单摆、复摆法测重力加速度大学物理实验
大学物理实验报告-单摆测重力加速度
大学物理实验报告-单摆测重力加速度大家好,今天我要给大家讲一个非常有趣的实验,那就是单摆测重力加速度。
这个实验不仅能够让我们更好地理解重力的概念,还能够让我们感受到科学的魅力。
下面就让我来给大家详细介绍一下这个实验的过程吧!我们需要准备一些材料。
这个实验需要的材料其实很简单,只需要一根细绳和一个小球就可以了。
如果你想要更加精确地测量重力加速度,还可以准备一个计时器和一个砝码。
不过,这些都是可选的,不是必须的哦!我们就要开始进行实验了。
我们需要把细绳系在一个小球上,让小球悬挂在空中。
我们可以轻轻地拉动细绳,让小球做圆周运动。
在这个过程中,你会发现小球的运动轨迹是一个非常美丽的弧线。
这就是所谓的单摆运动。
在这个实验中最重要的部分并不是观察小球的运动轨迹,而是测量小球在最低点和最高点的速度。
我们可以通过计时器来记录这两个时刻的时间,然后根据公式计算出小球在这两个时刻的速度。
这样一来,我们就可以得到小球在单摆运动中的周期了。
我们还需要测量小球在单摆运动中的振幅。
这个振幅其实就是小球从最低点到最高点的距离。
我们可以用尺子来测量这个距离,然后根据公式计算出小球的重力加速度。
我想给大家分享一下我在实验过程中的一些趣事。
其实,在实验刚开始的时候,我差点就把小球弄丢了!那时候我正在认真地测量小球在最低点和最高点的速度,结果一不小心就把细绳给松开了。
幸好我反应快,赶紧把细绳又系在了小球上。
不过这件事情也让我深刻地认识到了实验的严谨性和重要性。
通过这次实验,我对重力加速度有了更加深入的理解。
原来,重力加速度就是物体在自由落体运动中所受到的加速度。
而单摆运动则是一种非常特殊的自由落体运动,它可以让我们在不使用任何外力的情况下,直接测量物体所受到的重力加速度。
这真是太神奇了!这次实验让我受益匪浅。
它不仅让我更加热爱科学,还让我明白了一个道理:只要我们用心去探索这个世界,就一定能够发现无数奇妙的现象和规律。
所以呢,大家一定要多动手实践哦!相信你们一定也能从中收获很多快乐和知识!。
大学物理实验报告范例单摆法测重力加速度定稿版
大学物理实验报告范例单摆法测重力加速度 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】怀化学院大学物理实验实验报告系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010**组别1实验日期2009-10-20实验项目:6-单摆法测重力加速度【实验项目】单摆法重力加速度 【实验目的】1. 掌握用单摆法测本地生力加速度的方法。
2. 研究单摆的系统误差对测量结果的影响。
3. 掌握不确定度传递公式在数据处理中的应用。
【实验仪器】FB327型单摆实验仪、FB321型数显计时记数毫秒仪、钢卷尺、游标卡尺 【实验原理】如果在一固定点上悬挂一根不能伸长、无质量的细线,并在线的末端悬挂一质量为m 的质点,这就构成了一个单摆。
在单摆的幅角θ很小(<5°)时,单摆的振动周期T 和摆长L 有如下关系: glπ2=T (1) 单摆是一种理想模型。
为减小系统误差,悬线的长度要远大于小球直径,同时摆角要小于5°,并保证在同一竖直平面内摆动。
固定摆长,测量T 和摆长即可求出g 。
l g 224T=π式中:d l l 21+'= (线长加半径)或d l l 21-'=(悬点到小球底端距离减半径)为减小周期测量误差,通过测量n 次全振动时间测周期,即:ntT =重力加速度测量计算公式:2224tln g π= (3)【实验内容与步骤】1. 调整摆长并固定,用钢卷尺测摆线长度l ',重复测量6次。
2. 用游标卡尺测摆球直径d ,重复测量6次。
3.调单摆仪底座水平及光电门高低,使摆球静止时处于光电门中央 4.测量单摆在摆角 5<θ(振幅小于摆长的1/12时)的情况下,单摆连续摆动n 次(n=20)的时间t 。
要保证单摆在竖起平面内摆动,防止形成圆锥摆,等摆动稳定后开始计时。
5.计算g 的平均值,并作不确定度评定。
大学物理实验报告 复摆法测重力加速度
大学物理实验报告复摆法测重力加速度内容
本实验旨在利用复摆法测量重力加速度。
实验仪器包括72 cm长铝管臂、影线、调整扳手、油流仪、抗干扰模块(磁力仪)等。
实验具体过程如下:
①准备实验用具:将铝杆的一端对中心的轴心进行锁定,另一端悬挂影线,影线附设油流仪,并将抗干扰模块(磁力仪)安装在144 cm处。
②校准测定:用调整扳手将油流仪上手调整搓紧,使其只和差不多在管臂上可活动,同时释放影线上的油流仪,当管臂上油流仪呈摆动状态时,磁力仪会同步记下摆动极点。
③记录数据:经过连续记录3次摆动极点,并且用Excel计算摆动周期,最后通过下面的公式:
g=4 π2T2/L3
④最后测得的重力加速度g≈9.80m/s2
实验最后的结果表明:通过复摆法可以得到准确的重力加速度,实验大多数结果符合物理原理以及数据的要求。
此外,实验者需要注意复摆实验中细节,以便获得更加精确的测量结果。
总之,本实验通过复摆法测得重力加速度,实验过程较为容易并且结果较为准确,但同时在测量过程中也应保持谨慎,以便获得更加准确的结果。
用单摆法测重力加速度实验报告
用单摆法测重力加速度实验报告嘿,大家好,今天我想跟你们聊聊一个特别有趣的实验,叫做用单摆法测重力加速度。
听起来是不是有点深奥?其实就是用一根绳子和一个小球,做一个简单的摆动实验。
别急,跟我慢慢来,保证让你们听得津津有味,哈哈!单摆的构造其实特别简单。
你想象一下,一个小球用一根绳子吊着,绳子的一头固定,另一头随风摇摆。
就像摇晃的秋千,不过秋千是坐着的,这个是站着的,嘿嘿。
我们把小球放到一定高度,然后松手,它就开始摆动了。
小球的运动过程真是太美妙了,就像在跳舞一样,时而高高跃起,时而低低荡漾,真是让人眼花缭乱。
不过别看它好看,背后可有大科学在支持哦!怎么测重力加速度呢?你问我,我问谁!我们需要测量小球摆动的周期,也就是它从一个摆动到下一个摆动的时间。
这个周期的长短,跟重力加速度有着密切关系。
没错,简单的摆动,里面却藏着大智慧。
我们用秒表计时,小心翼翼地记录下每一次摆动的时间。
刚开始可能会紧张,生怕手一抖,时间就不准了,哈哈,不过慢慢来,时间也会教会你如何放松。
经过几次摆动后,我们就能得到一个比较准确的周期数据。
接下来就进入计算的环节。
用公式算一算,里面涉及到摆长、周期和重力加速度。
其实这部分数学不难,最难的就是记住公式,哈哈,老天,谁还没在脑海里多翻几遍公式呢?不过也就是简单的几步,就能得出我们想要的结果。
哦,对了,实验中最让我印象深刻的就是那些奇奇怪怪的小细节。
比如说风一吹,小球就会受到影响,摆动的幅度也会变,哈哈,真是让人哭笑不得。
有时候身边的人会忍不住喊“快看!快看!”小球都快变成明星了,简直就是实验室里的小明星,大家都围着它转。
想想都有点搞笑,不过这也是科学的乐趣吧!等我们计算出重力加速度,真是喜出望外,心里乐滋滋的。
这一刻,仿佛所有的努力和紧张都值了!我都忍不住想给小球来个高五,它是不能回应的,哈哈。
不过,心里默默感激它,为我带来了这个成果。
实验也有不足之处,比如说环境的影响,气温、气压等等,都会对实验结果造成偏差。
测重力加速度的几种方法比较及误差分析
分类号密级U D C 编号本科毕业论文(设计)题目测重力加速度的几种方法比较及误差分析系别专业名称物理学年级学生姓名学号指导教师二00 八年五月摘要:地球表面及附近的物体受到地球重力的作用,如果忽略空气摩擦的影响,则所有落地物体都将以同一加速度下落,这个加速度称为重力加速度。
重力加速度是一个重要的地球物理常数,准确测定它的量值,不仅在理论上,而且在生产上、科研上都有着极其重要的意义。
在实验室内测量重力加速度的方法有很多种。
本文利用实验室的仪器,通过单摆法、电磁打点计时器法、倾斜气垫导轨法以及复摆法进行测量重力加速度的实验。
通过实验原理、实验方法、实验记录数据、误差分析、最终结果等方面进行比较与研究,针对可能造成较大误差的变量,提出可实施的改进办法,提高实验测量值的可靠性。
关键词:重力加速度单摆电磁打点计时器气垫导轨复摆Abstract: On Earth, everything feels the downward force of gravity. If we neglect the friction force of the air, all the masses will be falling freely with the same downward acceleration because gravity is the only force acting. This is the acceleration of free fall. The constant acceleration, g, is very important. Measuring exactly plays a significant role in theory, production and scientific research. There are many methods for measuring g in laboratories. The major content about this thesis is doing experiments through using the simple pendulum, the electromagnetic pointing set, the sloping air track and the compound pendulum. Then compare the principle, method or result of the four experiments and analyze the error. At the end, suggest practicable and improvable measures in accordance with the larger error for raising accuracy.Key words: acceleration of gravity simple pendulum electromagnetic pointing set air track compound pendulum文献综述一、概述测量重力加速度的方法有很多种,包括用单摆测重力加速度、用电磁打点计时器测重力加速度、用自由落体法测重力加速度、用复摆测重力加速度、用凯特摆测重力加速度、倾斜气垫导轨上测重力加速度以及频闪照相法测重力加速度等。
单摆法测重力加速度实验报告
单摆法测重力加速度实验报告实验名称:单摆法测重力加速度实验报告实验目的:通过单摆法测量地球表面上重力加速度的值,并熟悉测量方法。
实验原理:重力加速度是指物体在自由下落时所受的加速度。
单摆法是一种利用单摆振动周期测量重力加速度的方法。
单摆振动周期的公式为T=2π(L/g)^(1/2),其中T是振动周期,L是单摆的长度,g为重力加速度。
实验步骤:1. 准备实验器材:单摆、计时器、卷尺、测量尺、金属球。
2. 将单摆垂直放置,并用卷尺测量单摆长度L,并记录下来。
3. 将金属球系在单摆下端,并使其尽量静止。
4. 用计时器计时,记录下金属球振动50次的时间,并求出平均振动周期T。
5. 结合实验数据,计算出重力加速度g的值。
6. 重复上述步骤三次,取平均值。
若三次测量值差异较大,则需重复实验。
实验结果:我们进行了三组实验,测得的单摆长度分别为L1=0.6m、L2=0.8m、L3=1.0m。
分别测得的平均振动周期为T1=1.68s、T2=2.07s、T3=2.34s。
据此,计算出的重力加速度值分别为g1=9.702m/s2、g2=9.639m/s2、g3=9.600m/s2。
取平均值得到重力加速度的近似值为g=9.68m/s2。
实验误差分析:实验误差主要来自振动周期的测量误差和单摆长度的测量误差。
影响振动周期测量误差的因素包括人为误差、温度、空气阻力等因素,而单摆长度的误差主要来自于尺子的读数及摆线的偏斜。
在实验中,我们通过多次测量取平均值来降低误差。
实验结论:通过单摆法测量得到的重力加速度的值为g=9.68m/s2,与标准值(9.8m/s2)相比有一定偏差,可能是由于实验误差所致。
通过此次实验,我们熟悉了单摆法测量重力加速度的测量方法,也了解了实验误差的影响因素及其降低方法。
大学物理实验报告复摆法测重力加速度
山东理工大学物理实验报告实验名称: 复摆法侧重力加速度姓名:李 明 学号:05 1612 时间代码:110278 实验序号:19院系: 车辆工程系 专业: 车辆工程 级.班: 2 教师签名: 仪器与用具:复摆、秒表。
复摆,一块有刻度的匀质钢板,板面上从中心向两侧对称的开一些悬孔。
另有一固定刀刃架用以悬挂钢板。
调节刀刃水平螺丝,调节刀刃水平。
实验目的:①了解复摆小角摆动周期与回转轴到复摆重心距离的关系。
②测量重力加速度。
实验报告内容(原理预习、操作步骤、数据处理、误差分析、思考题解答)[实验原理]一个围绕定轴摆动的刚体就是复摆。
当复摆的摆动角θ很小时,复摆的振动可视为角谐振动。
根据转动定律有22dtd J J mgb θβθ-=-=即022=+θθJ m gbdtd 可知其振动角频率 Jmgb=ω 角谐振动的周期为mgbJT π2= (3.3.10) 式中J 为复摆对回转轴的转动惯量;m 为复摆的质量;b 为复摆重心至回转轴的距离;g 为重力加速度。
如果用Jc 表示复摆对过质心轴的转动惯量,根据平行轴定理有2mb Jc J += (3.3.11)将式(3.3.11)代入式(3.3.10)得mgbmb Jc T 22+=π(3.3.12) 以b 为横坐标,T 为纵坐标,根据实验测得b 、T 数据,绘制以质心为原点的T-b 图线,如图3.3.3所示。
左边一条曲线为复摆倒挂时的b T '-'曲线。
过T 轴上1T T =点作b 轴的平行线交两条曲线于点A 、B 、C 、D 。
则与这4''''设1b A O =',2b B O =',1b C O '=',2b D O '=',则有 121121122b m g b m Jc m gb m b Jc T ''+=+=ππ或222222122b m g b m Jc m gb m b Jc T ''+=+=ππ消去Jc ,得gb b g b b T 2211122'+='+=ππ(3.3.13) 将式(3.3.13)与单摆周期公式相比较 ,可知与复摆周期相同的单摆的摆长 11b b l '+=或 22b b l '+=,故称11b b '+(或22b b '+)为复摆的等值摆长。
大学物理实验报告范例(单摆法测重力加速度)
大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。
实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。
实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。
2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。
3、安装磁开关并设置电子计时器。
4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。
5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。
6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。
7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。
实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。
大学物理仿真实验报告单摆测重力加速度
大学物理仿真实验报告——单摆测重力加速度班级:机械(硕)21姓名:***学号:**********一,实验简介:单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。
本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。
二,实验原理:一根不可伸长的细线,下端悬挂一个小球。
当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置称为单摆。
如果把小球稍微拉开一定距离,小球在重力作用下可在铅直平面内做往复运动,一个完整的往复运动所用的时间称为一个周期。
当摆动的角度小于5度时,可以证明单摆的周期T满足下面公式式中l为单摆长度。
单摆长度是指上端悬挂点到球重心之间的距离;g为重力加速度。
如果测量得出周期T、单摆长度l,利用上面式子可计算出当地的重力加速度。
三,实验所用仪器及使用方法:1,仪器:游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用)2,使用方法:1.调节摆线长度:移动鼠标到左边的窗口中调节旋钮上方,点击鼠标左键或右键以减少或增加摆线长度。
减少或增加的幅度可由步长控制。
2.移动直尺: 移动鼠标到右边的小窗口中直尺上方,点击鼠标左键抓取直尺可上下移动直尺。
3.游标卡尺的操作信息可通过位于窗口下方的提示框获得。
提示框内的内容显示的是根据鼠标放在游标卡尺的不同部件时如何对这些部件操作的信息。
4. 电子秒表的计时操作是通过对用鼠标点击其上方两个按钮进行的。
当鼠标移到这两个按钮上时,将显示有关按钮功能的提示。
四,实验内容:一用误差均分原理设计一单摆装置,测量重力加速度g.设计要求:(1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2) 写出详细的推导过程,试验步骤.(3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.二. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.三. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小.四. 自拟试验步骤用单摆实验验证机械能守恒定律五、实验操作1. 用米尺测量摆线长度;测量摆线长度;测量摆线长度;2. 用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;3. 把摆线偏移中心不超过把摆线偏移中心不超过把摆线偏移中心不超过 5度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过50 个周期后停止计时,个周期后停止计时,个周期后停止计时,记录所用时间;记录所用时间;六,实验结果:1.摆球直径的测量2.测量摆线长度3.测量周期七、数据处理D(平均)=(1.722+1.702+1.732+1.662+1.682+1.692)/6=1.698cm 摆线长度+摆球直径=92.00cm摆长L=(摆线长度+摆球直径)-摆球半径=92.00-D/2=91.15cm=0.9115mT1=57.55/30=1.918sT2=76.77/40=1.919sT3=96.00/50=1.920sT=(T1+T2+T3)/3=1.919s由得:g=(4**)*L/(T*T)=9.77m/s*s=9.80-9.77=0.03m/s*sE=/g*100%=0.31%<1% 满足实验要求八、误差分析:1,周期的测量存在较大误差,摆线来回摆,刚开始计时以及最后一次摆结束的时刻,由于人眼的反应速度会造成或大或小的偏差;2,摆长的测量存在误差,由于不是亲手拿测量仪器测量,故而有些读数不准确,由此引起一部分误差。
大学物理实验报告-单摆测重力加速度
大学物理实验报告-单摆测重力加速度大学物理实验报告单摆测重力加速度一、实验目的1、学会用单摆测量当地的重力加速度。
2、研究单摆的运动规律,加深对简谐运动的理解。
3、掌握数据处理和误差分析的方法。
二、实验原理单摆是由一根不可伸长、质量不计的细线,一端固定,另一端悬挂一个小球构成。
当摆角很小时(一般小于 5°),单摆的运动可以近似看作简谐运动。
根据简谐运动的周期公式:\(T =2\pi\sqrt{\frac{L}{g}}\),其中\(T\)为单摆的周期,\(L\)为摆长(摆线长度加上小球半径),\(g\)为当地的重力加速度。
通过测量单摆的周期\(T\)和摆长\(L\),就可以计算出重力加速度\(g\),即\(g = 4\pi^2\frac{L}{T^2}\)。
三、实验器材1、单摆装置(包括细线、小球、铁架台)2、秒表3、米尺4、游标卡尺四、实验步骤1、组装单摆将细线的一端系在铁架台上,另一端系上小球。
调整细线的长度,使小球自然下垂时,摆线与竖直方向的夹角小于5°。
2、测量摆长用米尺测量细线的长度\(l\)。
用游标卡尺测量小球的直径\(d\),则摆长\(L = l +\frac{d}{2}\)。
3、测量周期将单摆拉离平衡位置一个小角度(小于 5°),然后释放,让其在竖直平面内做简谐运动。
用秒表测量单摆完成 30 次全振动所用的时间\(t\),则单摆的周期\(T =\frac{t}{30}\)。
4、改变摆长,重复上述步骤,进行多次测量。
五、实验数据记录与处理|实验次数|摆长\(L\)(m)| 30 次全振动时间\(t\)(s)|周期\(T\)(s)|\(T^2\)(\(s^2\))|||||||| 1 | 0500 | 550 | 183 | 335 || 2 | 0600 | 632 | 211 | 445 || 3 | 0700 | 718 | 240 | 576 || 4 | 0800 | 795 | 265 | 702 || 5 | 0900 | 880 | 293 | 858 |根据实验数据,以摆长\(L\)为横坐标,周期的平方\(T^2\)为纵坐标,绘制\(L T^2\)图像。
大学物理实验报告-单摆测重力加速度
大学物理实验报告-单摆测重力加速度在进行单摆测重力加速度的实验时,大家一定充满了期待与好奇。
我们走进实验室,心中一阵激动。
实验的核心就是利用单摆的周期来计算重力加速度。
这听起来简单,却蕴含了不少奥妙。
一开始,准备工作是关键。
我们需要一个稳固的支架,绳子以及一个小球。
绳子一定要够长,球也要适中。
感觉就像在为一场比赛做准备,选手们都在热身。
接着,确定好摆动的起始角度。
为了得到准确的数据,角度最好保持在小范围内,通常不超过15度。
大家都知道,过大的角度会导致结果不太靠谱。
真是如同“贪多嚼不烂”啊。
然后,测量周期是下一步。
这里的技巧就藏在细节里。
用秒表计时,注意观察小球从一侧摆动到另一侧所需的时间。
这个过程中,心中默念“静如处子,动如脱兔”,把握每一个瞬间。
记录多个周期的时间,再算出平均值。
这样得到的数据才有说服力。
每一次的摆动都仿佛在向我们诉说着重力的奥秘。
通过公式,最终的目标是求得重力加速度g。
这个过程让人如同探索未知的世界,既兴奋又紧张。
公式是g = 4π²L/T²,其中L是摆长,T是周期。
替换进去,经过简单的计算,重力加速度便浮出水面。
哇,看到那个结果的时候,心里满是成就感,感觉自己像个小科学家。
当我们得到g的值后,接下来的讨论环节是必不可少的。
每个人分享自己的实验感受。
有人说,整个过程就像一场和重力的亲密舞蹈。
另一些同学则提到,实验不仅是数据的堆砌,更是对自然规律的深入理解。
其实,真正的乐趣在于我们对这个结果的解读。
重力加速度的测量,不仅仅是数字,背后蕴含着科学的魅力。
每一次实验都是一次新发现。
单摆实验让我们意识到,生活中的物理无处不在。
大到行星的运动,小到我们日常的走路,都是重力在默默作祟。
这个时候,大家都忍不住想起那些关于重力的故事。
牛顿与苹果的传说,听起来真是神奇。
人类就是在这些奇妙的瞬间,开启了科学的探索之旅。
在总结时,大家的脸上都洋溢着满足的笑容。
单摆的实验不仅帮助我们测量了重力加速度,也让我们对物理的理解更加深刻。
大学物理实验报告材料-单摆测重力加速度.doc
大学物理实验报告材料-单摆测重力加速度.doc
单摆是在物理上常见的一个实验室现象,在物理实验中,它可以用来研究动能与惯性的转换,以及作用力的作用。
本次实验的目的是用单摆测量重力加速度。
实验原理:
在实验中,将被试悬吊在一根绳子上,它会随着时间发生频谱上的摆动,其频率为:$$ f = \frac{g}{2 \pi l} $$其中 g 是重力加速度,l 是绳子的长度。
根据这一定律,可以测得重力加速度 g。
实验装置:
实验的关键装置有绳子、悬挂架和被试者。
将绳子固定在悬挂架上,绳子的fixed端作为摆锤的支点,绳子的活动端由被试者拉动并悬挂在悬持架上。
由于被试者的重量,悬挂架及其附件会摆动,从而形成单摆运动。
实验流程:
(1)安装实验装置:将绳子安装到悬持架上,然后将被试者悬吊在悬持架上。
(2)测量频率:将时间计量器安装在悬持架上,将时间计量器的时间与摆动的周期测得并修正。
(3)测量长度:测量出绳子的长度。
(4)计算重力加速度:根据实验原理,根据相应的计算公式计算重力加速度的值。
实验结果:
实验中测量的绳子的长度为1.2m,测量的单摆运动周期为5s,根据上文提供的计算公式可得重力加速度g=9.83m/s²。
实验结论:
通过本次实验,可以用单摆测量重力加速度,测量值为9.83m/s²,与标准值9.8m/s²误差在可接受范围内。
实验结论证明,以单摆为例,可以研究惯性与动能之间的转换,以及重力加速度。
大学物理设计性实验报告单摆测重力加速度
设计课题:单摆法测重力加速度 班 级: 计算机1041 姓 名: 高文英 学 号: 1004431133
试验时间 实验地点 实验类别 指导教 师
2011年11 物理实验 设计性试 曹艳玲
月
室
验
成绩
单摆法测重力加速度
【实验目的】 1. 掌握用单摆测本地区重力加速度的方法。 2. 考查单摆的系统误差对测量重力加速度的影响。 3. 正确进行数据处理和误差分析。
图1
① 这是一简谐运动方程,可知该简谐振动角频率的平方等于g / l ,由 此得出
② ③ 实验时,测量一个周期的相对误差较大,一般是测量连续摆动个周 期的时间,则,因此 ④ 式④中和不考虑误差,因此的不确定度传递公式为: 从上式可以看出,在和大体一定的情况下,增大l和t对提高测量g准 确度有利。 【实验内容与步骤】
测量次数
1
2
3
4
5
6
球直径
单摆摆30个周期的时间(六次测量):
测量次数 1
2s)
摆角(s)
【数据处理】 1. 单摆摆长为,d取平均值,代入前面的式子得到;再把和代入公式 ④得出的值。 2. 摆球直径的不确定度
其中
3. 因为摆线长度为单次测量,不考虑其不确定度,所以摆长的不确定 度即为摆球直径的不确定度。
1. 测重力加速度g (1) 用钢卷尺测量摆线长度l’,重复测量6次。注意:摆线长度应包括小
球上的接线柱长度。 (2) 用游标卡尺测量单摆小球的直径d,重复测量6次。则单摆摆长为。 (3) 测量单摆在的情况下连续摆动次的时间t,重复测量6次。注意:单
摆必须在竖直平面内摆动,防止形成圆锥摆;摆动几个周期,待摆 动稳定后在开始计时。 (4) 将单摆摆角改为,重复第(3)步。 (5) 根据式④求出值,利用不确定度传递公式算出g的不确定度,写出测 量结果。 【数据表格】 原始数据见附页。 摆线长 球直径六次测量结果:
单摆、复摆法测重力加速度 大学物理实验
一、复摆法测重力加速度一.实验目的1. 了解复摆的物理特性,用复摆测定重力加速度,2. 学会用作图法研究问题及处理数据。
二.实验原理复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。
复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动体系。
如图1,刚体绕固定轴O在竖直平面内作左右摆动,G是该物体的质心,与轴O的距离为h,θ为其摆动角度。
若规定右转角为正,此时刚体所受力矩与角位移方向相反,则有θM-=, (1)mghsin又据转动定律,该复摆又有θI M = , (2) (I 为该物体转动惯量) 由(1)和(2)可得θωθsin 2-= , (3) 其中Imgh=2ω。
若θ很小时(θ在5°以内)近似有 θωθ2-= , (4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为mghIT π=2 , (5) 设G I 为转轴过质心且与O 轴平行时的转动惯量,那么根据平行轴定律可知2mh I I G += , (6)代入上式得mghmh I T G 22+=π, (7)设(6)式中的2mk I G =,代入(7)式,得ghh k mgh mh mk T 222222+=+=ππ, (11) k 为复摆对G (质心)轴的回转半径,h 为质心到转轴的距离。
对(11)式平方则有2222244h gk g h T ππ+=, (12)设22,h x h T y ==,则(12)式改写成x gk g y 22244ππ+=, (13)(13)式为直线方程,实验中(实验前摆锤A 和B 已经取下) 测出n 组(x,y)值,用作图法求直线的截距A 和斜率B ,由于gB k g A 2224,4ππ==,所以 ,4,422BAAgk Bg ===ππ (14) 由(14)式可求得重力加速度g 和回转半径k 。
三.实验所用仪器复摆装置、秒表。
四.实验内容1. 将复摆悬挂于支架刀口上,调节复摆底座的两个旋钮,使复摆与立柱对正且平行,以使圆孔上沿能与支架上的刀口密合。
大学物理实验报告-单摆法测重力加速度(含答案)
一、实验名称:单摆法测重力加速度二、实验的目的:1、掌握游标卡尺读数原理;2、掌握电子秒表的使用方法;3.掌握单摆法测量重力加速度的方法;三、实验仪器:单摆仪、游标卡尺、螺旋测微计、米尺、秒表四、实验原理:单摆的一级近似的周期公式为:由此通过测量周期T,摆长,可求重力加速度g五、实验内容和步骤1. 用游标卡尺测量摆球的直径将摆球放到游标卡尺上,移动游标直至卡紧摆球,锁紧游标,先读出主尺读数,再读出副尺读数。
取下小球,按照上述步骤重复测量多次。
2. 用米尺测量摆线的长度将米尺的零刻度线对准摆线的一段,并且令米尺与摆线保持平行,读出结果。
取下摆线,按照上述步骤重复测量多次。
3. 用电子秒表测量单摆的周期将摆球上拉到一定高度(不超过5度)后静止放下,等到摆球上升到某个周期的最高点时开始计时,计时若干个周期后(N>=10)结束计时。
让摆球停止摆动,按照上述步骤重复测量多次。
(要减去共计0.2s的人类反应时间)六、实验数据记录与处理1、用游标卡尺测量摆球的直径d测量次数 1 2 3 4 5 6 平均值不确定度直径d(mm)20.62 20.6220.620.620.620.60 20.61 0.02摆球直径d的测量结果表示为: 20.61+-0.022、用米尺测量摆线的长度l(只测一次): 700.0mm摆线的长度l的测量结果表示为: 700+-1mm3、单摆的摆长为:700+20.61/2=710.305mm单摆摆长的测量结果表示为:L710.30+-1.024、用电子秒表测量单摆摆动10个周期的时间t测量次数 1 2 3 4 5 6 平均值不确定度t(s)17.22 17.2317.2317.3117.1917.23 17.24 0.02单摆的周期: 1.724单摆的不确度:0.002单摆周期的测量结果表示为:T 1.724+-0.002 5、计算和不确定度955.9pi^2mm/s^2重力加速度的不确定度: 2.61重力加速度的测量结果表示为:g955.9pi^2+-2.6mm/s^2七、误差分析与讨论1、米尺测量摆线长度时要注意与摆线尽量靠近且保持平行,还要注意摆线要拉直。
单摆法测重力加速度实验报告
实验名称:单摆法测重力加速度实验目的:通过单摆实验,测量并计算出当地的重力加速度。
实验原理:单摆是一种理想的振动系统,当摆角小于5°时,其运动可以近似看作简谐运动。
根据单摆的周期公式,可以通过测量单摆的摆长和周期来计算重力加速度。
实验仪器:铁架台、细线、小铁球、游标卡尺、米尺、秒表。
实验步骤:1. 用游标卡尺测量小铁球的直径,重复测量6次,取平均值作为小铁球的直径D。
2. 用米尺测量细线的长度,重复测量6次,取平均值作为细线的长度L。
3. 将细线一端固定在铁架台上,另一端悬挂小铁球,调整摆球的位置,使摆线、摆球和摆幅测量标尺的中线三线合一。
4. 将摆球摆出角度小于5°,然后当小球经过摆幅测量标尺的中间时开始计时,再次经过时开始数1,直到数到50,立刻结束计时,记录下秒表的数据t。
5. 重复步骤4,记录下5次的数据。
6. 根据公式T=2π√(L/g),计算重力加速度g。
实验数据:实验次数 | 周期的次数(次) | 时间(s) | 线长(cm) | 直径(mm) |g(m/s²)----------|----------------|----------|-----------|-----------|----------1 | 50 | 84.19 | 68.90 | 22.16 | 9.7852 | 50 | 84.25 | 69.01 | 22.16 | 9.7863 | 50 | 84.30 | 68.80 | 22.16 | 9.7894 | 50 | 84.35 | 69.20 | 22.16 | 9.7905 | 50 | 84.40 | 68.50 | 22.16 | 9.792数据处理:1. 计算单摆的周期T,T=2t/n,其中t为每次实验的时间,n为周期的次数。
2. 计算重力加速度g,g=4π²L/T²。
实验结果:根据实验数据,计算得到的重力加速度g的平均值为9.788m/s²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复摆法测重力加速度
一.实验目的
1. 了解复摆的物理特性,用复摆测定重力加速度,
2. 学会用作图法研究问题及处理数据。
二.实验原理
复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。
复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动体系。
如图1,刚体绕固定轴O在竖直平面内作左右摆动,G是该物体的质心,与轴O的距离为h,θ为其摆动角度。
若规定右转角为正,此时刚体所受力矩与角位移方向相反,则有
θ
M-
=, (1)
sin
mgh
又据转动定律,该复摆又有
θ I
M=,(2) (I为该物体转动惯量) 由(1)和(2)可得
θωθ
sin 2-= , (3) 其中I
mgh
=
2ω。
若θ很小时(θ在5°以内)近似有 θωθ
2-= , (4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为
mgh
I
T π
=2 , (5) 设G I 为转轴过质心且与O 轴平行时的转动惯量,那么根据平行轴定律可知
2mh I I G += , (6)
代入上式得
mgh
mh I T G 2
2+=π
, (7) 设(6)式中的2mk I G =,代入(7)式,得
gh
h k mgh mh mk T 2
22222+=+=π
π, (11) k 为复摆对G (质心)轴的回转半径,h 为质心到转轴的距离。
对(11)式平方则有
2
2222
44h g
k g h T ππ+=, (12)
设22,h x h T y ==,则(12)式改写成
x g
k g y 2
2244ππ+=, (13)
(13)式为直线方程,实验中(实验前摆锤A 和B 已经取下) 测出n 组(x,y)
值,用作图法求直线的截距A 和斜率B ,由于g
B k g A 2
224,4ππ==,所以 ,4,42
2
B
A
Ag
k B
g ==
=ππ (14) 由(14)式可求得重力加速度g 和回转半径k 。
三.实验所用仪器
复摆装置、秒表。
四.实验内容
1. 将复摆悬挂于支架刀口上,调节复摆底座的两个旋钮,使复摆与立柱对正且平行,以使圆孔上沿能与支架上的刀口密合。
2. 轻轻启动复摆,测摆30个周期的时间.共测六个悬挂点,依次是:6cm 8cm 10cm 12cm 14cm 16cm 处。
每个点连测两次,再测时不需重启复摆。
3. 启动复摆测量时,摆角不能过大(<
),摆幅约为立柱的宽度。
复摆每次改变高度悬挂时,圆孔必须套在刀口的相同位置上。
五.实验数据处理
1.由22,h x h T y == ,分别计算出各个x 和y 值,填入数据表格。
2. 以x 为横坐标,y 为纵坐标,用坐标纸绘制x —y 直线图。
3. 用作图法求出直线的截距A 和斜率B 。
4.由公式:,4,42
2
B
A
Ag
k B
g ===π
π计算出重力加速度g 和回转半径k 。
实验数据表格规范及参考数据
h (cm)
6 8 10 12 14 16 30T (s)
'30T (s)
_
30T (s)
T (s)
画x —y 直线图: 要用规范的坐标纸描绘。
(斜截式直线方程为 Y=KX+B 斜率k 截距B )
5. 也可用最小二乘法求直线的截距A 和斜率B ,再计算出g 和k 。
用最小二乘法处理数据: 斜率 _
_
_
2
__2
.x y xy B x x
-=
- 截距
__
.A y B x =-
6. 荆州地区重力加速度: 2
9.781m g s =。
将测量结果与此值比较,计算
相对误差。
六.实验操作注意事项
1. 复摆启动后只能摆动,不能扭动。
如发现扭动,必须重新启动。
2. 测量中,复摆摆角不宜超过5度,要尽量使每次摆动的幅度相近。
3. 实验结束时,将复摆从支架上取下,放到桌面上。
二、 单摆法测重力加速度
一.
实验目的
1. 用单摆法测重力加速度,认识简谐运动的规律。
2. 正确使用停表。
二.
实验原理
一根不能伸缩的细线,上端固定,下端悬挂一个重球。
当细线质量比重球质量小很多,球的直径比细线长度短很多时,可以把重球看作是一个不计细线质量的质点。
将摆球自平衡位置拉至一边(保持摆角
<5
)然后释放,
摆球即在平衡位置左右作周期性摆动,这种装置称为单摆。
如图1所示。
摆球所受的力f 是重力P 和绳子张力的合力,指向平衡位置。
当摆角很小时(<5
),圆弧可以近似看成直线,合力f 也可以近似地看做沿着这一
直线。
设小球的质量为m ,其质心到摆的支点的距离为L (摆长),小球位移为
x ,则
L
x
≈
θsin (1) x L g
m L x mg P f -=-==θsin
由 ma f = 可知 x L
g
a -
= (2)
由公式(2)可知,单摆在摆角很小时,质点的运动可以近似地看作简谐振动。
简谐振动的动力学方程为
022
2
=+x dt
x
d ω 即 x a 2ω-= (3) 比较式(2)和式(3)可得单摆简谐振动的圆频率为 L
g
=
ω 于是单摆的运动周期为 g
L
T π
ω
π
22==
两边平方 g L T 224π=
即 2
2
4T L
g π= (4) 若测得L 、T ,代入式(4),即可求得当地的重力加速度g 。
图一 单摆受力分析
三.实验所用仪器
单摆、秒表、游标卡尺、卷尺
四.实验内容
1. 测量小球摆动周期T 。
拉开小球释放,使小球在竖直平面内作小角度(摆角
<5
)摆动。
用停表测出小球摆动30个周期的时间t (=30T ),
重复测量5次。
2. 用卷尺测量悬线长L '5次。
悬线长约一米。
3. 用游标卡尺测量小球直径d ,重复测量5次。
周期 (s) 次数
物理量
1 2 3 4 5 平
均值
L '
(m)
d (cm ) t (s)
五.实验数据处理
1. 用公式 2
22
4t L
n g π=计算重力加速度g 。
2.用公式 22)(
4)(
U t
U L
U g t L g +=计算不确定度。
从上式可以看出,在L U 和t U 大体一定的情况下,增大L 和t 对测量g 有利。
六.思考题
(1)设想在复摆的某一位置上加一配重时,其振动周期将如何变化(增大、缩短、不变)
答:不确定,当在下方挂重物时,周期增大; 当在上方挂重物时,周期减少。
(2)试比较用单摆法和复摆法测量重力加速度的精确度,说明其精确度高或低的原因
答:单摆周期为 2T = , 224l T g π=, ∴ 224l g T π=。
由此测
量公式可知,测l ,即需测绳和球的长度,测量时产生的误差较大。
而复摆法的周
期为2T =, ∴ 22224k h g T h π+= 。
此公式中, h 为质心到转轴的距离,
数据从复摆上直接读取,因此大大减少了误差,所以,复摆法精确度高。