晶体结构和晶体缺陷
固体物理学的基础知识
![固体物理学的基础知识](https://img.taocdn.com/s3/m/5d5680577f21af45b307e87101f69e314332fa00.png)
固体物理学的基础知识固体物理学是物理学的一个重要分支,研究物质固态状态的性质和行为。
在这篇文章中,我们将介绍一些固体物理学的基础知识,包括晶体结构、晶格常数、晶体缺陷和固体力学性质等内容。
一、晶体结构晶体是指由周期性排列的原子、离子或分子组成的物质。
晶体结构描述了这些粒子在空间中的排列方式。
最基本的晶体结构是简单立方、面心立方和体心立方。
简单立方是最简单的结构,每个原子与其六个相邻原子相接触;面心立方在每个立方的面心上添加了一个原子;体心立方在每个简单立方的中心添加了一个原子。
除了这些基本结构,还存在许多复杂的晶体结构,如钻石和蓝宝石。
二、晶格常数晶格常数是描述晶体结构的一个重要参数。
它表示晶体中相邻原子之间的距离。
晶格常数可以通过实验或计算得到。
对于简单立方结构来说,晶格常数就是原子间距离;对于面心立方和体心立方结构,晶格常数与原子间距离有特定的关系。
三、晶体缺陷晶体缺陷是指晶体结构中的一些缺陷或杂质。
晶体缺陷可以分为点缺陷、线缺陷和面缺陷。
点缺陷包括空位、间隙原子和替位原子;线缺陷包括位错和螺旋位错;面缺陷包括晶界和界面。
晶体缺陷对晶体的性质有重要影响,如电导率、热导率和光学性质等。
四、固体力学性质固体力学性质描述了固体对外界力的响应和变形行为。
其中最基本的性质是弹性模量。
弹性模量分为压缩模量、剪切模量和杨氏模量,它们分别描述了固体对压力、剪切力和应力的响应。
除了弹性模量,还有塑性、断裂和疲劳等力学性质值得研究。
结论固体物理学的基础知识包括晶体结构、晶格常数、晶体缺陷和固体力学性质等内容。
通过对这些知识的研究,我们可以更深入地理解固体的性质和行为,为材料科学和工程技术的发展做出贡献。
希望本文对你对固体物理学的学习有所帮助。
参考文献:[1] Ashcroft N W, Mermin N D. Solid State Physics. Cengage Learning, 1976.[2] Kittel C. Introduction to Solid State Physics. John Wiley & Sons, 2005.[3] Rao C N R, Rao C N R, Omar Syed Ismail. Angular Momentum in Quantum Physics: Theory and Application. World Scientific, 2014.。
晶体结构与缺陷
![晶体结构与缺陷](https://img.taocdn.com/s3/m/d634584af56527d3240c844769eae009591ba249.png)
晶体结构与缺陷晶体是一种有着高度有序排列的原子、离子或分子的固体材料。
晶体的结构对其性质和应用具有重要影响,而缺陷则是晶体中不完美的部分。
本文将探讨晶体结构、晶格缺陷和它们在材料中的影响。
一、晶体结构晶体结构是指晶体中原子、离子或分子的排列方式。
晶体的结构可以通过晶体学方法(如X射线衍射)来表征。
根据晶体的结构特征,可以将晶体分为多种类型,包括立方晶系、正交晶系、单斜晶系等。
晶体结构的基本单位是晶胞,晶胞由晶体中最小的重复单元构成。
在晶体结构中,晶胞有各种不同的排列方式,例如简单立方晶胞、面心立方晶胞和体心立方晶胞。
这些不同的排列方式导致了不同类型的晶体结构。
二、晶格缺陷晶格缺陷是指晶体中原子、离子或分子位置的非理想性质。
晶格缺陷可以通过外部环境和材料制备过程中的条件引入。
晶格缺陷可以分为点缺陷、线缺陷和面缺陷三类。
1. 点缺陷点缺陷是指晶体中少数几个原子、离子或分子的位置与理想排列位置有所偏离。
最常见的点缺陷是空位缺陷和杂质缺陷。
空位缺陷是指晶体中某个位置上的原子或离子缺失,而杂质缺陷是指原子或离子被其他类型的原子或离子替代。
点缺陷可以对晶体的性质和行为产生重要影响。
例如,在半导体材料中,控制杂质缺陷的浓度可以改变材料的电导率。
在金属材料中,点缺陷可以影响金属的硬度、延展性和热导率等物理性能。
2. 线缺陷线缺陷是指晶体中沿某个方向出现的缺陷线。
常见的线缺陷包括位错和螺旋位错。
位错是晶体中原子排列顺序的偏移,而螺旋位错则是沿某个方向上原子排列的扭曲。
线缺陷可以导致晶体的塑性变形和断裂行为。
位错的运动可以使晶体发生滑移,从而导致材料的塑性变形。
而螺旋位错则可以在晶体中形成螺旋状的断裂。
3. 面缺陷面缺陷是指晶体中的平面缺陷。
最常见的面缺陷是晶界和孪晶。
晶界是两个晶粒之间的界面,它们的晶体结构可能有所不同。
孪晶是指两个对称的晶体结构在某个面上镜面对称的结合。
面缺陷可以对晶体的物理性能产生重要影响。
晶界可以影响晶体的弹性模量和导电性能。
第一章 晶体结构与晶体中的缺陷
![第一章 晶体结构与晶体中的缺陷](https://img.taocdn.com/s3/m/20335e35cf84b9d528ea7aaf.png)
第一章晶体结构与晶体中的缺陷一、名词解释1.正尖晶石与反尖晶石;2.弗伦克尔缺陷与肖特基缺陷;3.刃位错与螺位错;4.固溶体;5.非化学计量化合物:二、填空与选择2.在硅酸盐结构分类中,下列矿物Ca[Al2Si2O8];CaMg[Si2O6];β-Ca2SiO4和Mg3[Si4O10](OH)2,分别属于;;;和四类。
3.在负离子作立方密堆的晶体中,为获得稳定的晶体结构,正离子将所有八面体空隙位置填满的晶体有,所有四面体空隙均填满的晶体有,填满一半八面体空隙的晶体有,填满一半四面体空隙的晶体有。
4.在尖晶石(MgAl2O4)型晶体中,O2-作面心立方最紧密堆积,Mg2+填入了;金红石晶体中,所有O2-作稍有变形的六方密堆,Ti4+填充了。
(A全部四面体空隙;B 全部八面体空隙;C四面体空隙的半数;D八面体空隙的半数;E四面体空隙的八分之一;F八面体空隙的八分之一)5.构成层状硅酸盐的[Si2O5]片中的Si4+,通常被一定数量的Al3+所取代,为满足鲍林第二规则(静电价规则),在层状结构中结合有(OH)-离子和各种二价正离子或三价正离子。
这种以Al3+取代Si4+的现象,称为。
( A同质多晶(同质多象);B类质同晶;C有序-无序转化;D同晶置换(同晶取代))6.高岭石与蒙脱石属于层状硅酸盐结构,前者的结构特征是,后者的结构特征是。
(A二层型三八面体结构;B三层型三八面体结构;C二层型二八面体结构;D 三层型二八面体结构)7.在石英的相变中,属于重建型相变的是,属于位移式相变的是。
(A α-石英→α-鳞石英;B α-石英→β-石英;C α-鳞石英→α-方石英;D α方石英→β-方石英)8.晶体结构中的热缺陷有和二类。
9.CaO掺杂到ZrO2中,其中置换了。
由于电中性的要求,在上述置换同时产生一个空位。
以上置换过程可用方程式表示。
10.由于的结果,必然会在晶体结构中产生"组分缺陷",组分缺陷的浓度主要取决于:和。
《材料科学与工程基础》课后习题答案
![《材料科学与工程基础》课后习题答案](https://img.taocdn.com/s3/m/1d38686159fb770bf78a6529647d27284b7337ed.png)
材料科学与工程基础课后习题答案习题1题目:什么是材料的物理性质?举例说明。
解答:材料的物理性质是指材料在没有发生化学变化的情况下所表现出的性质。
这些性质可以通过物理测试来测量和确定。
举例来说,导电性和热导性就是材料的物理性质之一。
例如,金属材料具有良好的导电性和热导性,能够传递电流和热量。
而绝缘材料则具有较低的导电性和热导性,不易传递电流和热量。
习题2题目:简述晶体结构和晶体缺陷的区别。
解答:晶体结构是指材料中原子或离子的排列方式和规律。
晶体结构可以分为晶格、晶胞和晶体点阵等几个层次。
晶格是指晶体内部原子或离子排列的周期性重复性。
晶胞是晶格的一个最小重复单元,由晶体中少数几个原子或离子构成。
晶体点阵是指晶格的三维空间排列方式。
晶体缺陷是指晶体结构中存在的瑕疵或缺陷。
晶体缺陷可以分为点缺陷、线缺陷和面缺陷。
点缺陷是指晶体结构中原子或离子的位置发生了失序或替代,造成了空位、间隙原子、杂质原子等。
线缺陷是指晶体结构中存在了位错或脆性裂纹等缺陷。
面缺陷是指晶体结构中存在了晶界或孪晶等缺陷。
习题3题目:为什么变形会引起材料性能的改变?解答:变形是指材料在外力作用下发生的形状和大小的改变。
变形可以导致材料性能的改变主要有以下几个原因:1.晶体结构改变:变形会导致晶体结构中原子或离子的位置发生移动和重排,从而改变了晶体的结构和性质。
2.结晶颗粒的尺寸和形状改变:变形会导致晶体中晶界的移动和晶体颗粒的形状改变,这会影响材料的力学性能和导电性能等。
3.动态再结晶:变形过程中,材料中原来存在的缺陷和结构不完善的区域可能会发生动态再结晶,从而改善了材料的性能。
4.内应力的释放:变形会导致材料内部产生应力,这些应力可能会引起材料的开裂、断裂和强度变化等。
综上所述,变形会引起材料性能的改变是由于晶体结构、结晶颗粒、动态再结晶和内应力等因素的综合作用所导致的。
习题4题目:什么是材料的力学性能?举例说明。
解答:材料的力学性能是指材料在力学加载下所表现出的性能。
晶体的结构和晶格缺陷
![晶体的结构和晶格缺陷](https://img.taocdn.com/s3/m/9f4aee92c0c708a1284ac850ad02de80d4d80620.png)
晶体的结构和晶格缺陷晶体是具有规则、有序排列的原子、离子或分子的物质。
它们在自然界中广泛存在,包括矿物、金属、合金等。
晶体的结构和晶格缺陷对其性质和应用起着至关重要的作用。
晶体的结构是由周期性排列的结构单元(晶胞)组成的。
晶胞是晶体的最小重复单元,通过平移操作可以生成整个晶体。
晶体结构可以分为两类:晶体属于晶胞内原子、离子或分子之间具有长程有序排列的晶体称为晶态;而在晶胞内部分子之间没有长程有序排列的晶体则称为非晶态。
晶体的结构具有高度的有序性,可以通过X射线衍射等技术进行解析。
晶体的结构决定了其物理、化学性质以及机械性能。
不同原子或离子之间的键合方式和键长决定了晶体的硬度、熔点和导电性等。
晶格缺陷是晶体结构中的缺陷,它们可以分为点缺陷、线缺陷和面缺陷三类。
点缺陷是晶胞内单个原子、离子或分子的缺失或替代。
最常见的点缺陷包括空位、间隙原子和替位原子。
空位是晶胞中缺少一个原子,它会导致晶体特定的电学、热学和光学性质发生改变。
间隙原子是晶胞中多余的原子,它会引起晶体的固溶度变化。
替位原子则是晶胞中某个原子被另一种原子替代,这种缺陷会对晶体的磁性和电性产生重要影响。
线缺陷是沿着晶体中一维方向分布的缺陷。
最常见的线缺陷是位错,位错是晶体中原子、离子或分子排列出错的地方。
位错会导致晶体的机械性质发生变化,如增加晶体的可塑性和延展性,降低其硬度和强度。
面缺陷是沿着晶体中二维方向分布的缺陷。
最常见的面缺陷包括晶面偏差、晶界和孪晶等。
晶面偏差是晶格平面相对于理想晶体位置的偏移,它会影响晶体的表面形貌和晶体的性质。
晶界是两个或多个晶粒之间的界面,它是晶体内部结构的交界处。
孪晶是两个不同晶方向生长的晶体在晶界处错配而结合形成的缺陷,它会降低晶体的机械性能。
晶格缺陷在物质的制备和改性过程中起着重要作用。
通过控制晶格缺陷,可以调节晶体的性质和应用。
在材料科学领域,研究晶体中的缺陷可以提高材料的力学性能、电学性能和化学稳定性等。
第二章晶体构与晶体中的缺陷
![第二章晶体构与晶体中的缺陷](https://img.taocdn.com/s3/m/71835275102de2bd9705884a.png)
第二章 晶体结构与晶体中的缺陷1、证明等径圆球面心立方最密堆积的空隙率为25.9%。
解:设球半径为a ,则球的体积为4/3πa 3,求的z=4,则球的总体积(晶胞)4×4/3πa 3,立方体晶胞体积:33216)22(a a =,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%。
2、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。
解:ρ=m/V =1.74g/cm 3,V=1.37×10-22。
3、 根据半径比关系,说明下列离子与O 2-配位时的配位数各是多少? 解:Si 4+ 4; K + 12; Al 3+ 6; Mg 2+ 6。
4、一个面心立方紧密堆积的金属晶体,其原子量为M ,密度是8.94g/cm 3。
试计算其晶格常数和原子间距。
解:根据密度定义,晶格常数)(0906.0)(10906.094.810023.6/(43/13/183230nm M cm M M a =⨯=⨯⨯=- 原子间距= )(0641.02/0906.0)4/2(223/13/1nm M M a r ==⨯=5、 试根据原子半径R 计算面心立方晶胞、六方晶胞、体心立方晶胞的体积。
解:面心立方晶胞:3330216)22(R R a V ===六方晶胞(1/3):3220282/3)23/8()2(2/3R R R c a V =•••=•= 体心立方晶胞:333033/64)3/4(R R a V ===6、MgO 具有NaCl 结构。
根据O 2-半径为0.140nm 和Mg 2+半径为0.072nm ,计算球状离子所占据的体积分数和计算MgO 的密度。
并说明为什么其体积分数小于74.05%?解:在MgO 晶体中,正负离子直接相邻,a 0=2(r ++r -)=0.424(nm)体积分数=4×(4π/3)×(0.143+0.0723)/0.4243=68.52%密度=4×(24.3+16)/[6.023×1023×(0.424×10-7)3]=3.5112(g/cm 3)MgO 体积分数小于74.05%,原因在于r +/r -=0.072/0.14=0.4235>0.414,正负离子紧密接触,而负离子之间不直接接触,即正离子将负离子形成的八面体空隙撑开了,负离子不再是紧密堆积,所以其体积分数小于等径球体紧密堆积的体积分数74.05%。
第一章晶体的结构及晶体中的缺陷
![第一章晶体的结构及晶体中的缺陷](https://img.taocdn.com/s3/m/86775812a76e58fafab0039e.png)
ˆn c ˆn ˆh s
I
s
在晶体中反轴 对应的操作是先绕(轴)线旋转α度,然后再通过线上 (中心)点进行倒反(或先倒反再旋转),即能产生等价图形。这种连续性 操作的符号为 “ L( ) I ”, 其中“ ”为倒反, “L( )” 为旋转.
由此可知, 与Sn都属于复合对称操作,且都由旋转与另一相连的操 作组合而成。
小角度晶界: 晶粒位向差小于10度的晶界。其结构为位 错列,又分为对称倾侧晶界和扭转晶界。
5、晶界能
Gb W= ( A0 ln 0 ) 4 (1 ) b A0 1+ ln( ) 2r0 G 剪切模量;--失配度; b --柏氏矢量;
--泊松比; r0 与位错线有关的一个
除了对称元素和对称操作的符号和名称的不完全相同外,晶体的宏观 对称性与有限分子的对称性最本质的区别是:晶体的点阵结构使晶体 的宏观对称性受到了限制,这种限制主要表现在两方面: 在晶体的空间点阵结构中,任何对称轴(包括旋转轴、反轴以及以后 介绍的螺旋轴)都必与一组直线点阵平行,与一组平面点阵垂直(除 一重轴外);任何对称面(包括镜面及微观对称元素中的滑移面)都必 与一组平面点阵平行,而与一组直线点阵垂直。 晶体中的对称轴(包括旋转轴,反轴和螺旋轴)的轴次n并不是可以有 任意多重,n仅为1,2,3,4,6,即在晶体结构中,任何对称轴或轴性 对称元素的轴次只有一重、二重、三重、四重和六重这五种,不可 能有五重和七重及更高的其它轴次,这一原理称为“晶体的对称性 定律”。 所以,综合前面的讨论,由于点阵结构的限制,晶体中实际存在 的独立的宏观对称元素总共只有八种,见表2
1.3准晶体 准晶体是1984年科学家发现的一种新的物 质聚集形态。一种介于晶体和非晶体之间的
半导体晶体结构和缺陷
![半导体晶体结构和缺陷](https://img.taocdn.com/s3/m/10ddc721dcccda38376baf1ffc4ffe473268fd11.png)
半导体晶体结构和缺陷半导体是一种介于导体和绝缘体之间的材料,具有很多独特的性质和应用。
在分子水平上,半导体由一系列原子组成。
这些原子有一定的排列方式,形成了晶体结构。
晶体结构的完整性对半导体材料的性能和性质起着至关重要的作用。
半导体晶体结构通常采用三种常见的结构类型:立方晶格、钻石晶格和六边形晶格。
对于立方晶格结构,每个原子都包围着8个相邻的原子,形成了一个立方体。
钻石晶格结构是由两个延伸的、相互交错的面心立方体组成的。
六边形晶格结构则是由六个等距的原子组成的环形结构。
这些不同的结构类型决定了半导体的电子能带结构和电子运动的方式。
半导体晶格结构中可能存在各种类型的缺陷,这些缺陷对半导体材料的性质和性能产生重要影响,同时也为一些应用提供了潜在的优势。
下面介绍一些常见的半导体晶格缺陷。
1.点缺陷:点缺陷是晶体结构中最简单的种类,它们是由缺失或替代原子引起的。
缺失原子形成的空位缺陷能够捕获电子或空穴,从而影响电子和空穴的移动性。
2.赋锗瑕疵:赋锗瑕疵是一种晶格点缺陷,即原子被替代为一个不同元素的原子。
这种替代可能导致该区域的能带发生变化,并影响材料的电子性质。
3.界面缺陷:界面缺陷是晶体结构中两个不同晶体之间的缺陷,形成的界面是不完美的。
这些界面缺陷会导致电子和空穴的散射和捕获,影响材料的载流子传输性质。
4.外延缺陷:外延缺陷是在晶体表面生长的过程中形成的缺陷,由于压力差和表面张力的影响,晶格结构在表面上变形。
这种变形会导致表面损伤和晶格点缺陷的形成。
这些缺陷在半导体材料的性质和性能中起着重要作用。
一方面,缺陷可以捕获和释放电子和空穴,从而影响电荷运输性质和载流子寿命。
另一方面,缺陷还可能引起光学效应,如发光或吸收,这些效应在半导体器件中具有广泛的应用。
因此,对半导体材料中晶格结构和缺陷的深入理解是提高半导体器件性能和开发新型器件的关键。
总之,半导体晶体结构和缺陷对半导体材料的性质和性能起着重要作用。
理解物质的晶体结构和晶格缺陷
![理解物质的晶体结构和晶格缺陷](https://img.taocdn.com/s3/m/928823ab541810a6f524ccbff121dd36a32dc499.png)
理解物质的晶体结构和晶格缺陷晶体结构是物质内部有序排列的一种形态。
物质的晶体结构对其性质和应用有着重要影响。
同时,晶格缺陷是晶体中不完美的区域,对晶体的性质和行为产生显著影响。
本文将探讨晶体结构的基本特征和晶格缺陷的类型以及其对物质性质的影响。
一、晶体结构的基本特征晶体结构的基本特征包括晶体晶格、晶胞和晶格常数。
晶体晶格是指晶体中重复出现的空间网状结构,其由原子、离子或分子组成。
晶胞是晶体中最小重复单元,通常是一个几何图形。
晶格常数则是描述晶格的参数,反映着晶体内部原子排列的距离和方向。
不同晶体具有不同的晶体结构类型,常见的有离子晶体、共价晶体和金属晶体。
离子晶体由正负电荷的离子通过电静力吸引力形成,典型的例子是氯化钠。
共价晶体是由共用电子键将原子结合在一起,如金刚石。
金属晶体则由金属原子通过金属键结合,典型的例子是铜。
二、晶格缺陷的类型晶格缺陷是晶体内部不完美的区域,可能是由于原子或离子在晶体结构中的位置不正常或缺失导致的。
常见的晶格缺陷包括点缺陷、线缺陷和面缺陷。
点缺陷是指晶格中某些点位置发生了改变,比如原子偏离了理想位置或者被替代。
点缺陷可以分为点位错、空位和固溶体三种类型。
点位错是晶体中原子位置发生偏移或旋转导致的缺陷,它会使晶体中的原子排列出现错位。
空位是晶体中某个位置没有被原子占据的缺陷,导致晶格中的空隙。
固溶体是指晶格中某些原子被替代为其他原子。
线缺陷是指晶格中存在一维缺陷,如位错和螺旋走错。
位错是指晶体中原子面或者原子排列出现偏差,它可以是线性或螺旋状的。
螺旋走错是晶体中原子沿着一个螺旋线排列,而不是按照理想的平行方式。
面缺陷是指晶格中存在二维缺陷,如晶界、取向沟槽和堆垛层错。
晶界是不同晶粒之间的交界面,其原子排列比较杂乱。
取向沟槽是晶体中沿着特定方向原子排列比较紊乱的缺陷。
堆垛层错则是晶体中原本平行的晶面在某些位置上错位。
三、晶格缺陷对物质性质的影响晶格缺陷对物质性质的影响是多方面的。
固体物理复习思考题
![固体物理复习思考题](https://img.taocdn.com/s3/m/2458c4fc162ded630b1c59eef8c75fbfc77d94e6.png)
第一部分晶体结构和晶体缺陷1. 原子的负电性:原子得失价电子能力的一种度量。
其定义为:负电性=0.18(电离能+亲和能)2. 共价键的定义和特性能把两个原子结合在一起的一对为两个原子所共有的自旋相反配对的电子结构,称为共价键。
3.金刚石结构为什么要提出杂化轨道的概念?金刚石中的C原子不是以单独C原子的基态为基础的,每个C原子与周围形成四个等价的共价键。
4.V、VI、VII族元素仅靠共价键能否形成三维晶体?Ⅴ、Ⅵ、Ⅶ族元素也可以形成共价键,但由于共价键的饱和性,Ⅴ族元素只能形成三个共价键,Ⅵ、Ⅶ族元素则只能分别形成二个,一个共价键,但仅有三个、二个、一个共价键不能形成三维晶体。
所以对Ⅴ族元素三个共价键常在一个平面上,形成层状结构,而各原子间则靠范德瓦尔斯力结合,对Ⅵ族元素,二个共价键常形成环状结构,各个环之间依靠范德瓦尔斯力结合;对于Ⅶ族元素,常由一个共价键先组成分子,而分子之间依靠范德瓦尔斯力形成分子晶体。
5..晶体结构,空间点阵,格点,布拉菲格子、单式格子和复式格子之间的关系和区别。
(课本第3页)晶体结构=基元+空间点阵6.配位数的定义是什么?点阵中和一个原子相邻的原子数称为配位数(CN)7.晶体中有哪几种密堆积,密堆积的配位数是多少?8.晶向指数,晶面指数是如何定义的?(课本第14页)9.七种晶系和十四种B格子是根据什么划分的?(课本第8页)10.肖特基缺陷、费仑克尔缺陷、色心、F心、V心是如何定义的?色心是一种非化学计量比引起的空位缺陷。
该空位能够吸收可见光使原来透明的晶体出现颜色,因而称它们为色心,最简单的色心是F心。
所谓F心是离子晶体中的一个负离子空位束缚一个电子构成的点缺陷。
(课本第84-89页)11.刃位错和螺位错分别与位错线的关系如何?刃型位错的特点是位错线垂直于滑移矢量;螺型位错的特点是位错线平行于滑移矢量。
12.位错线的定义和特征如何?1.滑移区与未滑移区的分界线;2.位错线附近原子排列失去周期性;3.位错线附近原子受应力作用强,能量高,位错不是热运动的结果;4.位错线的几何形状可能很复杂,可能在体内形成闭合线,可能在晶体表面露头,不可能在体内中断。
晶体结构与缺陷
![晶体结构与缺陷](https://img.taocdn.com/s3/m/203a682ab94ae45c3b3567ec102de2bd9605de22.png)
晶体结构与缺陷晶体是由原子或离子按照一定的空间排列规律组成的。
晶体结构的决定因素是每个离子或原子的电荷、大小、排列方式等。
晶体中还存在各种类型的缺陷,它们对晶体的物理、化学性质产生着深刻的影响。
本文介绍晶体结构和常见的晶体缺陷类型。
晶体结构晶体结构的研究是材料科学的重要组成部分。
晶体结构的基本特征是周期性结构和各向同性。
晶体结构的周期性结构可以用晶格来描述,而各向同性则表现为晶体结构在各个方向都有相同的物理和化学性质。
晶格是晶体结构的一个重要概念,它是通过一系列点阵使晶体结构排列有序的几何体系。
晶格可以分为7种类型,分别为简单立方晶格、面心立方晶格、体心立方晶格、三斜晶系晶格、正交晶系晶格、单斜晶系晶格和六角晶系晶格。
每种晶格有其特有的周期性结构。
在晶格之上,晶体还有原子或离子,它们按照一定的规律排列,形成了晶体的基本单位——晶体胞。
不同晶体胞的形状和大小不同,但其原子或离子的排列方式是相同的。
晶体结构的描述方式可以分为两种,一种是几何描述方式,一种是结构描述方式。
几何描述方式主要是通过晶格参数来描述晶格的形态和大小,结构描述方式通过具体的晶体结构来描述晶体基本单位的排列方式。
晶体缺陷晶体缺陷是指晶体中原子在排列方式上的失序或错误。
晶体缺陷是不可避免的,因为完美的晶体无法在实验条件下合成。
晶体缺陷可以改变晶体的物理和化学性质,严重的缺陷甚至会导致晶体失去结构完整性。
常见的晶体缺陷包括点缺陷、面缺陷和体缺陷。
点缺陷是晶体结构中位置上的失序或错误,如空位、插入物和替代物等。
面缺陷包括晶界、位错和孪晶等。
体缺陷是晶体中局部形成的缺陷,如空泡、裂纹、孔洞和夹杂等。
晶体缺陷的产生有多种原因,主要包括制备过程中的失误和温度、压力等外界条件的变化。
晶体缺陷对晶体的物理和化学性质产生深刻影响,如制备材料中的一些关键性质可能由于缺陷而发生变化。
晶体结构和晶体缺陷是材料科学中的重要概念。
晶体结构的周期性结构和各向同性为晶体的物理和化学性质提供了基础保障,晶体缺陷则可以改变晶体的物理和化学性质。
3-4晶体结构与缺陷
![3-4晶体结构与缺陷](https://img.taocdn.com/s3/m/0518dd1aa76e58fafab003e1.png)
稳定晶格作用
形成固溶体能阻止某系晶型转变的发生,起到稳 定晶格的作用,例:
水泥熟料中β-C2S(水化活性)→γ -C2S(无活性) → β-C2S+P2O5/Cr2O3形成固溶体,阻止转变 ZrO2 : 高 温 立 方 结 构 ( 萤 石 结 构 ) 中 存 在 大 量 “ 空 洞”,为离子扩散提供扩散通道。 但是:立方 ↔ 四方 ↔ 单斜,常温失去立方结构 → ZrO2+CaO/Y2O3,稳定成立方相,快离子导体
rSi 4+ = 0.026nm, rAl 3+ = 0.039nm
组分缺陷
组分缺陷:当发生不等价的置换时,必然产生组 分缺陷,即产生空位或进入空隙 影响缺陷浓度因素:取决于掺杂量(溶质数量)和 固溶度。其固溶度仅百分之几。
例如: (1) 产生阳离子空位
MgAl2O4 • '' Al2 O3 ⎯⎯⎯⎯ 2 AlMg + VMg + 3Oo →
离子类型相同,容易形成连续固溶体
化学键
化学键性质相近,容易形成连续固溶体
(4)离子的电价影响
离子价相同或离子价总和相等时才能生成 连续置换型固溶体
钠长石Na[AlSi3O8]→钙长石Ca[Al2Si2O8], 离子 电价总和为+5价 Na + + Si 4+ ↔ Ca 2+ + Al 3+ 复合钙钛矿型压电陶瓷材料(ABO3型)中 B位取代 A位取代
固溶体与类质同晶
类质同晶:物质结晶时,其晶体结构中本应由某 种离子或原子占有的配位位置,一部分被介质中 性质相似的它种离子或原子占有,共同结晶成均 匀的呈单一相的混合晶体,但不引起键性或晶体 结构型式发生质变的现象称为类质同晶。 矿物学中,固溶体=类质同晶 严格地说:类质同晶=置换型固溶体
第二章 晶体结构与晶体中的缺陷
![第二章 晶体结构与晶体中的缺陷](https://img.taocdn.com/s3/m/a470ab8183d049649b665860.png)
等。鲍林第一规则强调的是正离子周围负离子多面
体类型,并把它看成是离子晶体结构基本单元,在
稳定的结构中,这种基本单元在三维空间规则排列。
注意:把离子晶体看成了刚性球体,实际中,如果
正离子电荷数大,负离子半径大,还要考虑极化变
形问题,往往有例外,如AgI,r+/r-, =0.577,Z=6,
实际上,Z=4。
子成六方环状排列(图2-2).每个碳原子与三个相邻
的碳原子之间的距离相等,都为0.142nm。但层与
层之间碳原子的距离为0.335nm。石墨的这种结构,
表现为同一层内的碳原子之间是共价键,而层之间
的碳原子则以分子键相连。
► C原子的四个外层电子,在层内形成三个共价键,
多余的一个电子可以在层内移动,类似于金属中的 自由电子。
(共棱),还是三个顶点(共面)。
► 对于一个配位多面体,正离子居中,负离子占据
顶角,当两个配位体由共顶→共棱→共面,两个 正离子间距离不断缩短 。
举 例
►
如两个四面体共用一个顶点,中心距离设为1,共用两个,
三个顶点,距离为0.58、0.33,而两个八面体中心距共顶
(1),共棱(0.71),共面(0.58)。
构的层与层之间则依靠分子间力(范德华力)结合起来,形 成石墨晶体。石墨有金属光泽,在层平面方向有很好的导
电性质。由于层间的分子间作用力弱,因此石墨晶体的层
与层间容易滑动,工业上用石墨作固体润滑剂。
石墨结构
应 用
►
石墨硬度低,易加工,熔点高,有润滑感,导电性
能良好。可以用于制作高温坩埚、发热体和电极, 机械工业上可做润滑剂等。人工合成的六方氮化硼
离由它们的半径之和决定,而Si4+的配位数是4,是 由rSi4+/ro2-=0.293(在0.225~0.414之间,配位数是4) 值决定。(rSi4+=0.41Å ro2-=1.40Å)
第二章晶体结构与晶体中的缺陷
![第二章晶体结构与晶体中的缺陷](https://img.taocdn.com/s3/m/3c8a23ae852458fb760b563b.png)
第二章晶体结构与晶体中的缺陷内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构,用以掌握与本专业有关的各种晶体结构类型。
介绍了实际晶体中点缺陷分类;缺陷符号和反应平衡。
固熔体分类和各类固熔体、非化学计量化学化合物的形成条件。
简述了刃位错和螺位错。
硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。
这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。
硅离子是高点价低配位的阳离子。
因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。
表2-1列出硅酸盐晶体结构类型及实例表2-1 硅酸盐晶体的结构类型真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。
晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。
点缺陷根据产生缺陷的原因分类,可分为下列三类:(1)热缺陷(又称本征缺陷)热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。
弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。
肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(2)杂质缺陷(非本征缺陷)(3)非化学计量化学化合物为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。
表2-2 Kroger-Vink 缺陷符号(以MTX2-为例)缺陷反应方程式书写规则:(1)位置关系。
(2)质量平衡。
(3)电荷守恒。
热缺陷平衡浓度n/N :n/N二exp(- : G t/2kT)其中n——TK时形成n个孤立空位;G t――热缺陷形成自由焓;h――波儿兹曼常数。
晶体结构与晶体缺陷
![晶体结构与晶体缺陷](https://img.taocdn.com/s3/m/4edaf5e3d05abe23482fb4daa58da0116c171fc4.png)
晶体结构与晶体缺陷晶体是物质的一种固态形态,具有有序的排列结构。
其内部的原子、离子或分子按照一定的规律排列,形成晶体的结构。
晶体结构对于物质的性质和应用具有重要影响。
然而,即使在完美的晶体中,也难免存在一些缺陷。
本文将以晶体结构与晶体缺陷为主题,介绍晶体的基本结构和常见的晶体缺陷,探讨它们对于晶体性质的影响。
一、晶体结构晶体结构是晶体内部原子、离子或分子的有序排列方式。
根据晶体结构的不同,可以分为几种常见的晶体类型,包括立方晶系、四方晶系、六方晶系、正交晶系、单斜晶系和三斜晶系等。
每种晶体类型都有其特定的晶体结构特征和晶胞参数。
晶体结构的基本单位是晶胞,晶胞是由若干个晶体格点组成的最小重复单元。
晶格点是表示晶体结构的点,晶格点的排列规则形成了晶体的结构。
晶体结构中有各种键的存在,包括离子键、共价键、金属键等,这些键的类型和强度直接影响晶体的性质。
二、晶体缺陷即使是在完美的晶体中,也不可避免地存在着各种缺陷。
晶体缺陷可以分为点缺陷、线缺陷和面缺陷三种类型。
1. 点缺陷点缺陷是晶体中原子、离子或分子的位置发生了偏离,形成了缺陷点。
常见的点缺陷包括晶格缺陷和间隙缺陷。
晶格缺陷是晶体中原子、离子或分子替换或缺失造成的缺陷。
替代缺陷发生在晶体中的一个位置被其他原子替换,导致原子数量和类型的改变。
缺失缺陷指的是晶体中的某个位置没有被原子、离子或分子占据。
间隙缺陷是晶体中晶格位置周围存在空隙或异位原子、离子或分子的缺陷。
空位缺陷是指晶格位置周围存在未被占据的空位,而异位缺陷则是指晶体中的某个位置被不同类型的原子、离子或分子占据。
2. 线缺陷线缺陷是晶体中原子、离子或分子排列出现错乱或断裂的缺陷,形成了缺陷线。
常见的线缺陷包括位错和蚀刻缺陷。
位错是晶体中晶面的错位,导致原子排列出现错乱的缺陷。
位错可以分为位错线和位错面,具有重要的力学、电学和光学性质。
蚀刻缺陷是晶体中由于外界因素(如化学蚀刻)导致晶体表面形成凹凸不平、出现凹陷或凸起的缺陷。
第二章-晶体结构与晶体中的缺陷
![第二章-晶体结构与晶体中的缺陷](https://img.taocdn.com/s3/m/801c5f3d852458fb760b5639.png)
空位
杂质质点
间隙质点
晶体中的点缺陷
② 按缺陷产生的原因分类
a. 热缺陷 b. 固溶体 c. 非化学计量化合物
2.点缺陷的符号表征:Kroger-Vink符号
而成的。
• MgO具有NaCl结构,根据O2-半径0.140nm和Mg2+半径为 0.072nm,计算① 球状离子所占据的空间分数(堆积系数) ;② MgO的密度。
• 解:① MgO属于NaCl型结构,即面心立方结构,每个晶胞 中含有4个Mg2+和4个O2-,故MgO所占体积为
• VMgO=4×4/3π (RMg2+3+RO2-3) • =16/3π ×(0.0723+0.1403) • =0.0522(nm3)
蒙脱石结构 三层型[Al(O4OH2)]7-
• 五、架状结构: • (1)结构特点: • [SiO4]4-以四个桥氧连接成三维方向架状。 • (2)种类 • 石英族:纯硅氧骨架形成 • 铝硅酸盐:一部分铝取代硅的位置。
石英族: [SiO4]4-排布方式不同,形成不同的变体, 从而产生同质多晶现象。
缺陷的含义:通常把晶体点阵结构中周期 性势场的畸变称为晶体的结构缺陷。 理想晶体:质点严格按照空间点阵排列。 实际晶体:存在着各种各样的结构的不完 整性。
晶体结构缺陷的类型
分类方式:
几何形态:点缺陷、线缺陷、面缺陷等
形成原因:热缺陷、固溶体、非化学计量化合
物等
一、点缺陷(零维缺陷)
缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺 寸都很小。 1.类型 ① 根据点缺陷对理想晶格偏离的几何位置分类 a. 空位(vacancy) 没有被占据的正常结点的位置 b. 间隙质点(interstitial particle) 进入晶格间隙的质点 c.杂质质点(foreign particle) 占据正常结点位置或间隙位置的外来质点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.球的密堆积
(1)六方密堆积:(hexagonal closest packing, hcp)
同层每个 球周围有六个 球,第三层与 第一层对齐, 形成ABAB… 排列方式。
配位数:12
(2)面心立方密堆积:(cubic closest packing,ccp)
第三层与 第一层不是对 齐的,有错位, 以ABCABC… 方式排列。
(2) 原子晶体 原子晶体(atom crystal):由原子排列在晶
格结点上,相互间以共价键结合而构成的晶 体。
特征结构:共价键有方向性和饱和性,不 是紧密堆积,配位数 低。晶体中没有独 立的分子存在。
例如:金刚石晶体
特征物性:有较高的熔点、硬度,是电
的不良导体,在一般溶剂中都不溶解,延展 性差。
简单正交 底心正交
体心正交
面心正交
简单单斜
底心单斜
简单三斜
单晶(single crystal):单个晶体构成的物 体。在单晶体中所有晶胞均呈相同的位向。 一般所谓的晶体都是泛指单晶体。
多晶(polycrystals):由许多晶体(晶粒) 构成的物体。或者说多晶体是由许多取向不 同而随机排布的小晶体组成。
晶体结构和晶体缺陷
晶体
非晶体
晶体与非晶体的区别
晶体
非晶体
规则几何外形 确定的熔点
各向异性
无定形 无确定的熔点
各向同性
对X射线的衍射效应
无
对称性
无
将晶体内的微粒视为几何上的点, 这些点所 组成的几何构型称为晶格(crystal lattice) 。而 微粒所占有的位置称为晶格结点( lattice point) 。
晶胞(Unit cell):晶体的最小重复单元, 通过晶胞在空间平移无隙地堆砌而成晶体。
晶胞的两个要素:
(1)晶胞的大小与形状:
由晶胞参数a,b,
c,α,β,γ表
示, a,b,c 为 六面体边长, α,
β,γ 分别是bc
ca , ab 所形成的 三个夹角。
(2) 晶胞的内容:粒子的种类,数目及它在 晶胞中的相对位置。
特征结构:配位数高,晶体中没有独立 的分子存在。离子在晶体中采取紧密堆积方 式。 阴离子:大球,密堆积,形成空隙。 阳离子:小球,填充空隙。 规则:阴阳离子相互接触稳定;
配位数大,稳定。
三种典型的离子晶体
NaCl型 晶格: 面心立方 配位比: 6:6
晶胞中离子的个数:
(红球-Na+ , 绿球-Cl-)
Z1 Z2 r+ r-
U 熔点 硬度
/pm /pm /kJ·mol-1 /oC
1 1 95 136 1 1 95 181 1 1 95 195 1 1 95 216 2 2 65 140 2 2 99 140 2 2 113 140 2 2 135 140
920 992 3.2 770 801 2.5 733 747 <2.5 683 662 <2.5 4147 2800 5.5 3557 2576 4.5 3360 2430 3.5 3091 1923 3.3
影响晶格能的因素:
① 离子的电荷(晶体类型相同时) Z↑,U↑ 例:U(NaCl)<U(MgO)
② 离子的半径(晶体类型相同时) R↑,U↓ 例:U(MgO)>U(CaO)
特征物性:有较高的熔点、硬度,是电的 良导体,但延展性差,较脆。
晶格能对离子晶体物理性质的影响
NaCl 型 离子晶体
NaF NaCl NaBr NaI MgO CaO SrO BaO
配位数:12
(3)体心立方堆积:(boyd centered cubic packing,bcc)
立方体的 中心和8个顶角 各为一个球占 据。
配位数:8
密堆积结构中存在许多空隙 四面体空隙
八面体空隙
3.晶体类型
(1) 离子晶体 离子晶体(ionic crystal):正、负离子交
替排列在晶格结点上,相互间以离子键结合 而构成的晶体。
配位数 4 6 8
构型 ZnS 型 NaCl 型 CsCl 型
晶格能U (lattice energy):在标准状态下, 由离子晶体变为气态的正、负离子时所吸收 的能量。单位:kJ·mol-1
晶格能可用于衡量晶体离子键的强弱
例如:NaCl(s) △rHm Na+ (g) + Cl- (g) △ rHm78k6Jmo-1l U 78k6Jmo-1l
按晶胞参数的差异将晶体分成七种晶系。
晶系
边长
夹角
晶体实例
立方晶系 a = b = c α=β=γ= 900
NaCl
三方晶系 四方晶系 六方晶系 正交晶系
单斜晶系 三斜晶系
a=b=c a = b≠c a = b≠c a≠b≠c
a≠b≠c a≠b≠c
α=β=γ≠900 α=β=γ= 900 α=β= 900, γ= 1200 α=β=γ= 900
常见的原子晶体有金刚石、SiC、SiO2、 Si、Ge等。
(3)分子晶体 分子晶体(molecular crystal):由分子排列
在晶格结点上,相互间以分子间力结合而构 成的晶体。
特征结构:采取紧密堆积,配位数高, 晶体中有独立的分子存在。
特征物性:熔点、沸点低,硬度小,某 些极性分子的水溶液能够导电,延展性也很 差。
α=γ= 900, β≠ 900 α≠β≠γ≠ 900
Al2O3 SnO2 AgI HgCl2
KClO3 CuSO4·5H2O
按带心型式分类,将七大晶系分为14种
型式。例如,立方晶系分为简单立方、体心
立方和面心立方三种型式。
晶格的14种型式
简单立方
体心立方
面心立方
简单四方 体心四方
简单六方
简单菱形
Na:12114个 Cl:81614个
4
82
CsCl型
晶格:简单立方 配位比: 8:8 (红球-Cs+ , 绿球-Cl-)
Cs :1个
晶胞中离子的个数: Cl- :811个 8
ZnS型(立方型)
晶格: 面心立方 配位比: 4:4 (红球-Zn2+ , 绿球-S2-)
晶胞中离子的个数:
Zn2+ :4个 S2- :61814个
28
半径比(r+/r-)规则: 其中一层横截面:
(4r)2 2(2r 2r)2 令r 1
r/r 0.414
NaCl晶体:
r/r 0.ቤተ መጻሕፍቲ ባይዱ14理想的稳定结构(NaCl)
r+/r- < 0.414
r+/r- > 0.414
离子半径比与配位数的关系
r / r 0.225 → 0.414 0.414 → 0.732 0.732 → 1.00