闭环系统的特征方程为

合集下载

机械工程控制基础考试题及答案

机械工程控制基础考试题及答案

填空题每空1分,共20分1. 线性控制系统最重要的特性是可以应用___叠加__原理,而非线性控制系统则不能;2.反馈控制系统是根据输入量和__反馈量__的偏差进行调节的控制系统;3.在单位斜坡输入信号作用下,0型系统的稳态误差e ss =∞___; 4.当且仅当闭环控制系统特征方程的所有根的实部都是__负数__时,系统是稳定的;5.方框图中环节的基本连接方式有串联连接、并联连接和__反馈 _连接;6.线性定常系统的传递函数,是在_ 初始条件为零___时,系统输出信号的拉氏变换与输入信号的拉氏变换的比; 7.函数te -at的拉氏变换为2)(1a s +;8.线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称为__相频特性__;9.积分环节的对数幅频特性曲线是一条直线,直线的斜率为__-20__dB /dec;10.二阶系统的阻尼比ξ为 _ 0_ 时,响应曲线为等幅振荡; 11.在单位斜坡输入信号作用下,Ⅱ型系统的稳态误差e ss =__0__; 12.0型系统对数幅频特性低频段渐近线的斜率为___0___dB/dec,高度为20lgKp;13.单位斜坡函数t 的拉氏变换为21s ;14. 根据系统输入量变化的规律,控制系统可分为__恒值__控制系统、___随动___ 控制系统和程序控制系统;15. 对于一个自动控制系统的性能要求可以概括为三个方面:稳定性、__快速性__和准确性;16. 系统的传递函数完全由系统的结构和参数决定,与__输入量、扰动量__的形式无关;17. 决定二阶系统动态性能的两个重要参数是阻尼系数ξ和_无阻尼自然振荡频率w n ;18. 设系统的频率特性Gj ω=R ω+jI ω,则幅频特性|Gj ω|=)()(22w I w R +;19. 分析稳态误差时,将系统分为0型系统、I 型系统、II 型系统…,这是按开环传递函数的__积分__环节数来分类的; 20. 线性系统稳定的充分必要条件是它的特征方程式的所有根均在复平面的___左___部分;21.ω从0变化到+∞时,惯性环节的频率特性极坐标图在____第四____象限,形状为___半___圆;22. 用频域法分析控制系统时,最常用的典型输入信号是_正弦函数_;23.二阶衰减振荡系统的阻尼比ξ的范围为10<<ξ; 24.Gs=1+Ts K的环节称为___惯性__环节;25.系统输出量的实际值与_输出量的希望值__之间的偏差称为误差;26.线性控制系统其输出量与输入量间的关系可以用___线性微分__方程来描述;27. 稳定性 、 快速性 和准确性是对自动控制系统性能的基本要求;28.二阶系统的典型传递函数是2222nn nw s w s w ++ξ;29.设系统的频率特性为)(jI )j (R )j (G ω+ω=ω,则)(R ω称为 实频特性 ;30. 根据控制系统元件的特性,控制系统可分为__线性__ 控制系统、 非线性_控制系统;31. 对于一个自动控制系统的性能要求可以概括为三个方面:稳定性、快速性和_准确性__;32.二阶振荡环节的谐振频率ωr 与阻尼系数ξ的关系为ωr =ωn122-ξ;33.根据自动控制系统是否设有反馈环节来分类,控制系统可分为__开环_控制系统、_闭环__控制系统;34.用频率法研究控制系统时,采用的图示法分为极坐标图示法和__对数坐标_图示法;35.二阶系统的阻尼系数ξ=时,为最佳阻尼系数;这时系统的平稳性与快速性都较理想;1. 传递函数的定义是对于线性定常系统,在初始条件为零的条件下,系统输出量的拉氏变换与输入量的拉氏变换之比;2. 瞬态响应是系统受到外加作用激励后,从初始状态到最终或稳定状态的响应过程;3. 判别系统稳定性的出发点是系统特征方程的根必须为负实根或负实部的复数根,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件;4. I 型系统G s Ks s ()()=+2在单位阶跃输入下,稳态误差为 0 ,在单位加速度输入下,稳态误差为 ∞ ;5. 频率响应是系统对正弦输入稳态响应,频率特性包括幅频和相频两种特性;6. 如果系统受扰动后偏离了原工作状态,扰动消失后,系统能自动恢复到原来的工作状态,这样的系统是渐进稳定的系统;7. 传递函数的组成与输入、输出信号无关,仅仅决定于系统本身的结构和参数,并且只适于零初始条件下的线性定常系统;8. 系统的稳态误差与输入信号的形式及系统的结构和参数或系统的开环传递函数有关;9. 如果在系统中只有离散信号而没有连续信号,则称此系统为离散数字控制系统,其输入、输出关系常用差分方程来描述; 10. 反馈控制系统开环对数幅频特性三频段的划分是以ωc 截止频率附近的区段为中频段,该段着重反映系统阶跃响应的稳定性和快速性;而低频段主要表明系统的稳态性能;11. 对于一个自动控制系统的性能要求可以概括为三个方面:稳定性、快速 性和精确或准确性; 单项选择题:1.当系统的输入和输出已知时,求系统结构与参数的问题,称为 A.最优控制 B.系统辩识 C.系统校正 D.自适应控制2.反馈控制系统是指系统中有A.反馈回路B.惯性环节C.积分环节 调节器3. =1s a+,a 为常数;A. Le -atB. Le atC. Le-t -aD. Le-t+at 2e 2t= A. 123()s - B. 1a s a ()+C.223()s + D. 23s5.若Fs=421s +,则Lim f t t →0()= A. 4 B. 2 C. 0 D. ∞ 6.已知ft=e at,a 为实数,则L f t dt t()0⎰=A. as a- B. 1a s a ()+ C.1s s a ()- D. 1a s a ()-t=3202t t ≥<⎧⎨⎩,则Lft=A. 3sB. 12s e s -C. 32s e s -D. 32se s 8.某系统的微分方程为52000 () ()()()x t x t x t x t i +⋅=,它是A.线性系统B.线性定常系统C.非线性系统D.非线性时变系统 9.某环节的传递函数为Gs=e-2s,它是A.比例环节B.延时环节C.惯性环节D.微分环节 10.图示系统的传递函数为A. 11RCs + B. RCs RCs +1C. RCs+1D. RCs RCs+1 11.二阶系统的传递函数为Gs=341002s s ++,其无阻尼固有频率ωn 是A. 10B. 5C.D. 25 12.一阶系统K Ts 1+的单位脉冲响应曲线在t=0处的斜率为 A. K T B. KT C. -K T2D. K T 213.某系统的传递函数Gs=KT s +1,则其单位阶跃响应函数为A. 1T e Kt T -/B. K Te t T -/ C. K1-e -t/TD. 1-e-Kt/T14.图示系统称为 型系统;A. 0B. ⅠC. ⅡD. Ⅲ15.延时环节Gs=e-τs的相频特性∠Gjω等于A. τωB. –τωC.90°D.180°16.对数幅频特性的渐近线如图所示,它对应的传递函数Gs为A. 1+TsB. 11+TsD. 1+Ts2C. 1Ts17.图示对应的环节为A. TsB. 11+TsC. 1+TsD. 1Ts18.设系统的特征方程为Ds=s3+14s2+40s+40τ=0,则此系统稳定的τ值范围为A. τ>0B. 0<τ<14C. τ>14D. τ<019.典型二阶振荡环节的峰值时间与 有关;A.增益B.误差带C.增益和阻尼比D.阻尼比和无阻尼固有频率20.若系统的Bode 图在ω=5处出现转折如图所示,这说明系统中有环节; A. 5s+1 B. 5s+12C. +1D.10212(.)s +21.某系统的传递函数为Gs=()()()()s s s s +-+-72413,其零、极点是 A.零点s=-,s=3;极点s=-7,s=2 B.零点s=7,s=-2;极点s=,s=3C.零点s=-7,s=2;极点s=-1,s=3D.零点s=-7,s=2;极点s=-,s=3 22.一系统的开环传递函数为32235()()()s s s s +++,则系统的开环增益和型次依次为A. 0.4,ⅠB. ,ⅡC. 3,ⅠD. 3,Ⅱ23.已知系统的传递函数Gs=K Te sts 1+-,其幅频特性|Gj ω|应为A. K T e 1+-ωτB. KT e 1+-ωτωC.K T e 2221+-ωτω D.K T 122+ω24.二阶系统的阻尼比ζ,等于A.系统的粘性阻尼系数B.临界阻尼系数与系统粘性阻尼系数之比C.系统粘性阻尼系数与临界阻尼系数之比D.系统粘性阻尼系数的倒数25.设ωc 为幅值穿越交界频率,φωc 为开环频率特性幅值为1时的相位角,则相位裕度为A. 180°-φωcB. φωcC. 180°+φωcD. 90°+φωc 26.单位反馈控制系统的开环传递函数为Gs=45s s ()+,则系统在rt=2t 输入作用下,其稳态误差为A. 104B. 54C. 45D. 0 27.二阶系统的传递函数为Gs=1222s s n n++ζωω,在0<ζ<22时,其无阻尼固有频率ωn 与谐振频率ωr 的关系为A. ωn <ωrB. ωn =ωrC. ωn >ωrD. 两者无关28.串联相位滞后校正通常用于A.提高系统的快速性B.提高系统的稳态精度C.减少系统的阻尼D.减少系统的固有频率29.下列串联校正装置的传递函数中,能在频率ωc =4处提供最大相位超前角的是A. 411s s ++B. s s ++141C. 01106251..s s ++ D. 06251011..s s ++30.从某系统的Bode 图上,已知其剪切频率ωc ≈40,则下列串联校正装置的传递函数中能在基本保持原系统稳定性及频带宽的前提下,通过适当调整增益使稳态误差减至最小的是A. 000410041..s s ++B. 04141.s s ++C. 41101s s ++ D. 41041s s ++. 单项选择题每小题1分,共30分二、填空题每小题2分,共10分1.系统的稳态误差与系统开环传递函数的增益、_______和_______有关;2.一个单位反馈系统的前向传递函数为K s s s3254++,则该闭环系统的特征方程为_______开环增益为_______;3.二阶系统在阶跃信号作用下,其调整时间t s 与阻尼比、_______和_______有关;4.极坐标图Nyquist 图与对数坐标图Bode 图之间对应关系为:极坐标图上的单位圆对应于Bode 图上的_______;极坐标图上的负实轴对应于Bode 图上的_______;5.系统传递函数只与_______有关,与______无关; 填空题每小题2分,共10分1.型次 输入信号+5s 2+4s+K=0,K 43.误差带 无阻尼固有频率分贝线 -180°线5.本身参数和结构 输入1. 线性系统和非线性系统的根本区别在于CA .线性系统有外加输入,非线性系统无外加输入;B .线性系统无外加输入,非线性系统有外加输入;C .线性系统满足迭加原理,非线性系统不满足迭加原理;D .线性系统不满足迭加原理,非线性系统满足迭加原理;2.令线性定常系统传递函数的分母多项式为零,则可得到系统的 BA .代数方程B .特征方程C .差分方程D .状态方程3. 时域分析法研究自动控制系统时最常用的典型输入信号是DA .脉冲函数B .斜坡函数C .抛物线函数D .阶跃函数 4.设控制系统的开环传递函数为Gs=)2s )(1s (s 10++,该系统为BA .0型系统B .I 型系统C .II 型系统D .III 型系统5.二阶振荡环节的相频特性)(ωθ,当∞→ω时,其相位移)(∞θ为 BA .-270°B .-180°C .-90°D .0°6. 根据输入量变化的规律分类,控制系统可分为 AA.恒值控制系统、随动控制系统和程序控制系统B.反馈控制系统、前馈控制系统前馈—反馈复合控制系统C.最优控制系统和模糊控制系统D.连续控制系统和离散控制系统7.采用负反馈连接时,如前向通道的传递函数为Gs,反馈通道的传递函数为Hs,则其等效传递函数为 CA .)s (G 1)s (G + B .)s (H )s (G 11+C .)s (H )s (G 1)s (G +D .)s (H )s (G 1)s (G -8. 一阶系统Gs=1+Ts K 的时间常数T 越大,则系统的输出响应达到稳态值的时间AA .越长B .越短C .不变D .不定9.拉氏变换将时间函数变换成DA .正弦函数B .单位阶跃函数C .单位脉冲函数D .复变函数10.线性定常系统的传递函数,是在零初始条件下DA .系统输出信号与输入信号之比B .系统输入信号与输出信号之比C .系统输入信号的拉氏变换与输出信号的拉氏变换之比D .系统输出信号的拉氏变换与输入信号的拉氏变换之比 11.若某系统的传递函数为Gs=1Ts K+,则其频率特性的实部R ω是A A .22T 1Kω+ B .-22T1Kω+C .T1K ω+D .-T1K ω+12. 微分环节的频率特性相位移θω= AA. 90°B. -90°C. 0°D. -180°13. 积分环节的频率特性相位移θω= BA. 90°B. -90°C. 0°D. -180°14.传递函数反映了系统的动态性能,它与下列哪项因素有关 CA.输入信号B.初始条件C.系统的结构参数D.输入信号和初始条件15. 系统特征方程式的所有根均在根平面的左半部分是系统稳定的 CA.充分条件B.必要条件C.充分必要条件D.以上都不是16. 有一线性系统,其输入分别为u 1t 和u 2t 时,输出分别为y 1t 和y 2t;当输入为a 1u 1t+a 2u 2t 时a 1,a 2为常数,输出应为 BA. a 1y 1t+y 2tB. a 1y 1t+a 2y 2tC. a 1y 1t-a 2y 2tD. y 1t+a 2y 2t17. I 型系统开环对数幅频渐近特性的低频段斜率为 BA. -40dB/decB. -20dB/decC. 0dB/decD. +20dB/dec 18. 设系统的传递函数为Gs=255252++s s ,则系统的阻尼比为CA.25B. 5C. 21D. 119.正弦函数sintω的拉氏变换是BA.ω+s 1B.22s ω+ωC.22s s ω+ D.22s 1ω+20.二阶系统当0<ζ<1时,如果增加ζ,则输出响应的最大超调量%σ将 BA.增加B.减小C.不变D.不定 21.主导极点的特点是DA.距离实轴很远B.距离实轴很近C.距离虚轴很远D.距离虚轴很近 22.余弦函数costω的拉氏变换是CA.ω+s 1B.22s ω+ωC.22s s ω+ D.22s 1ω+23.设积分环节的传递函数为Gs=s1,则其频率特性幅值M ω=CA.ωKB.2K ω C.ω1 D.21ω24. 比例环节的频率特性相位移θω= C° ° ° °25. 奈奎斯特稳定性判据是利用系统的 C 来判据闭环系统稳定性的一个判别准则;A.开环幅值频率特性B.开环相角频率特性C.开环幅相频率特性D.闭环幅相频率特性 26. 系统的传递函数CA.与输入信号有关B.与输出信号有关C.完全由系统的结构和参数决定D.既由系统的结构和参数决定,也与输入信号有关 27. 一阶系统的阶跃响应,DA.当时间常数T 较大时有振荡B.当时间常数T 较小时有振荡C.有振荡D.无振荡28. 二阶振荡环节的对数频率特性相位移θω在 D 之间;°和90° °和-90° °和180° °和-180° 29. 某二阶系统阻尼比为,则系统阶跃响应为 CA. 发散振荡B. 单调衰减C. 衰减振荡D. 等幅振荡 二.设有一个系统如图1所示,k 1=1000N/m, k 2=2000N/m, D=10N/m/s,当系统受到输入信号t t x i sin 5)(= 的作用时,试求系统的稳态输出)(t x o ;15分 解:()()()1015.001.021211+=++=s sk k Ds k k Ds k s X s X i o 然后通过频率特性求出 ()() 14.89sin 025.0+=t t x o三.一个未知传递函数的被控系统,构成单位反馈闭环;经过测试,得知闭环系统的单位阶跃响应如图2所示;10分问:1 系统的开环低频增益K 是多少 5分2 如果用主导极点的概念用低阶系统近似该系统,试写出其近似闭环传递函数;5分 解:100718K K =+,07K =2 ()()8025.07+=s s X s X i o四.已知开环最小相位系统的对数幅频特性如图3所示;10分 1. 写出开环传递函数Gs 的表达式;5分 2. 概略绘制系统的Nyquist 图;5分 1.)100s )(01.0s (s 100)1100s )(101.0s (s K)s (G ++=++=2.五.已知系统结构如图4所示, 试求:15分 1. 绘制系统的信号流图;5分 2. 求传递函数)()(s X s X i o 及)()(s N s X o ;10分六.系统如图5所示,)(1)(t t r =为单位阶跃函数,试求:10分 1. 系统的阻尼比ξ和无阻尼自然频率ωn ;5分2. 动态性能指标:超调量M p 和调节时间%)5(=∆s t ;5分1.)2s (s )2S (S 4n 2nξω+ω=+ 2.%5.16%100eM 21p =⨯=ξ-ξπ-七.如图6所示系统,试确定使系统稳定且在单位斜坡输入下e ss ≤225.时,K的数值;10分由劳斯判据:第一列系数大于零,则系统稳定得54K 0<< 又有:K9e ss =≤可得:K ≥4 ∴ 4≤K <54八.已知单位反馈系统的闭环传递函数32)(+=Φs s ,试求系统的相位裕量γ;10分解:系统的开环传递函数为1s 2)s (W 1)s (W )s (G +=-=112|)j (G |2cc =+ω=ω,解得3c =ω三、设系统的闭环传递函数为Gcs=ωξωωnn ns s 2222++,试求最大超调量σ%=%、峰值时间tp=秒时的闭环传递函数的参数ξ和ωn 的值;解:∵%100%21⨯=--ξξπσe=%∴ξ= ∵t p =πωξn 12-=∴ωn =πξt p 13140210622-=-=...s四、设一系统的闭环传递函数为G c s=ωξωωnn nss 2222++,试求最大超调量σ%=5%、调整时间t s =2秒△=时的闭环传递函数的参数ξ和ωn的值;解:∵%100%21⨯=--ξξπσe =5%∴ξ= ∵t s =ξωn 3=2∴ωn = rad/s五、设单位负反馈系统的开环传递函数为 )6(25)(+=s s s G k 求1系统的阻尼比ζ和无阻尼自然频率ωn ;2系统的峰值时间t p 、超调量σ%、 调整时间t S △=;解:系统闭环传递函数2562525)6(25)6(251)6(25)(2++=++=+++=s s s s s s s s s G B 与标准形式对比,可知 62=n w ξ ,252=n w故 5=n w , 6.0=ξ 又 46.015122=-⨯=-=ξnd w w六、某系统如下图所示,试求其无阻尼自然频率ωn ,阻尼比ζ,超调量σ%,峰值时间p t ,调整时间s t △=;解: 对于上图所示系统,首先应求出其传递函数,化成标准形式,然后可用公式求出各项特征量及瞬态响应指标;与标准形式对比,可知 08.02=n w ξ ,04.02=n w 七、已知单位负反馈系统的开环传递函数如下: 求:1 试确定系统的型次v 和开环增益K ; 2试求输入为t t r 31)(+=时,系统的稳态误差; 解:1将传递函数化成标准形式 可见,v =1,这是一个I 型系统 开环增益K =50;2讨论输入信号,t t r 31)(+=,即A =1,B =3 根据表3—4,误差06.006.00503111=+=+∞+=++=V p ss K B K A e 八、 已知单位负反馈系统的开环传递函数如下: 求:1 试确定系统的型次v 和开环增益K ; 2试求输入为2425)(t t t r ++=时,系统的稳态误差; 解:1将传递函数化成标准形式可见,v =2,这是一个II 型系统 开环增益K =100; 2讨论输入信号,2425)(t t t r ++=,即A =5,B =2, C=4根据表3—4,误差04.004.00010042151=++=+∞+∞+=+++=a V p ssK C K B K A e 九、 已知单位负反馈系统的开环传递函数如下: 求:1 试确定系统的型次v 和开环增益K ; 2试求输入为2252)(t t t r ++=时,系统的稳态误差; 解:1该传递函数已经为标准形式 可见,v =0,这是一个0型系统 开环增益K =20;2讨论输入信号,2252)(t t t r ++=,即A =2,B =5,C=2 根据表3—4,误差∞=∞+∞+=+++=+++=212020520121Ka C K B K A e V p ss十、设系统特征方程为s 4+2s 3+3s 2+4s+5=0试用劳斯-赫尔维茨稳定判据判别该系统的稳定性;解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=2,a 2=3,a 1=4,a 0=5均大于零,且有所以,此系统是不稳定的; 十一、设系统特征方程为试用劳斯-赫尔维茨稳定判据判别该系统的稳定性;解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=6,a 2=12,a 1=10,a 0=3均大于零,且有 所以,此系统是稳定的; 十二、设系统特征方程为试用劳斯-赫尔维茨稳定判据判别该系统的稳定性;解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=5,a 2=2,a 1=4,a 0=3均大于零, 且有所以,此系统是不稳定的; 十三、设系统特征方程为试用劳斯-赫尔维茨稳定判据判别该系统的稳定性;解:1用劳斯-赫尔维茨稳定判据判别,a 3=2,a 2=4,a 1=6,a 0=1均大于零,且有所以,此系统是稳定的;十四、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线;解:该系统开环增益K =30;有一个积分环节,即v =1;低频渐近线通过1,20lg30这点,斜率为-20dB/dec ;有一个惯性环节,对应转折频率为5002.011==w ,斜率增加-20dB/dec;系统对数幅频特性曲线如下所示;20lg30十五、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线;解:该系统开环增益K =100;有一个积分环节,即v =1;低频渐近线通过1,20lg100这点,即通过1,40这点斜率为-20dB/dec ; 有两个惯性环节,对应转折频率为101.011==w ,10001.012==w ,斜率分别增加-20dB/dec系统对数幅频特性曲线如下所示;十六、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线;解:该系统开环增益K =1;无积分、微分环节,即v =0,低频渐近线通过1,20lg1这点,即通过1,0这点斜率为0dB/dec ;有一个一阶微分环节,对应转折频率为101.011==w ,斜率增加20dB/dec;系统对数幅频特性曲线如下所示;dec十七、如下图所示,将方框图化简,并求出其传递函数;解:十八、如下图所示,将方框图化简,并求出其传递函数; 解:十九、如下图所示,将方框图化简,并求出其传递函数;L /dB20 dB / dec 10rad/s一一H 1G 1 G 2H 2 RSCS一 一H 1/G 2 G 1 G 2H 2RS CS一 H 1/G 2 G 1 RS CS G 2 1+ G 2H 2 一H 1/G 2RSCS G 1G 2 1+ G 2H 2 RSCSG 1G 2 1+ G 2H 2+G 1H 1解:三、简答题共16分1.4分已知系统的传递函数为2432s s ++,求系统的脉冲响应表达式;2.4分已知单位反馈系统的开环传递函数为K s s ()71+,试问该系统为几型系统系统的单位阶跃响应稳态值为多少3.4分已知二阶欠阻尼系统的单位阶跃响应如下,如果将阻尼比ζ增大但不超过1,请用文字和图形定性说明其单位阶跃响应的变化;4.4分已知各系统的零点o 、极点x 分布分别如图所示,请问各个系统是否有非主导极点,若有请在图上标出; 四、计算题本大题共6小题,共44分一 一 G 1G 3H 1 RSCSG 2H 1一 H 1 G 3 RSCSG 1G 2 1+ G 2H 1RSCSG 1G 2G 31+ G 2H 1+ G 1G 2H 1一一G 1G 3RSCSG 2H 11.7分用极坐标表示系统14212s s ++的频率特性要求在ω→∞、ω=0、ω=ωn 等点准确表示,其余定性画出;2.7分求如下系统Rs 对Cs 的传递函数,并在图上标出反馈通道、顺馈通道;3.6分已知系统的调节器为问是否可以称其为PID 调节器,请说明理由;4.8分求如图所示机械网络的传递函数,其中X 为输入位移,Y 为输出位移;5.10分已知单位反馈闭环系统的开环传递函数为40110011s s s (.)(.)++,请绘出频率特性对数坐标图Bode 图,并据图评价系统的稳定性、动态性能和静态性能要说明理由;6.6分请写出超前校正装置的传递函数,如果将它用于串联校正,可以改善系统什么性能 三、简答题共16分1.24311132s s s s ++=++-+ gt=e -t -e -3t ,t ≥0 2.Ⅰ型;稳态值等于13.上升时间变大;超调量减少;调节时间减小大体上;4.无非主导极点;非主导极点;非主导极点四、计算题共44分1.ω→∞点ω=0点ωn=点曲线大体对2.C sR s G G GG Gf() ()() =++13.6分G0s=T3+T4+T3T4s+1/sG 0s 由比例部分T 3+T 4、微分部分T 3T 4s 及积分部分1/s 相加而成 4.8分B ( )xy Ky --=0 Gs=Ts Ts +1,T=B/k 5.开环传递函数在复半平面无极点,据图相位裕度为正,幅值裕度分贝数为正,根据乃奎斯特判据,系统稳定;系统为Ⅰ型,具有良好的静态性能;相位裕度约为60度,具有良好的动态性能;s=K Ts Tsαα++≥111,可增加相位裕度,调整频带宽度;设系统的特征方程为DS =S 5+3S 4+4S 3+12S 2-5S-15 试用Routh 表判别系统的稳定性,并说明该系统具有正实部特征根的个数; 解:根据特征方程的系数,列Routh 表如下:S 5 1 4-5 0S 4 3 12 -15 0 S 3由第二行各元素得辅助方程2p=4,p=2FS= 3S 4+12S 2-15=0 取FS 对S 的导数,则得新方程12S3+24S=0得如下的Routh表S5 1 4 -5 0S4 3 12 -15 0S312 24 0 0S2 6 -15 0S154 0S0-15 符号改变一次,系统不稳定该系统具有正实部特征根个数为1;。

自动控制19套试题及答案详解

自动控制19套试题及答案详解

第1页一.填空题。

(10分)1.传递函数分母多项式的根,称为系统的2. 微分环节的传递函数为3.并联方框图的等效传递函数等于各并联传递函数之4.单位冲击函数信号的拉氏变换式5.系统开环传递函数中有一个积分环节则该系统为型系统。

6.比例环节的频率特性为。

7. 微分环节的相角为。

8.二阶系统的谐振峰值与有关。

9.高阶系统的超调量跟有关。

10.在零初始条件下输出量与输入量的拉氏变换之比,称该系统的传递函数。

二.试求下图的传第函数(7分)三.设有一个由弹簧、物体和阻尼器组成的机械系统(如下图所示),设外作用力F(t)为输入量,位移为y(t)输出量,列写机械位移系统的微分方程(10分)第2页四.系统结构如图所示,其中K=8,T=0.25。

(15分)(1)输入信号x i(t)=1(t),求系统的响应;(2)计算系统的性能指标t r、t p、t s(5%)、бp;(3)若要求将系统设计成二阶最佳ξ=0.707,应如何改变K值第 3 页)1001.0)(11.0()(++=s s s Ks G 五.在系统的特征式为A (s )=6s +25s +84s +123s +202s +16s+16=0,试判断系统的稳定性(8分)(12分)七.某控制系统的结构如图,其中 要求设计串联校正装置,使系统具有K ≥1000及υ≥45。

的性能指标。

(13分)s T s s s G 25.0,)4(1)(=+=.八.设采样控制系统饿结构如图所示,其中 试判断系统的稳定性。

(10分)九. 已知单位负反馈系统的开环传递函数为: 试绘制K由0 ->+∞变化的闭环根轨迹图,系统稳定的K 值范围。

(15分),)4()1()(22++=s s Ks G第5页一、填空题:(每空1.5分,共15分)1.当扰动信号进入系统破坏系统平衡时,有重新恢复平衡的能力则该系统具有。

2.控制方式由改变输入直接控制输出,而输出对系统的控制过程没有直接影响,叫。

现代控制工程基础第三章习题解答

现代控制工程基础第三章习题解答

解:
s5
1
2 11
s4
2
4 10
s3 0(ε)
6
4ε −12
s2
ε
10
s1
−10ε 2 + 24ε − 72 4ε −12
s0
10
当ε→0+时,第一列变了两次符号,故在右半平面
有两个正根。
10
(5) D(s)=s6+2s5+8s4+12s3+20s2+16s+16=0
解: s6 s5 s4 s3 s2 s1 s0
5
s0 K-8
第一列元素全部大于零,可得
8<K<18
13
3.14 已知单位负反馈的开环传递函数如下,试求系统在
输入信号分别为r(t)=1,t和t2时的稳态误差ess。
(1)
G(s) =
100
(0.1s +1)(0.5s +1)
解:闭环系统特征方程 D(s) = 0.01s2 + 0.6s +101 = 0 稳定的。
Hale Waihona Puke ess=1 1+ Kp
=1 1+ KK1
18
Vr

K1
+
K2 s
K Ts +1
Vc
(2) 当K2≠0时,求Vr(t)=1(t)时的稳态误差ess; I型系统,开环传递函数 G(s) = K(K1s + K2)
s(Ts +1)
当Vr(t)=1(t)时,静态位置误差系数
Kp
=
lim G(s)
s→0
=

时速度误差系数为Kv=6?此时的ess为多少?

自动控制理论二第5章习题

自动控制理论二第5章习题

自动控制理论(二) 第五章测试题一、单项选择题(每小题2分)1、系统特征方程式的所有根均在根平面的左半部分是系统稳定的( )A.充分条件B.必要条件C.充分必要条件D.以上都不是 2、下列判别系统稳定性的方法中,哪一个是在频域里判别系统稳定性的判据( ) A.劳斯判据 B.赫尔维茨判据 C.奈奎斯特判据 D.根轨迹法 3、设单位负反馈系统的开环传函为G(s)=3)1s (22+,那么它的相位裕量γ的值为( ) A.15º B.60º C.30º D.45º4、 系统稳定的充分必要条件是其特征方程式的所有根均在根平面的( ) A. 实轴上 B. 虚轴上 C. 左半部分 D. 右半部分5、下列频域性能指标中,反映闭环频域性能指标的是( ) A.谐振峰值M r B.相位裕量γ C.增益裕量K g D.剪切频率ωc6、在经典控制理论中,临界稳定被认为是( )A.稳定B.BIBO 稳定C.渐近稳定D.不稳定 7、奈奎斯特稳定性判据是利用系统的( )来判据闭环系统稳定性的一个判别准则。

A.开环幅值频率特性B.开环相角频率特性C.开环幅相频率特性D.闭环幅相频率特性 8、系统的开环传递函数由1)s(s K +变为2)1)(s s(s K++,则新系统( )。

A.稳定性变好 B.稳定性变坏C.稳定性不变D.相对稳定性变好 9、利用奈奎斯特图可以分析闭环控制系统的( ) A.稳态性能 B.动态性能C.稳态和动态性能D.抗扰性能 10、设单位负反馈控制系统的开环传递函数G o (s)=)a s (s K+,其中K>0,a>0,则闭环控制系统的稳定性与( ) A.K 值的大小有关 B.a 值的大小有关 C.a 和K 值的大小有关 D.a 和K 值的大小无关11、已知系统的特征方程为(s+1)(s+2)(s+3)=s+4,则此系统的稳定性为( ) A .稳定 B .临界稳定 C .不稳定 D .无法判断12、已知系统前向通道和反馈通道的传递函数分别为G (s )=s K 1)s (H ,)1s (s 10h +=-,当闭环临界稳定时,K h 值应为( ) A .-1 B .-0.1 C .0.1 D .113、闭环系统特征方程为G(s)H(s)=-1,其中G(s)H(s)的矢量表示为( ) A .1/(2l+1)π B .1/±(2l+1)π C .1/(±2l π) D .1/(±l π) (各备选项中l =0,1,2……)14、若系统的特征方程式为 s 3+4s+1=0 ,则此系统的稳定性为 ( ) A .稳定 B .临界稳定 C .不稳定 D .无法判断 15、已知单位负反馈控制系统的开环传递函数为)5s )(1s (s )1s (10)s (G +-+=,该系统闭环系统是( )A .稳定的B .条件稳定的C .临界稳定的D .不稳定的 16、系统的开环传递函数为)1TS (s 2)s (G k +=,当T=1s 时,系统的相位裕量为( )A .30° B .45° C .60° D .90° 17、设某闭环传递函数为1s 101)s (R )s (Y +=,则其频带宽度为( ) A .0~10 rad/s B .0~1 rad/s C .0~0.1 rad/sD .0~0.01 rad/s18、已知某单位负反馈系统的开环传递函数为 G(s)= ,则相位裕量 γ 的值为( ) A . 30° B . 45° C . 60° D . 90°19、若一系统的特征方程式为 (s+1)2(s - 2)2+3 = 0 ,则此系统是( ) A .稳定的 B .临界稳定的 C .不稳定的 D .条件稳定的 20、在奈氏判据中,若F(s)在F(s)平面上的轨迹顺时针包围原点两次,则N 的值为( )A .-2 B .-1 C .1 D .221、若劳斯阵列表中第一列的系数为(3,1,ε,2-ε1,12)T ,则此系统的稳定性为( )A .稳定B .临界稳定C .不稳定D .无法判断 22、设开环系统频率特性为G (j ω)=)12)(1(1++ωωωj j j ,则其频率特性的奈氏图与负实轴交点的频率值ω为( ) A .rad 22/s B .1rad /s C .2rad/s D .2rad/s 23、已知单位负反馈控制系统的开环传递函数为G (s )=1-s K,则系统稳定时K的范围为( )A .K <0B .K >0C .K >1D .K >224、某单位反馈控制系统开环传递函数G (s )=21s s +α,若使相位裕量γ=45°,α的值应为多少?( )A .21 B .21 C .321 D .42125、已知单位负反馈系统的开环传递函数为G (s )=12)1(223++++s as s s ,若系统以ωn =2rad/s的频率作等幅振荡,则a 的值应为( )A .0.4B .0.5C .0.75D .126、设G (s )H (s )=)5)(2()10(+++s s s k ,当k 增大时,闭环系统( )A .由稳定到不稳定B .由不稳定到稳定C .始终稳定D .始终不稳定二、填空题(每小题1分)1、已知单位反馈系统的开环传递函数为)1Ts (s K)s (G +=,若要求带宽增加a 倍,相位裕量保持不变,则K 应为 ,T 应为 。

控制理论作业二答案

控制理论作业二答案

第三章3-1 已知二阶系统闭环传递函数为 369362++=s s G B 。

试求单位阶跃响应的t r , t m ,δ% , t s 的数值?解:[题意分析]这是一道典型二阶系统求性能指标的例题。

解法是把给定的闭环传递函数与二阶系统闭环传递函数标准形式进行对比,求出n ω参数,而后把n ω代入性能指标公式中求出r t ,m t ,%δ,s t 和N 的数值。

上升时间 t r峰值时间t m 过度过程时间t s 超调量δ%3-2 设单位反馈系统的开环传递函数为试求系统的性能指标,峰值时间,超调量和调节时间。

解:[题意分析]这是一道给定了开环传递函数,求二阶系统性能指标的练习题。

在这里要抓住二阶系统闭环传递函数的标准形式与参数(ζ,n ω)的对应关系,然后确定用哪一组公式去求性能指标。

根据题目给出条件可知闭环传递函数为与二阶系统传递函数标准形式2222nn n s s ωζωω++相比较可得12,12==n n ζωω,即n ω=1,ζ=0.5。

由此可知,系统为欠阻尼状态。

故,单位阶跃响应的性能指标为3-3 如图1所示系统,假设该系统在单位阶跃响应中的超调量%δ=25%,峰值时间m t =0.5秒,试确定K 和τK,τ与ζ,n ω的关系;%δ,m t 与ζ,nω 由系统结构图可得闭环传递函数为 与二阶系统传递函数标准形式相比较,可得由题目给定: %25%100%21=⨯=--ζζπδe即 25.021=--ζζπe两边取自然对数可得 依据给定的峰值时间: 5.012=-=ζωπn m t (秒)所以 85.615.02=-=ζπωn (弧度/秒)3-4 已知系统的结构图如图2所示,若)(12)(t t x ⨯= 时,试求:(1) 当τ=0时,系统的t r , t m , t s 的值。

(2) 当τ≠0时,若使δ%=20%,τ应为多大。

求出可得 )/(07.750秒弧度==n ω 由于ss X 2)(=输出的拉氏变换为 则拉氏反变换为(2) 当τ≠0时,闭环传递函数由 %20%100%21=⨯=--ζζπδe两边取自然对数 61.12.0ln 12-==--ζζπ, 可得故 73.85.)107.746.0(2=-⨯=o τ3-5(1) 什么叫时间响应答:系统在外加作用的激励下,其输出随时间变化的函数关系叫时间响应。

习题答案第3章

习题答案第3章

t s (2%) 4T
T ,为惯性环节的时间常数。 将已知数据 t s (2%)=15 秒代入上式,求得惯性环节的时间常数 T
则闭环传递函数为
3.75 秒。
WB ( s )
单位反馈系统的开环传递函数为
1 15s 1
WK ( s )
WB ( s) 1 1 WB ( s ) 15s
s0
劳斯表中出现 s 行为全 0 行,且无符号变化,则闭环系统临界稳定,有 2 对对称于原 点的特征根。可通过辅助方程得到。
3
令 F ( s ) 3s 18s 12 0
4 2
解得
3-9 系统如图 P3-4 所示,问 取何值系统方能稳定。
s1, 2 j 0.87 , s 3, 4 j 2.29 10 s ( s 1)
则 令 xc (t ) 0

xc (t ) L1 [ X c ( s )] 1 e t cos(3t )
可得 t m 0.94 s
阶跃响应的最大峰值 根据超调量的定义
x max (t m ) 1.37
%
调节时间 t s (5%)
x max (t m ) xc () 100% 37% x c ( )
0.2 sX c ( s ) 2 X r ( s )
又输入信号为 X r ( s )
1 ,则输出 s
X c ( s ) 10 s2
拉氏反变换后,得单位阶跃响应为
xc (t ) 10t
c (t ) 0.24 x c (t ) (2) 0.04 x
微分方程两侧同时取拉氏变换,得
5 4 3 2
(4) s 4 s 4 s 4 s 7 s 8s 10 0

自控控制原理习题 王建辉 第4章答案

自控控制原理习题 王建辉 第4章答案

4-1 根轨迹法使用于哪类系统的分析?4-2 为什么可以利用系统开环零点和开环极点绘制闭环系统的根轨迹?4-3 绘制根轨迹的依据是什么?4-4 为什么说幅角条件是绘制根轨迹的充分必要条件?4-5 系统开零环、极点对根轨迹形状有什么影响?4-6 求下列各开环传递函数所对应的负反馈系统的根轨迹。

(1))2)(1()3()(+++=s s s K s W g K (2))2)(3()5()(+++=s s s s K s W g k (3) )10)(5)(1()3()(++++=s s s s K s W g k解:第(1)小题 由系统的开环传递函数)2)(1()3()(+++=s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 11-=-p 、22-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,两条,一条终止于开环零点,另一条趋于无穷远。

4. 实轴上的根轨迹区间为3~-∝-和1~2--5. 分离点与会合点,利用公式0312111=+-+++d d d ()()()()()()()()()0321213132=+++++-+++++d d d d d d d d d 即:0762=++d d解上列方程得到:586.11-=d ,414.42-=d根据以上结果画出根轨迹如下图:解:第(2)小题 由系统的开环传递函数)2)(3()5()(+++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 00=-p 、21-=-p 、32-=-p2. 终点:=∝g K 时,终止于开环零点,51-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。

4. 实轴上的根轨迹区间为3~5--和0~2-5. 分离点与会合点,利用公式05131211=+-++++d d d d 8865.0-=d6. 根轨迹的渐进线 渐进线倾角为:0009013)21(180)21(180 =-+=-+=μμϕm n 渐进线的交点为:01352311=--+=---=-∑∑==m n z p m i in j j k σ 根据以上结果画出根轨迹如下图:解:第(3)小题 由系统的开环传递函数)10)(5)(1()3()(++++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 10-=-p 、51-=-p 、102-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。

自动控制原理_王万良(课后答案4

自动控制原理_王万良(课后答案4

⎡0 1 0 ⎤ ⎢ ⎥ x ( k + 1) = ⎢ 0 0 1 ⎥ x ( k ) ⎢0 k 0 ⎥ ⎣ 2 ⎦
试求使系统渐进稳定的 K 值范围。 *答案: 0 < K < 2 时系统渐进稳定。
K>0
4.13 非线性系统线性部分的极坐标图,非线性部分的负倒幅特性如图题 4.13 所示。试判断系统是否稳 定,是否存在自激振荡。 图题 4.13 I
4.7 已知闭环离散系统的特征方程为 D(z) = z + 0.2z + z + 0.36z + 0.8 = 0 试判断系统的稳定性。 答案:临界稳定 4.8 如图题 4.8 所示离散系统,采样周期 T=1s,Gh(s)为零阶保持器,而
4 3 2
G (s) =
Κ s ( 0 . 2 s + 1)
要求: (1)K=5 时,分析系统的稳定性; (2)确定使系统稳定的 K 值范围。
第 4 章习题 4.1 已知系统特征方程如下,试用劳斯判据判别系统稳定性,并指出位于右半 S 平面和虚轴上的特征根的 数目。 (1) D( s) = s + s + 4 s + 4 s + 2 s + 1 = 0
5 4 3 2
(2) D( s) = s + 3s + 5s + 9 s + 8s + 6s + 4 = 0
闭环特征方程为:
s ( s − 1) + 10(1 + k n s ) = 0
即 s + (10k n s − 1) s + 10 = 0
2
s2 1 10 1 s 10k n − 1 s0 10 10 k n − 1 > 0, k n > 0.1 稳定 当 k n = 0.1 时,临界稳定 非最小相位系统,当速度及增量 k n 越大,越稳定

机械工程控制基础考试题及答案

机械工程控制基础考试题及答案

机械工程控制基础考试题及答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-填空题(每空1分,共20分)1. 线性控制系统最重要的特性是可以应用___叠加__原理,而非线性控制系统则不能。

2.反馈控制系统是根据输入量和__反馈量__的偏差进行调节的控制系统。

3.在单位斜坡输入信号作用下,0型系统的稳态误差e ss =∞___。

4.当且仅当闭环控制系统特征方程的所有根的实部都是__负数__时,系统是稳定的。

5.方框图中环节的基本连接方式有串联连接、并联连接和__反馈 _连接。

6.线性定常系统的传递函数,是在_ 初始条件为零___时,系统输出信号的拉氏变换与输入信号的拉氏变换的比。

7.函数te -at的拉氏变换为2)(1a s +。

8.线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称为__相频特性__。

9.积分环节的对数幅频特性曲线是一条直线,直线的斜率为__-20__dB /dec 。

10.二阶系统的阻尼比ξ为 _ 0_ 时,响应曲线为等幅振荡。

11.在单位斜坡输入信号作用下,Ⅱ型系统的稳态误差e ss =__0__。

12.0型系统对数幅频特性低频段渐近线的斜率为___0___dB/dec ,高度为20lgKp 。

13.单位斜坡函数t 的拉氏变换为21s 。

14. 根据系统输入量变化的规律,控制系统可分为__恒值__控制系统、___随动___ 控制系统和程序控制系统。

15. 对于一个自动控制系统的性能要求可以概括为三个方面:稳定性、__快速性__和准确性。

16. 系统的传递函数完全由系统的结构和参数决定,与__输入量、扰动量__的形式无关。

17. 决定二阶系统动态性能的两个重要参数是阻尼系数ξ和_无阻尼自然振荡频率w n 。

18. 设系统的频率特性G(j ω)=R(ω)+jI(ω),则幅频特性|G(jω)|=)()(22w I w R +。

自动控制原理课后习题答案

自动控制原理课后习题答案

du3 (t) dt
(R1C2
1)u3 (t)
R1R2C1C2
d 2V (t) dt 2
(R1C1
R2C2
R1C2 )
dV (t) dt
( R1C2
1)V (t)
G(S ) u3 (s) R1R2C1C2 S 2 (R1C1 R2C2 R1C2 )S (R1C2 1)
V (s)
R1R2C1C2 S 2 (R1C1 R2C2 )S (R1C2 1)
第三章:作业3.5
试用Routh稳定判据判断下列(a)(b)(c)(d)(e)特征方程描述的系统的稳 定性,若不稳定说明右半复数平面或虚轴上的根的个数。
解:(a) s5+6s4+3s3+2s2+s+1=0
1
3
6
2
16
5
2
16
-1
-(1/-1)×1×16=16
1 1
一行同乘分母6 一行同乘分母16 一行同乘2/246
没有互不接触回路: ∑LbLc = ∑LdLeLf = ···=0 特征式:△(s)=1-[L1 + L2+ L3]=1+G2(s) G3(s)G6(s)+G3(s) G4(s)G5(s)+ G1(s) G2(s) G3(s) G4(s) G7(s) 余子式:△1 (s)=1
H(s)=y(s)/u(s)= Q1(s)/ △(s)
的控制方法。
• 反馈控制原理-通过反馈信息形成反馈控制作用的原理,称为反馈控制原理。
3、反馈控制系统的基本构成及特点?
简答:反馈控制系统由被控对象和控制器两大部分组成。
控制器又主要由以下基本元件构成:

《自动控制原理》---丁红主编---第三章习题答案

《自动控制原理》---丁红主编---第三章习题答案

习题3-1.选择题:(1)已知单位负反馈闭环系统是稳定的,其开环传递函数为:)1(2)s )(2+++=s s s s G (,系统对单位斜坡的稳态误差是: 3-2 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。

解 Φ()()./(.)s L k t s ==+001251253-3 一阶系统结构图如图3-45所示。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。

图 题3-3图解 由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K sK K s K s 令闭环增益212==ΦK K , 得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。

3-4 设二阶控制系统的单位阶跃响应曲线如图 所示。

如果该系统为单位反馈控制系统,试确定其开环传递函数。

图 题3-4图 解:由图知,开环传递函数为3-5 设角速度指示随动统结构图如图3-40所示。

若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少图3-40 题3-5图解:依题意应取 1=ξ,这时可设闭环极点为02,11T -=λ。

写出系统闭环传递函数Ks s Ks 101010)(2++=Φ闭环特征多项式20022021211010)(⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=++=T s T s T s K s s s D 比较系数有 ⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=K T T 101102200 联立求解得 ⎩⎨⎧==5.22.00K T 因此有 159.075.40''<''==T t s3-6 图所示为某控制系统结构图,是选择参数K 1和K 2,使系统的ωn =6,ξ=1.3-7 已知系统的特征方程,试判别系统的稳定性,并确定在右半s 平面根的个数及纯虚根。

(完整版)自东控制原理题库

(完整版)自东控制原理题库

1. 已知单位反馈系统的开环传递函数,试绘制参数b从0→∞的根轨迹,并写出b=2时系统的闭环传递函数。

(1)(2)答案:[提示] 求等效开环传递函数,画根轨迹。

(1)分离点坐标:d1=-8.472,d2=0.472(舍),出射角θp=153.4&deg;;(2)两支根轨迹,分离点的坐标-202. 已知系统的开环传递函数为(1)确定实轴上的分离点及K*的值;(2)确定使系统稳定的K*值范围。

答案:(1)实轴上的分离点d1=-1,d2=-1/3,对应的K*1=0,K2*=22/27;(2)稳定范围0<K*<63. 设单位负反馈系统的开环传递函数如下:(1)绘制系统准确的根轨迹图;(2)确定使系统临界稳定的开环增益K c的值;(3)确定与系统临界阻尼比相应的开环增益K。

答案:(1)分离点坐标:d1=-79(舍),d2=-21;(2)K c=150;(3)K=9.64. 设单位负反馈控制系统开环传递函数已知,要求:(1)确定产生纯虚根的开环增益K;(2)确定产生纯虚根为&plusmn;j1的z值和K*值。

答案:(1)用劳斯判据求临界稳定点得K*=110,化成开环增益K=11(2)将&plusmn;j1任一点代入闭环特征方程得K*=30,z=199/305. 反馈系统的开环传递函数为试用根轨迹法确定出阶跃响应有衰减的振荡分量和无振荡分量时的开环增益K值范围。

答案:[提示] 特征根全为负实数时无振荡分量,为复数时有振荡分量6. 已知系统的特征方程为(1)s3+9s2+K*s+K*=0 (2)(s+1)(s+1.5)(s+2)+K*=0(3)(s+1)(s+3)+K*s+K*=0试绘制以K*为参数的根轨迹图。

答案:[提示] 将带K*项合并,方程两端同除不带K*项的多项式,求出等效的开环传函7. 已知单位反馈系统的开环传递函数为试绘制闭环系统的根轨迹图。

答案:[提示] 开环极点分布图分离点有3个,不要画错。

自动控制原理答案黄坚习题详解汇总

自动控制原理答案黄坚习题详解汇总

⾃动控制原理答案黄坚习题详解汇总第⼆章⾃动控制系统的数学模型习题2-1 试建⽴图⽰电路的动态微分⽅程。

解:(a )解法⼀:直接列微分⽅程组法-==+O i C O C C u u u R u R u dt du C 21i i O O u CR dt du u R CR R R dt du 121211+=++? 解法⼆:应⽤复数阻抗概念求)()(11)(11s U s I Cs R Cs R s U O i ++= (1) 2)()(R s U s I O = (2)联⽴式(1)、(2),可解得: Cs R R R R Cs R R s U s U i o 2 12112)1()()(+++= 微分⽅程为: i ioo u CR dt du u R CR R R dt du 121211+=++ (b )解法⼀:直接列微分⽅程组法++=+===COC i O L C O L L L u R u dt du C R u u u u R u i dt di L u)(212 (a) (b) + u C -io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++?解法⼆:应⽤复数阻抗概念求++=+=)(]1)()([)()()()(2122s U sC s U R s U R s U Ls R R s U s U CC O i OC)()()()()()(2212121s U R s U R R s sU C R R L s U LCs R io o o =++++? 拉⽒反变换可得系统微分⽅程:io o o u R u R R dt du C R R L dt u d LC R 22121221)()(=++++2-7 证明图⽰的机械系统(a)和电⽹络系统(b)是相似系统(即有相同形式的数学模型)。

解:(a)取A 、B 两点分别进⾏受⼒分析。

根轨迹方程闭环系统特征方程

根轨迹方程闭环系统特征方程

闭环系统特征方程: 1G (s)H(s)0
当系统有m个开环零点和n个开环极点时,上式等价为
根轨迹方程
m
(s z j)
充要条件
K j1 n
1
相角条件
(s pi)
i 1
模值条件
11ej(2k1)
m
(s z j ) j1
n
(s pi ) (2k 1)
i 1
k 0, 1, 2,
n
s pi
在s平面上相遇又立即分开的点
分离角
(1) 何时存在分离点? (2) 如何解分离点方程?试探法、重根法
2k1/l
辐角条件逼近法-试探法
重根法
分离点的坐标d满足下列方程:
m
1
n
1
j1 dzj i1 dpi
1 G(s)H (s) 0
d ds
[G(s)H
(s)]
0
4-2-1 根轨迹绘制的基本法则 法则5-2 根轨迹的会合点
K*
i1 m
s zj
j1
4-2 根轨迹绘制的基本法则
180度根轨迹:
• 变化参数为根轨迹增益 K *
• 相角遵循 1802k条件
本节内容:
根轨迹绘制的基本法则 闭环极点的确定
4-2-1 根轨迹绘制的基本法则
法则1 根轨迹的起点和终点
根轨迹起于开环极点,终于开环零点. 无限零点、无限极点
根轨迹终点,其余
根轨迹方程闭环系统特征方程
4-1 根轨迹法的基本概念
本节内容
▪ 根轨迹的定义 ▪ 根轨迹与系统性能 ▪ 闭环与开环零、极点的关系 ▪ 根轨迹方程
卢p65
1、根轨迹的定义
根轨迹
开环系统某一参数从零变化到无穷时,闭环系统特征 方程式的根在s平面上变化的轨迹.

自动控制理论 自考 习题解答第5章稳定性分析

自动控制理论 自考 习题解答第5章稳定性分析

第五章 稳定性分析5—1 解:(1) 系统的特征方程为020)1(212=++⇒=++s s s s 。

因为二阶特征方程的所有项系数大于零,满足二阶系统的稳定的充分必要条件,即两个特征根均在S 平面的左半面,所以此系统稳定。

(2) 系统的特征方程为030)1(312=+-⇒=-+s s s s 。

因为二阶特征方程的项系数出现异号,不满足二阶系统的稳定的充分必要条件,所以此系统不稳定。

(注:BIBO 稳定意旨控制系统的输入输出(外部)稳定,系统稳定的充分必要条件是输出与输入之间传递函数的极点均在S 平面的左半平面。

若传递函数无零极点对消现象时,内部稳定与外部稳定等价。

此系统只含极点不含零点,所以传递函数的极点和特征方程的特征根等价,故直接可以用特征根的位置判系统的稳定性。

) 5—2 解: (1)Θ特征方程中所有项系数大于零,满足稳定的必要条件;又Θ三阶系统的系数内项乘积大于外项乘积(5011020⨯>⨯),满足稳定的充分条件。

∴ 该控制系统稳定。

(2)Θ特征方程中所有项系数大于零,满足稳定的必要条件;Θ特征方程中所有项系数大于零,满足稳定的必要条件;列写Routh故系统有两个特征根在S平面的右半部。

(3)Θ特征方程中所有项系数大于零,满足稳定的必要条件;又Θ三阶系统的系数内项乘积小于外项乘积(30020⨯⨯),不满足<81稳定的充分条件。

∴该控制系统不稳定。

(4)Θ特征方程中所有项系数大于零,满足稳定的必要条件;稳定。

由于第一列元素符号变化两次,系统特征根有两个在右半平面,其它4个根在左半平面。

(5)Θ特征方程中所有项系数大于零,满足稳定的必要条件;不稳定。

由于表中出现全为0的行,为确定特征根的分布可构造辅助方程012048402324,43324=+⇒=+⇒=++=s s s s s s k利用辅助方程的导数方程的对应项系数代替全零行元素,继续完成表的列写。

结果:第一列元素无负数,右半平面无根,有4个根在虚轴上。

自动控制原理试题有参考答案解析

自动控制原理试题有参考答案解析

⾃动控制原理试题有参考答案解析⼀、填空题(每空 1 分,共15分)1、反馈控制⼜称偏差控制,其控制作⽤是通过给定值与反馈量的差值进⾏的。

2、复合控制有两种基本形式:即按输⼊的前馈复合控制和按扰动的前馈复合控制。

3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联⽅式连接,其等效传递函数为()G s ,则G(s)为G 1(s)+G 2(s)(⽤G 1(s)与G 2(s) 表⽰)。

4、典型⼆阶系统极点分布如图1所⽰,则⽆阻尼⾃然频率=n ω 1.414 ,阻尼⽐=ξ 0.707 ,该系统的特征⽅程为 2220s s ++= ,该系统的单位阶跃响应曲线为衰减振荡。

5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为1050.20.5s s s s+++。

6、根轨迹起始于开环极点,终⽌于开环零点。

7、设某最⼩相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为(1)(1)K s s Ts τ++。

1、在⽔箱⽔温控制系统中,受控对象为⽔箱,被控量为⽔温。

2、⾃动控制系统有两种基本控制⽅式,当控制装置与受控对象之间只有顺向作⽤⽽⽆反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作⽤⽽且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。

3、稳定是对控制系统最基本的要求,若⼀个控制系统的响应曲线为衰减振荡,则该系统稳定。

判断⼀个闭环线性控制系统是否稳定,在时域分析中采⽤劳斯判据;在频域分析中采⽤奈奎斯特判据。

4、传递函数是指在零初始条件下、线性定常控制系统的输出拉⽒变换与输⼊拉⽒变换之⽐。

5、设系统的开环传递函数为2(1)(1)K s s Ts τ++,则其开环幅频特性为2222211K T τωωω++;相频特性为arctan 180arctan T τωω--(或:2180arctan1T T τωωτω---+) 。

工程控制基础-课后习题答案-田作华(PDF)

工程控制基础-课后习题答案-田作华(PDF)

L1
=

5 s(T1s +1)
L2
=

8 s(T2s
+ 1)
L3
=

s2 (T1s
40 + 1)(T2 s
+ 1)
L4
=
s2 (T1s
40 + 1)(T2 s
+ 1)
L5
=

s2 (T1s
40 + 1)(T2 s
+ 1)
∆ = 1 − (L1 + L2 + L3 + L4 + L5 )
前向通路有四条:
前向通路有四条:
P1 = G1(s)G2 (s)
∆1 = 1
P2 = G1(s)G3 (s)
∆1 = 1
P3 = −G1(s)G3 (s)G4 (s)H3 (s), ∆3 = 1
P4 = −G1(s)G2 (s)G4 (s)H3 (s), ∆4 = 1
所以
C(s) = R(s)
G1(s)G2 (s) + G1(s)G3 (s) − G1(s)G3 (s)G4 (s)H3 (s) − G1(s)G2 (s)G4 (s)H3 (s) 1− G3 (s)H 1(s) − G2 (s)H 1(s) − G1(s)G3 (s)H2 (s)H3 (s)
+
+ R(s) +

− +
1 T1s +1
1 T2s +1
5 s
+
+ 8 s
C(s)
R(s) + −
(a)
+ + G1 ( s)

闭环系统特征方程

闭环系统特征方程

闭环系统特征方程
闭环系统特征方程是控制工程中一个非常重要的概念,它的主要内容是建立闭环系统的特性,即描述闭环系统的输入与输出之间的加工关系。

闭环系统的特性方程可以表示为:输出取决于当前系统状态,受输入和系统参数影响,特征方程本身是一个独立的差分方程。

一般情况下,特征方程可以看作是描述系统输入输出之间加工关系的函数式方法。

特征方程是闭环系统设计中重要的理论基础,它是反映系统加工特性的基本方程。

特征方程在表示系统模型中很常见,它可以通过离散化的参数建立模型,可以解决许多控制领域的现实问题。

特征方程的求解涉及到一些复杂的数学运算,因此在学习和研究中,学习者应该提前熟悉一些数学知识,比如微积分、线性代数等。

这些基础知识能够帮助学习者更好地掌握闭环系统的特征方程的内容。

总而言之,闭环系统的特征方程是控制工程中至关重要的内容,它能够将闭环系统的输入输出关系上升到一个更高的抽象层次,提高控制系统的设计效率,更好地满足现实需求。

自动控制原理计算题题库

自动控制原理计算题题库

自动控制原理计算题题库 1 某系统结构如图二所示,求系统的开环传递函数和闭环传递函数。

当C 值为200时,求R 的值。

2 已知单位反馈系统的开环传递函数为)3)(1(22)(++=s s s G 系统输入量为r(t),输出量为C(t),试求:(1) 当r(t)=1(t)时,输出C(t)的稳态值和最大值;(2) 为了减少超调量,使阻尼比等于0.6,对系统实施速度反馈控制,试画出速度反馈系统方框图,并确定速度反馈系数。

3 已知系统的开环传递函数)10)(2()()(++=s s s K s H s G 为保证系统稳定,并且在)(2)(1)(t t t r +=作用下的稳态误差2.0≤ss e ,试确定K 的取值范围。

4 已知某系统的开环传递函数为)7)(2()()(++=s s s K s H s G , (1)画出以K 为参数的闭环系统根轨迹图;(2)求出使系统不出现衰减振荡的K 值范围。

5 已知某最小相角系统的对数幅频特性如图六中)(0ωL 所示:(1) 求系统的开环传递函数并计算相角裕量γ,判别闭环系统稳定性;(2) 为了改善系统性能,采用1100110)(++=s s s G c 的校正装置进行串联校正,试画出校正后系统的Bode 图,求出相角裕量γ';(3) 在Bode 图上标出相角裕量γ'及幅值裕量)(dB h 。

6 系统微分方程如下:试画出结构图,并求传递函数)()(s R s C7 某系统的结构图如图所示,图中放大器参数4=p k ,电动机参数1.0,1==m d T k 秒, 01.0=d T 秒,(1) 求系统的单位阶跃响应及其s t %,σ和ss e ;(2) 如要求稳态误差小于或等于%)5(e 5%ss ≤,应该变哪一参数,并计算该参数的值。

试分析该参数变化对系统性能的影响。

8 设单位反馈系统的闭环传递函数为n n n n n n a s a s a s a s a s ++++=---1111.......)(φ,试证明系统在单位斜坡函数作用下,稳态误差为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档