初一数学一元一次不等式综合复习

合集下载

(完整)一元一次不等式总复习讲义

(完整)一元一次不等式总复习讲义

一元一次不等式知识要点不等式用符号≤≥≠“<”(“”)“>”(“”)“”连接而成的式子,叫 比较等式与不等式的基本性质。

1、若kb ka -<-,则 b a > ( )2、若b a >,则 2323b a-<-( )3、若,,d c b a =<,则 bd ac < ( )4、若0<<b a ,则 b a > ( )5、对于实数若a ,总有 a a 23-> ( )6、若b a >,则22b a > ( )7、若b a >,0≠ab ,则ba 11< ( ) 8、若,1a a <则10<<a ( )一元一次不等式(组)解法解一元一次不等式的一般步骤: (1) 去分母(根据不等式的基本性质3) (2) 去括号(根据单项式乘以多项式法则) (3) 移项(根据不等式的基本性质2) (4) 合并同类项,得ax>b ,或ax 〈b (a≠0)(根据合并同类项法则) (5) 两边同除以a (或乘1/a )(根据不等式基本性质3)(注:若a<0,不等号反向) (6) 不等式的解在数轴上的表示 一、选择题1、 如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B ) c -a >c -b ; (C ) ac >bc ; (D ) a bc c> . 2、如果,2323,11--=++=+x x x x 那么x 的取值范围是( )A 、321-≤≤-xB 、1-≥xC 、32-≤xD 、132-≤≤-x3、已知a 、b 、c 为有理数,且a>b>c ,那么下列不等式中正确的是( )A 。

a+b 〈b+cB 。

a-b 〉b-c C.ab>bc D 。

a bc c>4、如果m<n 〈0那么下列结论中错误的是( )A 。

m —9〈n-9 B.-m 〉—n C 。

初一数学一元一次不等式练习题汇总(复习用)含答案

初一数学一元一次不等式练习题汇总(复习用)含答案

一元一次不等式和一元一次不等式组培优训练一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2;2. 若2-x<0,x________2;3. 若>0,则xy_________0;4. 代数式的值不大于零,则x__________;5. a、b关系如下图所示:比较大小|a|______b,-6. 不等式13-3x>0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x≠y,则x2+|y|_________0;9. 不等式组的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a的取值范围是( ).(A)a>0; (B)a≥0; (C)a<0; (D)自然数.2.不等式23>7+5x的正整数解的个数是( ).(A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m≠n,则|m|≠|n|; (B)若a+b=0,则ab>0;(C)若ab<0,且a<b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若,则x的取值范围是( ).(A)x>1; (B)x≤1;(C)x≥1; (D)x<1.三、解答题1.解不等式(组),并在数轴上表示它们的解集.(1)(x-1)≥1; (2);(3)(4)2. x取什么值时,代数式的值不小于代数式的值.3. K取何值时,方程=5(x-k)+1的解是非负数.4. k为何值时,等式|-24+3a|+中的b是负数?参考答案一、1.-3>-π,-22 <(-0.2)2; 2.x>2; 3.xy>0; 4.X≥2; 5.|a|>b,-,-b<-; 6.1,2,3,4; 7.x≤y; 8.x2+|y|>0; 9.无解.二、1.A; 2.C; 3.D 4.D; 5.B.三、1.(1)x≤-3;(2)x<1;(3)2≤x<8;(4)x<0;2.x≤-;3.k≥;4.k>-48.一元一次不等式能力测试题一、填空题(每空3分,共27分)1.(1)不等式的解集是________;(2)不等式的非负整数解是________;(3)不等式组的解集是______________;(4)根据图1,用不等式表示公共部分x的范围______________.2.当k________时,关于x的方程2x-3=3k的解为正数.3.已知,且,那么ab________b2(填“>”“<”“=”).4.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.5.若不等式的解集为,则m的值为________.6.若不等式组无解,则m的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式的解集为,那么( )A.B.C.D.m为任意有理数8.如果方程有惟一解,则( )A.B.C.D.9.下列说法①是不等式的一个解;②当时,;③不等式恒成立;④不等式和解集相同,其中正确的个数为( )A.4个 B.3个 C.2个 D.1个10.下面各个结论中,正确的是( )A.3a一定大于2a B.一定大于aC.a+b一定大于a-b D.a2+1不小于2a11.已知-1<x<0,则x、x2、三者的大小关系是( )A.B.C.D.12.已知a=x+2,b=x-1,且a>3>b,则x的取值范围是( ) A.x>1 B.x<4 C.x>1或x<4 D.1<x<4三、解答题13.解下列不等式(组).(12分)(1)(2)14.已知满足不等式的最小正整数是关于x的方程的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)一元一次不等式能力测试题参考答案一、填空题1. (1)(2)0,1,2 (3)(4)2.k>-13.>4.5.6.二、选择题7.C 8.D 9.A 10.D 11.D 12.D三、解答题13.(1)(2)x<2 14.15.18千米/时 16.15人功16人一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是()A; B; C; D;2、“x大于-6且小于6”表示为()A -6<x<6;B x>-6,x≤6;C -6≤x≤6; D -6<x≤6;3、解集是x≥5的不等式是()A x+5≥0B x–5≥0C –5–x ≤0D 5x–2 ≤–94、不等式组的解是( )A、x≤2B、x≥2C、-1<x≤2D、x>-15、不等式组的解集在数轴上表示正确的是()6、下列不等式组无解的是()A.B.C.D.7、不等式组的正整数解的个数是()A.1个 B.2个 C.3个 D.4个8、等式组的解集是,则m的取值范围是()A.m ≤2 B.m≥2 C.m≤1 D. m>19、关于x的一元一次方程4x-m+1=3x-1的解是负数,则m的取值范围是()A m=2B m>2C m<2 Dm≤210、ax>b的解集是()A.; B.; C.; D.无法确定;二、填空题(每题4分,共20分)1、不等式的解集是:;不等式的解集是:;2、不等式组的解集为 . 不等式组的解集为 .3、不等式组的解集为 . 不等式组的解集为 .4、当x 时,3x-2的值为正数;x为时,不等式的值不小于7;5、已知不等式组无解,则的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)(2)(3)(4)三、根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解:设,依题意得:四、解答题:(每题7分,共14分)1、若方程组的解、的值都不大于1,求的取值范围。

(完整版)一元一次不等式知识点总结(最新整理)

(完整版)一元一次不等式知识点总结(最新整理)

符号语言表示为:如果
,那么

基本性质 2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果
,并且
,那么
(或
基本性质 3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
)。
符号语言表示为:如果
,并且
,那么
5x 2
1
1≥
2
x 3
1,并把解集在数轴上表示出来. 5 4 3 2 1
0
1
若不成立,则就不是不等式的解。
3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为

的形式,
其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为 1。这五个步骤根据具体题
目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为 1 时,在不等式两边同乘以(或除以)同一个非零数时,
A
B
C
知识点 6:一元一次不等式的定义
9.下列属于一元一次不等式的是( )A.10>8 知识点 7:一元一次不等式的整数解
D
B. 2x 1 3y 2 C. 2(1 y) 1 y 1 D. x2 3 5 2
10.在不等式 3x 2 4 中, x 可取的最大整数值是( )A.0 B.1 C.2 11.不等式 2 x -1≥3 x -5 的正整数解的个数为( )A.5 个 B.2 个 C.3
知识点四:一元一次不等式的解法
1.解不等式:求不等式解的过程叫做解不等式。2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本
性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为 1.

一元一次不等式知识点总结

一元一次不等式知识点总结

一元一次不等式(组 )考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

数学人教版七年级下册一元一次不等式(组)复习小结

数学人教版七年级下册一元一次不等式(组)复习小结

一元一次不等式(组)的复习课一、复习目标:1、巩固不等式及不等式的基本性质。

2、熟练运用不等式性质解一元一次不等式(组),并会在数轴上表示解集。

3、综合运用一元一次不等式和不等式组解决实际问题。

二、复习重、难点重点:一元一次不等式(组)的解法及解集的几何表示,以一元一次不等式为工具分析,解决实际问题。

难点:根据不等关系,列不等式解决一些实际问题。

三、教学过程:(一)知识要点回顾(叫几个学生口答,老师强调注意事项)1. 不等式:2. 不等式的解:3. 不等式的解集:4、 解不等式:5.一元一次不等式:6.一元一次不等式组:7.一元一次不等式组的解:8.不等式的基本性质(3条):1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向____2)不等式两边都乘以(或除以)同一个正数,不等号的方向____.3)不等式两边都乘以(或除以)同一个负数,不等号的方向____.9.一元一次不等式的解法:解一元一次不等式和解一元一次方程类似,大致分 、 、 、 、五步.在第一,第五步的变形中,要注意不等式性质2、3的正确应用.10.一元一次不等式组的解法:1). 2).11.不等式(组)在实际生活中的应用当应用题中出现以下的关键词,如大,小,多,少,不小于,不大于,至少,至多等,应属列不等式(组)来解决的问题,而不能列方程(组)来解.设计意图:熟悉本章知识要点(二)专题复习专题一:不等式的性质(1个组展示并说出理由)1. 已知a >b,若c 是任意有理数,则下列不等式中总是成立的是( )A.a+c <b+cB. a-c >b-cC.ac <bcD.ac >bc2.下列不等式变形正确的是( )A.由a >b,得 ac <bcB.由a >b,得 a 2-<b 2-C.由a >b,得 a ->b -D.由a >b,得a-2<b-2 设计意图:复习不等式的三个性质,强调不等式性质与等式性质的区别与联系。

专题二:一元一次不等式(组)的解法(2个组展示,1个组点评)解下列不等式(组),并把解集在数轴上表示出来。

(完整版)一元一次不等式知识点汇总

(完整版)一元一次不等式知识点汇总

一元一次不等式知识点汇总【知识点一】不等式的有关概念1、不等式定义:用符号“<”、“≤”、“>"、“≥”、“≠"连接而成的数学式子,叫做不等式.这5个用来连接的符号统称不等号。

2、列不等式:步骤如下(1)根据所给条件中的关系确定不等式两边的代数式;(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过等确切的含义;(3)选择与题意符合的不等号将表示不等关系的两个式子连接起来。

3、用数轴表示不等式(1)x a <表示小于a 的全体实数,在数轴上表示a 左边的所有点,不包括a 在内。

(2)x a ≥表示大于或等于a 的全体实数,在数轴上表示a 右边的所有点,包括a 在内.(3)()b x a b a <<<表示大于b 而小于a 的全体实数。

b【知识点二】不等式的基本性质1、不等式的基本性质(1)基本性质1:若a b <,b c <,则a c <。

(不等式的传递性)(2)基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。

①若a b >,则a c b c +>+,a c b c ->-;②若a b <,则a c b c +<+,a c b c -<-。

(3)基本性质3:①不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;若a b >,且0c >,则ac bc >,a bc c>.②不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。

若a b >,且0c <,则ac bc <,a bc c<。

2、比较等式与不等式的基本性质【知识点三】一元一次不等式1、一元一次不等式的概念:不等号的两边都是整式,而且只含有一个未知数,未知数的最高次数是一次。

一元一次不等式与不等式组复习大纲

一元一次不等式与不等式组复习大纲

(2)在同一数轴表达不等式的解集。
x x 1 1 32
解:x 6 x 1 6 1 6
3
2
2x 3(x 1) 6
2x 3x 3 6
-x3
x 3
2x 1 5 ① x 2 1 ②
解:解不等式① 得,x 2
解不等式 ② 得,x 3
-1 0 1
2
34
所以原方程组的解为:2 x 3
第一章一元一次不等式(组)
复习大纲
一、不等式(组)概念 二、不等式的性质 三、一元一次不等式(组)的解法 四、一元一次不等式(组)的应用 五、一元一次不等式(组)与一次函
数的关系。
一、不等式(组)有关概念
1.不等式:用不等号连接的式子。 如:2>-1, a<b, x+y>0等
2.不等式的解:使得不等式成立的未知数的值。 3. 不等式的解集:使得不等式成立的全部未知 数的值。 4.一元一次不等式:(1)只含有一种未知数
惯用不等式性质:
1.若a b, 那么b a。 2.若a - b 0, 那么a b。 3.若a - b 0, 那么a b。
4.若a b, c 0那么ac bc。
5.若a b, c 0那么ac bc。
三、不等式(组)的解法:
1.项合并同类项 (4)系数化为1 2.解不等式组环节: (1)解出不等式的解集
(2)未知数的次数是1 (3)分母中不含有未知数 5.一元一次不等式组的解集:各个不等式的解集 的公共部分。
二、不等式的性质
(1)不等式的两边都加上(或减去) 同一种整式,不等号的方向不变。
(注:移项要变号,但不等号不变。)
(2)不等式的两边都乘以(或除以) 同一种正数,不等号的方向不变。

初中数学重点梳理:一元一次不等式(组)

初中数学重点梳理:一元一次不等式(组)

一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。

知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。

(表示不等关系的常用符号:≠,<,>)。

2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。

(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。

3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。

不等式的所有解的集合,叫做这个不等式的解集。

不等式组中各个不等式的解集的公共部分叫做不等式组的解集。

2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。

(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。

2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

(2)解法:先求出各不等式的解集,再确定解集的公共部分。

注:求不等式组的解集一般借助数轴求解较方便。

(完整版)一元一次不等式复习讲义

(完整版)一元一次不等式复习讲义

一元一次不等式与一元一次不等式组一。

知识梳理1.知识结构图(二)。

知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “〉” 、 “<” 、 “≥”、 “≤". 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c)①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b>,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a—b 〉O ⇔a>b ;②a—b=O ⇔a=b ;③a —b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式:解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘)去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号) 合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解1.常见题型分类(加粗体例题需要作答) 定义类1。

《第11章一元一次不等式》期末综合复习优生辅导训练(附答案)

《第11章一元一次不等式》期末综合复习优生辅导训练(附答案)

2021学年苏科版七年级数学下册《第11章一元一次不等式》期末综合复习优生辅导训练(附答案)1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.﹣x>﹣y C.x+c>y+c D.2x>2y2.已知a<0<b,那么下列不等式组中一定有解的是()A.B.C.D.3.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥34.一元一次不等式2(x+1)≥4的解集在数轴上表示为()A.B.C.D.5.若方程组的解满足x+y的值为非负数,则a满足()A.a<﹣2B.a≤﹣2C.a≤2D.a≥﹣26.下列说法中错误的是()A.不等式x+2≤3的整数解有无数个B.不等式x+4<5的解集是x<1C.不等式x<3的正整数解有有限个D.0是不等式2x<﹣1的解7.商店将标价为6元笔记本进行促销;若购买不超过3本,则按原价付款;若一次性购买3本以上,则超过的部分打七折.小明有54元钱,他购买笔记本的数量是()A.11本B.最少11本C.最多11本D.最多12本8.某商品进价是400元,标价是500元,商店要求利润不低于10%,需按标价打折出售,最多可以打()A.8折B.7折C.7.5折D.8.8折9.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.不等式组的整数解的个数是()A.2B.3C.4D.511.已知点P(3a﹣9,a﹣1)在第二象限,且它的坐标都是整数,则a=()A.1B.2C.3D.012.不等式组的解集是x>﹣1,则m的值是()A.﹣1B.﹣2C.1D.213.若关于x的不等式mx+m<﹣nx+n的解集为x>﹣,则关于x的不等式mx﹣m>2nx ﹣n的解集是()A.x>B.x<C.x>﹣D.x<﹣14.不等式组的解集是x>﹣1,则m的值是()A.﹣1B.﹣2C.1D.215.如果不等式(a﹣3)x>a﹣3的解集是x<1,那么a的取值范围是()A.a>0B.a<0C.a>3D.a<316.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<1217.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.118.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.19.不等式组的最小整数解为.20.设a和b是两个非负实数,已知a+2b=3.(1)求a的取值范围;(2)设c=3a+2b,请用含a的代数式表示c,并求出c的取值范围.21.某单位要制作一批宣传材料,甲公司提出:每份材料收费20元,另收3000的设计费;乙公司提出:每份材料收费30,不收设计费.(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.22.在2019年全国青少年信息学联赛中,巴蜀中学创历史新高,有69人获得“全国信息学联赛一等奖”,充分展现了巴蜀人探索求知的精神,实力冠绝重庆.学校想借此提升信息课的教学质量,准备更换一批硬件设备,包括电脑主机,显示器和鼠标.其中学校通过招标拟采购两种类型的鼠标,分别为无线鼠标和有线鼠标.根据计划的采购清单,采购12个无线鼠标和16个有线鼠标共花费972元,采购25个无线鼠标比采购8个有线鼠标多花费909元.(1)求采购的无线鼠标和有线鼠标单价各为多少?(2)学校本次计划拟采购两种鼠标一共420个,若采购的无线鼠标数量不少于有线鼠标的数量,用W(单位:元)表示本次计划采购的总费用,请求出W的最小值.23.解不等式组,并把解集在数轴上表示出来:.24.西大附中为打造“书香校园”,计划在校内组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本.目前学校用于组建图书角的科技类书籍不超过1900本,人文类书籍不超过1620本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?25.某校计划安排初三年级全体师生参观黄石矿博园,现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园?(2)请你帮该校设计一种最省钱的租车方案.参考答案1.解:A、在不等式x>y的两边同时减去3,不等式仍成立,即x﹣3>y﹣3,故本选项不符合题意;B、在不等式x>y的两边同时乘以﹣1,不等号方向改变,即﹣x<﹣y,故本选项符合题意;C、在不等式x>y的两边同时加上c,不等式仍成立,即x+c>y+c,故本选项不符合题意;D、在不等式x>y的两边同时乘以2,不等式仍成立,即2x>2y,故本选项不符合题意;故选:B.2.解:由a<0<b,得﹣b<0<﹣a,的解集是﹣b<x<﹣a,故选:B.3.解:∵关于x的不等式组无解,∴a﹣1≥2,∴a≥3,故选:D.4.解:由2(x+1)≥4得x≥1,故选:A.5.解:将两个方程相加可得3x+3y=a+2,两边都除以3可得x+y=,根据题意可得≥0,解得:a≥﹣2,故选:D.6.解:A、由x+2≤3得x≤1知不等式的整数解有无数个,故此说法正确;B、不等式x+4<5的解集是x<1,故此说法正确;C、不等式x<3的正整数解有1、2,为有限个,故此说法正确;D、由2x<﹣1可得x<﹣知0不是该不等式的解,故此说法错误;故选:D.7.解:设他购买笔记本的数量是x本,依题意有3×6+(x﹣3)×6×0.7≤54,解得x≤11.故他购买笔记本的数量是最多11本.故选:C.8.解:设可以打x折,根据题意可得:500×﹣400≥400×10%,解得:x≥8.8,故选:D.9.解:,由不等式①,得x<2,由不等式②,得x≥﹣1,故原不等式组的解集是﹣1≤x<2,故选:A.10.解:解不等式x+5>3,得:x>﹣2,解不等式x+6>4x﹣3,得:x<3,则不等式组的解集为﹣2<x<3,所以不等式组的整数解为﹣1、0、1、2这4个,故选:C.11.解:∵点P(3a﹣9,a﹣1)在第二象限,∴,解得1<a<3,又∵它的坐标都是整数,∴a=2,故选:B.12.解:∵的解集是x>﹣1,∴m+1=﹣1,解得:m=﹣2,故选:B.13.解:∵mx+m<﹣nx+n,∴(m+n)x<n﹣m,∵关于x的不等式mx+m<﹣nx+n的解集为x>﹣,∴m+n<0,∴,∴,①+②得:2n=﹣k,∴n=﹣k,把n=﹣代入①得:﹣﹣m=2k,∴m=﹣k,∴把n=﹣k,m=﹣k代入mx﹣m>2nx﹣n,解得,.故选:B.14.解:∵不等式组的解集是x>﹣1,∴m+1=﹣1,解得:m=﹣2,故选:B.15.解:∵(a﹣3)x>a﹣3的解集是x<1,解得a<3,故选:D.16.解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.17.解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得到﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.18.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.19.解:,解①得x≤4,解②得x>﹣4,不等式组的解集为﹣4<x≤4,不等式组的最小整数解为﹣3,故答案为﹣3.20.解:(1)∵a+2b=3,∵a、b是非负实数,∴b≥0,a≥0,∴2b≥0,∴3﹣a≥0,解得0≤a≤3;(2)∵a+2b=3,c=3a+2b,∴c﹣3=(3a+2b)﹣(a+2b)=2a,∴c=2a+3,∵a是非负实数,∴a≥0,∴0≤a≤3,∴0≤2a≤6,3≤2a+3≤9,即3≤c≤9.21.解:(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),依题意得,y甲=20x+3000;y乙=30x.(2)当y甲>y乙时,即20x+3000>30x,解得:x<300;当y甲=y乙时,即20x+3000=30x,解得:x=300;当y甲<y乙时,即20x+3000<30x,解得:x>300.∴当0<x<300时,选择乙公司更优惠;当x=300时,选择两公司费用一样多;当x>300时,选择甲公司更优惠.22.解:(1)设采购的无线鼠标的单价为x元,采购的有线鼠标的单价为y元,由题意得,解得,答:采购的无线鼠标的单价为45元,采购的有线鼠标的单价为27元;(2)设采购的无线鼠标有a个,则采购的有线鼠标有(420﹣a)个,由题意得a≥420﹣a,∴a≥210,∵W=45a+27(420﹣a)=18a+11340,18>0,∴当a=210时,W的值最小,W的最小值为15120元.答:W的最小值为15120元.23.解:解不等式2x+5≤3(x+2),得:x≥﹣1,解不等式<,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:24.解:(1)设组建中型图书角x个,则组建小型图书角(30﹣x)个,依题意得:,解得:18≤x≤20,又∵x为整数,∴x可以取18,19,20,∴共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个.(2)选择方案1的费用为860×18+570×12=22320(元);选择方案2的费用为860×19+570×11=22610(元);选择方案3的费用为860×20+570×10=22900(元).∵22320<22610<22900,∴方案1费用最低,最低费用是22320元.25.解:(1)设租用36座客车x辆,根据题意,得:,解得:4<x<,∵x为整数,∴x=5,36x=180,答:该校初三年级共有师生180人参观黄石矿博园;(2)方案①:租36座车5辆的费用:5×400=2000(元).方案②:租48座车4辆的费用:4×480=1920(元);方案③∵=3…36,余下人数正好36座,可以得出:租48座车3辆和36座车1辆的总费用:3×480+1×400=1840(元).∵1840<1920<2000,∴方案③:租48座车3辆和36座车1辆最省钱。

一元一次不等式专题

一元一次不等式专题

不等式专题【知识要点】1. 一元一次不等式的概念不等号的两边都是整式,而且只含有一个未知数,未知数的最高次数是一次,这样的不等式叫做一元一次不等式. 2. 不等式的解与解集能使不等式成立的未知数的值叫做不等式的解;不等式所有解的集合叫做不等式的解集.解不等式的实质是求不等式的解集. 3. 解一元一次不等式的步骤:略 4. 一元一次不等式组的概念一般地,由几个含同一未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组. 5. 不等式组的解集的概念组成不等式组的各个不等式的解集的公共部分就是不等式组的解集.当它们没有公共部分时,称这个不等式组无解. 6. 一元一次不等式的应用应用一元一次不等式可以刻画和解决很多实际生活中的有关不等关系的问题,解题关键是找出不等关系,列出不等式. 【温馨提示】1. 在用数轴表示不等式的解集时,“<”或“>”用空心点,“≤”或“≥”用实心点.2. 把不等式中的任何一项的符号改变后,从不等号的一边移到另一边,所得到的不等式仍成立。

即在解不等式时,移项法则同样适用.3. 可以按下面的口诀识记不等式组解的求法:同大取大,同小取小,不大不小中间找,大大小小解为空. 【方法技巧】解不等式就是利用不等式的基本性质,对不等式进行变形,最终化为“x a >”(或“x a ≥”,“x a <”(或“x a ≤”)的形式.不等式组的整数解的求法:先求出两个不等式的解集的公共部分,再找出符合条件的整数.专题一 天平问题1. 设a 、b 、c 表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )A .c <b <aB .b <c <aC .c <a <bD .b <a <c2. 如图,a ,b ,c 三种物体的质量从大到小的关系是__________.专题二 方程(组)与不等式联姻3. 若关于的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足x+y <2,则a 的取值范围为()A .a <4B .a >4C .a <-4D .a >-44. 关于x 的方程mx-1=2x 的解为正实数,则m 的取值范围是( ) A .m ≥2 B .m ≤2 C .m >2 D .m <25. 关于x ,y 的方程组131x y m x y m +=+⎧⎨-=-⎩的解满足x >y ,求m 的最小整数值.专题三 一元一次不等式组的解6. 若不等式组33x x x m <⎧⎪>-⎨⎪>⎩无解,则m 的取值范围是( )A.m≤-3B.m≥3C.-3<m <3D.m≤-3或m≥3 7. 填空:(1)若a >b ,⎩⎨⎧>>b x a x ,的解集为________. (2)若a >b ,⎩⎨⎧<<bx a x ,的解集为________.(3)若a >b ,⎩⎨⎧><b x a x ,的解集为_______.(4)若a >b ,⎩⎨⎧<>b x a x ,的解集为___________.8. 若不等式组2346a x a x -<<+⎧⎨<<⎩的解集是4<x <a+3,则a 的取值范围是______________.专题四 利用不等式组解题9. 若|a+2|·|a-3|=-(a+2)(a-3),则a 的取值范围是_____________.10.已知a=43x +,b=34x +,且a >3>b ,请探求x 的取值范围.11.已知关于x,y 的方程组682131x y a x y a -=-⎧⎨-=-⎩的解为正数,求a 的取值范围.巩固练习1.解下列不等式(组):(1) 5x +3<3(2+x ); (2) x +12≥3(x -1)-4;(3)⎩⎪⎨⎪⎧x +1≥2,①3(x +1)>x +5;② (4)⎩⎪⎨⎪⎧x -3(x -2)≥4,①1+2x 3>x -1;② (5) ⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -1≤7-32x.②2.解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.3.解不等式x3<1-x -36,并求出它的非负整数解.4.解不等式组⎩⎪⎨⎪⎧x -4≥3(x -2),①x +113-1>-x.②并把它的解在数轴上表示出来.5.x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?6.某国有企业在“一带一路”的战略合作中,向东南亚销售A 、B 两种外贸产品共6万吨.已知A 种外贸产品每吨800元,B 种外贸产品每吨400元.若A 、B 两种外贸产品销售额不低于3 200万元,则至少销售A 产品多少万吨?7.已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球?8.蔬菜经营户老王近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少钱?(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)9.解关于x 的不等式:1)1(->-m x m10.甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( ) A .a >b B .a <b C .a =b D .与a 和b 的大小无关 11.已知x <a 的解集中的最大整数为3,则a 的取值范围是______________ 12.若5>m ,试用m 表示出不等式x m x m +->-1)5(的解集 .13若不等式组⎩⎨⎧->-≥+2210x x a x 有解,则a 的取值范围是14.已知ab =4,若-2≤b ≤-1,则a 的取值范围是________17.已知关于y x ,的方程组⎩⎨⎧-=++=+134123p y x p y x 的解满足y x >,求p 的取值范围.18.如果不等式⎩⎨⎧<->-mx x x )1(312的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m ≥2 19.若关于x 的不等式组⎩⎨⎧<-<--xa x x x 234)2(3无解,则a 的取值范围是 ( )A .a <1B .a ≤lC .1D .a ≥120.某城市的一种出租车起步价是7元(即在3km 以内的都付7元车费),超过3km 后,每增加1km 加价1.2元(不足1km 按1km 计算),现某人付了14.2元车费,求这人乘的最大路程是( ) A .10km B .9 km C .8km D .7 km。

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案) (94)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案) (94)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案)(1)解不等式:221223x x +-≥- (2)解不等式组:202(1)31x x x ->⎧⎨+-⎩,并把解集在数轴上表示出来. 【答案】(1)x ≤20;(2)2<x ≤3,数轴上表示见解析.【解析】【分析】(1)不等式去分母、去括号、移项合并、系数化为1即可求出不等式的解集;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集即可.【详解】解:(1)去分母,得3(2+x )≥2(2x ﹣1)﹣12,去括号,得6+3x ≥4x ﹣2﹣12,移项,得3x ﹣4x ≥﹣2﹣12﹣6,合并同类项,得﹣x ≥﹣20,系数化为1,得x ≤20;(2)由x ﹣2>0得,x >2,由2(x+1)≥3x ﹣1得,x ≤3,∴不等式组的解集是2<x ≤3,在数轴上表示为:【点睛】此题考查了解一元一次不等式(组),以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.32.为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.(1)求a、b的值;(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.【答案】(1)a=850,b=700;(2)最省钱的购买方案为:购甲型设备2台,乙型设备13台.【解析】【分析】(1)根据购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元,可列出方程组,解之即可得到a 、b 的值;(2)可设购买甲型设备x 台,则购买乙型设备(15﹣x )台,根据购买该批设备的资金不超过11000元、监控半径覆盖范围不低于1600米,列出不等式组,根据x 的值确定方案,然后对所需资金进行比较,并作出选择.【详解】解:(1)由题意得:15032400a b b a -=⎧⎨-=⎩, 解得850700a b =⎧⎨=⎩; (2)设购买甲型设备x 台,则购买乙型设备(15﹣x )台,依题意得 850700(15)11000150100(15)1600x x x x ①②+-⎧⎨+-⎩, 解不等式①,得:x ≤313, 解不等式②,得:x ≥2,则2≤x ≤313, ∴x 取值为2或3.当x =2时,购买所需资金为:850×2+700×13=10800(元),当x =3时,购买所需资金为:850×3+700×12=10950(元),∴最省钱的购买方案为:购甲型设备2台,乙型设备13台.【点睛】本题考查了一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来解决讨论方案的问题.33.解不等式组3222(1)33x x x x -<⎧⎨-+≥⎩①②,并将它的解集在数轴表示出来.【答案】x ≤1,将解集表示在数轴上见解析.【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上画出来【详解】解不等式①,得:x <2,解不等式②,得:x ≤1,将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集和解一元一次不等式组,解题关键在于先求出不等式的解集34.解不等式组43315x x x x -≥⎧⎪-⎨>--⎪⎩,并把解集在数轴上表示出来. 【答案】见解析【解析】【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【详解】解:由不等式(1)得,x≤1,由不等式(2)得,x>﹣2,所以不等式组的解集为﹣2<x≤1.用数轴表示为【点睛】本题考查解一元一次不等式组,在数轴上表示不等式的解集.35.(1+2)﹣(2)解不等式组:562(3) 351344x xx x-≤+⎧⎪⎨--⎪⎩<.【答案】(1)(2)x<2【解析】【分析】(1)根据二次根式的乘法和合并同类项可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【详解】解:(1+2)﹣2 =+2 =-(2)562(3)351344x xx x-≤+⎧⎪⎨-<-⎪⎩①②,由不等式①,得x ≤4由不等式②,得x <2,∴原不等式组的解集是x <2.【点睛】本题考查二次根式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.36.(1)解方程组2313713x y x y +=⎧-=⎨⎩(2)解不等式组()102131x x x +>⎧+≥-⎨⎩【答案】(1){21x y ==-;(2)-1<x ≤3.【解析】【分析】(1)利用加减消元法解之即可,(2)分别解两个不等式,得到不等式的两个解集,找到其公共部分,就是不等式组的解集.【详解】 解:(1)2313713x y x y +=⎧⎨-=⎩①②, ①×3-②×2得:23y =-23,解得:y =-1,把y =-1代入①解得:x =2,原方程组的解集为:{21x y ==-,(2)()102131x x x >①②+⎧⎪⎨+≥-⎪⎩, 解不等式①得:x >-1,解不等式②得:x ≤3,即原不等式组的解集为:-1<x ≤3.【点睛】本题考查解一元一次不等式组和解二元一次方程组,解题的关键是正确掌握解一元一次不等式组和解二元一次方程组的方法.37.(1)解不等式组3(2)41213x x x x --≥⎧⎪+⎨>-⎪⎩ (2)已知A =222111x x x x x ++--- ①化简A②当x 满足不等式组1030x x -⎧⎨-<⎩且x 为整数时,求A 的值. (3)化简23651x x x x x+---- 【答案】(1) x ≤1;(2) 11x -,1;(3) 8x . 【解析】【分析】(1)根据解不等式组的方法可以解答本题;(2)①根据分式的减法可以化简A ;②根据不等式组和原分式可以确定x 的值,然后代入化简后A 的值即可解答本题;(3)根据分式的减法可以化简题目中的式子.【详解】解:(1)3(2)4121,3x x x x --≥⎧⎪⎨+>-⎪⎩①② 由不等式①,得x ≤1,由不等式②,得x <4,故原不等式组的解集为x ≤1;(2)①A =222111x x x x x ++---, ()()()21,111x x x x x +=-+-- 1,11x x x x +=--- 1,1x x x +-=- 11;x =- ②由不等式组1030x x -≥⎧⎨-<⎩,得 1≤x <3,∵x 满足不等式组1030x x -≥⎧⎨-<⎩且x 为整数,(x ﹣1)(x +1)≠0, 解得,x =2,当x =2时,A 1 1.21==-(3)23651x x x x x+---- ()()()3165,1x x x x x -+-+=- ()3365,1x x x x x -+--=- ()()81,1x x x -=- 8.x= 【点睛】本题考查分式的化简求值、解一元一次不等式,解答本题的关键是明确分式化简求值的方法和解不等式组的方法.38.某体育用品商店欲购进A 、B 两种品牌的足球进行销售,若购进A 种品牌的足球50个,B 种品牌的足球25个,需花费成本4250元;若购进A 种品牌的足球15个,B 种品牌的足球10个,需花费成本1450元.(1)求购进A 、B 两种品牌的足球每个各需成本多少元;(2)根据市场调研,A 种品牌的足球每个售价90元,B 种品牌的足球每个售价120元,该体育用品商店购进A 、B 两种品牌的足球进行销售,恰好用了7000元的成本.正值俄罗斯世界怀开赛,为了回馈新老顾客,决定A 品牌足球按售价降低20元出售,B 品牌足球按售价的7折出售,且保证利润不低于2000元,问A 种品牌的足球至少购进多少个.【答案】(1)购买一个A 种品牌的足球需要50元,购买一个B 种品牌的足球需要70元;(2)A 种品牌的足球至少购进63个.【解析】【分析】(1)设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元,根据“购进A 种品牌的足球50个,B 种品牌的足球25个,需花费成本4250元;若购进A 种品牌的足球15个,B 种品牌的足球10个,需花费成本1450元”可得出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设购买A 种足球a 个,根据题意可得出关于a 的一元一次不等式,解不等式可得出a 的取值范围,由此即可得出结论.【详解】解:(1)设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元,依题意得: 5025425015101450,x y x y +=⎧⎨+=⎩解得: 5070.x y =⎧⎨=⎩答:购买一个A 种品牌的足球需要50元,购买一个B 种品牌的足球需要70元;(2)设购买A 种足球a 个,可得:()()7000509020501200.7702000,70a a ---+⨯-⨯≥ 解得:a ≥60, 因为700050,70a a -均为整数, 所以a 的最小整数值是63,答:A 种品牌的足球至少购进63个【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量关系找出关于x 、y 的二元一次方程组;(2)根据数量关系找出关于a 的一元一次不等式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键.39.解不等式组131322378x x x ⎧->-⎪⎨⎪-≤⎩,并把解集在数轴上表示出来. 【答案】2<x ≤5,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再在数轴上将解集表示出来即可.【详解】 解:解不等式131322x x ->-,得:x >2, 解不等式3x ﹣7≤8,得:x ≤5,则不等式组的解集为2<x ≤5,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.40.甲、乙两家超市以相同的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲超市累计购买商品价格总额超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品价格总额超出200元之后,超出部分按原价的九折优惠.若顾客累计购买商品价格总额超出300元,到哪家超市购物花费少?【答案】(1)顾客累计购买商品价格总额超出400元时,到甲超市购物花费少;(2)顾客累计购买商品价格总额超出300元而不到400元时,到乙超市购物花费少;(3)顾客累计购买商品价格总额为400元时,到两家超市购物花费一样.【解析】【分析】设顾客累计购买商品价格总额为x(x>300)元,由题意得到200+0.9(x ﹣200)=300+0.8(x﹣300),分甲超市购物花费少,乙超市购物花费少,两家超市购物花费一样,分别进行求解.【详解】设顾客累计购买商品价格总额为x(x>300)元,(1)若到甲超市购物花费少,则200+0.9(x﹣200)>300+0.8(x﹣300),解得x>400,即顾客累计购买商品价格总额超出400元时,到甲超市购物花费少.(2)若到乙超市购物花费少,则200+0.9(x﹣200)<300+0.8(x﹣300),解得x<400,即顾客累计购买商品价格总额超出300元而不到400元时,到乙超市购物花费少.(3)若200+0.9(x﹣200)=300+0.8(x﹣300),解得x=400,即顾客累计购买商品价格总额为400元时,到两家超市购物花费一样.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,列出不等式,再分情况讨论.。

一元一次不等式综合复习(最新WORD版)

一元一次不等式综合复习(最新WORD版)

一元一次不等式一.知识框架图:1有理数的相反数、绝对值、平方、倒数里隐含的不等式:不等式相关练习一.有理数里的不等式:1.若 a 是非负数,则a___0;2.任意有理数a 的______、________ 具有非负性,用式子表达_______________、_________________. 3.0_____,a a a 则-= ;若0_____,1a aa则-=; 若a <0, 则_____1=+aa ; 若b a a b b a _____,则-=-4. 0_____,a a a 则-≥ ;0_____,a a a 则-5.若a>b,则a-b____0;6.若a >b >0, 则ba1___1;若a <b <0, 则ba1___17.若0<a<1,则a a a 21,,按从小到大排列为____________;若 a >1, 则a a a 21,,按从小到大排列为____________;8.当a 、b_______时,ab>0;若ab<0,则a 和b___________.9.有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<(1)a______b (2)a +b_____0 (3)ab____0 (4) -a___ -b (5)a-b___0 (6) ba 1___110不论a 是什么数,下列不等式都能成立的是 ( ) A. a 2>0 B. a ≥-a C. a 2+1>0 D. 2a >a11.下列说法正确的是( ) A. 如果a >1, 则0<a 1<1 B.如果a <1,那么a1>1 C.a 2>0,则a >012.比较大小 (1)a+b 和a (2) 1-a 与1+a 13.若().0____1061,0322+=-++xy y x 则14.若,111-=--x x 则x 的取值范围是__________;若,111-=--xx 则x_______;若||2112x x -=-,则x___________15.(1)a 2___0,(其中a ≠0);(2) a 2+1____1.二.不等式、不等式性质及解不等式1.. 用适当的式子表示下列关系:⑴x 与y 的平方和不小于8__________⑵任意有理数a 的绝对值具有非负性___________ ⑶x 与y 和的1/5小于或等于1__________________ ⑷___________.525/3-的差的相反数不小于与的a (5)x 除y 的商是负数____________(6)____________________.1657/1倍加的不大于的相反数的x x (7)x 的负倒数大于它的相反数_________________(8)学校的男生人数a 比至少是女生b 的2倍________ (9)姐姐每月上网20小时,妹妹每月上网x 小时,妹妹每月上网的时间超过了姐姐的两倍。

(完整版)一元一次不等式单元复习(知识点+例题)

(完整版)一元一次不等式单元复习(知识点+例题)

第二章一元一次不等式单元复习姓名:_____________ 学号:__________一、知识点复习回顾:1、不等式:用不等号“<”(“≤”)或“>”(“≥”)连接的式子叫做不等式。

2、常见的不等号及其意义:3、不等式的基本性质:(1)性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

(2)性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、不等式的解集:(1)能使不等式成立的未知数的值,叫做不等式的解。

(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。

(3)求不等式解集的过程,叫做解不等式。

5、一元一次不等式:(1)定义:一般地,不等式的两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式。

(2)一元一次不等式的解法步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否发生变化)(3)列一元一次不等式解决实际问题的步骤:①审:认真审题。

②设:设出适当未知数。

③列:根据题意列出不等式。

④解:求出其解集。

⑤验:检验不等式解集是否正确,并且是否符合生活实际。

⑥答:写出答案并作答。

6、一元一次不等式与一次函数:(1)一元一次不等式与一次函数的关系:由于任何一个一元一次不等式都可以转化为00<+>+bkxbkx或(0,≠kbk为常数,且)的形式,所以解一元一次不等式可以看作当一次函数bkxy+=的值大于0(或小于0)时,求相应的自变量的取值范围。

(2)用函数图象解一元一次不等式:①当0>+bkx,表示直线bkxy+=在x轴上方的部分。

②当0<+bkx,表示直线bkxy+=在x轴下方的部分。

③当0=+bkx,表示直线bkxy+=在x轴的交点。

(3)用函数图象解决方案决策型问题:(先得到两个一次函数表达式21yy,)①当1y的图象在2y的图象的上方时,21yy>。

一元一次不等式知识点总结

一元一次不等式知识点总结

一元一次不等式重点:不等式的性质和一元一次不等式的解法。

难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。

知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。

要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。

初中数学第二章一元一次不等式与一元一次不等式组复习

初中数学第二章一元一次不等式与一元一次不等式组复习

第二章一元一次不等式与一元一次不等式组一、知识结构脉络1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、知识点梳理1、不等式的基本性质(如下表)2.运算性质(1)若a>b,c>d,则a 十c>b 十d(同向不等式相加)(2)若a>b,c<d,则a 一c>b 一d(异向不等式相减)(3)若a>b>0,c>d>0,ac>bd(4)若a>b>0,0<c<d,则db c a >(5)(5)若a>b>0,则ba 11<性质文字叙述数学语言(I)不等式的两边加(或减)同一个数或(式子),不等号的方向不变若a>b 则a 土c>b 土c (II)不等式的两边乘以(或除以)同一个正数,不等号的方向不变若a>b 且c>0则ac>bc 或c b c a >(III)不等式的两边乘以(或除以)同一个负数,不等号的方向改变若a>b 且c<0则ac<bc 或cb c a <(6)若a>b>0,n 为正整数,则nn b a >(7)(7)若a>b>0,n 为不小于2的整数则n n ba >3、解不等式的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)未知数的系数化为1。

要注意把系数化为1时,如果不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;如果不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变;解不等式要根据题目的要求和特点合理灵活地选择解题步骤。

人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题

人教版初中数学中考复习  一轮复习  —一元一次不等式(组)解法及含字母(参数)问题

8
4

解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2

一元一次不等式知识点总结

一元一次不等式知识点总结

一元一次不等式知识点总结一元一次不等式的解法一元一次不等式是指未知数的最高次数为1的不等式。

解一元一次不等式的方法有两种:代数法和图像法。

代数法:通过运用不等式的基本性质,将不等式中的未知数移到一边,常数移到另一边,得到未知数的取值范围,即解集。

图像法:将一元一次不等式表示在数轴上,通过数轴上的点的位置判断不等式的解集。

一元一次不等式的解决在现实情景下的实际问题一元一次不等式可以用来解决现实情景中的实际问题,例如:问题1:某公司的年利润不少于100万元,设年利润为x 万元,写出不等式并求解。

解法:根据题意,得到不等式x≥100.因为年利润是一个非负数,所以解集为x≥100.问题2:某物品的重量不超过5千克,设物品的重量为x 千克,写出不等式并求解。

解法:根据题意,得到不等式x≤5.因为物品的重量是一个非负数,所以解集为0≤x≤5.通过以上两个例子可以看出,一元一次不等式可以用来解决现实情景中的实际问题,需要根据题意确定未知数的含义和范围,然后通过解不等式得到解集。

基本性质3:如果一个不等式的两边都乘上(或除以)同一个负数,那么不等号的方向会改变。

要点解释:1) 研究不等式的基本性质1与研究等式的性质类似,可以对比掌握。

2) 不等式的基本性质1中的“同一个整式”指的不仅是相同的数,还包括相同的单项式或多项式。

3) “不等号的方向不变”指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”。

4) 在运用不等式的性质对不等式进行变形时,要特别注意性质3,乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。

知识点三:一元一次不等式的概念只含有一个未知数,且未知数的次数为1,系数不为0的不等式,叫做一元一次不等式。

要点解释:1) 一元一次不等式的概念可以从以下几方面理解:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.2) 一元一次不等式和一元一次方程相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式讲义之(四)一.知识框架图:
1有理数的相反数、绝对值、平方、倒数里隐含的不等式:
不等式相关练习
一.有理数里的不等式:
1.若 a 是非负数,则a___0;
2.任意有理数a 的______、________ 具有非负性,用式子表达_______________、_________________.
3.0_____,a a a 则-= ;若0_____,1a a a 则-=; 若a <0, 则_____1=+a
a
; 若b a a b b a _____,则-=-
4. 0_____,a a a 则-≥ ;0_____,a a a 则-
5.若a>b,则a-b____0;
6.若a >b >0, 则b
a
1___1;若a <b <0, 则b
a
1___1
7.若0<a<1,则
a a a 21,
,按从小到大排列为____________;
若 a >1, 则
a a a 21

,按从小到大排列为____________;
8.当a 、b_______时,ab>0;若ab<0,则a 和b___________.
9.有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<
(1)a______b (2)a +b_____0 (3)ab____0 (4) -a___ -b (5)a-b___0 (6) b
a 1___1
10不论a 是什么数,下列不等式都能成立的是 ( ) A. a 2>0 B. a ≥-a C. a 2
+1>0 D. 2a >a
11.下列说法正确的是( ) A. 如果a >1, 则0<a 1<1 B.如果a <1,那么a
1>1 C.a 2
>0,则a >0
12.比较大小 (1)a+b 和a (2) 1-a 与1+a 13.若().0____1061,0322+=-++xy y x 则
14.若
,111
-=--x x 则x 的取值范围是__________;若
,111
-=--x
x 则x_______;若||2112x x -=-,则x___________
15.(1)a 2___0,(其中a ≠0);(2) a 2
+1____1.
二.不等式、不等式性质及解不等式
1.. 用适当的式子表示下列关系:⑴x 与y 的平方和不小于8__________⑵任意有理数a 的绝对值具有非负性___________ ⑶x 与y 和的1/5小于或等于1__________________ ⑷___________.525/3-的差的相反数不小于与的a (5)x 除y 的商是负数____________(6)____________________.1657/1倍加的不大于的相反数的x x (7)x 的负倒数大于它的相反数_________________(8)学校的男生人数a 比至少是女生b 的2倍________ (9)姐姐每月上网20小时,妹妹每月上网x 小时,妹妹每月上网的时间超过了姐姐的两倍。

______________________ (10)火车限速250公里(11)这次考试小红至少做对了两题 (12) 北京某一天最低气温是-5°C ,最高气温是10°C
2. 已知a>b ,用“>”或“<”填空。

(1)a______b (2)a+3___ b+3 (3)2a+1___2b+1 (4) -a___ -b
(5)-2a-2____-2b-2 (6) a-2011___b-2011 (7) -5a-0.00001_____-5b-0.00001
3.若a>b,则下列说法中(1)a+c >b+c ;(2)ac >bc ;(3)a-2c >b-2c ; (4)ac 2>bc 2
; (5)2a-2011>2b-2011;
(6) b
a 11>;(7)a
b >b 2
; (8)若c=d, 则a+c >b+d ,正确的有____________________________
4. 由x >y 得到ax >ay 的条件是( ) A. a >0 B. a <0 C. a ≥0 D. a ≤0
5. 由a >b,得到ac 2>bc 2的条件是( ) A. c >0 B. c <0 C. c ≠0 D. c 是任意有理数
6. 已知a >b, 则下列结论中正确的是( ) A.a-5>b-5 B. 2a >2b C. ac >bc D. a-b >0
7. 如果a >b, c >0, 下列格式中不正确的是( ) A.ac >bc B. a-c >b-c C. a/c >b/c D. ac 2≥bc 2
8. 下列各式中一定成立的是( )A. 5a -1>4a -1 B. 1+a >1-a C. a 2≥a D. a +3>a -4 9. 若2a +3b -1>3a +2b ,则a ,b 的大小关系为( )A.a <b B.a >b C.a =b D.不能确定
10.已知a<0,-1<b<0, 则a, ab, ab 2
从小到大顺序为____________________。

11..若a>b ,则下列不等式中一定成立的是( ) A. b a <1
B. a b >1
C.
->-a b D. a b ->0
12. 如果b <a <0,下列不等式中错误..
的是( )A.ab >0 B.a +b <0 C.b
a
<1 D.a -b <0 13.下列说法正确的是( ) A.若a >0, b <0, 则a/ b >0 B. 若a >b , 则a-b >0
C. 若a <0,b <0, 则ab <0
D. 若a >b, a <0, 则b/a <1 14.若
1>y
x
,那么下列关系正确的是( ) A. x >y B. x-y >0 C. x <y D. xy >0, 且∣x ∣>∣y ∣ 15在数轴上表示数x 的点与原点的距离不超过5,则x 满足的不等式(组)为_______________ 16要使方程52321x m x m -=-+()的解是负数,则m________
17. 小于90的两位数,个位数字比十位数字大5,这样的两位数有______个。

18求x a )1(->1-a 的解集。

19. 1ax <的解集是x >-1/3,则a 的值是( )A.3 B. 1/3 C.-3 D.-1/3 20.如果)1(-x a >a x 21-+的解集是x <-1,则a 的取值范围为_______________________.
21. 与不等式325
1-≤-x 的解集相同的是( )A. 325-≥x B. 325-≤x C. 235x -≥ D. x ≤4
22 . 不等式x x --<
-32
131
3的负整数解的个数有( ) A. 0个 B. 2个 C. 4个 D. 6个
23.若y x >,下列结论正确的是 ( ) A .y x ->- B. 1010->-y x C. 2
2ay ax > D.
3
1
2312->
-y x 24. 甲种蔬菜保鲜适宜的温度是1°C ~5°C ,乙种蔬菜保鲜适宜的温度是3°C ~8°C ,将这两种蔬菜放在一起同时保
鲜,适宜的温度是( ) A. 1°C ~3°C B. 3°C ~5°C C. 5°C ~8°C D. 1°C ~8°C 25. 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不
低于5%,则至多可打( ) A .6折 B .7折 C .8折 D .9折
26. .采石块工人进行爆破时,为了确保安全,工人点燃炸药导火线后要在炸药爆破前转移到400 m 以外的安全区域;
导火线燃烧速度是1 cm /s ,人离开的速度是5 m /s ,导火线的长度至少需要( ) A .70 cm B .75 cm C .79 cm D .80 cm
27.某车间工人刘伟,接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定的时间内完成任务,以后每天至少加工的零件个数为( ) A.18 B.19 C.20 D.21 28 写出下列不等式的解集,并把解集在数轴上表示出来:
(1) -3x <12 (2) 5634x x ->+ (3) 1312≥--x x (4) 1-x <3
26. 某次数学竞赛共有20道选择题做对一题6分做错一题扣2分不作为0分小明有一题未做他的成绩不低于80分,你知道他至少做对了多少道题吗?
27. 把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但是不足5颗。

问猴子有多少只,花生有多少颗?。

相关文档
最新文档