4一般约束最优化问题的最优性条件.

合集下载

2 等式约束最优化问题的最优性条件

2 等式约束最优化问题的最优性条件

将等式约束最优化问题转化为无约束最优化问题求解. 将等式约束最优化问题转化为无约束最优化问题求解.
等式约束最优化问题的最优性条件
一阶必要条件
• Example
Solution:
等式约束最优化问题的最优性条件
等式约束最优化问题的最优性条件
等式约束最优化问题的最优性条件
等式约束最优化问题的最优性条件
二阶充分条件二阶充分条件定理322的几何意义二阶充分条件二阶充分条件在lagrange函数的驻点处如果lagrange函数关于x的hesse矩阵在约束曲面的切平面上正定并不需要在r上正定则就是问题321的严格局部极小点
约束最优化问题的最优性条件
一般约束最优化问题
m in
s.t.
n
cj ( x) = 0,
j =1 l
Байду номын сангаас
∇λ L(x,λ) = −c(x).
等式约束最优化问题的最优性条件
一阶必要条件
, (2) f ( x) 与 ci ( x)(i =1 2,⋯l ) 在 x* 的某邻域内一阶连续可微; , Lagrange (3) ∇ci ( x)(i =1 2,⋯l ) 线性无关; * 定理 则存在一组不全为零的实数 λ1 , λ* ,⋯λ* 2 l
定理 3.2.1
若(1) x*是问题(3.2.1)的局部最优解;
使得: f ( x* ) − ∑λ*∇ci ( x* ) = 0. ∇ i
l i =1
等式约束最优化问题的最优性条件
一阶必要条件 定理3.2.1说明: 定理3.2.1说明: 3.2.1说明
l x ∇f ( x) − ∑λj∇c j ( x) = 0 若 为方程组 j =1 λ c ( x) = 0, j = 1,2,..., l j

约束最优化问题的最优性条件

约束最优化问题的最优性条件

ci ( x ) ≥ 0
i ∈ I = {l + 1, , m}
一阶必要条件
定理6: (Kuhn-Tucker一阶必要条件)
*
I * = i ci x * = 0, i ∈ I ; 设 x 为问题(3)的局部最优解, f ( x ), ci ( x ) (1 ≤ i ≤ m ) 在 x * 点可微, 对于i ∈ E ∪ I *
*
λ f (x ) ∑ λ ci (x ) = 0
m * 0 *
λ c (x ) = 0 i = 1,2, , m
* i i *
i =1
* i
*
λ ≥ 0 i = 0,1,2, , m
* i
例2: 验证是否满足Fritz-John条件:
min f ( x1 , x2 ) = x1 s.t
*
3 c1 ( x1 , x2 ) = x1 x2 ≥ 0
* 则存在一组不全为零的实数 λ1 , λ* , λ* 使得: 2 l
f x * ∑ λ*ci x * = 0 i
i =1
( )
l
( )
二阶充分条件
定理2: 对等式约束问题,若: (1) f ( x ) 与 ci ( x )(1 ≤ i ≤ l ) 是二阶连续可微函数; (3) s ∈ R n且 s ≠ 0 , 且 s T ci (x * ) = 0 , i = 1,2, l 均有 s T 2 L (x * , λ* )s > 0 xx 则 x* 是等式约束问题的严格局部极小点. (2) x * ∈ R n 与 λ* ∈ R l 使: L(x* , λ* ) = 0 ;
{ ( ) }
的ci (x * ) 线性无关, 则存在非零向量 * λ* = (λ1 , , λ* ) 使得: m

第四章约束问题的最优化方法

第四章约束问题的最优化方法

当limr(k) 0 k
则(x, r(k) ) f (x) , xk * x *
例: 用内点法求
min
f
(x)

x2 1

x2 2
s.t. g( x) 1 x1 0 的约束最优解。
解:
首先构造内点惩罚函数: (
x,
r)

x2 1

x2 2

rk
ln(x1
1)
用解析法求函数的极小值,运用极值条件:
二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。
基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足
1
u1 gu (x)
② .(x, r(k) )
m
f (x) r(k)
1
u1 gu (x)
③ .(x, r (k) )
f (x)
m
r (k) u u 1
1 gu (x)
其中:gu (x) 0,u 1,2,...m
其中:gu (x) 0,u 1,2,...m
gu(x)0, u=1,2,…,p
适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件;
• 内点的收敛条件为: xk1 xk 1

最优化问题的约束条件处理方法

最优化问题的约束条件处理方法

最优化问题的约束条件处理方法在最优化问题中,约束条件是限制优化目标的条件。

对于一个最优化问题而言,约束条件的处理是至关重要的,因为它直接影响到问题的可行解集合以及最终的优化结果。

本文将介绍几种常见的约束条件处理方法,以帮助读者更好地理解和应用最优化算法。

一、等式约束条件处理方法等式约束条件是指形如f(x) = 0的约束条件,其中f(x)是一个函数。

处理等式约束条件的常用方法是拉格朗日乘子法。

该方法通过引入拉格朗日乘子,将等式约束条件转化为目标函数的一部分,从而将原问题转化为无约束问题。

具体而言,我们可以构造拉格朗日函数:L(x,λ) = f(x) + λ·g(x)其中,g(x)表示等式约束条件f(x) = 0。

通过对拉格朗日函数求导,我们可以得到原问题的最优解。

需要注意的是,拉格朗日乘子法只能处理等式约束条件,对于不等式约束条件需要使用其他方法。

二、不等式约束条件处理方法不等式约束条件是指形如g(x) ≥ 0或g(x) ≤ 0的约束条件,其中g(x)是一个函数。

处理不等式约束条件的常用方法是罚函数法和投影法。

1. 罚函数法罚函数法通过将约束条件转化为目标函数的一部分,从而将原问题转化为无约束问题。

具体而言,我们可以构造罚函数:P(x) = f(x) + ρ·h(x)其中,h(x)表示不等式约束条件g(x) ≥ 0或g(x) ≤ 0。

通过调整罚函数中的惩罚系数ρ,可以使得罚函数逼近原问题的最优解。

罚函数法的优点是简单易实现,但需要注意选择合适的惩罚系数,以避免陷入局部最优解。

2. 投影法投影法是一种迭代算法,通过不断投影到可行域上来求解约束最优化问题。

具体而言,我们首先将原问题的可行域进行投影,得到一个近似可行解,然后利用该近似可行解来更新目标函数的取值,再次进行投影,直到收敛为止。

投影法的优点是能够处理各种类型的不等式约束条件,并且收敛性良好。

三、混合约束条件处理方法混合约束条件是指同时包含等式约束条件和不等式约束条件的问题。

《最优化方法》课程复习考试

《最优化方法》课程复习考试

《最优化方法》复习提要 第一章 最优化问题与数学预备知识§1. 1 模型无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈.约束最优化问题(},,2,1,0)(;,,2,1,0)(,|{l j x h m i x g R x x S j i n ===≥∈=∧)min ();...f x s t x S ⎧⎨∈⎩ 即 m i n ();..()0,1,2,,,()0,1,2,,.i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域,()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥===称为约束条件.§1. 2 多元函数的梯度、Hesse 矩阵及Taylor 公式定义 设:,n n f R R x R →∈.如果n ∃维向量p ,n x R ∀∆∈,有()()()T f x x f x p x o x +∆-=∆+∆.则称()f x 在点x 处可微,并称()T df x p x =∆为()f x 在点x 处的微分.如果()f x 在点x 处对于12(,,,)T n x x x x =的各分量的偏导数(),1,2,,if x i n x ∂=∂都存在,则称()f x 在点x 处一阶可导,并称向量12()()()()(,,,)Tnf x f x f x f x x x x ∂∂∂∇=∂∂∂ 为()f x 在点x 处一阶导数或梯度.定理1 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处梯度()f x ∇ 存在,并且有()()T df x f x x =∇∆.定义 设:,n n f R R x R →∈.d 是给定的n 维非零向量,de d=.如果 0()()lim()f x e f x R λλλλ→+-∈存在,则称此极限为()f x 在点x 沿方向d 的方向导数,记作()f x d∂∂. 定理2 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处沿任何非零方向d 的方向导数存在,且()()T f x f x e d ∂=∇∂,其中de d=. 定义 设()f x 是n R 上的连续函数,n x R ∈.d 是n 维非零向量.如果0δ∃>,使得(0,)λδ∀∈,有()f x d λ+<(>)()f x .则称d 为()f x 在点x 处的下降(上升)方向.定理3 设:,n n f R R x R →∈,且()f x 在点x 处可微,如果∃非零向量n d R ∈,使得()T f x d ∇<(>)0,则d 是()f x 在点x 处的下降(上升)方向. 定义 设:,n n f R R x R →∈.如果()f x 在点x 处对于自变量12(,,,)T n x x x x =的各分量的二阶偏导数2()(,1,2,,)i j f x i j n x x ∂=∂∂都存在,则称函数()f x 在点x 处二阶可导,并称矩阵22221121222222122222212()()()()()()()()()()n n n n n f x f x f x x x x x x f x f x f x f x x x x x x f x f x f x x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂ ⎪∇=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭为()f x 在点x 处的二阶导数矩阵或Hesse 矩阵. 定义 设:,n m n h R R x R →∈,记12()((),(),,())T m h x h x h x h x =,如果 ()(1,2,,)i h x i m =在点x 处对于自变量12(,,,)T n x x x x =的各分量的偏导数()(1,2,,;1,2,,)i jh x i m j n x ∂==∂都存在,则称向量函数()h x 在点x 处是一阶可导的,并且称矩阵111122221212()()()()()()()()()()n n m n m m m n h x h x h x xx x h x h x h x x x x h x h x h x h x xx x ⨯∂∂∂⎛⎫ ⎪∂∂∂⎪⎪∂∂∂⎪∂∂∂∇= ⎪ ⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭为()h x 在点x 处的一阶导数矩阵或Jacobi 矩阵,简记为()h x ∇.例2 设,,n n a R x R b R ∈∈∈,求()T f x a x b =+在任意点x 处的梯度和Hesse 矩阵.解 设1212(,,,),(,,,)TTn n a a a a x x x x ==,则1()nk k k f x a x b ==+∑,因()(1,2,,)k kf x a k n x ∂==∂,故得()f x a ∇=.又因2()0(,1,2,,)i jf x i j n x x ∂==∂∂,则2()f x O ∇=.例3 设n n Q R ⨯∈是对称矩阵,,n b R c R ∈∈,称1()2TT f x x Qx b x c =++为二次函数,求()f x 在任意点x 处的梯度和Hesse 矩阵.解 设1212(),(,,,),(,,,)T T ij n n n n Q q x x x x b b b b ⨯===,则121111(,,,)2n nnn ij i j k k i j k f x x x q x x b x c ====++∑∑∑,从而111111111()()()nn j j j j j j n n n nj j n nj j j j n f x q x b q x x bf x Qx b f x b q x b q x x ====⎛⎫⎛⎫∂⎛⎫+ ⎪ ⎪ ⎪∂⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪∇===+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭∑∑∑∑.再对1()(1,2,,)nij j i j i f x q x b i n x =∂=+=∂∑求偏导得到2()(,1,2,,)ij i jf x q i j n x x ∂==∂∂,于是1112121222212()n n n n nn q q q q q q f x Q q q q ⎛⎫⎪ ⎪∇== ⎪⎪⎝⎭. 例 4 设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求(),()t t ϕϕ'''.解 由多元复合函数微分法知 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+. 定理4 设:,n n f R R x R →∈,且()f x 在点x 的某邻域内具有二阶连续偏导数,则()f x 在点x 处有Taylor 展式21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.证明 设()(),[0,1]t f x t x t ϕ=+∆∈,则(0)(),(1)()f x f x x ϕϕ==+∆.按一元函数Taylor 公式()t ϕ在0t =处展开,有21()(0)(0)(),(0)2t t t t ϕϕϕϕθθ'''=++<<.从例4得知2(0)(),()()()T T f x x x f x x x ϕϕθθ'''=∇∆=∆∇+∆∆.令1t =,有21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.根据定理1和定理4,我们有如下两个公式()()()()()T f x f x f x x x o x x =+∇-+-,221()()()()()()()()2T T f x f x f x x x x x f x x x o x x =+∇-+-∇-+-.§1. 3 最优化的基本术语定义 设:n f R R →为目标函数,n S R ⊆为可行域,x S ∈.(1) 若x S ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的全局(或整体)极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的全局(或整体)最优解,并称()f x为其最优值.(2) 若,x S x x ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格全局(或整体)极小点.(3) 若x ∃的δ邻域(){}(0)n N x x R x x δδδ=∈-<>使得()x N x S δ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的局部极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的局部最优解.(4) 若x ∃的δ邻域()(0)N x δδ>使得(),x N x S x x δ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格局部极小点.第二章 最优性条件§2.1 无约束最优化问题的最优性条件定理 1 设:n f R R →在点x 处可微,若x 是问题min ()f x 的局部极小点,则()0f x ∇=.定义 设:()n f S R R ⊆→在int x S ∈处可微,若()0f x ∇=,则称x 为()f x 的平稳点.定理2 设:n f R R →在点x 处具有二阶连续偏导数,若x 是问题min ()f x 的局部极小点,则()0f x ∇=,且2()f x ∇半正定.定理3 设:n f R R →在点x 处具有二阶连续偏导数,若()0f x ∇=,且2()f x ∇正定,则x 是问题min ()f x 的严格局部极小点. 注:定理2不是充分条件,定理3不是必要条件.例1 对于无约束最优化问题2312min ()f x x x =-,其中212(,)T x x x R =∈,显然 2212()(2,3),T f x x x x R ∇=-∀∈,令()0f x ∇=,得()f x 的平稳点(0,0)T x =,而且2222020(),()0600f x f x x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.易见2()f x ∇为半正定矩阵.但是,在x 的任意δ邻域x x δ-<,总可以取到(0,)2T x δ=,使()()f x f x <,即x 不是局部极小点.例2 对于无约束最优化问题42241122min ()2f x x x x x =++,其中212(,)T x x x R =∈, 易知3223112122()(44,44)Tf x x x x x x x ∇=++,从而得平稳点(0,0)T x =,并且 22221212221212001248(),()008412x x x x f x f x x x x x ⎛⎫+⎛⎫∇=∇=⎪ ⎪+⎝⎭⎝⎭. 显然2()f x ∇不是正定矩阵.但是,22212()()f x x x =+在x 处取最小值,即x 为严格局部极小点.例3 求解下面无约束最优化问题332122111min ()33f x x x x x =+--,其中212(,)T x x x R =∈, 解 因为21212222201(),()0222x x f x f x x x x ⎛⎫-⎛⎫∇=∇= ⎪ ⎪--⎝⎭⎝⎭,所以令()0f x ∇=,有2122210,20.x x x ⎧-=⎪⎨-=⎪⎩解此方程组得到()f x 的平稳点(1)(2)(3)(4)1111,,,0202x x x x --⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.从而2(1)2(2)2020(),()0202f x f x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭,2(3)2(4)2020(),()0202f x f x --⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.由于2(1)()f x ∇和2(4)()f x ∇是不定的,因此(1)x 和(4)x 不是极值点.2(3)()f x ∇是负定的,故(3)x 不是极值点,实际上它是极大点.2(2)()f x ∇是正定的,从而(2)x 是严格局部极小点.定理4 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微,若()0f x ∇=,则x 为min ()f x 的全局极小点.推论5 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微.则x 为min ()f x 的全局极小点的充分必要条件是()0f x ∇=. 例 4 试证正定二次函数1()2TT f x x Qx b x c =++有唯一的严格全局极小点1x Q b -=-,其中Q 为n 阶正定矩阵.证明 因为Q 为正定矩阵,且(),n f x Qx b x R ∇=+∀∈,所以得()f x 的唯一平稳点1x Q b -=-.又由于()f x 是严格凸函数,因此由定理4知,x 是()f x 的严格全局极小点.§2.2 等式约束最优化问题的最优性条件定理1 设:n f R R →在点x 处可微,:(1,2,,)n j h R R j l →=在点x 处具有一阶连续偏导数,向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的局部极小点,则,1,2,,j v R j l ∃∈=,使得1()()0lj j j f x v h x =∇-∇=∑.称(,)()()T L x v f x v h x =-为Lagrange 函数,其中12()((),(),,())T l h x h x h x h x =.称12(,,,)T l v v v v =为Lagrange 乘子向量.易见(,)x v L L x v L ∇⎛⎫∇= ⎪∇⎝⎭,这里1(,)()(),(,)()lx j j v j L x v f x v h x L x v h x =∇=∇-∇∇=-∑.定理 2 设:n f R R →和:(1,2,,)n j h R R j l →=在点n x R ∈处具有二阶连续偏导数,若l v R ∃∈,使得(,)0x L x v ∇=,并且,,0n z R z ∀∈≠,只要()0,1,2,,T j z h x j l ∇==,便有2(,)0T xx z L x v z ∇>,则x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的严格局部极小点.例1 试用最优性条件求解 221212min ();..()80.f x x x s t h x x x ⎧=+⎨=-=⎩解 Lagrange 函数为221212(,)(8)L x v x x v x x =+--,则1221122(,)2(8)x vx L x v x vx x x -⎛⎫⎪∇=- ⎪ ⎪--⎝⎭, 从而得(,)L x v 的平稳点(8,8,2)T 和(8,8,2)T --,对应有(8,8),2T x v ==和(8,8),2T x v =--=.由于221222(,),()222xx x v L x v h x x v--⎛⎫⎛⎫⎛⎫∇==∇= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 因此1212(){(,)|(,)()0}T M x z z z z h x =∇=121221{(,)|0}T z z z x z x =+= 1212{(,)|}T z z z z ==-.并且(),0z M x z ∀∈≠,有222211221(,)24280T xx z L x v z z z z z z ∇=-+=>.利用定理2,所得的两个可行点(8,8)T x =和(8,8)T x =--都是问题的严格局部极小点.§2.3 不等式约束最优化问题的最优性条件定义 设,,,0n n S R x clS d R d ⊆∈∈≠,若0δ∃>,使得,,(0,)x d S λλδ+∈∀∈, 则称d 为集合S 在点x 处的可行方向. 这里{|,(),0}n clS x x R SN x δδ=∈≠∅∀>.令 {|0,0,,(0,)}D d d x d S δλλδ=≠∃>+∈∀∈使,0{|()0}T F d f x d =∇<.定理 1 设n S R ⊆是非空集合,:,,()f S R x S f x →∈在点x 处可微.若x 是问题min ()x Sf x ∈的局部极小点,则 0F D =∅.对于min ();..()0,1,2,,,i f x s t g x i m ⎧⎨≥=⎩ (1)其中:,:(1,2,,)n n i f R R g R R i m →→=.令(){|()0,1,2,,}i I x i g x i m ===,其中x 是上述问题(1)的可行点.定理 2 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,如果x 是问题(1)的局部极小点,则 00F G =∅,其中0{|()0,()}T i G d g x d i I x =∇>∈.定理 3 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,若x 是问题(1)的局部极小点,则存在不全为0的非负数0,(())i u u i I x ∈,使0()()()0iii I x u f x u g x ∈∇-∇=∑. (x 称为Fritz John 点)如果()(())i g x i I x ∉在点x 处也可微,则存在不全为0的非负数01,,,m u u u ,使01()()0,()0,1,2,,.mi i i i iu f x u g x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为Fritz John 点) 例1 设1311222min ();..()(1)0,()0.f x x s t g x x x g x x =-⎧⎪=--≥⎨⎪=≥⎩试判断(1,0)T x =是否为Fritz John 点. 解 因为12100(),(),()011f x g x g x -⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,所以为使Fritz John 条件01210000110u u u -⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.取0120,0u u u α===>即可,因此x 是Fritz John 点.定理 4 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,并且()(())i g x i I x ∇∈线性无关.若x 是问题(1)的局部极小点,则存在0(())i u i I x ≥∈,使得()()()0iii I x f x u g x ∈∇-∇=∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在0(1,2,,)i u i m ≥=,使得1()()0,()0,1,2,,.mi i i i if x ug x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为K-T 点) 例2 求最优化问题21211222min ()(1);..()20,()0f x x x s t g x x x g x x ⎧=-+⎪=--+≥⎨⎪=≥⎩的K-T 点. 解 因为1122(1)10(),(),()111x f x g x g x --⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,所以K-T 条件为111211222122(1)0,10,(2)0,0,0,0.x u u u u x x u x u u -+=⎧⎪+-=⎪⎪--+=⎨⎪=⎪⎪≥≥⎩ 若20u =,则11u =-,这与10u ≥矛盾.故20u >,从而20x =;若120x -+=,则12u =-,这与10u ≥矛盾.故10u =,从而211,1u x ==; 由于120,0u u ≥≥,且(1,0)T x =为问题的可行点,因此x 是K-T 点. 定理5 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.§2.4 一般约束最优化问题的最优性条件考虑等式和不等式约束最优化问题min ();..()0,1,2,,,()0,1,2,,,i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩(1) 其中:,:(1,2,,),:(1,2,,)n n n i j f R R g R R i m h R R j l →→=→=.并把问题(1)的可行域记为S .,(){|()0,1,2,,}i x S I x i g x i m ∀∈==.定理 1 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,并且向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题(1)的局部极小点,则 00F G H =∅,这里0{|()0}T F d f x d =∇<,0{|()0,()}T i G d g x d i I x =∇>∈,0{|()0,1,2,,}T j H d h x d j l =∇==.定理 2 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续.若x 为问题(1)的局部极小点,则存在不全为0的数0,(())i u u i I x ∈和(1,2,,)j v j l =,且0,0(())i u u i I x ≥∈,使0()1()()()0liijji I x j u f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为Fritz John 点)若()(())i g x i I x ∉在点x 处也可微,则存在不全为0的数0,(1,2,,)i u u i m =和(1,2,,)j v j l =,且0,0(1,2,,)i u u i m ≥=,使011()()()0,()0,1,2,,.m li i j j i j i iu f x u g x v h x u g x i m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为Fritz John 点)例1 设2212311222212min ();..()0,()0,()(1)0.f x x x s t g x x x g x x h x x x ⎧=+⎪=-≥⎪⎨=≥⎪⎪=--+=⎩试判断(1,0)T x =是否为Fritz John 点.解 (){2}I x =,且2200(),(),()011f x g x h x ⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,因此为使Fritz John 条件022*******u u v ⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.所以取020,1,1u u v ===-,即知x 是Fritz John 点.定理 3 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,且向量组()(()),()(1,2,,)i j g x i I x h x j l ∇∈∇=线性无关.若x 是问题(1)的局部极小点,则存在数0(())i u i I x ≥∈和(1,2,,)j v j l =,使()1()()()0liijji I x j f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在数0(1,2,,)i u i m ≥=和(1,2,,)j v j l =,使11()()()0,()0,1,2,,.m li i j j i j i if x ug x vh x u g xi m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为K-T 点) 令 1212()((),(),,()),()((),(),,())T T m l g x g x g x g x h x h x h x h x ==,1212(,,,),(,,,)T T m l u u u u v v v v ==,称u 与v 为广义Lagrange 乘子向量或K-T 乘子向量.()()()0,()0,0.T T Tf xg x uh x v u g x u ⎧∇-∇-∇=⎪=⎨⎪≥⎩令(,,)()()()T T L x u v f x u g x v h x =--为广义Lagrange 函数.称(,,)L x u v 为广义Lagrange 函数.则K-T 条件为(,,)0,()0,0.x TL x u v u g x u ∇=⎧⎪=⎨⎪≥⎩定理 4 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,()(1,2,,)j h x j l =是线性函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.例2 求解最优化问题221221212min ()(3)(1);..()0,()230.f x x x s t g x x x h x x x ⎧=-+-⎪=-+≥⎨⎪=+-≥⎩ 解 广义Lagrange 函数为222121212(,,)()()()(3)(1)()(23)L x u v f x ug x vh x x x u x x v x x =--=-+---+-+-.因为111(,,)2(3)22L x u v x ux v x ∂=-+-∂,22(,,)2(1)L x u v x u v x ∂=---∂.所以K-T 条件及约束条件为112212212122(3)220,2(1)0,()0,0,230,0.x ux v x u v u x x x x x x u -+-=⎧⎪---=⎪⎪-+=⎪⎨-+≥⎪⎪+-=⎪≥⎪⎩ 下面分两种情况讨论. (1) 设0u =,则有12122(3)20,2(1)0,230.x v x v x x --=⎧⎪--=⎨⎪+-=⎩ 由此可解得12718,,555x x v ===-,但71(,)55T x =不是可行点,因而不是K-T 点.(2) 设0u >,则有112212122(3)220,2(1)0,0,230.x ux v x u v x x x x -+-=⎧⎪---=⎪⎨-+=⎪⎪+-=⎩ 由此可得211230x x --+=,解得11x =或13x =-。

最优化理论课程教学大纲

最优化理论课程教学大纲

《最优化理论》课程教学大纲一、课程基本信息
二、课程目标及对毕业要求指标点的支撑
三、教学内容及进度安排
四、课程考核
五、教材及参考资料
教材:《最优化理论与算法(第2版)》,陈宝林著,清华大学出版社,2005年,ISBN:97873021137680
参考书:
1、《最优化方法》,孙文瑜、徐成贤、朱德通主编,高等教育出版社,2004年第一版,ISBN:9787040143751o
2、《最优化理论与方法》,袁亚湘,孙文瑜著,科技出版社,2010年(第二版),ISBN:9787030054135o
3、《最优化计算方法》,黄正海,苗新河著,科技出版社,2015年(第二版),ISBN:9787030433053o
六、教学条件
本课程属于基础理论与应用型课程,对实验条件要求不是很高。

学校实验大楼拥有的计算机软硬件资源,高性能计算机,投影仪等设备,基本能够完成所需的理论计算任务、数值模拟试验以及程序测试等。

需要使用多媒体教室授课,授课电脑安装了WindoWS7、
OffiCe2010、1ingo11Python>Mat1ab2015>Mathematica11>MathTyPe6.9以上版本的正版软件。

附录:各类考核评分标准表。

约束条件下的最优化问题

约束条件下的最优化问题

在约束条件下的最优化问题是指在一定的限制条件下,寻找使目标函数达到最大或最小值的最优解。

这类问题可以通过数学建模和优化算法来解决。

常见的约束条件包括等式约束和不等式约束。

等式约束要求某些变量之间的关系满足特定的等式关系,而不等式约束则要求某些变量之间的关系满足特定的不等式关系。

数学上,约束条件可以表示为:
1. 等式约束:g(x) = 0,其中g(x)是一个关于变量x的函数。

2. 不等式约束:h(x) ≤0,其中h(x)是一个关于变量x的函数。

最优化问题的目标函数可以是线性的、非线性的,甚至是在某些特殊情况下可能是非凸的。

根据问题的具体形式,可以选择适合的优化算法进行求解,如线性规划、非线性规划、整数规划等。

常见的优化算法包括:
1. 梯度下降法:用于求解无约束或有约束的凸优化问题,在连续可导的情况下通过迭代调整参数来逐步接近最优解。

2. KKT条件法:用于求解有约束的凸优化问题,通过构建拉格朗日函数和KKT条件来确定最优解。

3. 内点法:用于求解线性规划和凸优化问题,通过在可行域内寻找目标函数的最优解。

4. 遗传算法:用于求解复杂的非线性优化问题,通过模拟自然进化过程中的选择、交叉和变异操作来搜索最优解。

5. 模拟退火算法:用于求解非线性优化问题,通过模拟固体退火的过程来逐步降低温度并接近最优解。

在实际应用中,约束条件下的最优化问题广泛应用于工程、经济、运筹学、物流等领域。

通过合理地建立数学模型,并选择合适的优化算法,可以有效地解决这类问题,并得到最优解或接近最优解的结果。

约束优化问题的最优性条件

约束优化问题的最优性条件

{
}
连续,若 x 是(NLP1)的局部最优解,则存在不全 为零的非负数 w0 , wi (i ∈ i ) ,使得
w0∇f ( x) − ∑ wi ∇gi ( x) = 0
i∈I
证明:参见陈宝林书 page 239
注:运用Fritz John 条件时,可能出现 w0 = 0 的情形。这时Fritz John 条件中实际上不包含 目标函数的任何数据,只是把起作用约束的梯 度组合成零向量。这样的条件,对于问题的解 的描述,没有多大价值。我们感兴趣的是
w0 ≠ 0 的情形,所以为了保证 w0 ≠ 0 ,还需
要对约束施加某种限制。这种限制条件通常称 为约束规格。在定理7.3中,如果增加起作用 约束的梯度线性无关的约束规格,则给出不等 式约束问题的著名的K-T条件。
定理7.8 (K-T 必要条件) 考虑约束问题(NLP) , x 为可行点,I = i gi ( x) = 0 , f (x) 和 gi (x) (i ∈ I ) 在 x 处可微, gi (x) (i ∉ I ) 在 x 处连续, hj (j=1,…,l) 在 x 处连续可微。向量集
∂f = d T ∇f ( x ) ≥ 0 ∂d
(d
= 1)
即在极小点处的可行方向一定不是下降方向
n R 定理7.1 考虑约束极值问题 (NLP) , 设 S 是 中的非空集合,x ∈ S , f (x) 在 x 处可微。如果 x
是局部最优解,则
F0 ∩ D = ∅
证明:参见陈宝林书 page236
定理7.5 设在问题(NLP1)中, f 是凸函数, gi(x)(i=1,2,…,m) 是凹函数,S为可行域,x ∈ S
I = i gi ( x) = 0 , f (x) 和 gi (x) (i ∈ I )在 x 处可微,

运筹学-约束最优化方法

运筹学-约束最优化方法

若AT的各个行向量线性无 关.根据Kuhn-Tucker条件, 在该线性规划的最优点y* 处存在乘子向量x*≥0,使得
即Ax*=b 对偶规划约束条件 及(ATy*-c)T x*=0 线性规划互补松弛条件
29
5.1.3 一般约束问题的最优性条件
定理1.3.1 在上述问题中,若 (i)x*为局部最优解, 有效集I*={i|ci(x*)=0,i∈I}; (ii)f(x),ci(x)(1≤i≤m)在x*点可微; (iii)对于i∈E∪I*, 线性无关, 则存在向量l*=(l1*,· · · ,lm*)使得

解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
19
例题(Fritz-John条件)
min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0 c2(x)=x1≥0 c3(x)=x2≥0 即

35
惩罚函数法
惩罚是手段,不是目的
KT条件中li*ci(x*)=0 称为互补松弛条件. 它表明li*与ci(x*)不能 同时不为0.

28
线性规划情形
对于线性规划问题 min f(y)=-bTy s.t. -ATy≥-c 其中 y∈Rm,A∈Rm×n, b∈Rm,c∈Rn 问题有n个约束条件. 各个约束条件关于y 的梯度为-AT的行向 量(-pi).

借助于Farkas引理,可推出存在li*≥0(i∈I*), 使得
类似与Fritz-John条件的证明,可以证明KuhnTucker条件. 有效约束函数的梯度线性无关称为KuhnTucker约束规范. 如果该约束规范不满足,最优点不一定是KT点.

最优化方法(约束优化问题的最优性条件)

最优化方法(约束优化问题的最优性条件)

s.t. c1 ( x ) = x 1 + x 2 + x 3 − 3 = 0 , c 2 ( x ) = − x 1 + x 2 ≥ 0
c 3 ( x ) = x1 ≥ 0 , c 4 ( x ) = x 2 ≥ 0 , c 5 ( x ) = x 3 ≥ 0
带入约束条件可知满足约束条件 将 x = (1,1,1) 带入约束条件可知满足约束条件
验证KT点的步骤 小结
• • • • • • 1 化为标准形式 2 验证约束成立 并且求得有效约束 3 约束规范 ∇f ( x * ) − λ1 ∇c1 ( x * ) − λ 2 ∇c 2 ( x * ) = 0 4 一阶条件方程 例如 5 验证不等式约束互补条件、乘子的非负性 验证不等式约束互补条件、 6结论 结论
* T
并且有效约束集合为 并且有效约束集合为 I = {1,2}
*
∇f ( x ) = ( −3,−1,−2) T , ∇c1 ( x ) = ( 2,2,2) T , ∇c 2 ( x ) = ( −1,1,0) T T T 线性无关。 且 ∇c 1 ( x ) = ( 2,2,2) 与 ∇c 2 ( x ) = ( −1,1,0) 线性无关。
向量 d ,如果对任意的 i ∈ I ( x) 有 ∇ci ( x)T d > 0 , 则 d 是点 x 的 可行方向。
令 证明: x ' = x + t d , t > 0。 则对任意的 i ∈ I ( x ) , 有
ci ( x' ) = ci ( x) + t ∇ci ( x)T d + o( || td ||2 )
= t ∇ci ( x)T d + o( || td ||2 )

运筹学第15讲 约束最优化方法 (1)

运筹学第15讲 约束最优化方法 (1)
2
⎛1 ⎞ (2) = ⎜ ⎜ 2 ⎟ ⎟ ⎝ ⎠
第六章
6.1 Kuhn-Tucker 条件
二、不等式约束问题的Khun-Tucker条件: (续)
m ⎧ ⎪ ∇ f ( x ) − ∑ u i∇ g i ( x ) = 0 i ⎪ u i ≥ 0 , i = 1,2 ,L , m → ⎨ ⎪ u ig i( x ) = 0 ⎪ ⎩
< 寻找下降可行方向: 定理 1:设 其中 x 是可行解,在
1 2
6.2 可行方向法
一、解线性约束问题的可行方向法 (续)
d x 处有 A 1 x = b 1,A
2
x > b2,
⎛ A A = ⎜ ⎜A ⎝
⎞ ⎛ b1 ⎟ ⎜ , b = ⎟ ⎜b ⎠ ⎝ 2
⎞ ⎟ ⎟ 。则非零向量 ⎠
d 为 x 处的下降可行
g3=0 x2 2 1 1
▽g2(x*)
第六章

-▽f(x*) (3,2)T
x* 2 3 g1=0
▽g1(x*)
4
g4=0 x1 g2=0
6.1 Kuhn-Tucker 条件 二、不等式约束问题的Khun-Tucker条件: (续)
在 x *点 ⎧ g 1 ( x1 , x 2 ) = 0 ⎨ ⎩ g 2 ( x1 , x 2 ) = 0
∗ ∗ ∗பைடு நூலகம்
第六章
6.1 Kuhn-Tucker 条件
三、一般约束问题的Kuhn-Tucker 条件 (续)
如果 x ∗ − l .opt .那么 ∃ u i∗ ≥ 0 , i ∈ I , v ∗j ∈ R , j = 1, 2 , L , l ∇f (x ) −

∑u

《最优化方法》课程教学大纲

《最优化方法》课程教学大纲

最优化方法》课程教学大纲课程编号:100004英文名称:Optimizatio n Methods一、课程说明1. 课程类别理工科学位基础课程2. 适应专业及课程性质理、工、经、管类各专业,必修文、法类各专业,选修3. 课程目的(1 )使学生掌握最优化问题的建模、无约束最优化及约束最优化问题的理论和各种算法;(2)使学生了解二次规划与线性分式规划的一些特殊算法;(3)提高学生应用数学理论与方法分析、解决实际问题的能力以及计算机应用能力。

4. 学分与学时学分2,学时405. 建议先修课程微积分、线性代数、Matlab语言6. 推荐教材或参考书目推荐教材:(1)《非线性最优化》(第一版).谢政、李建平、汤泽滢主编.国防科技大学出版社.2003年.孙(第一版)参考文瑜、徐成贤、朱德通主编.高等教育出版社.2004年(2)《最优化方法》书目:(第一版).胡适耕、施保昌主编.华中理工大学出版社.2000年(1)《最优化原理》(2)《运筹学》》(修订版).《运筹学》教材编写组主编.清华大学出版社.1990年7. 教学方法与手段(1)教学方法:启发式(2)教学手段:多媒体演示、演讲与板书相结合8. 考核及成绩评定考核方式:考试成绩评定:考试课(1)平时成绩占20%形式有:考勤、课堂测验、作业完成情况(2)考试成绩占80%形式有:笔试(开卷)。

9. 课外自学要求(1)课前预习;(2)课后复习;(3)多上机实现各种常用优化算法。

二、课程教学基本内容及要求第一章最优化问题与数学预备知识基本内容:(1 )最优化的概念;(2)经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)最优化问题的模型及分类;(4)向量函数微分学的有关知识;5)最优化的基本术语。

基本要求:(1)理解最优化的概念;(2)掌握经典最优化中两种类型的问题--无约束极值问题、具有等式约束的极值问题的求解方法;(3)了解最优化问题的模型及分类;(4)掌握向量函数微分学的有关知识;(5)了解最优化的基本术语。

数值最优化(李董辉)第八章最优性条件(精)

数值最优化(李董辉)第八章最优性条件(精)

2、二阶条件
(8.9)

唯楚有材 於斯为盛
最优化
主讲:刘陶文博士
课件制作:刘陶文
第八章 约束问题的最优性条件
第一节 可行方向 第二节 约束问题最优性条件
第一节 可行方向
记下降方向集合为GD,容易看出x* 是最优解的条件是
GD FD 然而 FD的计算是困难的。我们需要FD的代数表达式,才能 得到最优解的条件的代数表达式
注意:序列可行方向 不一定是可行方向,并且也没有代数表达式
线性可行方向具有代数表达式,是非常方便的,下面的定理和 引理说明了线性可行方向与可行方向的关系,即在一定条件下 两者是相等的
上面的引理是 Farkas 定理的一个直接结果, 它是非常重要的
第二节 约束问题的最优性条件
1、 一阶必要条件

第四章约束问题的最优化方法

第四章约束问题的最优化方法

迭代,产生的极值点 xk*(r(k))
4
序列从可行域外部趋向原目标
函数的约束最优点 x* 。
外点法可以用来求解含不等式和等式约束的优化问题。
二. 惩罚函数的形式:
m
l
( x, r) f ( x) r max[0, gi ( x)]2 r [hj ( x)]2
i1
j1
• 惩罚因子rk 是递增的,rk1 a rk ,a为递增系数,a 1
惩罚项:当迭代点在非可行域或不满足不等式约束条件时,在迭 代过程之中迫使迭代点逼近约束边界或等式约束曲面。
加权因子(即惩罚因子): r1 , r2
无约束优化问题:min . (x, r1, r2 )
Φ函数的极小点序列 x (k)* ( r1 (k) , r2 (k) ) k= 0,1,2…
其收敛必须满足:
这种方法是1968年由美国学者A.V.Fiacco和 G.P.Mcormick提出的,把不等式约束引入数学模型中,为求多 维有约束非线性规划问题开创了一个新局面。
适用范围:求解等式约束优化问题和一般约束优化问题。
§4.2 内点惩罚函数法(障碍函数法)
一. 基本思想: 内点法将新目标函数 Φ( x , r ) 构筑在可行域 D 内,随着惩罚
六. 举例:盖板问题
设计一个箱形截面的盖板。 已知:长度 l0= 600cm,宽度 b = 60cm, h 侧板厚度 ts = 0.5cm,翼板厚度为 tf(cm),高 度为 h(cm),承受最大的单位载荷 q = 0.01Mpa。
tf ts
b
要求:在满足强度、刚度和稳定性等条件下,设计一个最轻结构。
f (x) r1G[gu (x)] r2 H[hv (x)]

约束最优化最优性条件

约束最优化最优性条件
gi (x ) 0
0
x2
R { x | g i ( x ) 0}
gi (x) 0
x
0
x1
x gi (x) 0
0
形成的边界, 影响下一步选向.
如何判断一个向量是否
是可行方向?
定理 1 给定点 x Q , 记点 x 的积极约束指标集为 向量 d ,如果对任意的 可行方向。
T
min s .t .
可行域为
f (x) g( x) 0
(1 )
Q { x | g ( x ) 0 }。
1 .可 行 方 向
可行方向: 设 x Q , 为一个向量。如果存在 d
0
实数 0 ,
0
使得对任意的 一个可行方向。
[ 0 , ] 有 x d Q , 则称 d 为 x 处的
T
I ( x ) 。给定
i I(x)
则向量 d 是点 x 处的可行下降方向。
极值点的必要条件:
定理 3 设 x * Q , ( x *) 是其积极约束指标集。 I ( i I ( x *) ) 在点 x * 处可微, 续。如果 x * 是约束极值问题(
f ( x)和 gi( x)
g i ( x ) ( i I ( x *) ) 在点 x * 处连 1)的局部极小点,则在
i
( x ) 和 i

有且仅有一个成立,即取 0 值,则称为严格互补松弛条 件.
3 . K T 点的计算
例1 求约束极值问题
min f ( x ) x1 x 2 6 x1 6 x 2 8
2 2
s .t .
x1 x 2 4 x1 0 x 0 2

最优性条件

最优性条件

x是总体极小点的充分必要条件是g ( x ) 0.
证明: 必要性显然.证明充分性. 因为f是可微的凸函数,
g ( x*) 0,
所以 f ( x) f ( x*) g ( x*)T ( x x*) f ( x*), x D.
即x是 总体极小点.
考虑等式约束最优化问题
|| f ( x ) ||
(k )
适用于收敛速度 比较慢的算法.
依赖于函数在极小点领域内的性质.
x1 * x1
x2 * x2
一个理想的算法终止准则
|| x
(k )
x*||
然而x * 是未知的,
这样的准则并不具有任何实用价值.
但是 || x ( k 1) x* || || x ( k 1) x ( k ) x ( k ) x* || (k ) || x x* || || x ( k ) x* ||
0
定理(二阶必要条件)
设f : D R R 在开集D上二阶连续可微,若
n 1
x D是 min f ( x)的局部极小点,则 n
xR
g ( x ) 0, G( x ) 0(G( x*)正半定).
定理(二阶充分条件)
设f : D R R 在开集D上二阶连续可微,
n 1
(1) f xk (2 )
|| x
( k 1)
x
(k )
||
(k )
或 | f ( x( k 1) ) f ( x( k ) ) |
(3) || x
(k )
|| ,| f ( x ) |
|| x ( k 1) x ( k ) || | f ( x ( k ) ) f ( x ( k 1) ) | , (k ) (k ) || x || | f (x ) |

3不等式约束最优化问题的最优性条件

3不等式约束最优化问题的最优性条件
不等式约束最优化问题的最优性条件
定 闭包: 设S Rn , S的闭包定义为: 义 Closure clS { x | S N ( x) , 0}.
可行方向:设S Rn , x clS, d Rn , d 0, 若存在〉0,使得
x d S, (0, ),
则称d为集合S在点x处的可行方向( feasible direction).

F0 G0 ,
其中G0 d Rn ci x* T d 0 , i I *
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
例1:确定: min f x x1 62 x2 22
s.t x1 2 x2 4 0
3 x1 2 x2 12 0
x1 , x2 0
F0 D .
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
仅考虑在某点起作用的约束
定理3.3.2: 在问题(3.3.1)中,假设:
(1) x*为局部最优解且I * i ci x* 0,1 i m ;
(2) f x与ci xi I * 在 x* 点可微;
(3) ci x i I \ I * 在 x* 点连续;
在点 x 2,3T处的可行下降方向.
解:x 2,3T, Ix 1,2.
c1
x
1 2
,
c2
x
3 2
.
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
f
x
2 x1 12 2x2 4
,
f
x
8 2
.
设 d d1 , d2 T , 则d T c1 x 0, d1 2d2 0;
即该问题在x*处Fritz-John条件成立.

约束问题的最优化方法

约束问题的最优化方法

3. 优化方法: 选用内点惩罚法,惩罚函数形式为: 6 1 T k k x,r f x r 取 x 0 1,30 , r 0 3 , c 0.7 u 1 g x u 调用 Powell 法求序列无约束优化极值,以逐渐逼近原问 题的极值点。
k 2 x r ( 1 x ) x 1时; x, r k x 1时。 x
4
min.
s.t
f (x) = x
x ∈ R1
g (x) = 1-x ≤ 0


§5.3 外点惩罚函数法
二. 惩罚函数的形式:

x, r ( k ) f x r k maxg u x ,0 I u g u x 0 u 1,2,...,m,
(k ) (k ) m
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
§5.2 内点惩罚函数法
4. 求解过程分析:
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想: 外点法将新目标函数
Φ( x , r )
构筑在可行域 D
外,随着惩罚因子 r(k) 的不断 递增,生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k)) 序列从可行域外部趋向原目标 函数的约束最优点 x* 。 例:求下述约束优化问题的最优点。 新目标函数:

第三章 (1) 约束优化问题的最优性理论

第三章 (1) 约束优化问题的最优性理论

m
iai , i

0, i

1,...,
m


i 1

如果 n 维向量 g C ,则存在一个
法向量为d的超平面分离 g 和 C,
使得 gTd 0
aiT d 0,i 1,..., m
三、一阶最优性条件
Farkas 引理
给定任意 n 维向量 a1, a2,..., am 与 g,则集合
一、一般约束最优化问题
可行域 X x Rn ci x 0,i I , ci x 0,i E .
min f x xRn
s.t. ci x 0,i E 1, , me, ci x 0,i I me 1, , m.
不同时成立!
g* i*ai*
iE
二、约束规范条件
对不等式约束最优化问题
aiT ( x*)d 0,i I ( x*) (线性化可行方向)
g*Td 0
(下降方向)
不同时成立!
g* i*ai*, i* 0,i I * iI *
起作用约束问题
i* 0?
最优解为x (0,0)
F2 : d (d1, 0)T , d1 1
D : d (d1, d2 )T , d2 0 F1 D F2 D
正则性假设成立,KT约 束规范条件不成立。
二、约束规范条件
一阶必要条件(几何特征) 根据可行方向和下降方向定义, 若 x* 为约束问题的局部最优解,则
等式约束问题
不等式约束问题
记 Ax a1(x), , am (x), ai (x) ci x;
一、一般约束最优化问题 约束优化问题的求解困难:目标函数、约束函数共同作用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
T
, c 2 x
1,1, 0
*
T
.
令 6
即: f x * 2c1 x * 2c2 x * . * 0, i 1,2,3,4,5. c x 令i 0,i 3, 4, 5,则 i i
* x 所以, 是K-T点.
Fritz John 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
缺点
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
c 3 x x1 0
c4 x x 2 0 c5 x x 3 0
试验证最优点 x * 1, 1, 1T为K-T点.
一般约束最优化问题的最优性条件
解: I * 1, 2, f x * 6,2,4T ,
c1 x
2,2, 2
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
几何最优性条件—一阶必要条件 定义 I ( x ) {i | gi ( x ) 0, i 1,2,..., m}. 定理3.4.1
一般约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
几何最优性条件的代数表示.
定理3.4.2
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶必要条件
11
其中
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶必要条件 例: min f x 3 x 2 x 2 2 x 2 1 2 3
s .t c 2 x x1 x 2 0
2 2 2 c1 x x1 x2 x3 30
一般约束最优化问题的最优性条件
一般约束最优化问题
min
s .t .
f x
h j x 0,
n
3.4.1
i 1,2, m , j 1,2, l ,
n
g i x 0,
其中f : R R,gi : R R( i 1,2, m ), h j : R n R( j 1,2, l ).
所以 1 2 , 2 2.
2 1 0 2 1 2 2 1 0 . 4 2 0 0
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—二阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—二阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—二阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—二阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—二阶充分条件
相关文档
最新文档