数据结构:树和二叉树

合集下载

03、1数据结构第一部分--线性表-树与二叉树

03、1数据结构第一部分--线性表-树与二叉树

数据结构(一)目录第1章序论 (1)1.1 什么是数据? (1)1.2 什么是数据元素? (1)1.3 什么是数据结构及种类? (1)1.4 数据的逻辑结构 (1)1.5 数据的物理结构 (1)1.6 算法和算法分析 (1)1.7 算法的五个特性 (1)1.8 算法设计的要求 (2)1.9 算法效率的度量 (2)第2章线性表 (3)2.1 线性表举例 (3)2.2 线性表的存储 (4)2.3 线性表-栈 (4)2.4 队列 (4)2.5 双端队列 (6)第3章树和二叉树 (6)3.1 树 (6)3.1.1 树的基本概念 (6)3.1.2 树的常用存储结构 (6)3.1.3 树的遍历 (7)3.2 二叉树 (7)3.2.1 二叉树的基本概念 (7)3.2.2 二叉树与树的区别 (7)3.2.3 树及森林转到二叉树 (7)3.2.4 二叉树的性质 (8)3.2.5 满二叉树 (8)3.2.6 完全二叉树 (8)3.2.7 完全二叉树的性质 (9)3.2.8 二叉树的四种遍历 (9)3.2.9 二叉排序树 (10)3.2.10 平衡二叉树 (11)3.2.11 m阶B-树 (11)3.2.12 最优二叉树 (11)3.2.13 二叉树的存储结构 (12)3.3 广义表 (13)3.4 矩阵的压缩存储 (14)3.4.1 特殊矩阵 (14)3.4.2 压缩存储 (14)第4章历年真题讲解 (15)4.1 2009年上半年 (15)4.2 2009年下半年 (15)4.3 2010年上半年 (15)4.4 2011年上半年 (16)4.5 2011年下半年 (16)4.6 2012年上半年 (17)4.7 2012年下半年 (17)4.8 2013年上半年 (18)4.9 2013年下半年 (18)4.10 2014年上半年 (18)4.11 2014年下半年 (19)4.12 2015年上半年 (19)4.13 2015年下半年 (19)4.14 2016年上半年 (20)第1章序论什么是数据?所有能输入到计算机中并能够被计算机程序处理的符号的总称,它是计算机程序加工的原料。

数据结构-第6章 树和二叉树---4. 树和森林(V1)

数据结构-第6章 树和二叉树---4. 树和森林(V1)
ElemType data ; struct CSnode *firstchild, *nextsibing ; }CSNode;
6.4.1 树的存储结构
R AB C D EG F
R⋀
A
⋀D
⋀B
⋀E ⋀
C⋀
⋀G
⋀F ⋀
6.4.2 树、森林和二叉树的转换
1. 树转换为二叉树 将树转换成二叉树在“孩子兄弟表示法”中已 给出,其详细步骤是: ⑴ 加线。在树的所有相邻兄弟结点之间加一 条连线。 ⑵ 去连线。除最左的第一个子结点外,父结点 与所有其它子结点的连线都去掉。 ⑶ 旋转。将树以根结点为轴心,顺时针旋转 450,使之层次分明。
B C
D
A E
L HK
M
技巧:无左孩子 者即为叶子结点
6.4.3 树和森林的遍历
1. 树的遍历 由树结构的定义可知,树的遍历有二种方法。 ⑴ 先序遍历:先访问根结点,然后依次先序 遍历完每棵子树等。价于对应二叉树的先序遍历
⑵ 后序遍历:先依次后序遍历完每棵子树,然 后访问根结点。等价于对应二叉树的中序遍历
0 R -1 1A 0 2B 0 3C 0
}Ptree ; R
4D 1 5E 1
AB C
6F 3
7G 6
DE
F
8H 6
9I 6
G H I 10~MAX_Size-1 ... ...
6.4.1 树的存储结构
2. 孩子表示法
每个结点的孩子结点构成一个单链表,即有n 个结点就有n个孩子链表;
n个孩子的数据和n个孩子链表的头指针组成一 个顺序表; 结点结构定义: 顺序表定义:
typedef struct PTNode { ElemType data ;

数据结构-C语言-树和二叉树

数据结构-C语言-树和二叉树

练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

数据结构详细教案——树与二叉树

数据结构详细教案——树与二叉树

数据结构详细教案——树与二叉树一、教学目标1.了解树和二叉树的基本概念和特点;2.掌握树和二叉树的基本操作;3.能够通过递归遍历树和二叉树。

二、教学重难点1.树和二叉树的基本概念和特点;2.递归遍历树和二叉树。

三、教学内容1.树的概念和特点1.1树的定义树是n(n>=0)个节点的有限集。

当n=0时,称为空树;如果不为空树,则1. 树有且仅有一个特殊节点被称为根(Root);2.其余节点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合又是一棵树。

1.2节点间的关系- 父节点(parent)是当前节点的直接上级节点;- 子节点(child)是当前节点的直接下级节点;- 兄弟节点(sibling)是具有同一父节点的节点;- 祖先节点(ancestor)是通过从当前节点到根的任意路径可以到达的节点;- 子孙节点(descendant)是通过从该节点到子树的任意节点可以到达的节点。

1.3树的特点-树是一个有层次的结构,可以看作是一个鱼骨图;-树中的每个节点都可以有多个子节点,但只有一个父节点;-树中的节点之间是唯一的,不存在重复节点;-树中的任意两个节点之间都有且仅有一条路径连接。

2.二叉树的概念和特点2.1二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点,分别称为左子节点和右子节点。

2.2二叉树的特点-二叉树的度最大为2,即每个节点最多有两个子节点;-二叉树的第i层最多有2^(i-1)个节点;-对于任意一颗二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则有n0=n2+1;-完全二叉树是一种特殊的二叉树,除了最后一层的叶子节点外,每一层的节点都是满的。

四、教学过程1.讲解树和二叉树的基本概念和特点,引导学生理解树和二叉树的定义和节点间的关系。

2.分析树和二叉树的基本操作,并通过实例演示操作过程,让学生掌握操作的步骤和方法。

3.运用递归算法遍历树和二叉树的过程,详细讲解前序遍历、中序遍历和后序遍历的定义和实现方法。

数据结构树和二叉树知识点总结

数据结构树和二叉树知识点总结

数据结构树和二叉树知识点总结
1.树的概念:树是一种非线性的数据结构,由节点和边构成,每个节点只能有一个父节点,但可以有多个子节点。

2. 二叉树的概念:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,一个是左子节点,一个是右子节点。

3. 二叉树的遍历:二叉树的遍历分为前序遍历、中序遍历和后序遍历三种方式。

前序遍历是先访问根节点,再访问左子树,最后访问右子树;中序遍历是先访问左子树,再访问根节点,最后访问右子树;后序遍历是先访问左子树,再访问右子树,最后访问根节点。

4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它满足左子树中所有节点的值均小于根节点的值,右子树中所有节点的值均大于根节点的值。

因此,二叉搜索树的中序遍历是一个有序序列。

5. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。

平衡二叉树的插入和删除操作可以保证树的平衡性,从而提高树的查询效率。

6. 堆:堆是一种特殊的树结构,它分为最大堆和最小堆两种。

最大堆的每个节点的值都大于等于其子节点的值,最小堆的每个节点的值都小于等于其子节点的值。

堆常用于排序和优先队列。

7. Trie树:Trie树是一种特殊的树结构,它用于字符串的匹配和检索。

Trie树的每个节点代表一个字符串的前缀,从根节点到叶子节点的路径组成一个完整的字符串。

以上是数据结构树和二叉树的一些基本知识点总结,对于深入学
习数据结构和算法有很大的帮助。

自考软件基础(数据结构--树与二叉树)

自考软件基础(数据结构--树与二叉树)
A
B
C
D
E
F
G
H
I
J
第 5 /209页
第二节 二叉树
一、定义
南昌大学
二叉树是一种重要的树形结构,它的特点是:二叉树可以为空(节点个
数为0),任何一个节点的度都小于或等于2,并且,子树有左、右之分,
其次序不能任意颠倒。 二叉树有5种基本形态,如图10-2所示。
第 6 /209页
第二节 二叉树
南昌大学
struct node
{ datatype data; struct node *Lchild,*rchild:
};
第 15 /209页
第二节 二叉树
南昌大学
例10-5 写出图10-8a所示二叉树的链式存储结构。其链式结构如图10-8b 所示。可以看出:具有n个节点的二叉树链式存储共有2n个链,其中只 有n-1个用来存放该节点的左、右孩子,其余的n +1个指针域为空。
解:第一步:由后序遍历结果确定整个二叉树根为A,由中序结果确定
A的左、右子树。 后序遍历结果: 中序遍历结果:
第 24 /209页
第三节 二叉树的遍历
第二步:确定A的左子树。 1)后序遍历结果:
南昌大学
中序遍历结果:
2)确定B的右子树: ①后序遍历结果:
第 25 /209页
第三节 二叉树的遍历
②中序遍历结果:
南昌大学
第 9 /209页
第二节 二叉树
下面介绍两种特殊的二叉树。
南昌大学
(1) 满二叉树指深度为k,且有2k-1个节点的二叉树。或者说除叶子节点外,
其它节点的度都为2的二叉树。
(2) 完全二叉树一个满二叉树的最下层从右向左连续缺少n (n>=0)个节点 的二叉树。 图10-3为满二叉树和完全二叉树示例。

计算机数据结构知识点梳理 二叉树的定义及其主要特征

计算机数据结构知识点梳理		二叉树的定义及其主要特征

当 n ≠ 2k , 即 n 不是2的方幂或者 n = 2k 但是一棵满二叉树,其高度为

当 n = 2k 但是非满二叉树,其高度为

②有n个结点的完全k叉树的高度为

性质5推广:一棵满k叉树,如果按层次顺序从1开始对全部结点编号,
①编号为p=1的结点无父结点,否则编号为p结点的父结点的编号是
(k≥2);
[题1]若一棵二叉树有126个结点,在第7层(根结点在第1层)至多有( )个结点。
A.32
B.64
C.63
D.不存在第7层
分析:根据二叉树的性质,第7层至多有64(27-1)个结点,但是题目中给出了二叉树的结点 总数126,由此来判断第7层是否可以有64个结点?
要在二叉树的第7层达到最多的结点个数,其上面6层必须是一个满二叉树,深度为6的满 二叉树有63(26-1)个结点,由此可以判断出此二叉树的第7层不可能达到64个结点,最 多是126-63=63个结点。
(2)完全二叉树:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到 右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树 中的位置相同,则这棵二叉树称为完全二叉树。它的特点是:叶子结点只能出现在最下 层和次下层,且最下层的叶子结点集中在树的左部。
任何完全二叉树中度为1的结点只有0个或1个。
中的所有结点从1开始顺序编号,则对于任意的序号为i的结点,有:
(1)如果i>1,则序号i的结点的双亲结点的序号为 ;如果i=1,则序号为i的结点是根 结点,无双亲结点。
(2)如果2i≤n,则序号为i的结点的左孩子结点的序号为2i;如果2i>n,则序号为i的结 点无左孩子。
(3)如果2i+1≤n,则序号为i的结点的右孩子结点的序号为2i+1;如果2i+1>n,则 序号为i的结点无右孩子。

数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树

数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树

6.2 二叉树 6.2.1 二叉树的定义与基本操作 6.2.2 二叉树的性质 6.2.3 二叉树的存储结构
6.2.1 二叉树的定义与基本操作 定义:我们把满足以下两个条件的树型结构叫做二 叉树(Binary Tree): (1)每个结点的度都不大于2; (2)每个结点的孩子结点次序不能任意颠倒。
有序树:在树T中,如果各子树Ti之间是有先后次序的,则称为有序树。 森林:m(m≥0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一 个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。
同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相 等,对应结点的相关关系也像等),则称这两棵树同构。
二叉树的基本结构由根结点、左子树和右子树组成
如图示
LChild Data RChild
Data
LChild RChild
用L、D、R分别表示遍历左子树、访问根结点、遍 历右子树,那么对二叉树的遍历顺序就可以有:
(1) 访问根,遍历左子树,遍历右子树(记做DLR)。 (2) 访问根,遍历右子树,遍历左子树(记做DRL)。 (3) 遍历左子树,访问根,遍历右子树(记做LDR)。 (4) 遍历左子树,遍历右子树,访问根 (记做LRD)。 (5) 遍历右子树,访问根,遍历左子树 (记做RDL)。 (6) 遍历右子树,遍历左子树,访问根 (记做RLD)。
(8) NextSibling(Tree,x): 树Tree存在,x是Tree中的某个结点。若x不 是其双亲的最后一个孩子结点,则返回x后面的下一个兄弟结点,否则 返回“空”。
基本操作:
(9) InsertChild(Tree,p,Child): 树Tree存在,p指向Tree 中某个结点,非空树Child与Tree不相交。将Child插入Tree中, 做p所指向结点的子树。

常见基本数据结构——树,二叉树,二叉查找树,AVL树

常见基本数据结构——树,二叉树,二叉查找树,AVL树

常见基本数据结构——树,⼆叉树,⼆叉查找树,AVL树常见数据结构——树处理⼤量的数据时,链表的线性时间太慢了,不宜使⽤。

在树的数据结构中,其⼤部分的运⾏时间平均为O(logN)。

并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界。

树的定义有很多种⽅式。

定义树的⾃然的⽅式是递归的⽅式。

⼀棵树是⼀些节点的集合,这个集合可以是空集,若⾮空集,则⼀棵树是由根节点r以及0个或多个⾮空⼦树T1,T2,T3,......,Tk组成,这些⼦树中每⼀棵的根都有来⾃根r的⼀条有向的边所连接。

从递归的定义中,我们发现⼀棵树是N个节点和N-1条边组成的,每⼀个节点都有⼀条边连接⽗节点,但是根节点除外。

具有相同⽗亲的节点为兄弟,类似的⽅法可以定义祖⽗和孙⼦的关系。

从节点n1到nk的路径定义为节点n1,n2,...,nk的⼀个序列,并且ni是ni+1的⽗亲。

这个路径的长是路径上的边数,即k-1。

每个节点到⾃⼰有⼀条长为0的路径。

⼀棵树从根到叶⼦节点恰好存在⼀条路径。

对于任意的节点ni,ni的深度为从根到ni的唯⼀路径长。

ni的⾼是从ni到⼀⽚叶⼦的最长路径的长。

因此,所有的树叶的⾼度都是0,⼀棵树的⾼等于它的根节点的⾼。

⼀棵树的深度总是等于它最深叶⼦的深度;该深度等于这棵树的⾼度。

树的实现实现树的⼀种⽅法可以是在每⼀个节点除数据外还要有⼀些指针,使得该节点的每⼀个⼉⼦都有⼀个指针指向它。

但是由于每个节点的⼉⼦树可以变化很⼤⽽且事先不知道,故在各个节点建⽴⼦节点的链接是不可⾏的,这样将会浪费⼤量的空间。

实际的做法很简单:将每个节点的所有⼉⼦都放在树节点的链表中。

下⾯是典型的声明:typedef struct TreeNode *PtrToNodestruct TreeNode{ ElementType Element; PtrToNode FirstChild; PtrToNode NextSibling}下⾯是⼉⼦兄弟表⽰法的图⽰:树的遍历及应⽤⼀个常见的使⽤是操作系统中的⽬录结构。

数据结构第六章:树和二叉树

数据结构第六章:树和二叉树

性质2:深度为 的二叉树至多有 个结点(k≥ 性质 :深度为k的二叉树至多有2 k 1 个结点 ≥1)
证明:由性质 ,可得深度为k 证明:由性质1,可得深度为 的二叉树最大结点数是
(第i层的最大结点数 ) = ∑ 2 i 1 = 2 k 1 ∑
i =1 i =1
k
k
10
性质3:对任何一棵二叉树 ,如果其终端结点数(即 性质 :对任何一棵二叉树T,如果其终端结点数 即 叶节点)为 度为2的结点数为 的结点数为n 叶节点 为n0,度为 的结点数为 2,则n0=n2+1 证明: 为二叉树 中度为1的结点数 为二叉树T中度为 证明:n1为二叉树 中度为 的结点数 因为:二叉树中所有结点的度均小于或等于2 因为:二叉树中所有结点的度均小于或等于 所以:其结点总数n=n0+n1+n2 所以:其结点总数 又二叉树中,除根结点外, 又二叉树中,除根结点外,其余结点都只有一个 分支进入; 分支进入; 为分支总数, 设B为分支总数,则n=B+1 为分支总数 又:分支由度为1和度为 的结点射出,∴B=n1+2n2 分支由度为 和度为2的结点射出, 和度为 的结点射出 于是, 于是,n=B+1=n1+2n2+1=n0+n1+n2 ∴n0=n2+1
7
结点A的度:3 结点 的度: 的度 结点B的度:2 结点 的度: 的度 结点M的度:0 结点 的度: 的度 结点A的孩子: , , 结点 的孩子:B,C,D 的孩子 结点B的孩子 的孩子: , 结点 的孩子:E,F 树的度: 树的度:3 E K 结点A的层次: 结点 的层次:1 的层次 结点M的层次 的层次: 结点 的层次:4 L B F A C G H M

数据结构 第六章 树和二叉树

数据结构 第六章  树和二叉树

F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n

数据结构第6章树和二叉树

数据结构第6章树和二叉树

数据结构第6章树和⼆叉树第六章树和⼆叉树⼀、选择题1.已知⼀算术表达式的中缀形式为 A+B*C-D/E,后缀形式为ABC*+DE/-,其前缀形式为( )A.-A+B*C/DE B. -A+B*CD/E C.-+*ABC/DE D. -+A*BC/DE2.设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T中的叶⼦数为()A.5 B.6 C.7 D.83.在下述结论中,正确的是()①只有⼀个结点的⼆叉树的度为0; ②⼆叉树的度为2;③⼆叉树的左右⼦树可任意交换;④深度为K的完全⼆叉树的结点个数⼩于或等于深度相同的满⼆叉树。

A.①②③ B.②③④ C.②④ D.①④4.设森林F对应的⼆叉树为B,它有m个结点,B的根为p,p的右⼦树结点个数为n,森林F中第⼀棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不⾜,⽆法确定5.⼀棵完全⼆叉树上有1001个结点,其中叶⼦结点的个数是()A.250 B. 254 C.500 D.5016.设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-17.有关⼆叉树下列说法正确的是()A.⼆叉树的度为2 B.⼀棵⼆叉树的度可以⼩于2 C.⼆叉树中⾄少有⼀个结点的度为2 D.⼆叉树中任何⼀个结点的度都为2 8.⼆叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -19.⼀个具有1025个结点的⼆叉树的⾼h为()A.11 B.10 C.11⾄1025之间 D.10⾄1024之间10.⼀棵⼆叉树⾼度为h,所有结点的度或为0,或为2,则这棵⼆叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111.⼀棵具有 n个结点的完全⼆叉树的树⾼度(深度)是()A.?log2n?+1 B.log2n+1 C.?log2n? D.log2n-112.深度为h的满m叉树的第k层有()个结点。

数据结构详细教案——树与二叉树

数据结构详细教案——树与二叉树

数据结构教案第六章树与二叉树目录6.1树的定义和基本术语 (1)6.2二叉树 (2)6.2.1 二叉树的定义 (2)6.2.2 二叉树的性质 (4)6.2.3 二叉树的存储结构 (5)6.3树和森林 (6)6.4二叉树的先|中|后序遍历算法 (7)6.5先|后|中序遍历的应用扩展 (9)6.5.1 基于先序遍历的二叉树(二叉链)的创建 (9)6.5.2 统计二叉树中叶子结点的数目 (9)6.5.3 求二叉树的高度 (10)6.5.4 释放二叉树的所有结点空间 (11)6.5.5 删除并释放二叉树中以元素值为x的结点作为根的各子树 (12)6.5.6 求位于二叉树先序序列中第k个位置的结点的值 (12)6.5.7 线索二叉树 (13)6.5.8 树和森林的遍历 (14)6.6二叉树的层次遍历 (16)6.7判断一棵二叉树是否为完全二叉树 (16)6.8哈夫曼树及其应用 (18)6.8.1 最优二叉树(哈夫曼树) (18)6.8.2 哈夫曼编码 (19)6.9遍历二叉树的非递归算法 (19)6.9.1 先序非递归算法 (19)6.9.2 中序非递归算法 (20)6.9.3 后序非递归算法 (21)第6章二叉树和树6.1 树的定义和基本术语1、树的递归定义1)结点数n=0时,是空树2)结点数n>0时有且仅有一个根结点、m个互不相交的有限结点集——m棵子树2、基本术语结点:叶子(终端结点)、根、内部结点(非终端结点、分支结点);树的规模:结点的度、树的度、结点的层次、树的高度(深度)结点间的关系:双亲(1)—孩子(m),祖先—子孙,兄弟,堂兄弟兄弟间是否存在次序:无序树、有序树去掉根结点非空树森林引入一个根结点3、树的抽象数据类型定义树特有的操作:查找:双亲、最左的孩子、右兄弟结点的度不定,给出这两种操作可以查找到一个结点的全部孩子插入、删除:孩子遍历:存在一对多的关系,给出一种有规律的方法遍历(有且仅访问一次)树中的结点ADT Tree{数据对象:D={a i | a i∈ElemSet, i=1,2,…,n, n≥0}数据关系:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2) 若D-{root}≠Ф,则存在D-{root}的一个划分D1, D2, …, D m (m>0)(D i 表示构成第i棵子树的结点集),对任意j≠k (1≤j, k≤m) 有D j∩D k=Ф,且对任意的i (1≤i≤m),唯一存在数据元素x i∈D i, 有<root,x i>∈H(H表示结点之间的父子关系);(3) 对应于D-{root}的划分,H-{<root, x1>,…, <root, x m>}有唯一的一个划分H1, H2, …, H m(m>0)(H i表示第i棵子树中的父子关系),对任意j≠k(1≤j,k≤m)有H j∩H k=Ф,且对任意i(1≤i≤m),H i是D i上的二元关系,(D i, {H i})是一棵符合本定义的树,称为根root的子树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C 唯一性不确定。
D 唯一性与原因的边的权数有关。
14、将递归算法转换成对应的非递归算法时,通常需要使用__________。 A栈 B 队列 C 链表 D树 15 、设二维数组 A[m][n], 每个数组元素占用 K 个存储单元 , 第一个数组元素的存储地址是 Loc(a[0][0]),求按行优先顺序存放的数组元素 a[i][j](0<=i<=m-1,0<=j<=n-1)的存储地址为______。 A,Loc(a[0][0]+[(i-1)*n+j-1]*k B,Loc(a[0][0])+[i*n+j]*k C,Loc(a[0][0])+[j*m+i]*k D,Loc(a[0][0])+[(j-1)*m+i-1]*k 16 、设二维数组 A[m][n], 每个数组元素占用 k 个存储单元 , 第一个数组元素的存储地址是 Loc(a[0][0]),求按列优先顺序存放的数组元素 a[i][j](0<=i<=m-1,0<=j<=n-1)的存储地址为______。 A,Loc(a[0][0])+[(i-1)*n+j-1]*k B,Loc(a[0][0])+[i*n+j]*k C,Loc(a[0][0])+[j*m+i]*k D,Loc(a[0][0])+[(j-1)*m+i-1]*k 17 、设二维数组 A[6][10], 每个数组元素占用 4 个存储单元 , 若按行优先顺序存放的数组元 素,a[0][0]的存储地址为 860,则 a[3][5]的存储地址是______。 A,1000 B,860 C,1140 D,1200 18、设二维数组 A[6][10],每个数组元素占用 4 个存储单元,若按行优先顺序存放的数组元素 a[3][5]的存储地址为 1000,则 a[0][0]的存储地址是______。 A,872 B,860 C,868 D,864 19、若将 n 阶上三角矩阵 A 按列优先顺序压缩存放在一维数组 B[1..n(n+1)/2]中,第一个非零 元素 a1,1 存于 B[0]中,则应存放到 B[k]中的非零元素 ai,j(1<=i<=n,1<=j<=i)的下标 i、j 与 k 的对 应关系是______。 A,i(i+1)/2+j B,i(i-1)/2+j-1 C,j(j+1)/2+i D,j(j-1)/2+i-1 20、若将 n 阶下三角矩阵 A 按列优先顺序压缩存放在一维数组 B[1..n(n+1)/2]中,第一个非零 元素 a1,1 存于 B[0]中,则应存放到 B[k]中的非零元素 ai,j(1<=i<=n,1<=j<=i)的下标 i、j 与 k 的对 应关系是______。 A,j(2n-j+1)/2+i-j B,(j-1)(2n-j+1)/2+i-j C,i(2n-i+1)/2+j-i D,i(2n-i+2)/2 A 便于进行矩阵运算 B 便于输入和输出 C 节省存储空间 度 22、稀疏矩阵压缩后,必会失去______功能。 A 顺序存储 B 随机存取 C 输入输出 D 以上都不对
D 降低运算的时间复杂
23、一个 n*n 的对称矩阵 A,采用压缩方式存放到一维数组 B 中,则 B 的容量为______. A,n^2 B,(n^2)/2 C,(n*(n+1))/2 D,((n+1)^2)/2 24、 由权值分别为 3,8,6,2,5 的叶子结点生成一棵哈夫曼树, 它的带权路径长度为_________。 A,24 B,48 C,72 D,53 25、在一棵深度为 h 的具有 n 个元素的二叉搜索树中,一个元素的最大搜索长度(即 比较的结点数) 为_________ A,n B,lbn C,h/2 D,h 经
26、根据集合{25,30,16,48},按照依次插入结点的方法生成一棵二叉搜索树,在等概率情况 下成功查找一个元素的平均查找长度为_________。 A,2 B,2.5 C,3 D,4 27、利用 n 个值作为叶结点的权生成的霍夫曼树中共包含有_________个结点。 A,n B,n+1 C,2*n D,2*n-1 28、利用 n 个值作为叶结点的权生成的霍夫曼树中共包含有_________个双支结点。 A,n B,n-1 C,n+1 D,2*n-1 29、利用 3,6,8,12 这 4 个值作为叶子结点的权,生成一棵霍夫曼树,该树中所有叶子的最长 带权路径长度为_________。 A,18 B,16 C,12 D,30 30、在平衡二叉树中,每个结点的平衡因子的绝对值被限制为_________。 A,1 B,2 C,3 D,4 判断题 1、 由树转换成二叉树, 其根结点的右子树总是空的。 T 2、后序遍历树和中序遍历与该树对应的二叉树,其结果不同。 F 3、 有一个结点是某二叉树子树的中序遍历序列中的最后一个结点, 则它必是该子 树的前序 遍历序列中的最后一个结点。 F 4、 若一个树叶是某子树的中序遍历序列中的最后一个结点, 则它必是该子树的前序 遍历序 列中的最后一个结点。 T 5、 已知二叉树的前序遍历和后序遍历序列并不能唯一地确定这棵树, 因为不知道树 的根结 点是哪一个。 F
数据结构复习题:树和二叉树 单选题 1、假定在一棵二叉树中,双分支结点数为 15 个,单分支结点数为 32 个,则叶子结点 数为 _____。 A,15 B,16 C,17 D,47 2、假定一棵二叉树的结点数为 18 个,则它的最小高度_____。 A,4 B,5 C,6 D,18 3、在一棵二叉树中第五层上的结点数最多为_____。 A,8 B,15 C,16 D,32 4、在一棵具有五层的满二叉树中,结点总数为_____。 A,31 B,32 C,33 D,16 5、已知 8 个数据元素为(34、76、45、18、26、54、92、65),按照依次插入结点的方法生 成一棵二叉排序树后,最后两层上的结点总数为_____。 A,1 B,2 C,3 D,4 6、 由分别带权为 9、 2、 5、 7 的四个叶子结点构造一棵哈夫曼树, 该树的带权路径长度为_____。 A,23 B,37 C,44 D,46 7、在树中除根结点外,其余结点分成 m(m≥0)个_____的集合 T1,T2,T3...Tm,每个 集合又都 是树,此时结点 T 称为 Ti 的父结点,Ti 称为 T 的子结点(1≤i≤m)。 A,互不相交 B 可以相交 C 叶结点可以相交 D 树枝结点可以相交 8、下面答案_____是查找二叉树(又称二叉排序树) 。 A 二叉树中的每个结点的两棵子树的高度差的绝对值不大于1。 B 二叉树中的每个结点的两棵子树的高度差等于1。 C 二叉树中的每个结点的两棵子树是有序的。 D 二叉树中的每个结点的关键字大于其左子树(如果存在)所有结点的关键字值,且小于 其右子树(如果存在)所有结点的关键字值。 9、如果结点 A 有三个兄弟,而且 B 是 A 的双亲,则 B 的出度是_____。 A,3 B,4 C,5 D,1 10、 一个深度为 L 的满 K 叉树有如下性质: 第 L 层上的结点都是叶子结点, 其余各层上每 个 结点都有 K 棵非空子树。 如果按层次顺序从1开始对全部结点编号, 编号为 n 的有右兄弟的 条件是_____。 A,(n-1) % k= =0 B,(n-1) % k!=0 C,n % k= =0 D,n % k!=0
top--; } } //while } 填空题 1、对于一棵具有 n 个结点的树,则该树中所有结点的度之和为______。n-1 2 、在一棵二叉树中,度为 0 的结点的个数为 n0 ,度为 2 的结点的个数为 n2 ,则: n0=__________。n2+1 3、在二叉树的顺序存储中,对于下标为 5 的结点,它的双亲结点的下标为__________, 若 它存在左孩子,则左孩子结点的下标为__________,若它存在右孩子,则右孩子结点的下标 为___________。2|10|11 4、在一棵二叉排序树中,按__________遍历得到的结点序列是一个有序序列。中序 5 、 由分 别带 权为 3,9,6,2,5 的 共五 个叶 子结 点构 成 一棵 哈夫 曼树 ,则 带 权路 径长 度为 _________。 55 6、有如下递归函数: int dunno (int m) { int value; if (m==0) value=3; else value=dunno(m-1)+5; return (value); } 执行语句 printf("%d\n",dunno(3));的结果是________。 18 7、所谓稀疏矩阵指的是______的矩阵。 非零元素很少且分布没有规律 8、 一个稀疏矩阵 Am*n 采用三元组表示后,若把三元组中有关行下标与列下标的值互换,并把 m 和 n 的值互换,则就完成了 Am*n 的转置运算。这句话______正确的。不是 9、 若稀疏矩阵采用三元组压缩方法存储,只要把每个元素的行下标和列下标互换,就成了对该 矩阵的转置运算,这种观点______(正确或错误). 错误 10、在一棵非空的二叉搜索树中,以每个分支结点为根的子树都是一棵____________。 二叉搜索树 11、对一棵二叉搜索树进行中序遍历时,得到的结点序列是一个____________。有序序列 12、 从一棵二叉搜索树中查找一个元素时, 若元素的值等于根结点的值, 则表明____________, 若元素的值小于根结点的值,则继续向____________查找,若元素的值大于根结点的值,则 继续向____________查找。查找成功|左子树|右子树 13 、 在 一 个 堆 的 顺 序 存 储 中 , 若 一 个 元 素 的 下 标 为 i , 则 它 的 左 孩 子 元 素 的 下 标 为 ____________,右孩子元素的下标为____________。2i+1|2i+2 14、在一个小根堆中,堆顶结点的值是所有结点中的____________,在一个大根堆中,堆顶 结点的值是所有结点中的____________。最小值|最大值 15、当向一个小根堆插入一个具有最小值的元素时,该元素需要逐层____________调整,直 到被调整到____________位置为止。向上|栈顶 16、 不管一棵哈夫曼树中有偶数或奇数个叶子结点, 则树中总结点的个数必为____________ 个。奇数
相关文档
最新文档