小升初六年级数学比和比例专题讲解.教师版1
小学六年级数学小升初比、比例应用题讲义教案
六年级辅导教案学员姓名学员年级学员性别就读学校辅导学科辅导教师辅导时间月日教学目标1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
重点难点1.理解比的意义以及比与分数、除法之间的关系。
2.理解比与分数、除法之间的关系,明确比与比值的区别。
作业评价优良忘做忘带教学过程1.概念的引入2.例题讲解3.习题练习4.总结巩固提升5.课后作业教学反思签字确认教学主任:学管师:学员:六年级第6讲:比和比的应用题一、知识要点:1、比:例1、○1一辆汽车5小时行驶300km ,写出路程和时间之比,并化简。
路程和时间之比=300:5=60练习2:○2小明身高1.2米,小张身高1.4米,写出小明与小张身高之比,并化简。
2、比值15:10=15÷10=23=1.5练习1:1、求出下面各比的比值。
(1)6:10= (2) 9:15= (3)21:31=(4)3:5; (5) 0.4:0.16; (6) :8。
2、填上适当的数。
例2、甲数是0.75,乙数是1.25,甲数与乙数的比是( )∶( ),比值是( )。
【解析】,0.75:1.25;化简为3:5=0.6练习2:(4)( ):1=20:4; (5)0.6:0.2=6:( );(6) 43:41=( ):1; (7)4.5:2.7=10:( )。
拓展:1、从家到学校,姐姐用了5分钟,妹妹用了7分钟,姐姐和妹妹的速度之比是()。
2.男生是女生的1.2倍,男生和女生的比是( )3、应用题:例3、甲、乙两数的比是5:3,他们的和是24,甲乙数各是多少?【解析】:甲、乙两数的比是5:3,可以看成甲占了总数的5份,乙占了3份,把总数平均分成了8份,每份数33524=+÷)(,可以看成甲占了总数的5份,就是5×3=15,乙占了3份,就是3×3=9. 或者写成1535524=+⨯,935324=+⨯ 练习3:1、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?2、一种药水,药粉和水的质量比是1∶200,现有400克药粉,需加水多少克?3、某校篮球队男生与女生人数的比是4:3,男生占全班人数的几分之几,女生占全班人数的几分之几?4、用70厘米长的铁丝围成长、宽比为3:2的长方形,这个长方形的长宽各是多少例4、【解析】【解析】 1.解题思路:该是个不规则的图形,没有直接计算面积的公式,通过观察发现,该指示牌是由左边一个长方形和右边一个三角形组合而成;2.解题公式:长方形的面积是:( ) ;三角形的面积:( )3.列式计算:指示牌的面积是:( )+( )把苹果按4:5:6分,可以分成4+5+6=15份,小班占了期中4份,中班占了5份,大班占了6份,300÷15=20,小班4×20=80;中班5×20=100;大班6×20=120.或者:小班:806544300=++⨯;中班:1006545300=++⨯;大班1206546300=++⨯ 练习4:1、用35厘米的铁丝围成一个三角形,已知三边长度比是2 :2∶1,求三边分别是多少厘米?2、在一次数学竞赛中,共有70人分别获一、二、三等奖,一、二,三等奖人数的比是1:2∶4。
小升初数学专项复习第五讲《 比和比例》名师教学课件
③圆的周长和直径成正比例。( √
)
④正方形的面积和它的边长不成比例。( √
)
⑤长方形的周长一定,长方形的长和宽不成比例。( √
)
⑥比例尺100:1,表示图上距离是实际距离的100倍。( √
)
四、拓展提升
3.小波,小红,小明三人凑钱买了一张彩票,彩票中奖了,领来奖金后,三人按照
1.比的基本性质:
比的前项和比的后项同时乘或除以相同的数(0除外),比值不变。
应用:化简比
2.比例的基本性质:
在比例里,两个外项的积等于两个内项的积。
注:在分数比例中求比例的两外项的积、两内项的积,交叉相乘即可。
应用:解比例
一、知识梳理
(三)化简比,求比值
方法:前项÷后项,把结果写成最简分数。
15 3
1.分析题意,判断两种相关联的量成正比例还是反比例。
2.解:设未知量为x。
3.比值一定是正比例,要列成(
乘积一定是反比例,要列成(
4.解比例,写答句。
):(
)×(
)=(
)=(
):(
)×(
)或者
)
( ) ( )
=
( ) ( )
2
Part Two
典 例 精 讲
二、典例精讲
1
1
例一:能与 : 组成比例的是(
2.长方形的周长÷2才是一组长宽的总量。
一、知识梳理
(五)解比例
求比例中的未知项,叫作解比例。解比例是解方程的一种特殊形式。
解比例的依据:比例的基本性质。(外项×外项=内项×内项)
例:15:25=3:x
解:15x=25×3
六年级下册小升初数学知识点精讲课件(比和比例实际问题)课件人教版(15张PPT)
归纳总结
比和比例实际问题
按比 例分配
正比 例问题
反比 例问题
谢谢
按比 例分配
分数法:把比转 化成分数,先求 总份数,再求各 部分量占总量的 几分之几,最后 求出各部分量。
重点3
正反比例 应用题的 解题步骤
1、根据正反比例的意义,判断题 中的两种相关联的量是否成比例。 2、根据正反比例的意义列比例式。
3、解比例,检验并写出答案。
重点4
正、反比 例应用题
解答比例应用题的关键是正确判断题 中的数量是否成比例,成什么比例。
错解
解:设锯成10段需要X分钟。 6:4=X:10 4X=60 X=15
答:锯成10段需要15分钟。
错题分析
锯的时间与锯的段 数不成成比例。锯 一次的时间一定, 总时间与锯的次数 成正比例。
正 解:设锯成10段需要X分钟。
确
6:(4-1)=X:(10-1)
解 答
3X=54
X=18
答:锯成10段需要18分钟。
师:同学们,上课之前我想让大家看一场非常特别,而且非常精彩的100米短跑比赛,你们愿意吗?
三、探究认识面积单位。
1①.竖6.8式+的2.5简+便0.6写=法9.9以(及元积)的1末0元尾>09的.9元个每数的天确生定。产的个数×生产的
天数=农具总个数(一定)
解:设实际X天完成任务。 (120+20)X=120 ×28
列比例算式要注意数量间的对应关系。
源题解析
题1 一辆汽车从甲地开往乙地,3小时已经行驶了156
千米,照这样的速度,剩下的路程还需要2小时。 甲、乙两地相距多少千米?
3小时
2小时
156千米 ?千米
六年级比和比例知识点讲解
六年级比和比例知识点讲解比和比例是数学中重要的概念之一,对于六年级的学生来说,理解和掌握比和比例的概念非常重要。
本文将详细介绍比和比例的定义、性质以及应用,帮助学生更好地理解和运用比和比例知识。
一、比的概念及性质比是指两个量之间的大小关系,可以用分数或比例的形式表示。
比的一般形式为a:b,读作“a比b”。
其中,a称为比的前项,b称为比的后项。
比的两个项必须是同类的量,即具有相同的单位。
比的性质如下:1. 相等性:如果两个比的前项与后项互相相等,那么这两个比相等。
例如,4:6和2:3是相等的比。
2. 反比:两个比的前项与后项互为倒数时,这两个比称为反比。
例如,3:4和4:3是反比。
3. 异比:两个比的前项与后项既不相等,也不互为倒数时,这两个比称为异比。
例如,5:6和3:4是异比。
二、比例的概念及性质1. 比例的概念:当两个或多个比相等时,它们之间称为比例。
比例通常用冒号(:)或“=”符号表示。
2. 比例的性质:比例有以下几个重要的性质:a. 交换性:比例中的前、后项可以互换位置而保持比例不变。
例如,如果a:b=c:d,那么b:a=d:c。
b. 归结性:如果在一个比例中,两个比都是由同一个数相除而得到的,那么这两个比互为倒数。
例如,如果a:b=4:6,那么b:a=6:4=3:2。
c. 增量乘性:比例中的前、后项同时乘以同一个数,得到的新比例与原比例相等。
例如,如果a:b=4:6,那么2a:2b=8:12。
d. 变量比例:比例中的前项与后项都含有一个变量时,可以通过代入不同的值来求解这个变量的取值。
例如,如果a:b=3:5,且a=12,那么可以利用已知比例求解b的值。
三、比和比例的应用比和比例在日常生活和实际问题中有广泛的应用。
以下是一些常见的应用场景:1. 真实比例:在地图上,使用比例尺可以将真实世界的地理距离映射到纸面上,帮助我们进行测量和导航。
2. 长度比例:在实际测量中,我们可以使用比例来计算物体的长度、宽度等尺寸。
小学数学 比例应用题(一).教师版
工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成
的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的
比是多少?
【考点】比例应用题
【难度】4 星
【题型】解答
【关键词】2007 年,华杯赛,总决赛
【解析】根据题意,如果把 A 工程的工作量看作1,则 B 工程的工作量就是 2 , C 工程的工作量就是 3 .
【例 9】 一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的
一段时间后,分别剩下 60% 、 40% 的任务没有完成,已知两个工程队的工作效率(建设速度)
之比 3 :1 ,求这两个工程队原先承包的修建公路长度之比.
【考点】比例应用题
【难度】3 星
【题型】解答
【解析】 (法一)甲工程队以 3 倍乙工程队建设速度,仅完成了 40% 的承包任务,而乙工程队完成了 60% ,
一、比和比例的性质
性质 1:若 a: b=c:d,则(a + c):(b + d)= a:b=c:d; 性质 2:若 a: b=c:d,则(a - c):(b - d)= a:b=c:d; 性质 3:若 a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x 为常数) 性质 4:若 a: b=c:d,则 a×d = b×c;(即外项积等于内项积) 正比例:如果 a÷b=k(k 为常数),则称 a、b 成正比; 反比例:如果 a×b=k(k 为常数),则称 a、b 成反比.
9 50
;所以,丙组中男、女会员人数之比为
1 10
:
9 50
5:9
.
小升初数学常考内容讲义:比和比例-学习文档
小升初数学常考内容讲义:比和比例编者小语:小编为同学们整理了小升初数学常考内容讲义:比和比例,适合六年级同学小升初复习之用,低年级也可以提前进行学习。
并祝各位同学在小升初考试中取得优异成绩!!!第九讲比和比例两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d; 性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d; 性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x 为常数)性质4:若a: b=c:d,则ad = b(即外项积等于内项积) 正比例:如果ab=k(k为常数),则称a、b成正比;反比例:如果ab=k(k为常数),则称a、b成反比.二、比和比例在行程问题中的体现在行程问题中,因为有速度= ,所以:当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A和B两个数的比是8:5,每一数都减少34后,A是B的2倍,试求这两个数.【分析与解】方法一:设A为8x,则B为5x,于是有(8x-34):(5x-34)=2:1,x=17,所以A为136,B为85.方法二:因为减少的数相同,所以前后A 、B的差不变,开始时差占3份,后来差占1份且与B一样多,也就是说减少的34,占开始的3-1=2份,所以开始的1份为342=17,所以A为178=136,B为175=85.2.近年来火车大提速,1427次火车自北京西站开往安庆西站,行驶至全程的5/11再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米?6.已知三种混合物由三种成分A、B、C组成,第一种仅含成分A和B,重量比为3:5;第二种只含成分B和C,重量比为I:2;第三种只含成分A和C,重量之比为2:3.以什么比例取这些混合物,才能使所得的混合物中A,B和C,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A、B重量比与最终混合物的A、B重量比相同,均为3:5.所以,先将第二种、第三种混合物的A、B重量比调整到 3:5,再将第二种、第三种混合物中A、B与第一种混合物中A、B视为单一物质.第二种混合物不含A,第三种混合物不含B,所以1.5倍第三种混合物含A为3,5倍第二种混合物含B为5,即第二种、第三种混合物的重量比为5:1.5.于是此时含有C为52+1.53=14.5,在最终混合物中C的含量为3A/5B含量的2倍.有14.52-1=6.25,所以含有第一种混合物6.25.即第一、二、三这三种混合物的比例为6.25:5:1.5=25:20:6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人?【分析与解】直接设出男、女工人数,然后在通过方程求解,过程会比较繁琐.设开始男工为1,此时女工为k,有1名男工相当k名女工.男工、女工人数对调以后,则男工为k,相当于女工k2,女工为I.。
小升初讲座 比和比例
【风雨数学小升初讲座】比和比例比是两个量相除的关系,例如男女生人数比是3:4,我们通常理解成男生有3份,女生有4份,他们的每份都相同。
比例包括正比例和反比例,正比例是比值相同,反比例是积相等,并且构成比的前项后项都是变量。
根据比和比例的定义,我们可以把它转化成份数计算,也可以转化成分数计算。
当然,用方程来计算也是不错的。
【题目1】圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元。
问圆珠笔的单价是每支多少元。
【解法一】用份数法来解答。
假设圆珠笔的单价是4份,铅笔的单价是4份,20支圆珠笔是20×4=80份,21支铅笔21×3=63份,80+63=143份共71.5元,每份71.5÷143=0.5元,圆珠笔的单价是4份,那么就是0.5×4=2元。
【解法二】用分数的方法解答。
铅笔的单价是圆珠笔的3/4,把圆珠笔的单价看作单位1,铅笔的单价就是3/4,那么21支圆珠笔相当于3/4×21=63/4,那么总共相当于20+63/4=143/4,圆珠笔的单价是71.5÷143/4=2元【解法三】用方程解答。
有两种设未知数的方法,设圆珠笔的单价是x元,或者设圆珠笔的单价是4x元。
前者用分数形式列方程,后面用整数的形式列方程。
3如果以圆珠笔的单价是x元来列方程,那么铅笔的单价就是x,则43可以列出方程20x+x×21=71.5元,解得x=24如果以圆珠笔的单价是4x来列方程,那么铅笔的单价是3x,则可列出方程4x×20+3x×21=71.5【题目2】加工一个零件,甲要2分钟,乙要3分钟,丙要4分钟。
现有1170个零件,甲乙丙三人各加工几个零件,才能使他们同时完成任务?【解答】先算出工作效率的比,然后按照工作效率的比来分配任务。
(1)甲每分钟加工1/2个零件,乙每分钟加工1/3个零件,丙每分钟加工1/4个零件。
六年级下册数学讲义及试题-小升初总复习资料:比和比例苏教版(含答案)
比和比例⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧→→⎭⎬⎫→→⎪⎩⎪⎨⎧⎩⎨⎧⎭⎬⎫→⎪⎭⎪⎬⎫→⎩⎨⎧→→→应用意义正、反比例解比例性质意义比例比例尺按比例分配求未知数化简比性质求未知数求比值比与除法、分数的关系意义比比和比例一、本章概念: 比:比的意义:两个数相除,又叫做两个数的比。
比值:比的前项除以后项所得的商,叫作比值。
比值相等的两个比相等。
比、分数、除法的关系:)0(:≠÷==b b a bab a比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
按比例分配:在工农业生产和日常生活中,常常需要把一个数量按照一定的比例进行分配。
比例:比例的意义:表示两个比相等的式子叫作比例。
比例的基本性质:在比例里,两个外项的积等于两个内项的积。
解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。
求比例中的未知项,叫做解比例。
比例尺:图上距离和实际距离的比,叫做这幅图的比例尺。
比例尺分为数值比例尺和线段比例尺。
正比例的意义:两种相关联的量,一种量变化,另一种也随着变化,如果这两种量中叫作正比例关系。
如果用字母x 和y 分别表示两种相关联的量,用k 表示它们的比值,正比例关系的式子可表示为:(一定)k xy =。
反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量对应的两个量积一定,这两种量就叫作反比例的量,它们的关系叫作反比例关系。
如果用字母x 和y 分别表示两种相关联的量,用k 表示它们的积,反比例关系可以用式子表示为:(一定)k xy =。
二、先关概念的比较1.比和比例的意义、形式、组成和基本性质的区别意义 形式 各部分名称 组成 基本性质比两个数相除由两项组成(前项、后项)项后号比:项前↓↓↓7149任意两个数都可以组成比(同类量或不同类量) 比的前项和后项同时乘以或除以相同 的数(0除外),比值不变比例两个比相等的式子由四项组成(内项、外项各两个)任意四个数不一定能组成比例 在比例里,两个外项的积等于两个内项的积2.比、分数和除法的区别和联系相当部分区别比(bab a 或:) 前项 比号(:) 后项 比值 两个数的倍比关系分数(ba ) 分子 分数线(—) 分母 分数值 一个数值 除法(b a ÷)被除数除号(÷)除数商一种运算3.求比值和化简的区别意义一般方法结果求比值 前项除以后项所得的商根据比值的意义,用前项除以后项是一个商,可以是整数、小数或分数化简比把两个数的比化成最简单的整数比 根据比的基本性质,比的前项和后项同时乘以或除以相同的数(0除外);有时也可以用求比值的方法来化简比 是一个比,它的前项和后项都是整数,而且公因数只有1 注意:当同类量的两个数相比,前项和后项单位不同时,要先化成相同的单位,然后再求比值或者化简比。
小学六年级【小升初】数学《比和比例问题专题课程》含答案
16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。
在计算中,要注意各种量的单位要统一。
二、按比例分配的应用题把一个数量按照一定的比分配成几部分。
按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。
关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。
三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。
四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。
2.设未知数为x,并注明单位名称。
3.根据比值(一定)或积(一定)建立比例式,并解比例。
4.检验,写答语。
考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。
一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。
要分的总数是390,总份数是42+45+43=130。
其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。
【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。
(小升初培优讲义)专题21 比和比例应用题-六年级一轮复习(知识点精讲+达标检测)(教师版)
专题21 比和比例应用题1.按比分配问题把一个数址按照一定的比分成几部分,求各部分数量是多少的问题叫作按比分配问题。
解题方法:(1)一般方法:把比转化成分数,用分数乘法解答,即先求总份数,然后求出各部分量占总量的几分之几,最后按照“求一个数的几分之几是多少”的解题方法分别求出各部分量是多少。
(2)归一法:把比看作分得的份数,先求出总份数,然后用“总量÷总份数=每份的量(归一)”,再用“每份的量×各部分量所对应的份数”求出各部分量。
(3)用比例知识解答:首先设未知量为x ,然后根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x 的比例式,再解比例求出x 的值。
2.用比例知识解决问题正比例关系式:y x = k (一定)反比例关系式:x ·y = k (一定)用正比例和反比例解决问题的步骤:(1)分析数量关系,判断成什么比例。
(2)找等量关系。
如果成正比例,则按“等比”找等量关系式;如果成反比例,则按“等积”找等量关系式。
(3)列比例式。
设未知量为x,并代人等量关系式,得出正比例式或反比例式。
(4)解比例。
(5)检验,并写出答语。
【例1】 两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,知识梳理例题精讲另一个瓶中酒精与水的体积之比是4:1。
若把两瓶酒精溶液混合,则混合液中酒精和水的体积之比是多少?【点拨分析】此题中只知道两瓶溶液中酒精与水的体积比,要知道混合后它们的体积比,有以下两种方法可以借鉴。
【答 案】解法一:由于两瓶中酒精溶液的量相同,故可将每个瓶中溶液的量看作单位“1”,这样就可在统一单位“1”的情况下表示出每个瓶中的纯酒精(或水)。
第一瓶中酒精含量:33+1=34 第二瓶中酒精含量:44+1=45酒精与水的体积比是:(34+45):(2―34―45)=3120:920=31:9解法二:由于两瓶中酒精溶液的量相同,那么当每份量同样多时,两瓶的总份数应相等,第一瓶有酒精溶液3+1=4(份),第二瓶有酒精溶液4+1=5(份),[4,5]=20。
【教育资料】小升初数学知识点复习:比和比例学习专用
小升初数学知识点复习:比和比例同学们,小学六年级上册的学习就要接近尾声了,这意味着小升初离我们也不远了。
在小学期间学的数学知识点还记得吗?小编整理了部分小升初数学知识点供大家复习。
今天在这里我们先复习一下比和比例的意义和性质。
1.比的意义和性质(1) 比的意义两个数相除又叫做两个数的比。
:是比号,读作比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3) 求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2 比例的意义和性质(1) 比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
2024年小升初数学精讲专题专题05 比和比例(讲义)
小升初数学精讲精练专题汇编讲义第5讲比和比例知识点一:比1.比的意义:两个数相除又叫作两个数的比。
2.比的各部分名称及比的读法:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变4.求比值与化简比(1)求比值:前项除以后项所得的商是比的结果,叫比值。
同类量的比,其比值没有单位名称; 不同类量的比,其比值有单位名称。
例如:100千米:5时=20千米/时(2)化简比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
把两个数的比化成最简整数比的,称为化简比或比的化简。
5.比与分数、除法的关系关系:比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线;比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。
(1)比、分数和除法之间的联系与区别如下表所示:间的关系可知,比的基本性质、分数的基本性质以及商不变的规律三者只是说法不同,其实质是一样的。
6.按比分配:(1)在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫作按比分配。
(2)按比分配应用题的特征:已知总数量和部分数量的比,求各部分数量。
(3)常用的解题方法有两种:一种是先求总份数,再求各部分量占总量的几分之几,最后求各部分数量;另一种是先求每份是多少,再求几份是多少。
知识点二:比例1.比例的意义:表示两个比相等的式子叫做比例。
2.比例的各部分名称:组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
3.比例的基本性质:在比例里,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
4.比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例出有基本性质,它是解比例的依据。
小学六年级数学小升初比、比例指导应用题讲义教案设计
六年级辅导教案一、知识要点:1、比:例1、○1一辆汽车5小时行驶300km ,写出路程和时间之比,并化简。
路程和时间之比=300:5=60练习2:○2小明身高1.2米,小身高1.4米,写出小明与小身高之比,并化简。
2、比值15:10=15÷10=23=1.5练习1:1、求出下面各比的比值。
(1)6:10= (2) 9:15= (3)21:31=(4)3:5; (5) 0.4:0.16; (6) :8。
2、填上适当的数。
例2、甲数是0.75,乙数是1.25,甲数与乙数的比是( )∶( ),比值是( )。
【解析】,0.75:1.25;化简为3:5=0.6练习2:(4)( ):1=20:4; (5)0.6:0.2=6:( );(6) 43:41=( ):1; (7)4.5:2.7=10:( )。
拓展:1、从家到学校,姐姐用了5分钟,妹妹用了7分钟,姐姐和妹妹的速度之比是()。
2.男生是女生的1.2倍,男生和女生的比是( )3、应用题:例3、甲、乙两数的比是5:3,他们的和是24,甲乙数各是多少?【解析】:甲、乙两数的比是5:3,可以看成甲占了总数的5份,乙占了3份,把总数平均分成了8份,每份数33524=+÷)(,可以看成甲占了总数的5份,就是5×3=15,乙占了3份,就是3×3=9. 或者写成1535524=+⨯,935324=+⨯ 练习3:1、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?2、一种药水,药粉和水的质量比是1∶200,现有400克药粉,需加水多少克?3、某校篮球队男生与女生人数的比是4:3,男生占全班人数的几分之几,女生占全班人数的几分之几?4、用70厘米长的铁丝围成长、宽比为3:2的长方形,这个长方形的长宽各是多少例4、【解析】【解析】 1.解题思路:该是个不规则的图形,没有直接计算面积的公式,通过观察发现,该指示牌是由左边一个长方形和右边一个三角形组合而成;2.解题公式:长方形的面积是:( ) ;三角形的面积:( )3.列式计算:指示牌的面积是:( )+( )把苹果按4:5:6分,可以分成4+5+6=15份,小班占了期中4份,中班占了5份,大班占了6份,300÷15=20,小班4×20=80;中班5×20=100;大班6×20=120. 或者:小班:806544300=++⨯;中班:1006545300=++⨯;大班1206546300=++⨯ 练习4:1、用35厘米的铁丝围成一个三角形,已知三边长度比是2 :2∶1,求三边分别是多少厘米?2、在一次数学竞赛中,共有70人分别获一、二、三等奖,一、二,三等奖人数的比是1:2∶4。
六年级下册数学人教版小升初专题复习——比和比例的认识课件
【答案】x=15.6
【答案】x=18
一、填空。
15
3
1.12÷20=(
)∶5=
=( 60 )%。
( 25 )
2.大、小两圆的半径比是2∶1,则大、小两圆的直径比是( 2 )∶(
周长比是( 2 )∶( 1 ),面积比是( 4 )∶( 1 )。
3
3. ∶9的比值是(
5
(
1
15
1 ),
),如果前项加上1.2,要使比值不变,后项应增加
为0。
解比例
1.解比例就是求比例中的未知项的过程。
2.解比例的根据是比例的基本性质。
3.解比例的步骤和方法。
解比例时,先根据比例的基本性质把原比例a∶b=c∶d改写成一般方程ad=
bc的情势,再求该方程的解。
温馨提示
解比例的小窍门:
(1)一化:把比例转化为一般方程。
(2)二解:求方程的解。
正比例和反比例
比和比例的认识
比的意义和基本性质
1.比的意义:两个数相除又叫作两个数的比。
2.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比
值不变。
3.比和除法、分数的区分和联系
对应各部分名称
联系
区分
比
分数
除法
前项
分子
被除数
比号(பைடு நூலகம்)
分数线(—)
除号(÷)
后项(不为0)
分母(不为0)
除数(不为0)
比值
分数值
商
三者可以互相转化:a∶b= =a÷b
表示两个数相除
一种数
一种运算
温馨提示
1.比表示两个数的一种关系,比值是一个数。
小学六年级数学小升初比、比例应用题讲义教案
六年级辅导教案学员姓名学员年级学员性别就读学校辅导学科辅导教师辅导时间月日教学目标1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
重点难点1.理解比的意义以及比与分数、除法之间的关系。
2.理解比与分数、除法之间的关系,明确比与比值的区别。
作业评价优良忘做忘带教学过程1.概念的引入2.例题讲解3.习题练习4.总结巩固提升5.课后作业教学反思签字确认教学主任:学管师:学员:六年级第6讲:比和比的应用题一、知识要点:1、比:例1、○1一辆汽车5小时行驶300km,写出路程和时间之比,并化简。
路程和时间之比=300:5=60练习2:○2小明身高1.2米,小张身高1.4米,写出小明与小张身高之比,并化简。
2、比值15:10=15÷10=23=1.5 练习1:1、求出下面各比的比值。
(1)6:10= (2) 9:15= (3)21:31=(4)3:5; (5) 0.4:0.16; (6) :8。
2、填上适当的数。
例2、甲数是0.75,乙数是1.25,甲数与乙数的比是( )∶( ),比值是( )。
【解析】,0.75:1.25;化简为3:5=0.6练习2:(4)( ):1=20:4; (5)0.6:0.2=6:( );(6) 43:41 =( ):1; (7)4.5:2.7=10:( )。
拓展:1、从家到学校,姐姐用了5分钟,妹妹用了7分钟,姐姐和妹妹的速度之比是( )。
2.男生是女生的1.2倍,男生和女生的比是( )3、应用题:例3、甲、乙两数的比是5:3,他们的和是24,甲乙数各是多少?【解析】:甲、乙两数的比是5:3,可以看成甲占了总数的5份,乙占了3份,把总数平均分成了8份,每份数33524=+÷)(,可以看成甲占了总数的5份,就是5×3=15,乙占了3份,就是3×3=9. 或者写成1535524=+⨯,935324=+⨯ 练习3:1、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?2、一种药水,药粉和水的质量比是1∶200,现有400克药粉,需加水多少克?3、某校篮球队男生与女生人数的比是4:3,男生占全班人数的几分之几,女生占全班人数的几分之几?4、用70厘米长的铁丝围成长、宽比为3:2的长方形,这个长方形的长宽各是多少例4、【解析】【解析】 1.解题思路:该是个不规则的图形,没有直接计算面积的公式,通过观察发现,该指示牌是由左边一个长方形和右边一个三角形组合而成;2.解题公式:长方形的面积是:( ) ;三角形的面积:( )3.列式计算:指示牌的面积是:( )+( )把苹果按4:5:6分,可以分成4+5+6=15份,小班占了期中4份,中班占了5份,大班占了6份,300÷15=20,小班4×20=80;中班5×20=100;大班6×20=120. 或者:小班:806544300=++⨯;中班:1006545300=++⨯;大班1206546300=++⨯ 练习4:1、用35厘米的铁丝围成一个三角形,已知三边长度比是2 :2∶1,求三边分别是多少厘米?2、在一次数学竞赛中,共有70人分别获一、二、三等奖,一、二,三等奖人数的比是1:2∶4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲比和比例教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x ay b=⇒y bx a=;x ya b=;a bx y=;②x ay b=⇒mx amy b=;x may mb=(其中0m≠);③x ay b=⇒x ax y a b=++;x y a bx a--=;x y a bx y a b++=--;④x ay b=,y cz d=⇒x acz bd=;::::x y z ac bc bd=;⑤x的ca等于y的db,则x是y的adbc,y是x的bcad.三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照:a b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为():a a b+和():b a b+,所以甲分配到axa b+个,乙分配到bxa b+个.⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A、B,元素的数量比为:a b(这里a b>),数量差为x,那么A的元素数量为axa b-,B的元素数量为bxa b-,所以解题的关键是求出()a b-与a或b的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。
在解答分数应用题时,要注意以下几点:1.题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。
2.若题中数量发生变化的,一般要选择不变量为单位“1”。
3.应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。
找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。
4.题中有明显的等量关系,也可以用方程的方法去解。
5.赋值解比例问题例题精讲:模块一、比例转化【例 1】 已知甲、乙、丙三个数,甲等于乙、丙两数和的13,乙等于甲、丙两数和的12,丙等于甲、乙两数和的57,求::甲乙丙. 【解析】 由甲等于乙、丙两数和的13,得到甲等于三个数和的113+14=,同样的乙等于甲、丙两数和的112+13=,同样的丙等于甲、乙两个数和的557512=+ ,所以115::::3:4:54312==甲乙丙. 【例 2】 已知甲、乙、丙三个数,甲的一半等于乙的2倍也等于丙的23,那么甲的23、乙的2倍、丙的一半这三个数的比为多少?【解析】 甲的一半、乙的2倍、丙的23这三个数的比为1:1:1,所以甲、乙、丙这三个数的比为()121:12:123⎛⎫⎛⎫÷÷÷ ⎪ ⎪⎝⎭⎝⎭即132::22,化简为4:1:3,那么甲的23、乙的2倍、丙的一半这三个数的比为()214:12:332⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭即83:2:32,化简为16:12:9. 【例 3】 如下图所示,圆B 与圆C 的面积之和等于圆A 面积的45,且圆A 中的阴影部分面积占圆A 面积的16,圆B 的阴影部分面积占圆B 面积的15,圆C 的阴影部分面积占圆C 面积的13.求圆A 、圆B 、圆C 的面积之比.【解析】 设A 与B 的共同部分的面积为x ,A 与C 的共同部分的面积为y ,则根据题意有()()564A B C x y =+=+,5B x =,3C y =,于是得到()56453B C B C ⎛⎫+=+ ⎪⎝⎭,这条式子可化简为15B C =,所以()5204A B C C =+=.最后得到::20:15:1A B C =. 【例 4】 某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.【解析】 以总人数为1,则甲组男会员人数为103310873110⨯=+++,女会员为31110310⨯=,乙组男会员为8511087535⨯=+++,女会员为1335525⨯=;丙组男会员为33113+210510⎛⎫-+= ⎪⎝⎭,女会员为21393+2102550⎛⎫-+= ⎪⎝⎭;所以,丙组中男、女会员人数之比为19:5:91050=. 【巩固】 一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的一段时间后,分别剩下60%、40%的任务没有完成,已知两个工程队的工作效率(建设速度)之比3:1,求这两个工程队原先承包的修建公路长度之比.【解析】 (法一)甲工程队以3倍乙工程队建设速度,仅完成了40%的承包任务,而乙工程队完成了60%,所以甲工程队承包任务的40%等于乙工程队承包任务的60%3180%⨯=,所以甲工程队的承包的任务是乙工程队承包任务的180%40%450%÷=,所以两个工程队承包的修建公路长度之比为450%:19:2=.(法二)两个工程队完成的工程任务(修建公路长度)之比等于工作效率之比,等于3:1,而他们分别完成了各自任务的40%和60%,所以两个工程队承包的修建公路长度之比为()()340%:160%9:2÷÷=.【例 5】 某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【解析】 会员总人数100人,男女比例为14:11,则可知男、女会员人数分别为56人、44人;又已知甲组人数与乙、丙两组人数之和一样多,则可知甲组人数为50人,乙、丙人数之和为50人,可设丙组人数为x 人,则乙组人数为()50x -人,又已知甲组男、女会员比为12:13,则甲组男、女会员人数分别为24人、26人,又已知乙、丙两组男、女会员比例,则可得:5224(50)5683x x +-+=,解得18x =.即丙组会员人数为18人,又已知男、女比例,可得丙组男会员人数为218123⨯=人. 【巩固】 某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【解析】 由①、②可知甲、乙两校获奖总人数的比为6:5,不妨设甲校有60人获奖,则乙校有50人获奖.由③知两校获二等奖的共有(6050)20%22+⨯=人;由⑤知甲校获二等奖的有22(4.51) 4.518÷+⨯=人;由④知甲校获一等奖的有606050%1812-⨯-=人,那么乙校获一等奖的也有12人,从而所求百分数为1250100%24%÷⨯=.模块二、按比例分配与和差关系(一)量倍对应【例 6】 一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【解析】 一共有()()1613111311192÷-⨯+=个苹果.【巩固】 小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【解析】 根据题意可知,他们三人各自的藏书数量分别占三人藏书总量的3346++、4346++、6346++,所以小新拥有的藏书数量为35212346⨯=++本,小志拥有的藏书数量为45216346⨯=++本,小刚拥有的藏书数量为65224346⨯=++本. 【巩固】 在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐 元,乙捐 元,丙捐 元.【解析】 由于甲比丙多捐18元,所以甲、乙所捐资的和比乙、丙所捐资的和多18元,那么甲、乙所捐资的和为:18(107)1060÷-⨯=(元),乙、丙所捐资的和为601842-=元.所以,甲捐了804238-=(元),乙捐了603822-=(元),丙捐了381820-=(元).【巩固】 有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?【解析】 根据题意可知一班与二班分到的球数比11:3:223=,所以一班分到皮球31207232⨯=+个,二班分到皮球1207248-=个.【例 7】 一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.【解析】 原来一班的人数为两班总人数的888715=+,调班后一班的人数是两班人数的44459=+,调班前后一班人数的比值为84:6:5159=,所以一班原来的人数为()865648÷-⨯=人,二班原来的人数为488742÷⨯=人.【例 8】 幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?【解析】 由于男、女生人数有比例关系,而且知道总数,所以可以用鸡兔同笼的方法.假设18名女生全部是大班,则大班男生数:女生数5:330:18==,即男生应有30人,实际上男生有32人,相差2个人;又中班男生数:女生数2:16:3==,以3个中班女生换3个大班女生,每换一组可增加1个男生,所以需要换2组;所以,大班女生有183212-⨯=(名).【巩固】 参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【解析】 假设四年级和六年级人数同样多,则参加植树的同学共有72080800+=人,四、五、六三个年级的人数比为3:2:3,知道三个量的和及它们的比,就可以按比例分配,分别求出三个年级参加植树的人数.六年级:3800300323⨯=++人;五年级:2800200323⨯=++人;四年级:30080220-=人. 【巩固】 圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【解析】 设圆珠笔的价格为4,那么铅笔的价格为3,则20支圆珠笔和21支铅笔的价格为20×4+21×3=143,则单位“1”的价格为71.5÷143=0.5元.所以圆珠笔的单价是O .5×4=2(元).【例 9】 甲、乙两只蚂蚁同时从A 点出发,沿长方形的边爬去,结果在距B 点2厘米的C 点相遇,已知乙蚂蚁的速度是甲的1.2倍,求这个长方形的周长.【解析】 两只蚂蚁在距B 点2厘米的C 点相遇,说明乙比甲一共多走了224⨯=(厘米).又知乙蚂蚁的速度是甲蚂蚁的1.2倍,相同时间内乙蚂蚁爬的路程与甲蚂蚁爬的路程比为:1.2:1=6:5,所以甲爬的路程是()465520÷-⨯=(厘米),乙爬的路程是20424+=(厘米),长方形的周长为202444+=(厘米).【例 10】 甲乙两车分别从 A , B 两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B 地时,乙离A 地还有10千米.问:A ,B 两地相距多少千米?【解析】 甲、乙原来的速度比是5∶4,相遇后的速度比是:[5×(1-20%)]∶[4×(1+20%)]=4∶4.8=5∶6.相遇时,甲、乙分别走了全程的95和94。