两个变量x、y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.x为自变量,y为因变量.当b=0时,即y=kx时,称y是x的正比例函数.如y=3x+2是一次函数,y=3x是正比例函数.它们的联系是:正比例函数是特殊的一次函数.(3)函数图象的概念,一次函数图象的特征,怎样作一次函数的图象.把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫该函数的图象.b.一次函数图象的特征(y=kx+b,b≠0)①一次函数的图象不过原点,和两坐标轴相交,它是一条直线.②一次函数图象中当k >0时,y 的值随x 值的增大而增大. 当k <0时,y 的值随x 值的增大而减小.③在一次函数y =kx +b 中,若k >0时k 的值越大,函数图象与x 轴正半轴所成的锐角越大. 正比例函数图象的特征(y =kx )①正比例函数的图象都过原点是一条直线.②在正比例函数y =kx 图象中,当k >0时,y 的值随x 值的增大而增大;当k <0时,y 的值随x 值的增大而减小.③在正比例函数y =kx 图象中,当k >0时,k 的值越大,函数图象与x 轴正方向所成的锐角越大. c.如何作一次函数的图象. 作一次函数图象的步骤有: ①列表;②描点;③连线但因为一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,因此只找两点即可,作y =kx +b 的图象时,找图象与两坐标轴的交点,即(0,b ),(-kby =kx 的图象时,因为它一定过(0,0)点,所以再找(1,k )点即可.(4)①满足函数表达式的x ,y 所对应的点(x ,y )与函数图象的关系.[生]函数y =-2x +5满足y =-2x +5的x ,y 所对应的点(x 、y )都在一次函数y =-2x +5的图象上. 一次函数y =-2x +5的图象上的点(x ,y )都满足y =-2x +5. ②函数y =x ,y =x +6,y =x -3的图象都是直线,且它们互相平行. (5)确定一次函数表达式.[生]①通过观察图象,确定其是正比例函数还是一次函数,然后设表达式为y =kx +b 或y =kx . ②把已知点的坐标代入,若是正比例函数,则需要一个点;若是一次函数,则需要两个点,组成关于k ,b 的一个或两个方程.③从方程中求出k ,b 的值. ④把k ,b 的值代回到表达式中. (6)一次函数图象的应用.[师]函数是研究现实世界变化规律的一个重要模型,一次函数是最简单的函数,一次函数的应用十分广泛,它的表示方式有三种,即表、图、式,表指列表,图是图象,式是代数表达式,而且它们之间可以互相转化,一次函数图象的应用和我们现实生活联系紧密,在前两节课里我们已研究过许多例子,但这只是一部分而已.刚才我们把主要知识点都作了回顾,下面看大家对知识点的掌握程度.三、例题讲解投影片(§6.6 B)1.下面有三个关系式和三个图象,哪一个关系式与哪一个图象能够表示同一个一次函数?(1)y=1-x2;(2)a+b=3;(3)s=2t[生]解:(2)符合要求投影片(§6.6 C)y是x的一次函数(1)根据下表写出函数表达式;(2)补全下表x 1 3 4 9 31y 1 5y=1-x的图象,并回答下列问题.(1)随着x值的增加,y值的变化情况是_________;(2)图象与y轴的交点坐标有_________,与x轴的交点坐标是_________;(3)当x_________时,y≥0.[生]2.解:根据题意,设y=kx+b把(1,1),(3,5)代入上式,得1=k+b①5=3k+b②由①得,b=1-k由②得,b=5-3k∴1-k=5-3k∴k=2把k=2代入①,得b=-1∴y=2x-1当x=4时,y=7当x=9时,y=17当x=31时,y=613.解:函数图象如下图所示:(1)∵k<0∴随着x的增加,y的值逐渐减小;(2)图象与y轴的交点坐标是(0,1),与x轴的交点坐标是(1,0);(3)当x≤1时,y≥0.投影片(§6.6 D)4.为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为y cm,椅子面的高度为x cm,则y是x的一次函数.下表列出两套符合条件的课桌椅的高度.1 第一套第二套x/cm 40 37y/cm 75 70(1)请确定y与x的函数关系式.(2)现有一把高35 cm的椅子和一X高67.1 cm的课桌,把它们配套是否符合条件?请通过计算说明理由.l1,l2分别表示两人的路程与小明追赶时间的关系.(1)哪条线表示小明的路程与时间的关系?(2)小明让小亮先跑了多少米?(3)谁将赢得这场比赛?[生]4.解:(1)∵y=kx+b根据题意,得75=40k+b①70=37k+b②由①得b=75-40k由②得b=70-37k∴75-40k =70-37k ∴k =35 把k =35代入(1),得b =325 ∴y =35x +325 (2)当x =35时, y =35×35+325=3200 ∵3200≠ ∴高35 cm 的椅子和高67.1 cm 的课桌不配套,即不符合条件.5.解:(1)因为小明后跑,小亮先跑,所以当x =0时,小明跑的路程为0,故l 2 表示小明的路程与时间的关系.(2)观察图象可知,小明让小亮先跑了10米. (3)小明将赢得这场比赛. Ⅲ.课堂练习复习题A 组 第1、2、3、4、5题 Ⅳ.课时小结本节课系统归纳了本章所学内容,并作了相应的练习. Ⅴ.课后作业复习题A 组第6题,B 组第1、2题. Ⅵ.活动与探究一家小型放映厅的盈利额y (元)同售票数x 之间的关系如下图所示,其中保险部门规定:超过150人时,要缴纳公安消防保险费50元.试根据关系图回答下列问题:(1)当售票数x满足0≤x≤150元,盈利额y(元)与x之间的函数关系式是________________.(2)当售票数x满足150<x≤200元,盈利额y(元)与x之间的函数关系式是_________.(3)当售票数x为_________时,不赔不赚;当售票数x满足_________时,放影厅要赔本;若放影厅要获得最大利润200元,此时售票数x应为_________;(4)当售票数x满足_________时,此时利润比x=150时多.(将结果直接写在题中横线上,不要求写解答过程)解:观察图象可知(1)当0≤x≤150元时,y与x间的关系式为:y=2x-200;(2)当150<x≤200元时,y与x间的关系式为:y=3x-400;(3)当x=100时,不赔不赚;当0<x<100时,放映厅要赔本;当y=200时,x=200;(4)当167≤x≤200时,此时利润比x=150时多.●板书设计。

北师大版数学八年级上册4《一次函数的应用》教案3

北师大版数学八年级上册4《一次函数的应用》教案3

北师大版数学八年级上册4《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。

本节课主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

通过本节课的学习,学生能够理解一次函数的定义,掌握一次函数的图像特征,并能运用一次函数解决实际问题。

二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系中的点、直线有所了解。

但他们对一次函数在实际生活中的应用还不够明确,需要通过本节课的学习,让学生感受到数学与生活的紧密联系,提高他们学习数学的兴趣。

三. 教学目标1.了解一次函数在实际生活中的应用。

2.学会用一次函数解决实际问题。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.一次函数在实际生活中的应用。

2.如何引导学生将实际问题转化为一次函数问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数的应用。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)利用PPT展示生活中的一些场景图片,如购物、出行等,引导学生发现这些场景中存在数学问题。

让学生举例说明,并提问:如何用数学知识解决这些问题?2.呈现(10分钟)呈现一次函数的定义和图像特征,引导学生理解一次函数的概念。

通过PPT展示一次函数在实际生活中的应用案例,如购物问题、出行问题等,让学生直观地感受一次函数的应用。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试用一次函数解决。

教师巡回指导,帮助学生解决问题。

学生汇报解题过程和结果,教师点评并给予鼓励。

4.巩固(10分钟)出示一组练习题,让学生独立完成。

教师选取部分学生的作业进行点评,指出解题过程中的优点和不足,并进行讲解。

5.拓展(10分钟)让学生思考:一次函数在实际生活中还有哪些应用?引导学生从不同角度发现一次函数的应用,如环保、生产等。

最新北师版八上数学4.4 一次函数的应用(第3课时) 课件

最新北师版八上数学4.4 一次函数的应用(第3课时) 课件

一、 前置学习
4.现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、 乙两个蓄水池中水的深度y(米)与注水时间x(小时)之间的函数图象如 图所示,当甲、乙两池中水的深度 相同时, y 的值为 ( A )
二、 合作探究
例1如图,l1反映了某产品的销售收入(单 位:元)与销售量 (单 位:t)之间 的关系,l2反映了该产品的销售成本(单位:元)与销售量之间的关系,当 销售收入大于销售成本时,该产品才开始赢利. 下列说法不正确的是 ( )
三、 达标训练
3.某图书馆开展两种方式的租书业务:一种是使用租书卡,另一种是 使用会员卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的 关系如图所示.
(1)分别写出使用会员卡和租书卡的租书金额y(元)与 租书时间x(天)之间的函数表达式; (2)若两种卡的使用期限为一年,则在这一年中如何选 择这两种租书方式比较划算.
二、 合作探究
例2某专营商场销售一 种品牌电脑,每台电脑的进货价是0.4万元.图 中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的 关系,已知商场每天的房租、水电、工资等固定支出为3万元.
(1)直线l1对应的函数表达式是 ________ ,每台电脑的 销售价是 _____万元; (2)写出商场一天的总成本y2(万元)与 销售量 x(台)之间 的函 数表达式 ___________ ; (3)在直角坐标系中画出第(2)小题的图象(标上l2); (4)通过计算说明:每天销售量达到多少台时,商场可以盈 利?
4.4 一次函数的应用(第3课时)
一、 前置学习
1.已知一次函数l1:y1=k1x+b1 和l2:y2= k2x+b2. (1)当y1=y2 时,由方程k1x+b1=k2x+ b2 可求得此时自变量x 的 值,对应的就是两条图象的_______横坐标. (2)当y1>y2 时,在图象上对应的就是直线l1 在直线l2 的______ 时 横坐标的取值范围. (3)当y1<y2 时,在图象上对应的就是直 线l1 在直线l2 的______ 时 横坐标的取值范围.

期八年级数学上册 4.4 一次函数的应用 第3课时 复杂一次函数的应用教案 (新版)北师大版

期八年级数学上册 4.4 一次函数的应用 第3课时 复杂一次函数的应用教案 (新版)北师大版

第3课时复杂一次函数的应用【知识与技能】能利用一次函数解决复杂的实际问题.【过程与方法】通过生活中的实例结合一次函数的图象解决问题,进一步体会数形结合的思想在数学中所起的重要作用.【情感与态度】让学生认识到数学来源于生活,又在生活中得到了运用,培养学生热爱生活的热情.【教学重点】利用一次函数解决复杂的实际问题.【教学难点】根据两个一次函数图象去分析解决问题.一、创设情境,导入新课教材第93页习题4.6下方的内容【教学说明】让学生在同一题中利用图象体会两个一次函数中量与量之间的关系,找到解决问题的方法,为下面的学习奠定基础.思考:图4-10中,l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?二、思考探究,获取新知复杂一次函数的实际应用师生共同完成例题:教材第94页例3【教学说明】教师引导学生完成,给学生创造展示自己的机会,通过相互讨论形成共识,得出结果,充分发挥了学生的主体作用.想一想:你能用其他方法解决上面的例题(1)~(5)吗?【教学说明】给学生充分的思考空间,让他们采用多种方法解决同一个问题,从而体会一题多解给大家的学习带来的快乐.三、运用新知,深化理解1.如图,射线OA,BA分别表示甲、乙两人骑自行车运动过程的一次函数图象,图中s,t分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h.2.甲乙两队举行一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系式如图所示,请你根据图象判断,下列说法正确的是().A.甲队率先到达终点B.甲队比乙队多走了200米C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的的速度大.3.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题.(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是 .(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式.(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?【教学说明】让学生自主完成,加深对所学知识的理解和考查学生对这一节课掌握情况,学生发生的错误和学习中的困难教师要及时纠正并给予解答.【答案】1.4;2.C;3.解:(1)30厘米,25厘米2小时,2.5小时(2)甲:设y=k1x+b1.将(0,30)代入y=k1x+b1中得b1=30,再将点(2,0)和b1的值代入y=k1x+b1中可得k1=-15.所以y=-15x+30.乙:设y=k2x+b2.把(0,25)代入y=k2x+b2可知b2=25,再将(2.5,0)和b2的值代入y=k2x+b2中得k2=-10.所以y=-10x+25.(3)令-15x+30=-10x+25,解得x=1.所以燃烧1小时时,甲、乙两根蜡烛的高度相等;当0≤x<1时间段内,甲蜡烛比乙蜡烛高;在1<x<2.5时间段内,甲蜡烛比乙蜡烛低.四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识?能解决跟一次函数有关的实际问题吗?学习中还存在哪些疑惑?与同学们交流.【教学说明】引导学生归纳总结,特别是解题方法和技巧对于今后的学习很有指导意义.通过交流形成学习上的互利,便于共同进步.1.布置作业:习题4.7中第3题2.完成本课时练习部分.本节课主要研究利用两个一次函数图象解决实际问题.通过独立思考并相互交流讨论,分析问题中量与量之间的关系,建立函数模型,提高学生的实践意识与综合运用数学知识的能力.。

初中八年级数学教案-北京出版社初中数学八年级下册 一次函数的应用-一等奖

初中八年级数学教案-北京出版社初中数学八年级下册   一次函数的应用-一等奖

课题学习:选择方案导学案
展示研究展示你的风采、
某化工厂现有甲种原料7吨,乙种原料5吨,现
计划用这两种原料生产两种不同的化工产品A和
B共8吨,已知生产每吨A,B产品所需的甲、乙
两种原料如下表:
甲原料乙原料A产品吨吨
B产品吨吨
销售A,B两种产品获得的利润分别为万元/
吨、万元/吨.若设化工厂生产A产品吨,且
销售这两种产品所获得的总利润为y万元.(1)求y与的函数关系式,并求出的
取值范围;
(2)问化工厂生产A产品多少吨时,所获得
的利润最大最大利润是多少
鼓励学
生动脑
巩固提升1东风商场文具部的某种毛笔每支售价25元,
书法练习本每本售价5元.•该商场为了促销
制定了两种优惠方案供顾客选择.
甲:买一支毛笔
赠送一本书法练

本.
乙:按购买金额
打九折付款.
某校欲为校书法兴趣组购买这种毛笔10支,
书法练习本(≤10)本.如何选择方案购买呢
2、学校有一批复印任务,原来由甲复印社承
接,按每100页40元计费.现乙复印社表示:
若学校先按月付给一定数额的承包费,则可按
每100页15元收费.两复印社每月收费情况
如下图所示.
根据图象回答:
1乙复印社的每月承包费是多少
2当每月复印多少页时,两复印社实际收费相


提醒学生发
现规律。

北师大版八年级数学上册《一次函数的应用》第3课时示范课教学设计

北师大版八年级数学上册《一次函数的应用》第3课时示范课教学设计

第四章一次函数4 一次函数的应用第3课时一、教学目标1.进一步培养学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.3.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.二、教学重难点重点:训练学生的识图能力,能通过函数图象获取信息.难点:通过函数图象发展学生的分析问题、解决问题的能力.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】问题;解答实际问题,如何分析函数的图象信息?预设:(1)理解横、纵坐标分别表示的的实际意义;(2)分析已知,通过作x轴或y轴的垂线,在图象上找到对应的点,由点的横坐标或者纵坐标的值读出要求的值;(3)利用数形结合的思想:【做一做】某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示:问题1:(1)服药后______时,血液中含药量最高,达到每毫升_______毫克,接着逐步衰弱.预设答案:2;6问题2:(2)服药后5时,血液中含药量为每毫升____毫克.预设答案:3问题3:(3)当x≤2时,y与x之间的函数解析式是___________.提示:当x≤2时图象过原点,表达式设为y=kx,求解k的值只需再找一个点的坐标即可.预设答案:解:当x≤2时,设y与x的解析式为y=kx,由图可知,图象过点(2,6),代入得6=2k,解得k=3,所以解析式为y=3x.问题4:(4)如果每毫升血液中含药量3 mg或3 mg以上时,治疗疾病最有效,那么吃药后_____小时能发挥最佳药效.教师活动:当y=3,且x≤2时,求出x的值即可.预设答案:解:当x≤2时,y与x的解析式为y=3x,把y=3代入,得3=3x,解得x=1.所以答案是1.量的关系,l2反映了该公司产品销售成本与销售量的关系,根据图象填空:(1)当销售量为2 t时,销售收入=______元,销售成本=_____元;(2)当销售量为6 t时,销售收入=_________元,销售成本=________元;预设答案:(1)2000;3000 (2)6000;5000(3)当销售量为______时,销售收入等于销售成本;(4)当销售量时,该公司赢利(收入大于成本);当销售量时,该公司亏损(收入小于成本);预设答案:(3)4吨(4)大于4 t 小于4 t(5)l1对应的函数表达式是,l2对应的函数表达式是.教师活动:l1的图象过原点,表达式设为y=kx,解这个方程只需再找一个点的坐标即可.解:设l1的表达式为y=k1x,由图可知,图象过(4,4000),代入得4000=4k1,解得k1=1000,所以表达式为y=1000x.教师活动:l2表达式设为y=k2x+b2,解这个方程需要两个点的坐标,从图上可知所需坐标点.解:设l2的表达式为y=k2x+b2,由图可知,图象过【典型例题】教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.【例1】我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(如图).图中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12 n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数s=k1t+b1与s=k2t+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?解:(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min内,A行驶了2 n mile,B行驶了5 n mile,所以B的速度快.(3)如图,延长l1,l2,可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B 尚未追上A.(4)如图,延长l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)从图中可以看出,l1与l2交点P的纵坐标小于l2,这说明在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2n mile/min,快艇B的速度是0.5n mile/min.【想一想】你能用其他方法解决例3(1)~(5)吗?预设答案:解:(1)由图可知,l1表示的速度=5÷10=0.5(n mile/min),l2表示的速度=(7-5)÷10=0.2(n mile/min),故l1表示B到海岸的距离与追赶时间之间的关系.(2)因为0.5>0.2,所以B的速度快.(3)教师活动:利用待定系数法求出图象的解析式,代入t=15,求出s值即可得出.解:设直线l1的解析式为s1=k1t,l2的解析式为s2=k2t+b.是()A.①②B.②③④C.②③D.①②③预设答案:D2.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是( )A.3 km/h 和4 km/hB.3 km/h 和3 km/hC.4 km/h 和4 km/hD.4 km/h 和3 km/h分析:可先根据图象上的点分别写出函数关系式,再分别求出两人的速度.预设答案:D3.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点距离是( )米. A.150 B.175 C.180 D.225分析:根据图象即可求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程-甲所走的路程即可得出答案.预设答案:B4.两人分别骑自行车和摩托车沿相同路线由甲地到乙地,他们的行驶路程与行驶时间之间的关系如图所示.已知甲、乙两地的距离是120 km,请根据图象回答下列问题:(1)谁先出发的?早多少时间?(2)两人在途中行驶的速度分别是多少?(3)骑自行车者出发后经过几个小时后,两人相遇?(4)在什么时间范围内,骑自行车者在骑摩托车者前面?在什么时间范围内,骑摩托车者在自行车者前面?预设答案:解:(1)观察图象可以看出骑自行车者出发早,早3小时.(2)由图象知,自行车行120 km耗时8小时,所以速度是120÷8=15(km/h)摩托车行驶120 km耗时(5-3)=2小时;所以速度是120÷2=60(km/h)(3)因为两图象交点的横坐标为4,所以4小时后两人相遇.(4)由图象知,当时间在0~4小时内,骑自行车者在骑摩托车者前面;当时间在4~8小时内,骑摩托车者在骑自行车者前面.思维导图的形式呈现本节课的主要内容:。

北师大版八年级数学上册4.1一次函数的应用优秀教学案例

北师大版八年级数学上册4.1一次函数的应用优秀教学案例
2.学生通过合作交流,分享解题思路,互相学习,培养团队协作能力。
3.教师巡回指导,解答学生疑问,给予鼓励和评价,提高学生的自信心。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结一次函数在购物、出行等方面的应用。
2.学生总结一次函数的图像特征和性质,加深对一次函数的理解。
3.教师强调一次函数在实际生活中的重要性,激发学生的学习兴趣。
三、教学策略
(一)情景创设
1.利用多媒体展示购物、出行等实际场景,让学生身临其境,引发学生的学习兴趣。
2.设计具有挑战性和趣味性的数学问题,激发学生的求知欲。
3.以生活实例为载体,引导学生发现数学规律,感知数学与生活的紧密联系。( Nhomakorabea)问题导向
1.引导学生提出问题,激发学生的思考,培养学生的问题意识。
五、案例亮点
1.生活情境导入:通过购物、出行等生活场景的展示,引导学生发现数学问题,激发学生的学习兴趣,增强学生的数学应用意识。
2.问题导向:本节课以问题为导向,引导学生主动探究、积极思考,培养学生的问题意识和解决问题的能力。
3.小组合作:组织学生进行小组讨论,培养学生的团队协作能力和沟通能力,提高学生的学习效果。
(四)反思与评价
1.引导学生对学习过程进行反思,总结经验,提高学生的学习能力。
2.组织学生进行自我评价、同伴评价,培养学生的评价能力。
3.教师对学生的学习过程和结果进行多元化评价,激发学生的学习动力。
本节课的教学策略旨在充分发挥学生的主体作用,引导学生主动探究、积极思考,提高学生的数学素养。通过情景创设、问题导向、小组合作和反思与评价等策略,培养学生的问题意识、团队协作能力和自我评价能力,使学生在学习一次函数的应用过程中,既能掌握数学知识,又能培养良好的学习习惯和价值观。

一次函数的应用(第3课时)一等奖创新教学设计

一次函数的应用(第3课时)一等奖创新教学设计

一次函数的应用(第3课时)一等奖创新教学设计第四章一次函数4. 一次函数的应用(第3课时)教学设计一、教材分析(地位与作用)本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.二、学情分析在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.教学目标根据本教材的结构和内容分析,结合八年级学生的认知结构及其心理特征,我制定了以下教学目标:(一)知识与技能:1、通过观察函数图象,能够从两个一次函数图象中获取信息,理解函数图象交点的实际意义;2、利用一次函数图象,解决实际问题。

(二)过程与方法:1、通过利用一次函数图象获取信息解决问题的过程,渗透数形结合与数学建模思想,体会函数与方程之间的关系;2、通过利用函数图象解决问题,进一步发展学生的数学应用意识,提高数学应用能力。

(三)情感、态度与价值观:激发学生的学习兴趣,培养独立思考、合作学习的能力,感受数学的应用价值。

四、教学的重难点根据新课程标准,在吃透教材,紧扣中考考点的基础上,我确定了以下教学重难点:教学重点:从两个函数图象中提取有用的信息,利用函数图象解决实际问题教学难点:1、结合具体实例理解一次函数关系式中k、b的实际意义;体会函数与方程之间的关系,理解数形结合以及数学建模思想,发展学生的几何直观和应用意识。

五、教法学法1.教学方法:依据新的教学理念、学习方式的转变,通过学生自主、分组合作、探究等方式使学生在参与中培养能力;合作中学会学习。

本节课在教法上主要采用探究式教学法,选择由浅入深提出问题、分析问题、解决问题的流程进行教学。

北师大版数学八年级上册4《一次函数的应用》教案1

北师大版数学八年级上册4《一次函数的应用》教案1

北师大版数学八年级上册4《一次函数的应用》教案1一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。

本节课主要让学生了解一次函数在实际生活中的应用,学会利用一次函数解决实际问题,培养学生的数学应用能力。

教材通过实例引导学生理解一次函数的定义,掌握一次函数的性质,并能运用一次函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,具备了一定的问题解决能力。

但部分学生对实际问题与数学知识的联系还不够明确,需要老师在教学中加以引导。

此外,学生对数学应用题的兴趣不高,教师应注重激发学生的学习兴趣,提高他们的数学应用意识。

三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。

2.学会利用一次函数解决实际问题,提高数学应用能力。

3.培养学生的团队协作能力和问题解决能力。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。

2.启发式教学法:引导学生主动探究一次函数的定义和性质,培养学生的思维能力。

3.小组合作学习:鼓励学生分组讨论,共同解决实际问题,提高学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示一次函数的定义、性质及实际应用。

2.实例材料:收集一些与生活密切相关的一次函数实例,用于引导学生学习。

3.练习题:准备一些有关一次函数的应用题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一次函数在生活中的应用实例,如线性增长、直线距离等,引导学生关注一次函数的实际意义。

2.呈现(10分钟)(1)介绍一次函数的定义:y=kx+b(k≠0,k、b为常数)。

(2)讲解一次函数的性质:随着x的增大,y的值会按照k的的正负和大小变化。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,分析实例中的一次函数关系,并绘制函数图像。

教师巡回指导,解答学生疑问。

北师大版八年级数学上册:4.4 《一次函数的应用》教案3

北师大版八年级数学上册:4.4 《一次函数的应用》教案3

北师大版八年级数学上册:4.4 《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版八年级数学上册第4章“一次函数”的最后一节内容。

本节课的主要内容是让学生掌握一次函数在实际问题中的应用,培养学生的实际问题解决能力。

教材通过生活实例引入一次函数的应用,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

二. 学情分析学生在学习本节课之前,已经学习了初中阶段的一次函数、不等式和方程等基础知识,对一次函数的概念、性质和图象有一定的了解。

但学生对实际问题与一次函数之间的联系还需加强,本节课通过具体的生活实例,让学生将已学知识运用到实际问题中,提高学生解决问题的能力。

三. 教学目标1.让学生理解一次函数在实际问题中的应用,提高学生的实际问题解决能力。

2.培养学生运用数学知识描述生活现象的能力,感受数学与生活的紧密联系。

3.提高学生学习数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.一次函数在实际问题中的应用。

2.如何将实际问题转化为一次函数问题,找出合适的自变量和因变量。

五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。

以生活实例为载体,引导学生发现实际问题与一次函数之间的联系,通过小组合作、讨论交流,培养学生解决问题的能力。

六. 教学准备1.准备相关的生活实例,用于引导学生发现实际问题与一次函数之间的联系。

2.准备课件,展示一次函数在实际问题中的应用。

3.准备练习题,巩固学生对一次函数应用的理解。

七. 教学过程1.导入(5分钟)通过一个生活实例,如购物问题,引导学生发现实际问题中存在一种线性关系。

让学生思考如何用数学语言描述这种关系,引出一次函数的概念。

2.呈现(15分钟)呈现一组实际问题,如的身高与年龄的关系,让学生尝试用一次函数来表示。

引导学生找出合适的自变量和因变量,并解释为什么选择这两个变量。

3.操练(15分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数来表示。

北京课改版数学八年级下册14.7《一次函数的应用》教学设计

北京课改版数学八年级下册14.7《一次函数的应用》教学设计

北京课改版数学八年级下册14.7《一次函数的应用》教学设计一. 教材分析北京课改版数学八年级下册14.7《一次函数的应用》是学生在学习了函数概念、一次函数的性质和图象等知识的基础上,进一步探讨一次函数在实际生活中的应用。

本节课的内容包括:一次函数在实际生活中的应用,一次函数的图象与实际问题之间的关系,一次函数在实际问题中的综合应用等。

通过本节课的学习,使学生能理解和掌握一次函数在实际生活中的应用,培养学生的数学应用能力。

二. 学情分析学生在学习本节课之前,已经掌握了函数的概念、一次函数的性质和图象等知识,具备了一定的数学基础。

但学生在应用一次函数解决实际问题时,还存在着一定的困难,需要教师在教学中加以引导和指导。

此外,学生对于实际问题与数学知识之间的联系还需要加强,需要通过实例使学生感受数学在生活中的应用。

三. 教学目标1.理解一次函数在实际生活中的应用,能运用一次函数解决实际问题。

2.掌握一次函数的图象与实际问题之间的关系,能通过图象解决实际问题。

3.培养学生的数学应用能力和实际问题解决能力。

四. 教学重难点1.一次函数在实际生活中的应用。

2.一次函数的图象与实际问题之间的关系。

五. 教学方法采用问题驱动法、案例教学法、小组讨论法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数在实际生活中的应用。

六. 教学准备1.教学PPT。

2.实际问题案例。

3.学习资料。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出本节课的主题——一次函数的应用。

2.呈现(10分钟)呈现一次函数在实际生活中的应用案例,引导学生观察和分析案例中的数学关系,总结一次函数的应用规律。

3.操练(10分钟)学生分组讨论,每组选取一个实际问题,运用一次函数的知识解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生汇报各自解决问题的过程和结果,教师点评并总结。

学生再次分组,针对同一问题,尝试用不同的方法解决,加深对一次函数应用的理解。

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案 新版北师大版

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案 新版北师大版

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案新版北师大版一. 教材分析本次课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,主要讲述了两个一次函数图象的应用。

本节课的内容是学生学习一次函数的进一步延伸,通过分析两个一次函数图象的交点、斜率等特征,培养学生解决实际问题的能力。

二. 学情分析学生在学习了八年级数学上册前几章的内容后,对一次函数的基本概念、性质和图象已经有了一定的了解。

但在解决实际问题时,还需要进一步引导他们运用一次函数的知识进行分析。

此外,学生可能对两个一次函数图象的交点、斜率等特征的理解不够深入,需要通过实例进行讲解和练习。

三. 教学目标1.理解两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。

2.培养学生的分析问题和解决问题的能力,提高他们的数学思维水平。

3.培养学生合作交流的能力,提高他们的团队协作能力。

四. 教学重难点1.重点:掌握两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。

2.难点:如何引导学生运用一次函数的知识分析实际问题,并找出解决问题的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题情境,引导学生运用一次函数的知识进行分析;通过案例讲解,让学生了解两个一次函数图象的交点、斜率等特征;通过小组合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的案例和问题,以便在课堂上进行讲解和练习。

2.准备多媒体教学设备,以便进行图象展示和讲解。

3.准备练习题,以便在课堂上进行巩固和拓展。

七. 教学过程1.导入(5分钟)通过设置一个实际问题,引导学生运用一次函数的知识进行分析。

例如:某商店进行促销活动,商品的原价一次函数为y=2x+1,促销价一次函数为y=x+3。

问:当商品原价等于促销价时,商品的价格是多少?2.呈现(15分钟)通过多媒体展示两个一次函数图象,让学生观察并分析图象的交点、斜率等特征。

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,这部分内容主要让学生学会利用两个一次函数图象解决实际问题。

教材通过生活实例引入两个一次函数图象的交点坐标,让学生理解交点坐标的意义,并学会如何求解交点坐标。

同时,教材还引导学生通过观察图象来判断两个函数的交点个数,以及如何利用交点坐标解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了一次函数图象的基本知识,包括一次函数的定义、图象的性质等。

但是,对于两个一次函数图象的交点坐标以及应用,可能还存在一定的困惑。

因此,在教学过程中,我将会重点引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。

三. 说教学目标1.知识与技能目标:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。

2.过程与方法目标:通过生活实例的引入,培养学生的观察能力和思维能力;通过小组合作探究,培养学生的合作意识和团队精神。

3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和热情。

四. 说教学重难点1.教学重点:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。

2.教学难点:如何引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作探究法等。

2.教学手段:利用多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过一个实际问题引入本节课的内容,让学生观察图象,引导学生思考两个函数的交点坐标有什么意义。

2.讲解新课:讲解两个一次函数图象的交点坐标的意义,以及如何求解交点坐标。

05 -一次函数的应用(第三课时)-1教案

05 -一次函数的应用(第三课时)-1教案
(2)分y1>y2、y1=y2和y1<y2三种情况,进行讨论.
当y1>y2时,即400+4x>820+2x,解得x>210
∴当运输路程大于210公里时,选择火车运输较好.
当y1=y2时,即400+4x=820+2x,解得x=210
∴当运输路程大等于210公里时,选择任意一种运输方式均可.
当y1<y2时,即400+4x<820+2x,解得x<210
将函数图象问题转化为利用函数表达式求值问题,实现一次函数与一元一次方程间的转化。
新授
一次函数与一元一次不等式
从例1的图象中,仅能得到直线y=kx+b与两个坐标轴的交点坐标吗?有同学会说,直线左低右高,k>0,y值随x值的增大而增大.还有同学会说,直线经过一、二、三象限.
例2通过观察图象,你能得到关于x的不等式kx+b>0的解集吗?
方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;
方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元.
(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x公里之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
解:(1)运输总费用=装卸费+运输路程收费,邮车总费用y1=400+4x(x≥0),火车总费用y2=820+2x(x≥0)此时的自变量x取值范围,要符合实际意义大于等于0.
把x=1代入一次函数y=2x+3中得y=2×1+3=5,刚好与点(1,5)的纵坐标相吻合,所以(1,5)满足一次函数y=2x+3的表达式,它在一次函数y=2x+3的图象上.
相互关联一次函数y=kx+b的图象上有无数个点,这些点就是无数个有序数对(x,y).换另一个角度来考虑,若以x,y为未知数,y=kx+b这个二元一次方程中就有无数个解.倘若一个点是在一次函数y=kx+b的图象上,那么这个点的坐标必然是关于x,y的二元一次方程y=kx+b(k≠0)的解,它会使得方程成立.

北师大版数学八年级上册4.一次函数的应用(第3课时)课件

北师大版数学八年级上册4.一次函数的应用(第3课时)课件

y/元
6000 5000 4000 3000 2000 (0,2000)
l1
y=1000x
关系式设为y1=k1x,
l2
y=500x+2000 只需要一个点的坐标.
y=k1x 4000=4k, k=1000
(4,4000)
l2的图不过原点
y=1000x (0,2000)(4,4000)
1000 O
1 23
O
l2 A l1 B
2 4 6 8 10
t /分
即10分钟内,A行 驶了2海里,B行
P94例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶, 边防局迅速派出快艇B追赶(如图).
快艇

B

A 可疑船


下图中 l1 ,l2 分别表示两船相对于海岸的距离s与追赶时间t之间
的关系.根据图象回答下列问题:
(1)哪条线表示快艇B到海岸的距离与追赶时间之间的关系?
s /海里
8 6 4 2
北师大版 数学 八年级上册
第四章 一次函数
4.4.3 一次函数的应用
第3课时 复杂一次函数的应用
学习目标
1.进 一 步 训 练 识 图 能 力 , 通 过 函 数 图 象 获 取 信 息 , 解 决 简单的实际问题。
2.在 函 数 图 象 信 息 获 取 过 程 中 , 进 一 步 培 养 数 形 结 合 意 识,发展形象思维。
该公司盈利(收入大于成 6000
本); 当销售量 小于4吨 时,
5000
该公司亏损(收入小于成 4000
本) ;
3000
2000
1000
O
销售收入
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案
方程从数的角度看,都对应着一个一次函数;从形的角度看,都对应着一条直线.
练习二元一次方程2x-y+3=0的解与一次函数y=2x+3及其图象的关系,你能说清楚了吗?嗯,说的很好,每一个二元
一次方程2x-y+3=0的解都满足一次函数y=2x+3的表达式,以这个解为横纵坐标的点,均在一次函数y=2x+3的图象上.反过来,一次函数y=2x+3的图象上的每一个点的坐标,都是二元一次方程2x-y+3=0的解. 巩固练习,加深学生对于一次函数与二元一次方程的认识。

新授一次函数与二元一次方程组
例4不解方程组判断方程组的解的情况?
20
240
x y
x y
+=


++=

分析:二元一次方程组的解是方程组中各个方程共同的解.
根据二元一次方程与一次函数之间的关系进行分析,方程组
的解的个数即为方程组中各方程所对应的一次函数图象的交
点个数.
为了便于观察,我们将方程组内的二元一次方程均转化
成一次函数的表达式形式.
解:20
240
x y
x y
+=


++=

变形得1
2
1
2
2
y x
y x

=-
⎪⎪

⎪=--
⎪⎩
∵两条直线的k值相同,b值不同,它们是平行的,没有公共
点.
∴该方程组无解.
练习如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,
b).
(1)求b的值;
(2)不解关于x,y的方程组
1
=+


=+

y x
y mx n
,请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过
点P?请说明理由.
(1)b的值是2.(2)1
2
=


=

x
y
(3)经过点P.
当所要研究的一次
函数数量大于一时,
它们所对应的二元
一次方程便可以组
成方程组,利用方程
组的特点,又为我们
解决一次函数的某
些问题提供了新的
方法和思路.
通过变式练习,增强
审题能力以及对函
数与方程不等式间
联系和的理解。

拓展练习能否用画函数图象的方法解决检测3中的第二问?
变式巩固,一次函数
与二元一次方程
(组)相互转化。

相关文档
最新文档