高考数学文科集合习题大全完美
高三文科数学复习题(集合)word版本
高三文科数学(集合)A 组1.( 2007 年高考广东文科卷)已知集合 M= { x1x 0} , N= x10 ,则 MN1 x()A . { x 1 x 1}B . { x x 1}C . { x 1 x 1}D . { x x 1}2.( 2008 年高考广东文科卷)第二十九届夏季奥林匹克运动会将于2008 年 8 月 8 日在北京举行,若集合 A { 参加北京奥运会比赛的运动员},集合 B{ 加北京奥运会比赛的男运动员},集合 C { 加北京奥运会比赛的女运动员} ,则下列关系正确的是()A.A BB. B CC. B C AD.ABC3A { 1,1} ,B { x | mx1} ,且 A B A,则 m 的值为 ().已知集合A . 1B .— 1C .1 或— 1D .1或—1或 04.( 2009 年高考广东文科卷)已知全集 U=R ,则正确表示集合M= {— 1, 0, 1}和 N={ x x 21 0 }关系的韦恩( Venn )图是()5.如图, U 是全集, M 、P 、S 是 U 的 3 个子集, 则阴影部分所表示的集合是 ( )A 、 M P SB 、M P SC 、M PC u SD 、 MPC u S6.已知集合 A={1 , 2,3, 4} ,那么 A 的真子集的个数是7.已知集合A( x , y)| y 3x2 ,B( x , y)| y x 2那么集合 A B=8.已知全集 U=2 ,3 , a 22a3,若A= b , 2 , CA 5 ,求实数的 a ,b 值U9.已知集合A=x 3 x 7 ,B={x|2<x<10},C={x | x< a},全集为实数集R.(1)求 A ∪ B, (C R A) ∩ B ;(2) 如果 A ∩ C≠ φ,求 a 的取值范围。
B 组10.设A x 2x2px q 0 , B x 6x 2( p 2)x 5 q0,若A B1,2则 A B()A.1,1, 4B.1,4C.1,1D.1 23223211. 50 名学生做的物理、化学两种实验,已知物理实验做的正确得有40 人,化学实验做的正确的有31 人,两种实验都做错的有 4 人,则这两种实验都做对的有人 .12.已知集合Aa, a d, a2d ,B a,aq,aq 2,其中 a, d,qR ,若 A=B ,求 q 的值。
高考文科数学试卷集合题
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x)=\sqrt{2x-1}$的定义域为$[a,+\infty)$,则实数$a$的取值范围是()A. $a \geq 1$B. $a > 1$C. $a \leq 1$D. $a < 1$2. 若复数$z$满足$|z-1|+|z+1|=2$,则复数$z$的轨迹是()A. 以原点为圆心,半径为1的圆B. 以点$(1,0)$和$(-1,0)$为端点的线段C. 以点$(1,0)$和$(-1,0)$为焦点,长轴长为2的椭圆D. 以点$(1,0)$和$(-1,0)$为焦点,长轴长为4的椭圆3. 下列各式中,等差数列的通项公式正确的是()A. $a_n=3n+2$B. $a_n=2n-1$C. $a_n=n^2+1$D.$a_n=\frac{n(n+1)}{2}$4. 已知等比数列$\{a_n\}$中,$a_1=1$,公比$q=2$,则数列$\{a_n^2\}$的前$n$项和为()A. $2^{n+1}-1$B. $2^{n+2}-1$C. $2^n-1$D. $2^{n+1}-2$5. 设函数$f(x)=x^3-3x^2+4x$,则$f(x)$的对称中心是()A. $(1,0)$B. $(2,0)$C. $(0,0)$D. $(3,0)$6. 若直线$y=kx+1$与圆$x^2+y^2=4$相切,则实数$k$的取值范围是()A. $k \leq -\frac{1}{2}$或$k \geq \frac{1}{2}$B. $k \geq -\frac{1}{2}$或$k \leq \frac{1}{2}$C. $k \geq 2$或$k \leq -2$D. $k \geq -2$或$k \leq 2$7. 若函数$f(x)=\log_2(x-1)$的图像上任意一点$P(x,y)$到点$Q(2,3)$的距离的平方为$4$,则实数$x$的取值范围是()A. $2 < x < 4$B. $2 < x < 6$C. $3 < x < 5$D. $3 < x < 7$8. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若$\sinA=\frac{3}{5}$,$\cos B=\frac{4}{5}$,则$\sin C$的值为()A. $\frac{7}{25}$B. $\frac{8}{25}$C. $\frac{9}{25}$D.$\frac{10}{25}$9. 已知等差数列$\{a_n\}$中,$a_1=2$,$a_3+a_5=20$,则该数列的公差为()A. 2B. 4C. 6D. 810. 若函数$f(x)=x^3-3x^2+4x$在区间$[1,2]$上的最大值为4,则函数$g(x)=f(x-1)$在区间$[0,1]$上的最小值为()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,每小题10分,共50分。
高考数学文科集合习题汇编-完美汇编
第一章集合与函数的概念一、选择题1 .设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}2 .设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3 .设集合{,}A a b =,{,,}B b c d =,则AB =( )A .{}bB .{,,}b c dC .{,,}a c dD .{,,,}a b c d 4 .已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}5 .已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U C A C B ⋂=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}6 .已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )A .A ⊂≠BB .B ⊂≠AC .A=BD .A∩B=∅7 .若全集U={x∈R|x 2≤4} A={x∈R||x+1|≤1}的补集CuA 为( )A .|x∈R |0<x<2|B .|x∈R |0≤x<2|C .|x∈R |0<x≤2|D .|x∈R |0≤x≤2|8 .设集合{}{}21,0,1,|MN x x x =-==,则M N ⋂=( )A .{}1,0,1-B .{}0,1C .{}1D .{}09 .已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .410. (集合)设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =( )A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U11.已知集合{}{}1,2,3,4,2,2MN ==-,下列结论成立的是( )A .N M ⊆B .M N M ⋃=C .M N N ⋂=D .{}2M N ⋂=12.已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则( )A .AB ⊆B .C B ⊆ C .D C ⊆ D .A D ⊆13.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则AB =( )A .(,1)-∞-B .2(1,)3--C .2(,3)3-D .(3,)+∞14 .已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为 ( )A .3B .6C .8D .1015 .集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]16 .已知全集{}0,1,2,3,4U=,集合{}{}1,2,3,2,4A B ==,则U C A B 为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,417 .已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}18 .设集合M={-1,0,1},N={x|x 2≤x},则M∩N=( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,0}19 . (集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,620 .已知集合{{},1,,A B m A B A ==⋃=,则m =( )A .0B .0或3C .1D .1或321 .已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则AB =( )A .(,1)-∞-B .2(1,)3--C .2(,3)3-D .(3,)+∞22.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为 ( )A .5B .4C .3D .2二、填空题 23.集合{}|25A x R x =∈-≤中最小整数位_________.24.若集合}012|{>-=x x A ,}1|{<=x x B ,则B A =_________ .25.已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)AB n -,则=m __________,=n ___________.26.设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则=)()(B C A C U U _______. 27.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =_________ .28.已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},AB =则k =______.29.已知集合{124}A =,,,{246}B =,,,则AB =____.1. 【答案】D2. 【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B3. [答案]D4. 解析:}4,2,0{)(},4,0{==B A C A C U U .答案选C.5. 【答案】B .6. 【解析】A=(-1,2),故B ⊂≠A,故选B.7. C 【解析】{|22}U x x =-≤≤,{|20}A x x =-≤≤,则{|02}U C A x x =<≤. 8. 【答案】B9. D 【解析】求解一元二次方程,得 10.解析:A.{}2,4,6U C M =. 11. 【答案】D 12.答案B 13. 【答案】D14. 【解析】选D 5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 15. 故选C. 16. C.17. 【答案】B 18. 【答案】B19. 解析:C.{}3,5,6U C M =. 20. 答案B21. 【答案】D22. C 23. 解析:运用排除法,奇函数有1yx=和||y x x =,又是增函数的只有选项D 正确.24. 【答案】D25. B 26. 【答案】B 27. 【解析】3-不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-.28. [解析] ),(21∞+=A ,)1,1(-=B ,A ∩B =)1,(21.29. 【答案】1-,130. [答案]{a, c, d}31. [解析] ),(21∞+-=A ,)3,1(-=B ,A ∩B =)3,(21-.32. 333. 【答案】{}1,2,4,6.。
高三文科数学试卷(含答案)经典题
高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。
高考文科数学第一轮复习经典习题集(含答案)
高中数学〔文科〕高考一轮复习习题集〔含答案〕目录第一章集合 (1)第一节集合的含义、表示及基本关系 (1)第二节集合的基本运算 (3)第二章函数 (5)第一节对函数的进一步认识 (5)第二节函数的单调性 (9)第三节函数的性质 (13)第三章指数函数和对数函数 (16)第一节指数函数 (16)第二节对数函数 (20)第三节幂函数与二次函数的性质 (24)第四节函数的图象特征 (28)第四章函数的应用 (32)第五章三角函数 (33)第一节角的概念的推广及弧度制 (33)第二节正弦函数和余弦函数的定义及诱导公式 (39)第三节正弦函数与余弦函数的图象及性质 (42)第四节函数的图象 (45)sin() f x A x第六章三角恒等变换 (50)第一节同角三角函数的基本关系 (50)第二节两角和与差及二倍角的三角函数 (53)第七章解三角形 (56)第一节正弦定理与余弦定理 (56)第二节正弦定理、余弦定理的应用 (59)第八章数列 (60)第九章平面向量 (62)第十章算法 (65)第一节程序框图 (65)第二节程序语句 (69)第十一章概率 (73)第一节古典概型 (73)第二节概率的应用 (75)第三节几何概型 (79)第十二章导数 (83)第十三章不等式 (85)第十四章立体几何 (88)第一节简单几何体 (88)第二节空间图形的基本关系与公理 (92)第三节平行关系 (96)第四节垂直关系 (100)第五节简单几何体的面积与体积 (104)第十五章解析几何 (108)第一节直线的倾斜角、斜率与方程 (108)第二节点与直线、直线与直线的位置关系 (111)第三节圆的标准方程与一般方程 (114)第四节直线与圆、圆与圆的位置关系 (117)第五节空间直角坐标系 (121)第十六章圆锥曲线 (123)第一章 集合第一节 集合的含义、表示及基本关系A 组1.已知A ={1,2},B =,则集合A 与B 的关系为________.|x x A 解析:由集合B =知,B ={1,2}.答案:A =B |x x A 2.若,则实数a 的取值范围是________.2,|a aR x x 解析:由题意知,有解,故.答案:2x a 0a 0a3.已知集合A =,集合B =,则集合A 与B 的关系是________.2|21,y y x x x R |28x x解析:y =x2-2x -1=〔x -1〕2-2≥-2,∴A ={y|y≥-2},∴BA .答案:BA4.〔2009年高考广东卷改编〕已知全集U =R ,则正确表示集合M ={-1,0,1}和N =关系的韦恩〔Venn 〕图是________.解析:由N=,得N={-1,0},则NM .答案:②2|0x x x5.〔2010年苏、锡、常、镇四市调查〕已知集合A =,集合B =,若命题“x ∈A”是命题“x ∈B”的充分不必要条件,则实数a 的取值范围是________.解析:命题“x ∈A”是命题“x ∈B” 的充分不必要条件,∴AB ,∴a<5.答案:a<56.〔原创题〕已知m ∈A ,n ∈B ,且集合A ={x|x =2a ,a ∈Z},B ={x|x =2a +1,a ∈Z},又C ={x|x =4a +1,a ∈Z},判断m +n 属于哪一个集合?解:∵m ∈A ,∴设m =2a1,a1∈Z ,又∵n ∈B ,∴设n =2a2+1,a2∈Z ,∴m +n =2〔a1+a2〕+1,而a1+a2∈Z ,∴m +n ∈B .B 组1.设a ,b 都是非零实数,y =++可能取的值组成的集合是________.解析:分四种情况:〔1〕a>0且b>0;〔2〕a>0且b<0;〔3〕a<0且b>0;〔4〕a<0且b <0,讨论得y =3或y =-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m2≠-1且m2≠3,故m2=2m -1,即〔m -1〕2=0,∴m =1. 答案:13.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b|a ∈P ,b ∈Q},若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x|x2=1},集合N ={x|ax =1},若NM ,那么a 的值是________.解析:M ={x|x =1或x =-1},NM ,所以N =∅时,a =0;当a≠0时,x ==1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x|x =a +,a ∈Z},B ={x|x =-,b ∈Z},C ={x|x =+,c ∈Z},则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:AB=C7.集合A={x||x|≤4,x∈R},B={x|x<a},则“A⊆B”是“a>5”的________.解析:结合数轴若A⊆B⇔a≥4,故“A⊆B”是“a>5”的必要但不充分条件.答案:必要不充分条件8.〔2010年江苏启东模拟〕设集合M={m|m=2n,n∈N,且m<500},则M中所有元素的和为________.解析:∵2n<500,∴n=0,1,2,3,4,5,6,7,8.∴M中所有元素的和S=1+2+22+…+28=511.答案:5119.〔2009年高考北京卷〕设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A={x,xy,lg〔xy〕},B={0,|x|,y},且A=B,试求x,y的值.解:由lg〔xy〕知,xy>0,故x≠0,xy≠0,于是由A=B得lg〔xy〕=0,xy=1.∴A={x,1,0},B={0,|x|,}.于是必有|x|=1,=x≠1,故x=-1,从而y=-1.11.已知集合A={x|x2-3x-10≤0},〔1〕若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;〔2〕若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;〔3〕若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.解:由A={x|x2-3x-10≤0},得A={x|-2≤x≤5},〔1〕∵B⊆A,∴①若B=∅,则m+1>2m-1,即m<2,此时满足B⊆A.②若B≠∅,则解得2≤m≤3.由①②得,m的取值范围是〔-∞,3].〔2〕若A⊆B,则依题意应有解得故3≤m≤4,∴m的取值范围是[3,4].〔3〕若A=B,则必有解得m∈∅.,即不存在m值使得A=B.12.已知集合A={x|x2-3x+2≤0},B={x|x2-〔a+1〕x+a≤0}.〔1〕若A是B的真子集,求a的取值范围;〔2〕若B是A的子集,求a的取值范围;〔3〕若A=B,求a的取值范围.解:由x2-3x+2≤0,即〔x-1〕〔x-2〕≤0,得1≤x≤2,故A={x|1≤x≤2},而集合B={x|〔x-1〕〔x-a〕≤0},〔1〕若A是B的真子集,即AB,则此时B={x|1≤x ≤ a},故a>2.〔2〕若B是A的子集,即B⊆A,由数轴可知1≤a≤2.〔3〕若A=B,则必有a=2第二节集合的基本运算A组1.〔2009年高考浙江卷改编〕设U=R,A=,B=,则A∩∁UB=____.解析:∁UB={x|x≤1},∴A∩∁UB={x|0<x≤1}.答案:{x|0<x≤1}2.〔2009年高考全国卷Ⅰ改编〕设集合A={4,5,7,9},B={3,4,7,8,9},全集U =A∪B,则集合∁U〔A∩B〕中的元素共有________个.解析:A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U〔A∩B〕={3,5,8}.答案:3x x a a M3.已知集合M={0,1,2},N=,则集合M∩N=________.|2,解析:由题意知,N={0,2,4},故M∩N={0,2}.答案:{0,2}4.〔原创题〕设A,B是非空集合,定义AⓐB={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤2 },B={y|y≥0},则AⓐB=________.解析:A∪B=[0,+∞〕,A∩B=[0,2],所以AⓐB=〔2,+∞〕.答案:〔2,+∞〕5.〔2009年高考湖南卷〕某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x,画出韦恩图得到方程15-x+x+10-x+8=30x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12〔人〕.答案:126.〔2010年浙江嘉兴质检〕已知集合A={x|x>1},集合B={x|m≤x≤m+3}.〔1〕当m=-1时,求A∩B,A∪B;〔2〕若B⊆A,求m的取值范围.解:〔1〕当时,B={x|-1≤x≤2},∴A∩B={x|1<x≤2},A∪B={x|x≥-1}.〔2〕若B⊆A,则,即的取值范围为〔1,+∞〕B组1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=________.解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:{-1,0}2.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则〔∁UA〕∩B=____ ____.解析:∁UA={0,1},故〔∁UA〕∩B={0}.答案:{0}3.〔2010年济南市高三模拟〕若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩〔∁UN〕=________.解析:根据已知得M∩〔∁UN〕={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.答案:{ x|-2≤x<0}4.集合A={3,log2a},B={a,b},若A∩B={2},则A∪B=________.解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.答案:{2,3,4}5.〔2009年高考江西卷改编〕已知全集U=A∪B中有m个元素,〔∁UA〕∪〔∁UB〕中有n个元素.若A∩B非空,则A∩B的元素个数为________.解析:U=A∪B中有m个元素,∵〔∁UA〕∪〔∁UB〕=∁U〔A∩B〕中有n个元素,∴A∩B中有m-n个元素.答案:m-n6.〔2009年高考重庆卷〕设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n 是3的倍数},则∁U〔A∪B〕=________.解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},得∁U〔A∪B〕={2,4,8}.答案:{2,4,8}7.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1},则集合〔A⊗B〕⊗C的所有元素之和为________.解析:由题意可求〔A⊗B〕中所含的元素有0,4,5,则〔A⊗B〕⊗C中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{〔x,y〕|x+y-2=0且x-2y+4=0}{〔x,y〕|y=3x+b},则b=________.解析:由⇒点〔0,2〕在y=3x+b上,∴b=2.9.设全集I={2,3,a2+2a-3},A={2,|a+1|},∁IA={5},M={x|x=log2|a|},则集合M的所有子集是________.解析:∵A∪〔∁IA〕=I,∴{2,3,a2+2a-3}={2,5,|a+1|},∴|a+1|=3,且a2+2a-3=5,解得a=-4或a=2,∴M={log22,log2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A={x|x2-3x+2=0},B={x|x2+2〔a+1〕x+〔a2-5〕=0}.〔1〕若A∩B={2},求实数a的值;〔2〕若A∪B=A,求实数a的取值范围.解:由x2-3x+2=0得x=1或x=2,故集合A={1,2}.〔1〕∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=-1或a=-3;当a=-1时,B={x|x2-4=0}={-2,2},满足条件;当a=-3时,B={x|x2-4x+4=0}={2},满足条件;综上,a 的值为-1或-3.〔2〕对于集合B ,Δ=4〔a +1〕2-4〔a2-5〕=8〔a +3〕.∵A ∪B =A ,∴B ⊆A , ①当Δ<0,即a<-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a>-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧1+2=-2(a +1)1×2=a2-5⇒矛盾.综上,a 的取值范围是a ≤-3. 11.已知函数f 〔x 〕=的定义域为集合A ,函数g 〔x 〕=lg 〔-x2+2x +m 〕的定义域为集合B .〔1〕当m =3时,求A∩〔∁RB 〕;〔2〕若A∩B ={x|-1<x<4},求实数m 的值.解:A ={x|-1<x≤5}.〔1〕当m =3时,B ={x|-1<x<3},则∁RB ={x|x≤-1或x≥3},∴A∩〔∁RB 〕={x|3≤x≤5}.〔2〕∵A ={x|-1<x≤5},A∩B ={x|-1<x<4},∴有-42+2×4+m =0,解得m =8,此时B ={x|-2<x<4},符合题意.12.已知集合A ={x ∈R|ax2-3x +2=0}.〔1〕若A =∅,求实数a 的取值范围;〔2〕若A 是单元素集,求a 的值及集合A ;〔3〕求集合M ={a ∈R|A≠∅}.解:〔1〕A 是空集,即方程ax2-3x +2=0无解.若a =0,方程有一解x =,不合题意.若a≠0,要方程ax2-3x +2=0无解,则Δ=9-8a<0,则a>.综上可知,若A =∅,则a 的取值范围应为a>.〔2〕当a =0时,方程ax2-3x +2=0只有一根x =,A ={}符合题意.当a≠0时,则Δ=9-8a =0,即a =时,方程有两个相等的实数根x =,则A ={}.综上可知,当a =0时,A ={};当a =时,A ={}.〔3〕当a =0时,A ={}≠∅.当a≠0时,要使方程有实数根,则Δ=9-8a≥0,即a≤.综上可知,a 的取值范围是a≤,即M ={a ∈R|A≠∅}={a|a≤}第二章 函数第一节 对函数的进一步认识A 组1.〔2009年高考江西卷改编〕函数y =的定义域为________.解析:⇒x ∈[-4,0〕∪〔0,1] .答案:[-4,0〕∪〔0,1]2.〔2010年绍兴第一次质检〕如图,函数f 〔x 〕的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为〔0,0〕,〔1,2〕,〔3,1〕,则f 〔〕的值等于________.解析:由图象知f 〔3〕=1,f 〔〕=f 〔1〕=2.答案:23.〔2009年高考北京卷〕已知函数f 〔x 〕=若f 〔x 〕=2,则x =________.解析:依题意得x≤1时,3x =2,∴x =log32;当x>1时,-x =2,x =-2〔舍去〕.故x =log32.答案:log324.〔2010年黄冈市高三质检〕函数f :{1,}→{1,}满足f[f 〔x 〕]>1的这样的函数个数有________个.解析:如图.答案:15.〔原创题〕由等式x3+a1x2+a2x +a3=〔x +1〕3+b1〔x +1〕2+b2〔x +1〕+b3定义一个映射f 〔a1,a2,a3〕=〔b1,b2,b3〕,则f 〔2,1,-1〕=________.解析:由题意知x3+2x2+x -1=〔x +1〕3+b1〔x +1〕2+b2〔x +1〕+b3, 令x =-1得:-1=b3;再令x =0与x =1得,解得b1=-1,b2=0.答案:〔-1,0,-1〕6.已知函数f 〔x 〕=〔1〕求f 〔1-〕,f{f[f 〔-2〕]}的值;〔2〕求f 〔3x -1〕;〔3〕若f 〔a 〕=, 求a .解:f 〔x 〕为分段函数,应分段求解.〔1〕∵1-=1-〔+1〕=-<-1,∴f 〔-〕=-2+3,又∵f 〔-2〕=-1,f[f 〔-2〕]=f 〔-1〕=2,∴f{f[f 〔-2〕]}=1+=.〔2〕若3x -1>1,即x>,f 〔3x -1〕=1+=;若-1≤3x -1≤1,即0≤x≤,f 〔3x -1〕=〔3x -1〕2+1=9x2-6x +2;若3x -1<-1,即x<0,f 〔3x -1〕=2〔3x -1〕+3=6x +1.∴f〔3x -1〕=〔3〕∵f 〔a 〕=,∴a>1或-1≤a≤1.当a>1时,有1+=,∴a =2;当-1≤a≤1时,a2+1=,∴a =±.∴a =2或±.B 组1.〔2010年广东江门质检〕函数y =+lg 〔2x -1〕的定义域是________.解析:由3x -2>0,2x -1>0,得x>.答案:{x|x>}2.〔2010年山东枣庄模拟〕函数f 〔x 〕=则f 〔f 〔f 〔〕+5〕〕=_.解析:∵-1≤≤2,∴f 〔〕+5=-3+5=2,∵-1≤2≤2,∴f 〔2〕=-3,∴f〔-3〕=〔-2〕×〔-3〕+1=7.答案:73.定义在区间〔-1,1〕上的函数f 〔x 〕满足2f 〔x 〕-f 〔-x 〕=lg 〔x +1〕,则f 〔x 〕的解析式为________.解析:∵对任意的x ∈〔-1,1〕,有-x ∈〔-1,1〕,由2f 〔x 〕-f 〔-x 〕=lg 〔x +1〕,①由2f 〔-x 〕-f 〔x 〕=lg 〔-x +1〕,②①×2+②消去f 〔-x 〕,得3f 〔x 〕=2lg 〔x +1〕+lg 〔-x +1〕,∴f〔x 〕=lg 〔x +1〕+lg 〔1-x 〕,〔-1<x<1〕.答案:f 〔x 〕=lg 〔x +1〕+lg 〔1-x 〕,〔-1<x<1〕4.设函数y =f 〔x 〕满足f 〔x +1〕=f 〔x 〕+1,则函数y =f 〔x 〕与y =x 图象交点的个数可能是________个.解析:由f 〔x +1〕=f 〔x 〕+1可得f 〔1〕=f 〔0〕+1,f 〔2〕=f 〔0〕+2,f 〔3〕=f 〔0〕+3,…本题中如果f 〔0〕=0,那么y =f 〔x 〕和y =x 有无数个交点;若f 〔0〕≠0,则y =f 〔x 〕和y =x 有零个交点.答案:0或无数5.设函数f 〔x 〕=,若f 〔-4〕=f 〔0〕,f 〔-2〕=-2,则f 〔x 〕的解析式为f 〔x 〕=________,关于x 的方程f 〔x 〕=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧16-4b +c =c 4-2b +c =-2 , ∴f〔x 〕=.由数形结合得f 〔x 〕=x 的解的个数有3个.答案: 36.设函数f 〔x 〕=logax 〔a >0,a≠1〕,函数g 〔x 〕=-x2+bx +c ,若f 〔2+〕-f 〔+1〕=,g 〔x 〕的图象过点A 〔4,-5〕及B 〔-2,-5〕,则a =__________,函数f[g 〔x 〕]的定义域为__________.答案:2 〔-1,3〕7.〔2009年高考天津卷改编〕设函数f 〔x 〕=,则不等式f 〔x 〕>f 〔1〕的解集是________.解析:由已知,函数先增后减再增,当x≥0,f 〔x 〕>f 〔1〕=3时,令f 〔x 〕=3, 解得x =1,x =3.故f 〔x 〕>f 〔1〕的解集为0≤x<1或x>3.当x<0,x +6=3时,x =-3,故f 〔x 〕>f 〔1〕=3,解得-3<x<0或x>3.综上,f 〔x 〕>f 〔1〕的解集为{x|-3<x<1或x>3}.答案:{x|-3<x<1或x>3}8.〔2009年高考山东卷〕定义在R 上的函数f 〔x 〕满足f 〔x 〕=则f 〔3〕的值为________.解析:∵f 〔3〕=f 〔2〕-f 〔1〕,又f 〔2〕=f 〔1〕-f 〔0〕,∴f 〔3〕=-f 〔0〕,∵f 〔0〕=log24=2,∴f 〔3〕=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内〔即x≥20〕,y 与x 之间函数的函数关系是________.解析:设进水速度为a1升/分钟,出水速度为a2升/分钟,则由题意得,得,则y =35-3〔x -20〕,得y =-3x +95,又因为水放完为止,所以时间为x≤,又知x≥20,故解析式为y =-3x +95〔20≤x≤〕.答案:y =-3x +95〔20≤x≤〕 10.函数.221316f x a x a x〔1〕若的定义域为R ,求实数的取值范围;〔2〕若的定义域为[-2,1],求实数的值.解:〔1〕①若1-a2=0,即a =±1,〔ⅰ〕若a =1时,f 〔x 〕=,定义域为R ,符合题意;〔ⅱ〕当a =-1时,f 〔x 〕=,定义域为[-1,+∞〕,不合题意.②若1-a2≠0,则g 〔x 〕=〔1-a2〕x2+3〔1-a 〕x +6为二次函数.由题意知g 〔x 〕≥0对x ∈R 恒成立,∴∴⎩⎪⎨⎪⎧-1<a<1,(a -1)(11a +5)≤0, ∴-≤a<1.由①②可得-≤a≤1.〔2〕由题意知,不等式〔1-a2〕x2+3〔1-a 〕x +6≥0的解集为[-2,1],显然1-a2≠0且-2,1是方程〔1-a2〕x2+3〔1-a 〕x +6=0的两个根. ∴∴∴a =2. 11.已知,并且当∈[-1,1]时,,求当时、的解析式.2f x f x x R x 21f x x 21,21x k k k Z f x解:由f 〔x +2〕=f 〔x 〕,可推知f 〔x 〕是以2为周期的周期函数.当x ∈[2k -1,2k +1]时,2k -1≤x≤2k +1,-1≤x -2k≤1.∴f 〔x -2k 〕=-〔x -2k 〕2+1.又f 〔x 〕=f 〔x -2〕=f 〔x -4〕=…=f 〔x -2k 〕,∴f〔x 〕=-〔x -2k 〕2+1,x∈[2k-1,2k +1],k∈Z.12.在2008年11月4日珠海航展上,中国自主研制的ARJ21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g 〔x 〕,其余工人加工完H 型装置所需时间为h 〔x 〕.〔单位:h ,时间可不为整数〕〔1〕写出g 〔x 〕,h 〔x 〕的解析式;〔2〕写出这216名工人完成总任务的时间f 〔x 〕的解析式;〔3〕应怎样分组,才能使完成总任务的时间最少?解:〔1〕g 〔x 〕=〔0<x<216,x ∈N*〕,h 〔x 〕=〔0<x<216,x ∈N*〕.〔2〕f 〔x 〕=〔3〕分别为86、130或87、129.第二节 函数的单调性A 组1.〔2009年高考福建卷改编〕下列函数f 〔x 〕中,满足“对任意x1,x2∈〔0,+∞〕,当时,都有”的是________.①f〔x 〕= ②f〔x 〕=〔x -1〕2 ③f〔x 〕=ex ④f〔x 〕=ln 〔x +1〕解析:∵对任意的x1,x2∈〔0,+∞〕,当x1<x2时,都有f 〔x1〕>f 〔x2〕,∴f 〔x 〕在〔0,+∞〕上为减函数.答案:①2.函数f 〔x 〕〔x ∈R 〕的图象如右图所示,则函数g 〔x 〕=f 〔logax 〕〔0<a<1〕的单调减区间是________.解析:∵0<a<1,y =logax 为减函数,∴logax ∈[0,]时,g 〔x 〕为减函数.由0≤logax≤≤x≤1.答案:[,1]〔或〔,1〕〕 3.函数的值域是________.4154yx x 解析:令x =4+sin2α,α∈[0,],y =sinα+cosα=2sin 〔α+〕,∴1≤y≤2.答案:[1,2]4.已知函数f 〔x 〕=|ex +|〔a ∈R 〕在区间[0,1]上单调递增,则实数a 的取值范围__.解析:当a<0,且ex +≥0时,只需满足e0+≥0即可,则-1≤a<0;当a =0时,f 〔x 〕=|e x|=ex 符合题意;当a>0时,f 〔x 〕=ex +,则满足f′〔x 〕=ex -≥0在x ∈[0,1]上恒成立.只需满足a≤〔e2x 〕min 成立即可,故a≤1,综上-1≤a≤1.答案:-1≤a≤15.〔原创题〕如果对于函数f 〔x 〕定义域内任意的x ,都有f 〔x 〕≥M 〔M 为常数〕,称M 为f 〔x 〕的下界,下界M 中的最大值叫做f 〔x 〕的下确界,下列函数中,有下确界的所有函数是________.①f〔x 〕=sinx ;②f〔x 〕=lgx ;③f〔x 〕=ex ;④f〔x 〕=解析:∵sinx≥-1,∴f 〔x 〕=sinx 的下确界为-1,即f 〔x 〕=sinx 是有下确界的函数;∵f 〔x 〕=lgx 的值域为〔-∞,+∞〕,∴f 〔x 〕=lgx 没有下确界;∴f 〔x 〕=ex 的值域为〔0,+∞〕,∴f 〔x 〕=ex 的下确界为0,即f 〔x 〕=ex 是有下确界的函数;∵f〔x 〕=的下确界为-1.∴f〔x 〕=是有下确界的函数.答案:①③④6.已知函数,.2f x x 1g x x〔1〕若存在x ∈R 使,求实数的取值范围;〔2〕设2,且在[0,1]上单调递增,求实数的取值范围.解:〔1〕x ∈R ,f 〔x 〕<b·g 〔x 〕x ∈R ,x2-bx +b<0Δ=〔-b 〕2-4b>0b<0或b>4.〔2〕F 〔x 〕=x2-mx +1-m2,Δ=m2-4〔1-m2〕=5m2-4,①当Δ≤0即-≤m≤时,则必需⎩⎨⎧m 2≤0-255≤m≤255-≤m≤0. ②当Δ>0即m<-或m>时,设方程F 〔x 〕=0的根为x1,x2〔x1<x2〕,若≥1,则x1≤0. ⎩⎪⎨⎪⎧ m 2≥1F(0)=1-m2≤0m≥2. 若≤0,则x2≤0,⎩⎪⎨⎪⎧ m 2≤0F(0)=1-m2≥0-1≤m<-.综上所述:-1≤m≤0或m≥2.B 组1.〔2010年山东东营模拟〕下列函数中,单调增区间是〔-∞,0]的是________.①y=- ②y=-〔x -1〕 ③y=x2-2 ④y=-|x|解析:由函数y =-|x|的图象可知其增区间为〔-∞,0].答案:④2.若函数f 〔x 〕=log2〔x2-ax +3a 〕在区间[2,+∞〕上是增函数,则实数a 的取值范围是________.解析:令g 〔x 〕=x2-ax +3a ,由题知g 〔x 〕在[2,+∞〕上是增函数,且g 〔2〕>0. ∴∴-4<a≤4.答案:-4<a≤43.若函数f 〔x 〕=x +〔a>0〕在〔,+∞〕上是单调增函数,则实数a 的取值范围__.解析:∵f 〔x 〕=x +〔a>0〕在〔,+∞〕上为增函数,∴≤,0<a≤.答案:〔0,]4.〔2009年高考陕西卷改编〕定义在R 上的偶函数f 〔x 〕,对任意x1,x2∈[0,+∞〕〔x1≠x2〕,有<0,则下列结论正确的是________.①f 〔3〕<f 〔-2〕<f 〔1〕 ②f 〔1〕<f 〔-2〕<f 〔3〕③f〔-2〕<f 〔1〕<f 〔3〕 ④f〔3〕<f 〔1〕<f 〔-2〕解析:由已知<0,得f 〔x 〕在x ∈[0,+∞〕上单调递减,由偶函数性质得f 〔2〕=f 〔-2〕,即f 〔3〕<f 〔-2〕<f 〔1〕.答案:①5.〔2010年陕西西安模拟〕已知函数f 〔x 〕=满足对任意x1≠x2,都有<0成立,则a 的取值范围是________.解析:由题意知,f 〔x 〕为减函数,所以解得0<a≤.6.〔2010年宁夏石嘴山模拟〕函数f 〔x 〕的图象是如下图所示的折线段OAB ,点A 的坐标为〔1,2〕,点B 的坐标为〔3,0〕,定义函数g 〔x 〕=f 〔x 〕·〔x -1〕,则函数g 〔x 〕的最大值为________.解析:g 〔x 〕=当0≤x<1时,最大值为0;当1≤x≤3时,在x =2取得最大值1.答案:17.〔2010年安徽合肥模拟〕已知定义域在[-1,1]上的函数y =f 〔x 〕的值域为[-2,0],则函数y =f 〔cos 〕的值域是________.解析:∵cos ∈[-1,1],函数y =f 〔x 〕的值域为[-2,0],∴y =f 〔cos 〕的值域为[-2,0].答案:[-2,0]8.已知f 〔x 〕=log3x +2,x ∈[1,9],则函数y =[f 〔x 〕]2+f 〔x2〕的最大值是________.解析:∵函数y =[f 〔x 〕]2+f 〔x2〕的定义域为⎩⎪⎨⎪⎧1≤x≤9,1≤x2≤9,∴x∈[1,3],令log3x =t ,t∈[0,1], ∴y=〔t +2〕2+2t +2=〔t +3〕2-3,∴当t =1时,ymax =13.答案:139.若函数f 〔x 〕=loga 〔2x2+x 〕〔a>0,a≠1〕在区间〔0,〕内恒有f 〔x 〕>0,则f 〔x 〕的单调递增区间为__________.解析:令μ=2x2+x ,当x ∈〔0,〕时,μ∈〔0,1〕,而此时f 〔x 〕>0恒成立,∴0<a <1.μ=2〔x +〕2-,则减区间为〔-∞,-〕.而必然有2x2+x>0,即x>0或x<-.∴f 〔x 〕的单调递增区间为〔-∞,-〕.答案:〔-∞,-〕10.试讨论函数y =2〔logx 〕2-2logx +1的单调性.解:易知函数的定义域为〔0,+∞〕.如果令u =g 〔x 〕=logx ,y =f 〔u 〕=2u2-2u +1,那么原函数y =f[g 〔x 〕]是由g 〔x 〕与f 〔u 〕复合而成的复合函数,而u =logx 在x ∈〔0,+∞〕内是减函数,y =2u2-2u +1=2〔u -〕2+在u ∈〔-∞,〕上是减函数,在u ∈〔,+∞〕上是增函数.又u≤,即logx≤,得x≥;u>,得0<x<.由此,从下表讨论复合函数y =f[g故函数y .11.〔2010年广西河池模拟〕已知定义在区间〔0,+∞〕上的函数f 〔x 〕满足f 〔〕=f 〔x 1〕-f 〔x2〕,且当x>1时,f 〔x 〕<0.〔1〕求f 〔1〕的值;〔2〕判断f 〔x 〕的单调性;〔3〕若f 〔3〕=-1,解不等式f 〔|x |〕<-2.解:〔1〕令x1=x2>0,代入得f 〔1〕=f 〔x1〕-f 〔x1〕=0,故f 〔1〕=0.〔2〕任取x1,x2∈〔0,+∞〕,且x1>x2,则>1,由于当x>1时,f 〔x 〕<0,所以f 〔〕<0,即f 〔x1〕-f 〔x2〕<0,因此f 〔x1〕<f 〔x2〕,所以函数f 〔x 〕在区间〔0,+∞〕上是单调递减函数.〔3〕由f〔〕=f〔x1〕-f〔x2〕得f〔〕=f〔9〕-f〔3〕,而f〔3〕=-1,所以f〔9〕=-2.由于函数f〔x〕在区间〔0,+∞〕上是单调递减函数,由f〔|x|〕<f〔9〕,得|x|>9,∴x>9或x<-9.因此不等式的解集为{x|x>9或x<-9}.12.已知:f〔x〕=log3,x∈〔0,+∞〕,是否存在实数a,b,使f〔x〕同时满足下列三个条件:〔1〕在〔0,1]上是减函数,〔2〕在[1,+∞〕上是增函数,〔3〕f〔x〕的最小值是1.若存在,求出a、b;若不存在,说明理由.解:∵f〔x〕在〔0,1]上是减函数,[1,+∞〕上是增函数,∴x=1时,f〔x〕最小,log3=1.即a+b=2.设0<x1<x2≤1,则f〔x1〕>f〔x2〕.即>恒成立.由此得>0恒成立.又∵x1-x2<0,x1x2>0,∴x1x2-b<0恒成立,∴b≥1.设1≤x3<x4,则f〔x3〕<f〔x4〕恒成立.∴<0恒成立.∵x3-x4<0,x3x4>0,∴x3x4>b恒成立.∴b≤1.由b≥1且b≤1可知b=1,∴a =1.∴存在a、b,使f〔x〕同时满足三个条件.第三节函数的性质A组1.设偶函数f〔x〕=loga|x-b|在〔-∞,0〕上单调递增,则f〔a+1〕与f〔b+2〕的大小关系为________.解析:由f〔x〕为偶函数,知b=0,∴f〔x〕=loga|x|,又f〔x〕在〔-∞,0〕上单调递增,所以0<a<1,1<a+1<2,则f〔x〕在〔0,+∞〕上单调递减,所以f〔a+1〕>f〔b+2〕.答案:f〔a+1〕>f〔b+2〕2.〔2010年广东三校模拟〕定义在R上的函数f〔x〕既是奇函数又是以2为周期的周期函数,则f〔1〕+f〔4〕+f〔7〕等于________.解析:f〔x〕为奇函数,且x∈R,所以f〔0〕=0,由周期为2可知,f〔4〕=0,f〔7〕=f〔1〕,又由f〔x+2〕=f〔x〕,令x=-1得f〔1〕=f〔-1〕=-f〔1〕⇒f〔1〕=0,所以f〔1〕+f〔4〕+f〔7〕=0.答案:03.〔2009年高考山东卷改编〕已知定义在R上的奇函数f〔x〕满足f〔x-4〕=-f〔x〕,且在区间[0,2]上是增函数,则f〔-25〕、f〔11〕、f〔80〕的大小关系为________.解析:因为f〔x〕满足f〔x-4〕=-f〔x〕,所以f〔x-8〕=f〔x〕,所以函数是以8为周期的周期函数,则f〔-25〕=f〔-1〕,f〔80〕=f〔0〕,f〔11〕=f〔3〕,又因为f〔x〕在R上是奇函数,f〔0〕=0,得f〔80〕=f〔0〕=0,f〔-25〕=f〔-1〕=-f 〔1〕,而由f〔x-4〕=-f〔x〕得f〔11〕=f〔3〕=-f〔-3〕=-f〔1-4〕=f〔1〕,又因为f〔x〕在区间[0,2]上是增函数,所以f〔1〕>f〔0〕=0,所以-f〔1〕<0,即f〔-25〕<f〔80〕<f〔11〕.答案:f〔-25〕<f〔80〕<f〔11〕4.〔2009年高考辽宁卷改编〕已知偶函数f〔x〕在区间[0,+∞〕上单调增加,则满足f〔2x-1〕<f〔〕的x取值范围是________.解析:由于f〔x〕是偶函数,故f〔x〕=f〔|x|〕,由f〔|2x-1|〕<f〔〕,再根据f〔x 〕的单调性得|2x-1|<,解得<x<.答案:〔,〕5.〔原创题〕已知定义在R上的函数f〔x〕是偶函数,对x∈R,f〔2+x〕=f〔2-x〕,当f〔-3〕=-2时,f〔2011〕的值为________.解析:因为定义在R上的函数f〔x〕是偶函数,所以f〔2+x〕=f〔2-x〕=f〔x-2〕,故函数f〔x〕是以4为周期的函数,所以f〔2011〕=f〔3+502×4〕=f〔3〕=f〔-3〕=-2.答案:-26.已知函数y=f〔x〕是定义在R上的周期函数,周期T=5,函数y=f〔x〕〔-1≤x≤1〕是奇函数,又知y=f〔x〕在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.〔1〕证明:f〔1〕+f〔4〕=0;〔2〕求y=f〔x〕,x∈[1,4]的解析式;〔3〕求y=f〔x〕在[4,9]上的解析式.解:〔1〕证明:∵f〔x〕是以5为周期的周期函数,∴f〔4〕=f〔4-5〕=f〔-1〕,又∵y=f〔x〕〔-1≤x≤1〕是奇函数,∴f〔1〕=-f〔-1〕=-f〔4〕,∴f〔1〕+f〔4〕=0.〔2〕当x∈[1,4]时,由题意可设f〔x〕=a〔x-2〕2-5〔a>0〕,由f〔1〕+f〔4〕=0,得a〔1-2〕2-5+a〔4-2〕2-5=0,∴a=2,∴f〔x〕=2〔x-2〕2-5〔1≤x≤4〕.〔3〕∵y=f〔x〕〔-1≤x≤1〕是奇函数,∴f〔0〕=0,又知y=f〔x〕在[0,1]上是一次函数,∴可设f〔x〕=kx〔0≤x≤1〕,而f〔1〕=2〔1-2〕2-5=-3,∴k=-3,∴当0≤x≤1时,f〔x〕=-3x,从而当-1≤x<0时,f〔x〕=-f〔-x〕=-3x,故-1≤x≤1时,f〔x〕=-3x.∴当4≤x≤6时,有-1≤x-5≤1,∴f〔x〕=f〔x-5〕=-3〔x-5〕=-3x+15.当6<x≤9时,1<x-5≤4,∴f〔x〕=f〔x-5〕=2[〔x-5〕-2]2-5=2〔x-7〕2-5.∴f〔x〕=.B组1.〔2009年高考全国卷Ⅰ改编〕函数f〔x〕的定义域为R,若f〔x+1〕与f〔x-1〕都是奇函数,则下列结论正确的是________.①f〔x〕是偶函数②f〔x〕是奇函数③f〔x〕=f〔x+2〕④f〔x+3〕是奇函数解析:∵f〔x+1〕与f〔x-1〕都是奇函数,∴f〔-x+1〕=-f〔x+1〕,f〔-x-1〕=-f〔x-1〕,∴函数f〔x〕关于点〔1,0〕,及点〔-1,0〕对称,函数f〔x〕是周期T=2[1-〔-1〕]=4的周期函数.∴f〔-x-1+4〕=-f〔x-1+4〕,f〔-x+3〕=-f〔x+3〕,即f〔x+3〕是奇函数.答案:④2.已知定义在R上的函数f〔x〕满足f〔x〕=-f〔x+〕,且f〔-2〕=f〔-1〕=-1,f 〔0〕=2,f〔1〕+f〔2〕+…+f〔2009〕+f〔2010〕=________.解析:f〔x〕=-f〔x+〕⇒f〔x+3〕=f〔x〕,即周期为3,由f〔-2〕=f〔-1〕=-1,f〔0〕=2,所以f〔1〕=-1,f〔2〕=-1,f〔3〕=2,所以f〔1〕+f〔2〕+…+f〔2009〕+f〔2010〕=f〔2008〕+f〔2009〕+f〔2010〕=f〔1〕+f〔2〕+f〔3〕=0.答案:03.〔2010年浙江台州模拟〕已知f〔x〕是定义在R上的奇函数,且f〔1〕=1,若将f〔x〕的图象向右平移一个单位后,得到一个偶函数的图象,则f〔1〕+f〔2〕+f〔3〕+…+f 〔2010〕=________.解析:f〔x〕是定义在R上的奇函数,所以f〔-x〕=-f〔x〕,将f〔x〕的图象向右平移一个单位后,得到一个偶函数的图象,则满足f〔-2+x〕=-f〔x〕,即f〔x+2〕=-f〔x〕,所以周期为4,f〔1〕=1,f〔2〕=f〔0〕=0,f〔3〕=-f〔1〕=-1,f〔4〕=0,所以f〔1〕+f〔2〕+f〔3〕+f〔4〕=0,则f〔1〕+f〔2〕+f〔3〕+…+f〔20 10〕=f〔4〕×502+f〔2〕=0.答案:04.〔2010年湖南郴州质检〕已知函数f〔x〕是R上的偶函数,且在〔0,+∞〕上有f′〔x〕>0,若f〔-1〕=0,那么关于x的不等式xf〔x〕<0的解集是________.解析:在〔0,+∞〕上有f′〔x〕>0,则在〔0,+∞〕上f〔x〕是增函数,在〔-∞,0〕上是减函数,又f〔x〕在R上是偶函数,且f〔-1〕=0,∴f〔1〕=0.从而可知x∈〔-∞,-1〕时,f〔x〕>0;x∈〔-1,0〕时,f〔x〕<0;x∈〔0,1〕时,f〔x〕<0;x∈〔1,+∞〕时,f〔x〕>0.∴不等式的解集为〔-∞,-1〕∪〔0,1〕答案:〔-∞,-1〕∪〔0,1〕.5.〔2009年高考江西卷改编〕已知函数f〔x〕是〔-∞,+∞〕上的偶函数,若对于x≥0,都有f〔x+2〕=f〔x〕,且当x∈[0,2〕时,f〔x〕=log2〔x+1〕,则f〔-2009〕+f〔2010〕的值为________.解析:∵f〔x〕是偶函数,∴f〔-2009〕=f〔2009〕.∵f〔x〕在x≥0时f〔x+2〕=f 〔x〕,∴f〔x〕周期为2.∴f〔-2009〕+f〔2010〕=f〔2009〕+f〔2010〕=f〔1〕+f 〔0〕=log22+log21=0+1=1.答案:16.〔2010年江苏苏州模拟〕已知函数f〔x〕是偶函数,并且对于定义域内任意的x,满足f 〔x+2〕=-,若当2<x<3时,f〔x〕=x,则f〔2009.5〕=________.解析:由f〔x+2〕=-,可得f〔x+4〕=f〔x〕,f〔2009.5〕=f〔502×4+1.5〕=f〔1.5〕=f〔-2.5〕∵f〔x〕是偶函数,∴f〔2009.5〕=f〔2.5〕=.答案:7.〔2010年安徽黄山质检〕定义在R上的函数f〔x〕在〔-∞,a]上是增函数,函数y=f〔x+a〕是偶函数,当x1<a,x2>a,且|x1-a|<|x2-a|时,则f〔2a-x1〕与f〔x2〕的大小关系为________.解析:∵y=f〔x+a〕为偶函数,∴y=f〔x+a〕的图象关于y轴对称,∴y=f〔x〕的图象关于x=a对称.又∵f〔x〕在〔-∞,a]上是增函数,∴f〔x〕在[a,+∞〕上是减函数.当x1<a,x2>a,且|x1-a|<|x2-a|时,有a-x1<x2-a,即a<2a-x1<x2,∴f〔2a-x1〕>f〔x2〕.答案:f〔2a-x1〕>f〔x2〕8.已知函数f〔x〕为R上的奇函数,当x≥0时,f〔x〕=x〔x+1〕.若f〔a〕=-2,则实数a=________.解析:当x≥0时,f〔x〕=x〔x+1〕>0,由f〔x〕为奇函数知x<0时,f〔x〕<0,∴a< 0,f〔-a〕=2,∴-a〔-a+1〕=2,∴a=2〔舍〕或a=-1.答案:-19.〔2009年高考山东卷〕已知定义在R上的奇函数f〔x〕满足f〔x-4〕=-f〔x〕,且在区间[0,2]上是增函数.若方程f〔x〕=m〔m>0〕在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.解析:因为定义在R上的奇函数,满足f〔x-4〕=-f〔x〕,所以f〔4-x〕=f〔x〕,因此,函数图象关于直线x=2对称且f〔0〕=0.由f〔x-4〕=-f〔x〕知f〔x-8〕=f 〔x〕,所以函数是以8为周期的周期函数.又因为f〔x〕在区间[0,2]上是增函数,所以f 〔x〕在区间[-2,0]上也是增函数,如图所示,那么方程f〔x〕=m〔m>0〕在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x2=-1 2,x3+x4=4,所以x1+x2+x3+x4=-12+4=-8.答案:-810.已知f〔x〕是R上的奇函数,且当x∈〔-∞,0〕时,f〔x〕=-xlg〔2-x〕,求f〔x 〕的解析式.解:∵f〔x〕是奇函数,可得f〔0〕=-f〔0〕,∴f〔0〕=0.当x>0时,-x<0,由已知f〔-x〕=xlg〔2+x〕,∴-f〔x〕=xlg〔2+x〕,即f〔x〕=-xlg〔2+x〕〔x>0〕.∴f〔x〕=即f〔x〕=-xlg〔2+|x|〕〔x∈R〕.11.已知函数f〔x〕,当x,y∈R时,恒有f〔x+y〕=f〔x〕+f〔y〕.〔1〕求证:f〔x〕是奇函数;〔2〕如果x∈R+,f〔x〕<0,并且f〔1〕=-,试求f〔x〕在区间[-2,6]上的最值.解:〔1〕证明:∴函数定义域为R,其定义域关于原点对称.∵f〔x+y〕=f〔x〕+f〔y〕,令y=-x,∴f〔0〕=f〔x〕+f〔-x〕.令x=y=0,∴f〔0〕=f〔0〕+f〔0〕,得f〔0〕=0.∴f〔x〕+f〔-x〕=0,得f〔-x〕=-f〔x〕,∴f〔x〕为奇函数.〔2〕法一:设x,y∈R+,∵f〔x+y〕=f〔x〕+f〔y〕,∴f〔x+y〕-f〔x〕=f 〔y〕.∵x∈R+,f〔x〕<0,∴f〔x+y〕-f〔x〕<0,∴f〔x+y〕<f〔x〕.∵x+y>x,∴f 〔x〕在〔0,+∞〕上是减函数.又∵f〔x〕为奇函数,f〔0〕=0,∴f〔x〕在〔-∞,+∞〕上是减函数.∴f〔-2〕为最大值,f〔6〕为最小值.∵f〔1〕=-,∴f〔-2〕=-f〔2〕=-2f〔1〕=1,f〔6〕=2f〔3〕=2[f〔1〕+f〔2〕]=-3.∴所求f〔x〕在区间[-2,6]上的最大值为1,最小值为-3.法二:设x1<x2,且x1,x2∈R.则f〔x2-x1〕=f[x2+〔-x1〕]=f〔x2〕+f〔-x1〕=f〔x2〕-f〔x1〕.∵x2-x1>0,∴f〔x2-x1〕<0.∴f〔x2〕-f〔x1〕<0.即f〔x〕在R上单调递减.∴f〔-2〕为最大值,f〔6〕为最小值.∵f〔1〕=-,∴f〔-2〕=-f〔2〕=-2f〔1〕=1,f〔6〕=2f〔3〕=2[f〔1〕+f〔2〕]=-3.∴所求f〔x〕在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f〔x〕的定义域为R,且满足f〔x+2〕=-f〔x〕.〔1〕求证:f〔x〕是周期函数;〔2〕若f〔x〕为奇函数,且当0≤x≤1时,f〔x〕=x,求使f〔x〕=-在[0,2010]上的所有x的个数.解:〔1〕证明:∵f〔x+2〕=-f〔x〕,∴f〔x+4〕=-f〔x+2〕=-[-f〔x〕]=f〔x〕,∴f〔x〕是以4为周期的周期函数.〔2〕当0≤x≤1时,f〔x〕=x,设-1≤x≤0,则0≤-x≤1,∴f〔-x〕=〔-x〕=-x.∵f〔x〕是奇函数,∴f〔-x〕=-f〔x〕,∴-f〔x〕=-x,即f〔x〕=x.故f〔x〕=x〔-1≤x≤1〕又设1<x<3,则-1<x-2<1,∴f〔x-2〕=〔x-2〕,又∵f〔x-2〕=-f〔2-x〕=-f[〔-x〕+2]=-[-f〔-x〕]=-f〔x〕,∴-f〔x〕=〔x-2〕,∴f〔x〕=-〔x-2〕〔1<x<3〕.∴f〔x〕=由f〔x〕=-,解得x=-1.∵f〔x〕是以4为周期的周期函数.故f〔x〕=-的所有x =4n-1〔n∈Z〕.令0≤4n-1≤2010,则≤n≤502,又∵n∈Z,∴1≤n≤502〔n∈Z〕,∴在[0,2010]上共有502个x使f〔x〕=-.第三章指数函数和对数函数第一节指数函数A组1.〔2010年黑龙江哈尔滨模拟〕若a>1,b<0,且ab+a-b=2,则ab-a-b的值等于_____ ___.解析:∵a>1,b<0,∴0<ab<1,a-b>1.又∵〔ab+a-b〕2=a2b+a-2b+2=8,∴a2b+a-2b=6,∴〔ab-a-b〕2=a2b+a-2b-2=4,∴ab-a-b=-2.答案:-2 2.已知f〔x〕=ax+b的图象如图所示,则f〔3〕=________.解析:由图象知f〔0〕=1+b=-2,∴b=-3.又f〔2〕=a2-3=0,∴a=,则f〔3〕=〔〕3-3=3-3.答案:3-33.函数y=〔〕2x-x2的值域是________.解析:∵2x-x2=-〔x-1〕2+1≤1,∴〔〕2x-x2≥.答案:[,+∞〕4.〔2009年高考山东卷〕若函数f〔x〕=ax-x-a〔a>0,且a≠1〕有两个零点,则实数a 的取值范围是________.解析:函数f〔x〕的零点的个数就是函数y=ax与函数y=x+a交点的个数,由函数的图象可知a>1时两函数图象有两个交点,0<a<1时两函数图象有惟一交点,故a>1.答案:〔1,+∞〕5.〔原创题〕若函数f〔x〕=ax-1〔a>0,a≠1〕的定义域和值域都是[0,2],则实数a等于________.解析:由题意知无解或⇒a=.答案: 36.已知定义域为R的函数f〔x〕=是奇函数.〔1〕求a,b的值;〔2〕若对任意的t∈R,不等式f〔t2-2t〕+f〔2t2-k〕<0恒成立,求k的取值范围.解:〔1〕因为f〔x〕是R上的奇函数,所以f〔0〕=0,即=0,解得b=1.从而有f〔x〕=.又由f〔1〕=-f〔-1〕知=-,解得a=2.〔2〕法一:由〔1〕知f〔x〕==-+,由上式易知f〔x〕在R上为减函数,又因f〔x〕是奇函数,从而不等式f〔t2-2t〕+f〔2t2-k〕<0⇔f〔t2-2t〕<-f〔2t2-k〕=f〔-2t2+k〕.因f〔x〕是R上的减函数,由上式推得t2-2t>-2t2+k.即对一切t∈R有3t2-2t-k>0,从而Δ=4+12k<0,解得k<-.法二:由〔1〕知f〔x〕=,又由题设条件得+<0即〔22t2-k+1+2〕〔-2t2-2t+1〕+〔2t2-2t+1+2〕〔-22t2-k+1〕<0整理得23t2-2t-k>1,因底数2>1,故3t2-2t-k>0上式对一切t∈R均成立,从而判别式Δ=4+12k<0,解得k<-.B组1.如果函数f〔x〕=ax+b-1〔a>0且a≠1〕的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a<1且b>0 ②0<a<1且0<b<1 ③a>1且b<0 ④a>1且b>0解析:当0<a<1时,把指数函数f〔x〕=ax的图象向下平移,观察可知-1<b-1<0,即0<b<1.答案:②2.〔2010年保定模拟〕若f〔x〕=-x2+2ax与g〔x〕=〔a+1〕1-x在区间[1,2]上都是减函数,则a的取值范围是________.解析:f〔x〕=-x2+2ax=-〔x-a〕2+a2,所以f〔x〕在[a,+∞〕上为减函数,又f〔x〕,g〔x〕都在[1,2]上为减函数,所以需⇒0<a≤1.答案:〔0,1]3.已知f〔x〕,g〔x〕都是定义在R上的函数,且满足以下条件①f〔x〕=ax·g〔x〕〔a>0,a≠1〕;②g〔x〕≠0;若+=,则a等于________.解析:由f〔x〕=ax·g〔x〕得=ax,所以+=⇒a+a-1=,解得a=2或.答案:2或4.〔2010年北京朝阳模拟〕已知函数f〔x〕=ax〔a>0且a≠1〕,其反函数为f-1〔x〕.若f〔2〕=9,则f-1〔〕+f〔1〕的值是________.解析:因为f〔2〕=a2=9,且a>0,∴a=3,则f〔x〕=3x=,∴x=-1,故f-1〔〕=-1.又f〔1〕=3,所以f-1〔〕+f〔1〕=2.答案:25.〔2010年山东青岛质检〕已知f〔x〕=〔〕x,若f〔x〕的图象关于直线x=1对称的图象对应的函数为g〔x〕,则g〔x〕的表达式为________.解析:设y=g〔x〕上任意一点P〔x,y〕,P〔x,y〕关于x=1的对称点P′〔2-x,y 〕在f〔x〕=〔〕x上,∴y=〔〕2-x=3x-2.答案:y=3x-2〔x∈R〕6.〔2009年高考山东卷改编〕函数y=的图象大致为________.解析:∵f〔-x〕==-=-f〔x〕,∴f〔x〕为奇函数,排除④.又∵y====1+在〔-∞,0〕、〔0,+∞〕上都是减函数,排除②、③.答案:①7.〔2009年高考辽宁卷改编〕已知函数f〔x〕满足:当x≥4时,f〔x〕=〔〕x;当x<4时,f〔x〕=f〔x+1〕,则f〔2+log23〕=________.解析:∵2<3<4=22,∴1<log23<2.∴3<2+log23<4,∴f〔2+log23〕=f〔3+log23〕=f〔log224〕=〔〕log224=2-log224=2log2=.答案:8.〔2009年高考湖南卷改编〕设函数y=f〔x〕在〔-∞,+∞〕内有定义,对于给定的正数K,定义函数fK〔x〕=取函数f〔x〕=2-|x|,当K=时,函数fK〔x〕的单调递增区间为________.解析:由f〔x〕=2-|x|≤得x≥1或x≤-1,∴fK〔x〕=则单调增区间为〔-∞,-1].答案:〔-∞,-1]9.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g〔a〕的图象可以是________.解析:函数y=2|x|的图象如图.当a=-4时,0≤b≤4,当b=4时,-4≤a≤0,答案:②10.〔2010年宁夏银川模拟〕已知函数f〔x〕=a2x+2ax-1〔a>0,且a≠1〕在区间[-1,1 ]上的最大值为14,求实数a的值.解:f〔x〕=a2x+2ax-1=〔ax+1〕2-2,∵x∈[-1,1],〔1〕当0<a<1时,a≤ax≤,∴当ax=时,f〔x〕取得最大值.∴〔+1〕2-2=14,∴=3,∴a=.〔2〕当a>1时,≤ax≤a,∴当ax=a时,f〔x〕取得最大值.∴〔a+1〕2-2=14,∴a=3.综上可知,实数a的值为或3.11.已知函数f〔x〕=.〔1〕求证:f〔x〕的图象关于点M〔a,-1〕对称;〔2〕若f〔x〕≥-2x在x≥a上恒成立,求实数a的取值范围.解:〔1〕证明:设f〔x〕的图象C上任一点为P〔x,y〕,则y=-,P〔x,y〕关于点M〔a,-1〕的对称点为P′〔2a-x,-2-y〕.∴-2-y=-2+===,说明点P′〔2a-x,-2-y〕也在函数y=的图象上,由点P的任意性知,f〔x〕的图象关于点M〔a,-1〕对称.〔2〕由f〔x〕≥-2x得≥-2x,则≤2x,化为2x-a·2x+2x-2≥0,则有〔2x〕2+2a·2x -2·2a≥0在x≥a上恒成立.令g〔t〕=t2+2a·t-2·2a,则有g〔t〕≥0在t≥2a上恒成立.∵g〔t〕的对称轴在t=0的左侧,∴g〔t〕在t≥2a上为增函数.∴g〔2a〕≥0.∴〔2a〕2+〔2a〕2-2·2a≥0,∴2a〔2a-1〕≥0,则a≥0.即实数a 的取值范围为a≥0.12.〔2008年高考江苏〕若f1〔x〕=3|x-p1|,f2〔x〕=2·3|x-p2|,x∈R,p1、p2为常数,且f〔x〕=〔1〕求f〔x〕=f1〔x〕对所有实数x成立的充要条件〔用p1、p2表示〕;〔2〕设a,b是两个实数,满足a<b,且p1、p2∈〔a,b〕.若f〔a〕=f〔b〕,求证:函数f〔x〕在区间[a,b]上的单调增区间的长度之和为〔闭区间[m,n]的长度定义为n-m〕.解:〔1〕f〔x〕=f1〔x〕恒成立⇔f1〔x〕≤f2〔x〕⇔3|x-p1|≤2·3|x-p2|⇔3|x-p1|-|x -p2|≤2⇔|x-p1|-|x-p2|≤log32.〔*〕若p1=p2,则〔*〕⇔0≤log32,显然成立;若p1≠p2,记g〔x〕=|x-p1|-|x-p2|,当p1>p2时,g〔x〕=所以g〔x〕max=p1-p2,故只需p1-p2≤log32.当p1<p2时,g〔x〕=所以g〔x〕max=p2-p1,故只需p2-p1≤log32.综上所述,f〔x〕=f1〔x〕对所有实数x成立的充要条件是|p1-p2|≤log32.〔2〕证明:分两种情形讨论.①当|p1-p2|≤log32时,由〔1〕知f〔x〕=f1〔x〕〔对所有实数x∈[a,b]〕,则由f〔a〕=f〔b〕及a<p1<b易知p1=.再由f1〔x〕=的单调性可知,f〔x〕在区间[a,b]上的单调增区间的长度为b-=.②当|p1-p2|>log32时,不妨设p1<p2,则p2-p1>log32.于是,当x≤p1时,有f1〔x〕=3p1-x<3p2-x<f2〔x〕,从而f〔x〕=f1〔x〕.当x≥p2时,f1〔x〕=3x-p1=3p2-p1·3x-p2>3log32·3x-p2=f2〔x〕,从而f〔x〕=f2〔x〕.当p1<x<p2时,f1〔x〕=3x-p1及f2〔x〕=2·3p2-x,由方程3x0-p1=2·3p2-x0,解得f1〔x〕与f2〔x〕图象交点的横坐标为x0=+log32.①显然p1<x0=p2-[〔p2-p1〕-log32]<p2,这表明x0在p1与p2之间.由①易知f〔x〕=综上可知,在区间[a,b]上,f〔x〕=故由函数f1〔x〕与f2〔x〕的单调性可知,f〔x〕在区间[a,b]上的单调增区间的长度之和为〔x0-p1〕+〔b-p2〕,由于f〔a〕=f〔b〕,即3p1-a=2·3b-p2,得p1+p2=a+b+log32.②故由①②得〔x0-p1〕+〔b-p2〕=b-〔p1+p2-log32〕=.综合①、②可知,f〔x〕在区间[a,b]上单调增区间的长度之和为.第二节对数函数A组1.〔2009年高考广东卷改编〕若函数y=f〔x〕是函数y=ax〔a>0,且a≠1〕的反函数,其图象经过点〔,a〕,则f〔x〕=________.解析:由题意f〔x〕=logax,∴a=logaa=,∴f〔x〕=logx.答案:logx2.〔2009年高考全国卷Ⅱ〕设a=log3π,b=log2,c=log3,则a、b、c的大小关系是____ ____.解析:a=log3π>1,b=log2=log23∈〔,1〕,c=log3=log32∈〔0,〕,故有a>b>c .答案:a>b>c3.若函数f〔x〕=,则f〔log43〕=________.解析:0<log43<1,∴f〔log43〕=4log43=3.答案:34.如图所示,若函数f〔x〕=ax-1的图象经过点〔4,2〕,则函数g〔x〕=loga的图象是________.解析:由已知将点〔4,2〕代入y=ax-1,∴2=a4-1,即a=2>1.又是单调递减的,故g〔x〕递减且过〔0,0〕点,∴④正确.答案:④5.〔原创题〕已知函数f〔x〕=alog2x+blog3x+2,且f〔〕=4,则f〔2010〕的值为_.解析:设F〔x〕=f〔x〕-2,即F〔x〕=alog2x+blog3x,则F〔〕=alog2+blog3=-〔alog2x+blog3x〕=-F〔x〕,∴F〔2010〕=-F〔〕=-[f〔〕-2]=-2,即f〔2010〕-2=-2,故f〔2010〕=0.答案:06.若f〔x〕=x2-x+b,且f〔log2a〕=b,log2f〔a〕=2〔a>0且a≠1〕.〔1〕求f〔log2x 〕的最小值及相应x的值;〔2〕若f〔log2x〕>f〔1〕且log2f〔x〕<f〔1〕,求x的取值范围.。
高考数学(文科)试题及答案
高考数学(文)试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁U M )∩N =(A ){-1} (B ){3} (C ){0,1} (D ){-1,3} 2.下列命题中的假命题是(A )∀x >0且x ≠1,都有x +1x>2(B )∀a ∈R ,直线ax +y -a =0恒过定点(1,0)(C )∃m ∈R ,使f (x )=(m -1)x m 2-4m +3是幂函数 (D )∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数3.在等差数列{a n }中,已知公差d =2,且a 1,a 3,a 4成等比数列,则a 2=(A )-4 (B )-6 (C )-8 (D )-104.函数y =12-x+lg x 的定义域是(A )(0,2] (B )(0,2) (C )(1,2) (D )[1,2)5.已知函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3,x >1。
则函数y =f (x )-log 2x 的零点的个数是(A )4 (B )3 (C )2 (D )16.一个几何体的三视图如图所示,则这个几何体的体积等于(A )4 (B )6 (C )8 (D )127.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=(A )-12(B )-1 (C )-32(D )- 38.设O 为△ABC 所在平面内一点.若实数x 、y 、z 满足x →OA +y →OB +z →OC =0(x 2+y 2+z 2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 9.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交10.已知圆M :x 2+y 2-8x -6y =0,过圆M 内定点P (1,2)作两条相互垂直的弦AC 和BD ,则四边形ABCD 面积的最大值为(A )2015 (B )16 6 (C )515 (D )40 1 2 3 4 5 6 7 8 9 10二、填空题:本大题共7小题,每小题5分,共35分. 11.若复数z 满足(2-i)z =1+i (i 为虚数单位),则复数z 在复平面内对应的点的坐标为 . 12.设F 1、F 2是双曲线x 216-y 220=1的两焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 .13.已知某程序框图如图所示,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c = .14.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)15.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 . 16.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .17.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项,据此可得,最佳乐观系数x 的值等于 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到平面PDE 的距离为2217时,求三棱锥A -PDE的侧面积. 20.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅰ)求频率分布表中未知量n ,x ,y ,z 的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率. 21.(本小题满分14分)设a ∈R ,函数f (x )=ln x -ax .(Ⅰ)讨论函数f (x )的单调区间和极值;(Ⅱ)已知x 1=e (e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23. 22.(本小题满分14分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值; (Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.参考答案一、选择题:每小题5分,满分50分.1.B 2.D 3.B 4.D 5.B 6.A 7.B 8.C 9.B 10.D 二、填空题:每小题5分,满分35分.11.(15,35) 12.17 13.6 14.s 1>s 2>s 3 15.(-∞,2]16.433 17.5-12三、解答题:本大题共5小题,共65分.18.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314,∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114×12+5314×32=17.…………………………………………(6分)(Ⅱ)由(Ⅰ),得sin C =1-cos 2C =1-(17)2=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =csin C ,得5 5314=c 437,∴ c =8, 故△ABC 的面积为S =12ac sin B =12×5×8×32=103.…………………(12分)19.(本小题满分12分)解:(Ⅰ)在Rt △DAE 中,AD =3,∠ADE =π6,∴AE =AD ·tan ∠ADE =3·33=1. 又AB =CD =4,∴BE =3.在Rt △EBC 中,BC =AD =3,∴tan ∠CEB =BC BE =33,∴∠CEB =π6.又∠AED =π3,∴∠DEC =π2,即CE ⊥DE .∵PD ⊥底面ABCD ,CE ⊂底面ABCD , ∴PD ⊥CE .∴CE ⊥平面PDE .……………………………………………………………(6分) (Ⅱ)∵PD ⊥底面ABCD ,PD ⊂平面PDE ,∴平面PDE ⊥平面ABCD .如图,过A 作AF ⊥DE 于F ,∴AF ⊥平面PDE ,∴AF 就是点A 到平面PDE 的距离,即AF =2217.在Rt △DAE 中,由AD ·AE =AF ·DE ,得 3AE =2217·3+AE 2,解得AE =2.∴S △APD =12PD ·AD =12×2×3=62,S △ADE =12AD ·AE =12×3×2=3,∵BA ⊥AD ,BA ⊥PD ,∴BA ⊥平面P AD ,∵P A ⊂平面P AD ,∴BA ⊥P A .在Rt △P AE 中,AE =2,P A =PD 2+AD 2=2+3=5,∴S △APE =12P A ·AE =12×5×2=5.∴三棱锥A -PDE 的侧面积S 侧=62+3+5.…………………………(12分) 20.(本小题满分13分)解:(Ⅰ)由频率分布表可知,样本容量为n ,由2n=0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.……………(6分)(Ⅱ)记样本中视力在(3.9,4.2]的3人为a ,b ,c ,在(5.1,5.4]的2人为d ,e . 由题意,从5人中随机抽取两人,所有可能的结果有:{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种. 设事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:{a ,b },{a ,c },{b ,c },{d ,e },共4种.∴P (A )=410=25.故两人的视力差的绝对值低于0.5的概率为25.…………………………(13分)21.(本小题满分14分) 解:(Ⅰ)函数f (x )的定义域为(0,+∞).求导数,得f ′(x )=1x -a =1-ax x.①若a ≤0,则f ′(x )>0,f (x )是(0,+∞)上的增函数,无极值; ②若a >0,令f ′(x )=0,得x =1a.当x ∈(0,1a )时,f ′(x )>0,f (x )是增函数;当x ∈(1a,+∞)时,f ′(x )<0,f (x )是减函数.∴当x =1a 时,f (x )有极大值,极大值为f (1a )=ln 1a-1=-ln a -1.综上所述,当a ≤0时,f (x )的递增区间为(0,+∞),无极值;当a >0时,f (x )的递增区间为(0,1a ),递减区间为(1a ,+∞),极大值为-ln a -1.…(8分)(Ⅱ)∵x 1=e 是函数f (x )的零点,∴f (e )=0,即12-a e =0,解得a =12e =e2e .∴f (x )=ln x -12ex .∵f (e 23)=32-e 2>0,f (e 25)=52-e 22<0,∴f (e 23)f (e 25)<0.由(Ⅰ)知,函数f (x )在(2e ,+∞)上单调递减, ∴函数f (x )在区间(e 23,e 25)上有唯一零点,因此x 2>e 23.………………………………………………………………(14分)22.(本小题满分14分)解:(Ⅰ)由题意,得⎩⎪⎨⎪⎧c a =23,a -c =1。
2012-2017年高考文科数学真题汇编:集合高考题学生版
B. C B
C. D C D. A D
2.(2012 新标理) 已知集合 A {1, 2,3, 4,5}, B {(x, y) | x A, y A, x y A},则 B 中所含元素的个
数为( (A) 3
D) (B) 6
(C) 8
(D) 10
3.(2014 大纲文)设集合 M={1,2,4,6,8},N={1,2,3,5,6,7},则 M N 中元素的个数为(
第 1 页(共 4 页)
(A) A B ∅
(B) A B R
(C) B A
(D) A B
10.(2014 新标 1 理)已知集合 A={ x | x2 2x 3 0 },B={ x |-2≤ x <2},则 A B =( )
A 。[—2,-1] B 。[-1,2) C 。[—1,1] D .[1,2) 11。(2014 新标 1 文) 已知集合 M={x|—1〈x<3},B={x|-2<x〈1},则 M B ( )
32、(2015 年山东理科) 已知集合 A={x | x2 4x 3 0}, B {x | 2 x 4} ,则 A B ( )
(A)(1,3)
(B)(1,4)
(C)(2,3) (D)(2,4)
33、(2017·天津理)设集合 A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=( )
)
A. 2
B. 3
C. 5
D. 7
4.(2013 福建文)若集合 A {1,2,3}, B {1,3,4},则 A B 的子集个数为( )
A.2 B.3
C.4 D.16
5。(2014 福建文)若集合 P x 2 x 4,Q x x 3, 则 P Q 等于 ( )
高三文科数学集合试卷
一、选择题(每题5分,共50分)1. 下列集合中,不是实数集的子集是()A. {x | x > 0}B. {x | x ≤ 1}C. {x | x ∈ N}D. {x | x ∈ R}2. 下列命题中,正确的是()A. 如果A⊆B,那么B⊆AB. 如果A⊆B,那么B∩A=AC. 如果A⊆B,那么A∪B=BD. 如果A⊆B,那么B-A=A3. 下列集合中,与集合M={x | x^2 - 4x + 3 = 0}等价的是()A. {x | x = 1}B. {x | x = 3}C. {x | x = 1 或 x = 3}D. {x | x^2 - 4x + 3 = 0}4. 下列函数中,其定义域为实数集R的是()A. f(x) = √(x^2 - 1)B. f(x) = 1/xC. f(x) = √(x - 2)D. f(x) = √(x^2 + 1)5. 设集合A={x | x^2 - 2x - 3 = 0},B={x | x^2 - 5x + 6 = 0},则A∩B=()A. {x | x = 3}B. {x | x = 2 或 x = 3}C. {x | x = -1 或 x = 2}D. {x | x = -1 或 x = 3}6. 下列集合中,是空集的是()A. {x | x^2 = 0}B. {x | x^2 + 1 = 0}C. {x | x > 0}D. {x | x ≤ 0}7. 设集合A={x | x ∈ N,x < 5},B={x | x ∈ N,x ≤ 3},则A∪B=()A. {x | x ∈ N,x < 5}B. {x | x ∈ N,x ≤ 3}C. {x | x ∈ N,x < 5}D. {x | x ∈ N,x ≤ 5}8. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^49. 设集合A={x | x ∈ R,x^2 - 4x + 3 = 0},B={x | x ∈ R,x^2 - 6x + 9 = 0},则A-B=()A. {x | x = 1}B. {x | x = 3}C. {x | x = 1 或 x = 3}D. {x | x = 3 或 x = 6}10. 下列命题中,正确的是()A. 两个非空集合的并集一定是非空集合B. 两个非空集合的交集一定是非空集合C. 两个非空集合的并集和交集可能是空集D. 两个非空集合的并集和交集一定是实数集二、填空题(每题5分,共50分)1. 集合M={x | x ∈ N,x < 5}的补集是__________。
(完整版)高考文科数学集合习题精选
集合部分一、基础练习1. 设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =( )A.{}|2x x >- B.{}1x x >-| C.{}|21x x -<<- D.{}|12x x -<<2. 已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( )A. (-1,1)B. (-2,1)C. (-2,-1)D. (1,2)3. 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}4. 已知集合{}|2,{|4,|A x x B x x Z =≤=≤∈,则A B =( )(A )(0,2) (B )[0,2] (C ){0,2} (D ){0,1,2}5. 已知集合{}{}0,1,2,3,4,1,3,5,,M N P M N ===则P 的子集共有( )(A )2个 (B )4个 (C )6个 (D )8个二、基础练习1. 设{|210}S x x =+>,{|350}T x x =-<,则S T =( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<<2. 设集合A={4,5,7,9},B={3,4,7,8,9},全集=A B ,则集合C u (A B )中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个 3. 设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则 N ∩(C u M )A.{}1,3B. {}1,5C. {}3,5D. {}4,5三、基础练习题1. 设集合},4,2{},2,1{},4,3,2,1{===B A U C U (A B )=(A ){2} (B ){3} (C ){1,2,4} (D ){1,4}2. 设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤( ) A .{}01, B .{}101-,, C .{}012,, D .{}1012-,,,3. 已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M ∪N )=(A) {5,7} (B ) {2,4} (C ){2,4,8} (D ){1,3,5,6,7}4. 设全集U ={x *N ∈|6}x <集合A={1,3},B={3,5},则C u (A B )=A. {1,4}B. {1,5}C.{2.4}D.{2,5}5. 设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=)(N M C U(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4四、提高题1、设全集{}1lg |*<∈=⋃=x N x B A U ,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B=__________2、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a = ___________3、已知全集U=R ,则正确表示集合M= {-1,0,1} 和N= { x |x 2+x=0} 关系的韦恩(Venn )图是4、设P={x|x<4},Q={x|x 2<4},则 ( )A.P QB.Q PC.P C R QD.Q C R P5、已知A,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3}, ( C U B)∩A={9},则A= ( )A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}6、已知全集U=A ∪B 中有m 个元素,( C U A)∪ (C U B)中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A. mnB. m+nC.n-mD.m-n(2015年高考题)已知集合A={x|x=3n+2,n ∈N },B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5 (B )4 (C )3 (D )2(2014年高考题)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N =A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-(2013高考题)已知集合A ={1,2,3,4},B ={x|x =n2,n ∈A},则A∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}(2012年高考题)已知集合A={x|x2-x -2<0},B={x|-1<x<1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2011年高考题)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则075,2,A b a c ==求与=⋂(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2010年高考题)已知集合2,,4,|A x x x R B x x x Z =≤∈=≤∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|⊆⊆⊆⊆。
高考文科数学集合习题精选(20200618130349)
(D) |0, 1, 2|
图是
5、已知 A,B 均为集合 U={1,3,5,7,9} 的子集 , 且 A ∩B={3}, ( C UB) ∩A={9}, 则 A= ( )
A.{1,3}
B.{3,7,9}
C.{3,5,9}
4、设 P={x|x<4},Q={x|x 2<4}, 则 ( )
D.{3,9}
A.P Q
B.Q P
C.P CRQ
数为
(A)5 (B)4 (C)3 (D)2
(2020 年高考题)已知集合 M { x | 1 x 3} , N { x | 2 x 1} , 则 M I N
A. ( 2,1)
B. ( 1,1)
C. (1,3)
D. ( 2,3)
(2020 高考题 )已知集合 A ={1,2,3,4}, B ={x|x =n2, n∈A}, 则 A∩B= ( ).
A .{1,4}
B.{2,3}
C.{9,16}
D. {1,2}
(2020 年高考题)已知集合 A={x|x2 -x-2<0}, B={x| - 1<x<1}, 则
(A)A B (B)B A
( C)A=B
(D) A∩ B=
( 2011 年 高 考 题 ) 设 集 合 U= 1,2,3,4 , M 1,2,3 , N
3. 设全集 U 1,2,3,4,5 , 集合 M 1,4 , N 1,3,5 , 则 N∩( Cu M)
A. 1,3 B.
1,5 C. 3,5 D. 4,5
三、基础练习题 1. 设集合 U {1,2,3,4}, A {1,2}, B { 2,4},
CU(A B )=
( A ){2}
2010-2018年高考文科数学真题-集合(含解析)
九年(2010-2018年)高考真题文科数学精选(含解析)专题一 集合与常用逻辑用语第一讲 集合一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =A .{0,2}B .{1,2}C .{0}D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB = A .{3} B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则A B =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则AB = A .{0} B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()AB C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4} 7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2AB x x =< B .A B =∅C .3{|}2A B x x =<D .A B =R8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =则A B =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则A B 中元素的个数为 A .1 B .2 C .3 D .410.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N = A .()1,1- B .()1,2- C .()0,2D .()1,2 12.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则U A ð=A .(2,2)-B .(,2)(2,)-∞-+∞C .[2,2]-D .(,2][2,)-∞-+∞13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q = A .(1,2)- B .(0,1) C .(1,0)- D .(1,2)14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=A BA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=A .{48},B .{026},,C .{02610},,, D .{0246810},,,,, 17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A B =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2( 18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为 A .5 B .4 C .3 D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则A B =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<< 20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合U AB =ð A .{3} B .{2,5}C .{1,4,6}D .{2,3,5}21.(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]22.(2015山东)已知集合{}24A x x =<<,{}(1)(3)0B x x x =--<,则AB =A .()1,3B .()1,4C .()2,3D .()2,423.(2015福建)若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于 A .{}0 B .{}1 C .{}0,1,2 D .{}0,124.(2015广东)若集合{}1,1M =-,{}2,1,0N =-,则M N =A .{}0,1-B .{}1C .{}0D .{}1,1-25.(2015湖北)已知集合22{(,)|1,,}A x y x y x y Z =+∈≤,{(,)|||2,B x y x =≤ ||2,,}y x y Z ∈≤,定义集合12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3026.(2014新课标)已知集合A ={x |2230x x --≥},B ={x |-2≤x <2},则A B = A .[-2, -1] B .[-1,1] C .[-1,2) D .[1,2)27.(2014新课标)设集合M ={0,1,2},N ={}2|320x x x -+≤,则M N = A .{1} B .{2} C .{0,1} D .{1,2}28.(2014新课标)已知集合A ={-2,0,2},B ={x |2x -x -20=},则A B =A . ∅B .{}2C .{}0D .{}2-29.(2014山东)设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA . [0,2]B .(1,3)C . [1,3)D . (1,4)30.(2014山东)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则AB =A .(0,2]B .(1,2)C .[1,2)D .(1,4) 31.(2014广东)已知集合{1,0,1}M =-,{0,1,2}N =,则MN = A .{0,1} B .{1,0,2}- C .{1,0,1,2}- D .{1,0,1}-32.(2014福建)若集合{|24}P x x =<≤,{|3}Q x x =≥,则P Q 等于A .}{34x x ≤<B .}{34x x <<C .}{23x x ≤<D .}{23x x ≤≤33.(2014浙江)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则U A ð= A .∅ B . }2{ C . }5{ D . }5,2{34.(2014北京)已知集合2{|20},{0,1,2}A x x x B =-==,则AB =A .{0}B .{0,1}C .{0,2}D .{0,1,2}35.(2014湖南)已知集合{|2},{|13}A x x B x x =>=<<,则A B =A .{|2}x x >B .{|1}x x >C .{|23}x x <<D .{|13}x x <<36.(2014陕西)已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则MN = A .[0,1] B .[0,1) C .(0,1] D .(0,1)37.(2014江西)设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A B =ðA .(3,0)-B .(3,1)--C .(3,1]--D .(3,3)-38.(2014辽宁)已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U A B =ðA .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<39.(2014四川)已知集合2{|20}A x x x =--≤,集合B 为整数集,则AB =A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-40.(2014湖北)已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ðA .{1,3,5,6}B .{2,3,7}C .{2,4,7}D . {2,5,7} 41.(2014湖北)设U 为全集,B A ,是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“∅=B A ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件42.(2013新课标1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B 43.(2013新课标1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =A .{}14,B .{}23,C .{}916,D .{}12, 44.(2013新课标2)已知集合(){}2|14,M x x x R =-<∈,{}1,0,1,2,3N =-,则M N =A .{}0,1,2B .{}1,0,1,2- C .{}1,0,2,3- D .{}0,1,2,3 45.(2013新课标2)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =A .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---46.(2013山东)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =ð,{1,2}B =,则U A B =ðA .{3}B .{4}C .{3,4}D .∅47.(2013山东)已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .948.(2013安徽)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,149.(2013辽宁)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 50.(2013北京)已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-51.(2013广东)设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-52.(2013广东)设整数4n ≥,集合{}1,2,3,,X n =,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉53.(2013陕西)设全集为R , 函数()f x =M , 则C M R 为A . [-1,1]B . (-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-54.(2013江西)若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或455.(2013湖北)已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或 56.(2012广东)设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =A .{,,}246B .{1,3,5}C .{,,}124D .U57.(2012浙江)设全集{}1,2,3,4,5,6U =,设集合{}1,2,3,4P =,{}3,4,5Q =,则U P Q ⋂ð=A .{}1,2,3,4,6B .{}1,2,3,4,5C .{}1,2,5D .{}1,258.(2012福建)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是A .N M ⊆B .M N M =C .MN N = D .{2}M N = 59.(2012新课标)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .AB Ü B .B A ÜC .A B =D .AB =∅ 60.(2012安徽)设集合A ={|3213x x --剟},集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=A .(1,2)B .[1,2]C .[ 1,2)D .(1,2 ]61.(2012江西)若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为A .5B .4C .3D .262.(2011浙江)若{|1},{|1}P x x Q x x =<=>-,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆63.(2011新课标)已知集合M ={0,1,2,3,4},N ={1,3,5},P M N =⋂,则P 的子集共有A .2个B .4个C .6个D .8个64.(2011北京)已知集合P =2{|1}x x ≤,{}M a =.若P M P =,则a 的取值范围是A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1][1,+∞) 65.(2011江西)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂66.(2011湖南)设全集{1,2,3,4,5}U M N =⋃=,{2,4}U M C N ⋂=,则N =A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}67.(2011广东)已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数且1}x y +=,则A ⋂B的元素个数为A .4B .3C .2D .168.(2011福建)若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}69.(2011陕西)设集合{}22||cos sin |,M y y x x x R ==-∈,1{|||N x x i =-<}i x R ∈为虚数单位,,则M N ⋂为A .(0,1)B .(0,1]C .[0,1)D .[0,1]70.(2011辽宁)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N I M =∅ð,则=N MA .MB .NC .ID .∅71.(2010湖南)已知集合{}1,2,3M =,{}2,3,4N =,则A .M N ⊆B .N M ⊆C .{}2,3M N =D .{}1,4M N =72.(2010陕西)集合A ={}|12x x -≤≤,B ={}|1x x <,则()R A B ⋂ð=A .{}|1x x >B .{}|1x x ≥C .{}|12x x <≤D .{}|12x x ≤≤73.(2010浙江)设P ={x ︱x <4},Q ={x ︱2x <4},则A .P Q ⊆B .Q P ⊆C .R P Q ⊆ðD .R Q P ⊆ð 74.(2010安徽)若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð A .2(,0],⎛⎫-∞+∞⎪ ⎪⎝⎭ B .⎫+∞⎪⎪⎝⎭C .2(,0][,)-∞+∞ D .)+∞ 75.(2010辽宁)已知,A B 均为集合U ={1,3,5,7,9}的子集,且{3}AB =,{9}U B A =ð,则A =A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}二、填空题76.(2018江苏)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = .77.(2017江苏)已知集合{1,2}A =,2{,3B a a =+},若{1}AB =,则实数a 的值为____. 78.(2015江苏)已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为 .79.(2015湖南)已知集合U ={}1,2,3,4,A ={}1,3,B ={}1,3,4,则A(U B ð)= . 80.(2014江苏)已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A .81.(2014重庆)设全集{|110}U n N n =∈≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则()U A B ⋂ð= .82.(2014福建)若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.83.(2013湖南)已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B ð= .84.(2010湖南)若规定{}1210,,...,E a a a =的子集{}12,,...,n i i i a a a 为E 的第k 个子集,其中k =12111222n i i i ---++⋅⋅⋅+,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______.85.(2010江苏)设集合{1,1,3}A =-,2{2,4}B a a =++,{3}A B =,则实数a =__.专题一 集合与常用逻辑用语第一讲 集合答案部分1.A 【解析】由题意{0,2}A B =,故选A .2.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C .3.C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =,故选C .4.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}AB =,故选A .5.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}AB =.故选C . 6.C 【解析】由题意{1,0,1,2,3,4}A B =-,∴(){1,0,1}A B C =-,故选C .7.A 【解析】∵3{|}2B x x =<,∴3{|}2AB x x =<, 选A . 8.A 【解析】由并集的概念可知,{1,2,3,4}AB =,选A . 9.B 【解析】由集合交集的定义{2,4}AB =,选B . 10.B 【解析】∵{1,2,4,6}A B =,(){1,2,4}A BC =,选B .11.C 【解析】{|02}M x x =<<,所以{|02}M N x x =<<,选C .12.C 【解析】{|22}U A x x =-≤≤ð,选C .13.A 【解析】由题意可知{|12}P Q x x =-<<,选A .14.B 【解析】由题意得,{1,3,5,7}A =,{|25}B x x=剟,则{3,5}A B =.选B . 15.D 【解析】易知{|33}B x x =-<<,又{1,2,3}A =,所以{1,2}AB =故选D . 16.C 【解析】由补集的概念,得{0,2,6,10}A B =ð,故选C .17.A 【解析】∵(1,2)A =-,(0,3)B =,∴(1,3)A B =-.18.D 【解析】集合{|32,}A x x n n N ==+∈,当0n =时,322n +=,当1n =时,325n +=,当2n =时,328n +=,当3n =时,3211n +=,当4n =时, 3214n +=,∵{6,8,10,12,14}B =,∴A B 中元素的个数为2,选D .19.A 【解析】{|32}A B x x =-<<.20.B 【解析】{2,5}U B ð=,∴U A B =ð{2,5}. 21.A 【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N =[0,1]. 22.C 【解析】因为{|13}B x x =<<,所以(2,3)AB =,故选C . 23.D 【解析】∵{0,1}MN =. 24.B 【解析】{1}M N =.25.C 【解析】由题意知,22{(,)1,,}{(1,0),(1,0),(0,1),(0,1)}A x y x y x y =+≤∈=--Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,所以由新定义集合A B ⊕可知,111,0x y =±=或110,1x y ==±.当111,0x y =±=时,123,2,1,0,1,2,3x x +=---,122,1,0,1,2y y +=--,所以此时A B ⊕中元素的个数有:7535⨯=个;当110,1x y ==±时,122,1,0,1,2x x +=--,123,2,1,0,1,2,3y y +=---, 这种情形下和第一种情况下除12y y +的值取3-或3外均相同,即此时有5210⨯=,由分类计数原理知,A B ⊕中元素的个数为351045+=个,故应选C .26.A 【解析】{}|13A x x x =-≤或≥,故A B =[-2, -1]. 27.D 【解析】{}|12N x x =≤≤,∴M N ={1,2}. 28.B 【解析】∵{}1,2B =-,∴A B ={}2.29.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)AB =. 30.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =[1,2).31.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .32.A 【解析】P Q =}{34x x ≤<.33.B 【解析】由题意知{|2}U x N x =∈≥,{|A x N x =∈,所以U A ð={|2x N x ∈<≤,选B .34.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B =={}0,2.35.C 【解析】A B ={|23}x x <<.36.B 【解析】∵21x <,∴11x -<<,∴M N ={}|01x x <≤,故选B .37.C 【解析】{}|3,3A x x =-<,{}|15R B x x x =->≤或ð,∴()R A B =ð{}|31x x --≤≤.38.D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()U A B =ð{|01}x x <<.39.A 【解析】{|12}A x x =-≤≤,Z B =,故AB ={1,0,1,2}-. 40.C 【解析】{}2,4,7U A =ð.41.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A ”,选C . 42.B 【解析】A =(-∞,0)∪(2,+∞),∴A B =R ,故选B .43.A 【解析】{}1,4,9,16B =,∴{}1,4AB =. 44.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =.45.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,选C .46.A 【解析】由题意{}1,2,3A B =,且{1,2}B =,所以A 中必有3,没有4,{}3,4U B =ð,故U A B =ð{}3. 47.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.48.A 【解析】A :1->x ,{|1}R A x x =-≤ð,(){1,2}R A B =--ð,所以答案选A 49.D 【解析】由集合A ,14x <<;所以(1,2]AB =. 50.B 【解析】集合B 中含-1,0,故{}1,0A B =-.51.A 【解析】∵{}2,0S =-,{}0,2T =,∴ST ={}0. 52.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.53.D 【解析】()f x 的定义域为M =[-1,1],故R M ð=(,1)(1,)-∞-⋃+∞,选D54.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.55.C 【解析】[)0,A =+∞,[]2,4B =,∴[0,2)(4,)R AB =+∞ð.56.A 【解析】U M ð={,,}246.57.D 【解析】{}3,4,5Q =,∴U Q ð={}1,2,6,∴U P Q ð={}1,2.58.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D .59.B 【解析】A =(-1,2),故B ⊂≠A ,故选B .60.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=.61.C 【解析】根据题意容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.62.D 【解析】{|1}P x x =< ∴{|1}R P x x =≥ð,又∵{|1}Q x x =>,∴R Q P ⊆ð,故选D .63.B 【解析】{1,3}P MN ==,故P 的子集有4个. 64.C 【解析】因为P M P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.65.D 【解析】因为{1,2,3,4}M N =,所以()()U U M N 痧=()U M N ð={5,6}. 66.B 【解析】因为U M N ⊂ð,所以()()()U U U U N NM N M ==痧痧 =[()]U U N M 痧={1,3,5}.67.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}AB =,有2个元素. 68.A 【解析】集合{1,0,1}{0,1,2}={0,1}M N =-.69.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复数模的计算方法得不<21x <,所以(1,1)N =-,则[0,1]M N =.70.A 【解析】根据题意可知,N 是M 的真子集,所以MN M =. 71.C 【解析】{}{}{}1,2,32,3,42,3M N ==故选C.72.D 【解析】{}{}|1,|12R R B x x A B x x ==痧≥≤≤73.B 【解析】{}22<<x x Q -=,可知B 正确,74.A 【解析】不等式121log 2x …,得12112201log log ()2x >⎧⎪⎨⎪⎩…,得x … 所以R A ð=2(,0],⎛⎫-∞+∞ ⎪ ⎪⎝⎭.75.D 【解析】因为{3}A B =,所以3∈A ,又因为{9}U B A =ð,所以9∈A ,所以选D .本题也可以用Venn图的方法帮助理解.76.{1,8}【解析】由集合的交运算可得A B ={1,8}.77.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.78.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==,5个元素.79.{1,2,3}【解析】{2}U B =ð,A (U B ð)={1,2,3}.80.{}1,3-【解析】=B A {}1,3-.81.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =ð,{}()7,9U A B =ð. 82.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.83.{}6,8【解析】()U A B ð={6,8}{2,6,8}{6,8}=.84.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j(j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a . 85.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.。
2023年高考文科数学真题汇编直线和圆学生版
[1,)
+∞
截得旳弦长为()旳倾斜角旳取值范围是()
y b
旳上顶点为
2
1(a b0)
32.(江苏)如图, 在平面直角坐标系xOy中, 已知以M为圆心旳圆M: 及其上一点A(2, 4)
(1)设圆N与x轴相切, 与圆M外切, 且圆心N在直线x=6上, 求圆N旳原则方程;
(2)设平行于OA旳直线l与圆M相交于B、C两点, 且BC=OA,求直线l旳方程;
33. (江苏)在平面直角坐标系中, 点, 直线,设圆旳半径为, 圆心在上。
(1)若圆心也在直线上, 过点作圆旳切线, 求切线旳方程;
(2)若圆上存在点, 使, 求圆心旳横坐标旳取值范围
34. (·全国Ⅰ理, 15)已知双曲线C: -=1(a>0, b>0)旳右顶点为A, 以A为圆心, b为半径作圆A, 圆A 与双曲线C旳一条渐近线交于M, N两点. 若∠MAN=60°, 则C旳离心率为________.。
专题01 集合-2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)
2013-2022十年全国高考数学真题分类汇编专题01 集合一、选择题1.(2022年全国高考甲卷(文)·第1题)设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【解析】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年全国高考甲卷(文)·第1题2.(2022年高考全国乙卷(文)·第1题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A解析:因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年高考全国乙卷(文)·第1题3.(2022新高考全国II 卷·第1题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则AB =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B解析: {}|02B x x =≤≤,故{}1,2AB =. 故选 B .【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国II 卷·第1题4.(2022新高考全国I 卷·第1题)若集合{4},{31}M x x N x x =<=≥∣∣,则M N =( )A .{}02x x ≤<B .123xx ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163MN x x ⎧⎫=≤<⎨⎬⎩⎭, 故选:D【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国I 卷·第1题5.(2021年新高考全国Ⅱ卷·第2题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B解析:由题设可得{}U1,5,6B =,故(){}U 1,6A B⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考全国Ⅱ卷·第2题6.(2021年新高考Ⅱ卷·第1题)设集合{}24A x x =-<<,{}2,3,4,5B =,则AB =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B解析:由题设有{}2,3A B ⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考Ⅱ卷·第1题7.(2020年新高考I 卷(山东卷)·第1题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C解析:[1,3](2,4)[1,4)A B ==故选:C【题目栏目】集合\集合的基本运算【题目来源】2020年新高考I 卷(山东卷)·第1题 8.(2020新高考II 卷(海南卷)·第1题)设集合A={2,3,5,7},B ={1,2,3,5,8},则AB=( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8} 【答案】C解析:因为{2,3,5,7},{1,2,3,5,8}A B == ,所以{2,3,5}A B = ,故选:C【题目栏目】集合\集合的基本运算【题目来源】2020新高考II 卷(海南卷)·第1题9.(2021年高考全国甲卷文科·第1题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B解析:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B .【题目栏目】集合\集合的基本运算【题目来源】2021年高考全国甲卷文科·第1题10.(2021年全国高考乙卷文科·第1题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A解析:由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2021年全国高考乙卷文科·第1题 11.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D .【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题 12.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D .【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题13.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B【解析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题14.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}【答案】A【解析】因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==-,所以{1,0,1}A B =-,故选:A .【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题15.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合={|1}A x x >-,{|2}B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .()1,2-D .φ【答案】C【解析】由题知,{}{}|1|2(1,2)AB x x x x =>-<=-,故选C .【点评】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题. 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题16.(2019年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则UBA =()( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】 }7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U 又 7}63{2,,,=B ,则7}{6,=A C B U . 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第2题17.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{}|10A x x =-≥,{}012,,B =,则A B =( )A .{}0B .{}1C .{}12,D .{}012,, 【答案】C解析:{}{}|10|1A x x x x =-=≥≥,{}0,1,2B =,故{}1,2A B =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 18.(2018年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C解析:∵集合{}{}1,3,5,7,2,3,4,5A B ==,∴{}3,5AB =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第2题19.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =( )A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--【答案】A解析:因为{0,2}A =,{2,1,0,1,2}B =--,则{0,2}A B =. 【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 20.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,则中元素的个数为( )A .1B .2C .3D .4【答案】 【解析】由题意可得: ,中元素的个数为2,所以选.【考点】集合运算【点评】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题21.(2017年高考数学课标Ⅱ卷文科·第1题)设集合A=,B=,则=( )1,2,3,42,4,6,8AB ,A B B {}2,4AB =A B B {}123,,{}234,,A BA .B .C .D . 【答案】 A【解析】由题意得.故选A .【考点】集合并集的运算.【点评】掌握集合的基本运算即可. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题22.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,,则( ) A .B .C .D .【答案】 A【解析】由得,所以,故选A【考点】集合运算【点评】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题23.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{0,2,4,6,8,10},{4,8}A B ==,则AB =( )A .{48},B .{026},,C .{02610},,,D .{0246810},,,,, 【答案】C 【解析】根据补集的定义,从集合{0,2,4,6,8,10}A =中去掉集合B 中的元素4,8,剩下的四个元素为0,2,6,10,故{0,2,6,10}AC B =,故选C .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题24.(2016年高考数学课标Ⅱ卷文科·第1题)已知集合{123}A =,,,2{|9}B x x =<,则A B =( ).A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},【答案】D 【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =.【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题25.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( ) A .{}1,3 B .{}3,5C .{}5,7D .{}1,7【答案】B 【解析】集合A 与集合B 公共元素有3,5,故{3,5}A B =,选B .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题26.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{}|12A x x =-<<,{}123,4,,{}123,,{}23,4,{}13,4,{}1,2,3,4AB ={}2A x x =<{}320B x x =->3=2AB x x ⎧⎫<⎨⎬⎩⎭A B =∅3=2A B x x ⎧⎫<⎨⎬⎩⎭=A B R 320x ->32x <33{|2}||22A B x x x x x x ⎧⎫⎧⎫=<<=<⎨⎬⎨⎬⎩⎭⎩⎭{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A 解析:因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A .考点:本题主要考查不等式基础知识及集合的交集运算. 【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题27.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{32,},{6,8,10,12,14}A x x n n B ==+∈=N ,则集合A B 中的元素个数为( )A .5B .4C .3D .2 【答案】D分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D . 考点:集合运算【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题28.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合A={-2,0,2},B={x |220x x --=},则A B =( )A.∅B.{2}C.{0}D.{-2} 【答案】B解析:∵B={x |220x x --=}={-1,2},∴A B ={2}.∴选B . 考点:集合的运算 难度:A备注:常考题.【题目栏目】集合\集合的基本运算【题目来源】2014年高考数学课标Ⅱ卷文科·第1题 29.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合M ={|13}x x -<<,N ={|21}x x -<<,则M ∩N =( ) A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B解析: 在数轴上表示出对应的集合,可得()1,1MN =- ,选B考点:1.集合的基本运算。
高考文科数学专项复习习题集(含答案)
文科数学习题集(含答案)目录第一章集合 (1)第一节集合的含义、表示及基本关系 (1)第二节集合的基本运算 (3)第二章函数 (5)第一节对函数的进一步认识 (5)第二节函数的单调性 (9)第三节函数的性质 (13)第三章指数函数和对数函数 (16)第一节指数函数 (16)第二节对数函数 (20)第三节幂函数与二次函数的性质 (24)第四节函数的图象特征 (28)第四章函数的应用 (32)第五章三角函数 (33)第一节角的概念的推广及弧度制 (33)第二节正弦函数和余弦函数的定义及诱导公式 (39)第三节正弦函数与余弦函数的图象及性质 (42)第四节函数()sin()f x A xw j=+的图象 (45)第六章三角恒等变换 (50)第一节同角三角函数的基本关系 (50)第二节两角和与差及二倍角的三角函数 (53)第七章解三角形 (56)第一节正弦定理与余弦定理 (56)第二节正弦定理、余弦定理的应用 (59)第八章数列 (60)第九章平面向量 (62)第十章算法 (65)第一节程序框图 (65)第二节程序语句 (69)第十一章概率 (73)第一节古典概型 (73)第二节概率的应用 (75)第三节几何概型 (79)第十二章导数 (83)第十三章不等式 (85)第十四章立体几何 (88)第一节简单几何体 (88)第二节空间图形的基本关系与公理 (92)第三节平行关系 (96)第四节垂直关系 (100)第五节简单几何体的面积与体积 (104)第十五章解析几何 (108)第一节直线的倾斜角、斜率与方程 (108)第二节点与直线、直线与直线的位置关系 (111)第三节圆的标准方程与一般方程 (114)第四节直线与圆、圆与圆的位置关系 (117)第五节空间直角坐标系 (121)第十六章圆锥曲线 (123)第一章 集合第一节 集合的含义、表示及基本关系A 组1.已知A ={1,2},B ={}|x x A Î,则集合A 与B 的关系为________.解析:由集合B ={}|x x A Î知,B ={1,2}.答案:A =B2.若{}2,|a a R x x NÆØ,则实数a 的取值范围是________.解析:由题意知,2x a £有解,故0a ³.答案:0a ³3.已知集合A ={}2|21,y y x x x R =--?,集合B ={}|28x x-#,则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2,∴A ={y|y ≥-2},∴B A .答案:B A4.(2009年高考广东卷改编)已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={}2|0x x x +=关系的韦恩(Venn)图是________.解析:由N={}2|0x x x +=,得N ={-1,0},则N M .答案:②5.(2010年苏、锡、常、镇四市调查)已知集合A ={}|5x x >,集合B ={}|x x a >,若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________. 解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5. 答案:a <56.(原创题)已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C ={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合?解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B .B 组1.设a ,b 都是非零实数,y =a |a |+b |b |+ab|ab |可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1.答案:13.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若N M ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2010年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.(2009年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x ,1,0},B ={0,|x |,1x}. 于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1. 11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围;(2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围;(3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A . ②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B . 12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2},而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2.(2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A =B ,则必有a =2第二节 集合的基本运算A 组1.(2009年高考浙江卷改编)设U =R ,A ={}|0x x >,B ={}|1x x >,则A ∩∁U B =____.解析:∁U B ={x |x ≤1},∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.(2009年高考全国卷Ⅰ改编)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4,7,9},A ∪B ={3,4,5,7,8,9},∁U (A ∩B )={3,5,8}. 答案:33.已知集合M ={0,1,2},N ={}|2,x x a a M =?,则集合M ∩N =________.解析:由题意知,N ={0,2,4},故M ∩N ={0,2}.答案:{0,2}4.(原创题)设A ,B 是非空集合,定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={y |y ≥0},则A ⓐB =________.解析:A ∪B =[0,+∞),A ∩B =[0,2],所以A ⓐB =(2,+∞).答案:(2,+∞)5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x ,画出韦恩图得到方程15-x +x +10-x +8=30x =3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A ={x |x >1},集合B ={x |m ≤x ≤m +3}.(1)当m =-1时,求A ∩B ,A ∪B ;(2)若B ⊆A ,求m 的取值范围.解:(1)当1m =-时,B ={x |-1≤x ≤2},∴A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥-1}.(2)若B ⊆A ,则1m >,即m 的取值范围为(1,+∞)B 组1.若集合M ={x ∈R |-3<x <1},N ={x ∈Z |-1≤x ≤2},则M ∩N =________.解析:因为集合N ={-1,0,1,2},所以M ∩N ={-1,0}.答案:{-1,0}2.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________.解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}3.(2010年济南市高三模拟)若全集U =R ,集合M ={x |-2≤x ≤2},N ={x |x 2-3x ≤0},则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3,log 2a },B ={a ,b },若A ∩B ={2},则A ∪B =________.解析:由A ∩B ={2}得log 2a =2,∴a =4,从而b =2,∴A ∪B ={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:m -n6.(2009年高考重庆卷)设U ={n |n 是小于9的正整数},A ={n ∈U |n是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7},得∁U (A ∪B )={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +x y ,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=0}{(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2. 9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧ 1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧ a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3.11.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意.12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ;(3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意. 若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98. 综上可知,若A =∅,则a 的取值范围应为a >98. (2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意. 当a ≠0时,则Δ=9-8a =0,即a =98时, 方程有两个相等的实数根x =43,则A ={43}. 综上可知,当a =0时,A ={23};当a =98时,A ={43}. (3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根, 则Δ=9-8a ≥0,即a ≤98. 综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}第二章 函数第一节 对函数的进一步认识A 组1.(2009年高考江西卷改编)函数y =-x 2-3x +4x的定义域为________. 解析:⎩⎪⎨⎪⎧ -x 2-3x +4≥0,x ≠0,⇒x ∈[-4,0)∪(0,1] .答案:[-4,0)∪(0,1]2.(2010年绍兴第一次质检)如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.解析:由图象知f (3)=1,f (1f (3))=f (1)=2.答案:2 3.(2009年高考北京卷)已知函数f (x )=⎩⎪⎨⎪⎧ 3x ,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32.答案:log 324.(2010年黄冈市高三质检)函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个.解析:如图.答案:15.(原创题)由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3定义一个映射f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)=________.解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3,令x =-1得:-1=b 3;再令x =0与x =1得⎩⎪⎨⎪⎧-1=1+b 1+b 2+b 33=8+4b 1+2b 2+b 3, 解得b 1=-1,b 2=0.答案:(-1,0,-1) 6.已知函数f (x )=⎩⎪⎨⎪⎧ 1+1x(x >1),x 2+1 (-1≤x ≤1),2x +3 (x <-1).(1)求f (1-12-1),f {f [f (-2)]}的值;(2)求f (3x -1);(3)若f (a )=32, 求a . 解:f (x )为分段函数,应分段求解.(1)∵1-12-1=1-(2+1)=-2<-1,∴f (-2)=-22+3, 又∵f (-2)=-1,f [f (-2)]=f (-1)=2,∴f {f [f (-2)]}=1+12=32. (2)若3x -1>1,即x >23,f (3x -1)=1+13x -1=3x 3x -1; 若-1≤3x -1≤1,即0≤x ≤32,f (3x -1)=(3x -1)2+1=9x 2-6x +2; 若3x -1<-1,即x <0,f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎪⎨⎪⎧ 3x 3x -1 (x >23),9x 2-6x +2 (0≤x ≤23),6x +1 (x <0).(3)∵f (a )=32,∴a >1或-1≤a ≤1. 当a >1时,有1+1a =32,∴a =2; 当-1≤a ≤1时,a 2+1=32,∴a =±22. ∴a =2或±22.B 组1.(2010年广东江门质检)函数y =13x -2+lg(2x -1)的定义域是________. 解析:由3x -2>0,2x -1>0,得x >23.答案:{x |x >23}2.(2010年山东枣庄模拟)函数f (x )=⎩⎪⎨⎪⎧ -2x +1,(x <-1),-3,(-1≤x ≤2),2x -1,(x >2),则f (f (f (32)+5))=_. 解析:∵-1≤32≤2,∴f (32)+5=-3+5=2,∵-1≤2≤2,∴f (2)=-3, ∴f (-3)=(-2)×(-3)+1=7.答案:73.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________.解析:∵对任意的x ∈(-1,1),有-x ∈(-1,1),由2f (x )-f (-x )=lg(x +1),①由2f (-x )-f (x )=lg(-x +1),②①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1),∴f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1). 答案:f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1) 4.设函数y =f (x )满足f (x +1)=f (x )+1,则函数y =f (x )与y =x 图象交点的个数可能是________个.解析:由f (x +1)=f (x )+1可得f (1)=f (0)+1,f (2)=f (0)+2,f (3)=f (0)+3,…本题中如果f (0)=0,那么y =f (x )和y =x 有无数个交点;若f (0)≠0,则y =f (x )和y =x 有零个交点.答案:0或无数5.设函数f (x )=⎩⎪⎨⎪⎧ 2 (x >0)x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=-2,则f (x )的解析式为f (x )=________,关于x 的方程f (x )=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧ 16-4b +c =c 4-2b +c =-2 ⎩⎪⎨⎪⎧ b =4c =2,∴f (x )=⎩⎪⎨⎪⎧ 2 (x >0)x 2+4x +2 (x ≤0).由数形结合得f (x )=x 的解的个数有3个.答案:⎩⎪⎨⎪⎧ 2 (x >0)x 2+4x +2 (x ≤0) 36.设函数f (x )=log a x (a >0,a ≠1),函数g (x )=-x 2+bx +c ,若f (2+2)-f (2+1)=12,g (x )的图象过点A (4,-5)及B (-2,-5),则a =__________,函数f [g (x )]的定义域为__________.答案:2 (-1,3)7.(2009年高考天津卷改编)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0x +6,x <0,则不等式f (x )>f (1)的解集是________.解析:由已知,函数先增后减再增,当x ≥0,f (x )>f (1)=3时,令f (x )=3, 解得x =1,x =3.故f (x )>f (1)的解集为0≤x <1或x >3.当x <0,x +6=3时,x =-3,故f (x )>f (1)=3,解得-3<x <0或x >3.综上,f (x )>f (1)的解集为{x |-3<x <1或x >3}.答案:{x |-3<x <1或x >3}8.(2009年高考山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0,f (x -1)-f (x -2), x >0, 则f (3)的值为________.解析:∵f (3)=f (2)-f (1),又f (2)=f (1)-f (0),∴f (3)=-f (0),∵f (0)=log 24=2,∴f (3)=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎪⎨⎪⎧ 5a 1=205a 1+15(a 1-a 2)=35, 得⎩⎪⎨⎪⎧ a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95,又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)10.函数()f x =.(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)若()f x 的定义域为[-2,1],求实数a 的值.解:(1)①若1-a 2=0,即a =±1,(ⅰ)若a =1时,f (x )=6,定义域为R ,符合题意;(ⅱ)当a =-1时,f (x )=6x +6,定义域为[-1,+∞),不合题意.②若1-a 2≠0,则g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数.由题意知g (x )≥0对x ∈R 恒成立,∴⎩⎪⎨⎪⎧ 1-a 2>0,Δ≤0,∴⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0, ∴-511≤a <1.由①②可得-511≤a ≤1. (2)由题意知,不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1],显然1-a 2≠0且-2,1是方程(1-a 2)x 2+3(1-a )x +6=0的两个根.∴⎩⎪⎨⎪⎧ 1-a 2<0,-2+1=3(1-a )a 2-1,-2=61-a 2,Δ=[3(1-a )]2-24(1-a 2)>0∴⎩⎪⎨⎪⎧ a <-1或a >1,a =2,a =±2.a <-511或a >1∴a =2.11.已知()()()2f x f x x R +=?,并且当x ∈[-1,1]时,()21f x x =-+,求当[]()21,21x k k k Z ?+?时、()f x 的解析式.解:由f (x +2)=f (x ),可推知f (x )是以2为周期的周期函数.当x ∈[2k -1,2k +1]时,2k -1≤x ≤2k +1,-1≤x -2k ≤1.∴f (x -2k )=-(x -2k )2+1.又f (x )=f (x -2)=f (x -4)=…=f (x -2k ),∴f (x )=-(x -2k )2+1,x ∈[2k -1,2k +1],k ∈Z .12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式;(3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *). (2)f (x )=⎩⎪⎨⎪⎧ 20003x (0<x ≤86,x ∈N *).1000216-x (87≤x <216,x ∈N *).(3)分别为86、130或87、129.第二节 函数的单调性A 组1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当12x x <时,都有()()12f x f x >”的是________.①f (x )=1x②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1) 解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①2.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,12]时,g (x )为减函数.由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))3.函数y =________.解析:令x =4+sin 2α,α∈[0,π2],y =sin α+3cos α=2sin(α+π3),∴1≤y ≤2. 答案:[1,2]4.已知函数f (x )=|e x +a e x |(a ∈R )在区间[0,1]上单调递增,则实数a 的取值范围__. 解析:当a <0,且e x +a e x ≥0时,只需满足e 0+ae 0≥0即可,则-1≤a <0;当a =0时,f (x )=|e x |=e x 符合题意;当a >0时,f (x )=e x +a e x ,则满足f ′(x )=e x -a e x ≥0在x ∈[0,1]上恒成立.只需满足a ≤(e 2x )min 成立即可,故a ≤1,综上-1≤a ≤1.答案:-1≤a ≤15.(原创题)如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是________.①f (x )=sin x ;②f (x )=lg x ;③f (x )=e x ;④f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)解析:∵sin x ≥-1,∴f (x )=sin x 的下确界为-1,即f (x )=sin x 是有下确界的函数;∵f (x )=lg x 的值域为(-∞,+∞),∴f (x )=lg x 没有下确界;∴f (x )=e x 的值域为(0,+∞),∴f (x )=e x 的下确界为0,即f (x )=e x 是有下确界的函数;∵f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)的下确界为-1.∴f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)是有下确界的函数.答案:①③④6.已知函数()2f x x =,()1g x x =-. (1)若存在x ∈R 使()()f x b g x <?,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--2,且()F x 在[0,1]上单调递增,求实数m 的取值范围.解:(1)x ∈R ,f (x )<b ·g (x )x ∈R ,x 2-bx +b <0=(-b )2-4b >0b <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需⎩⎪⎨⎪⎧ m 2≤0-255≤m ≤255-255≤m ≤0. ②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m 2≥1,则x 1≤0.⎩⎪⎨⎪⎧m 2≥1F (0)=1-m 2≤0m ≥2. 若m 2≤0,则x 2≤0, ⎩⎪⎨⎪⎧ m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2.B 组1.(2010年山东东营模拟)下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x | 解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④2.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0.∴⎩⎪⎨⎪⎧ a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤43.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__. 解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916. 答案:(0,916] 4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________. ①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3)③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:① 5.(2010年陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧ a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________. 解析:由题意知,f (x )为减函数,所以⎩⎪⎨⎪⎧ 0<a <1,a -3<0,a 0≥(a -3)×0+4a ,解得0<a ≤14. 6.(2010年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧ 2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3),当0≤x <1时,最大值为0;当1≤x ≤3时,在x =2取得最大值1.答案:17.(2010年安徽合肥模拟)已知定义域在[-1,1]上的函数y =f (x )的值域为[-2,0],则函数y =f (cos x )的值域是________.解析:∵cos x ∈[-1,1],函数y =f (x )的值域为[-2,0],∴y =f (cos x )的值域为[-2,0].答案:[-2,0]8.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1], ∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:139.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1. μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12) 10.试讨论函数y =2(log 12x )2-2log 12x +1的单调性. 解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y =f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =故函数y 上单调递增.11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2. 由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.12.已知:f (x )=log 3x 2+ax +b x,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f (x )的最小值是1.若存在,求出a 、b ;若不存在,说明理由.解:∵f (x )在(0,1]上是减函数,[1,+∞)上是增函数,∴x =1时,f (x )最小,log 31+a +b 1=1.即a +b =2.设0<x 1<x 2≤1,则f (x 1)>f (x 2).即x 12+ax 1+b x 1>x 22+ax 2+b x 2恒成立. 由此得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立. 又∵x 1-x 2<0,x 1x 2>0,∴x 1x 2-b <0恒成立,∴b ≥1.设1≤x 3<x 4,则f (x 3)<f (x 4)恒成立.∴(x 3-x 4)(x 3x 4-b )x 3x 4<0恒成立. ∵x 3-x 4<0,x 3x 4>0,∴x 3x 4>b 恒成立.∴b ≤1.由b ≥1且b ≤1可知b =1,∴a =1.∴存在a 、b ,使f (x )同时满足三个条件.第三节 函数的性质A 组1.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系为________.解析:由f (x )为偶函数,知b =0,∴f (x )=log a |x |,又f (x )在(-∞,0)上单调递增,所以0<a <1,1<a +1<2,则f (x )在(0,+∞)上单调递减,所以f (a +1)>f (b +2).答案:f (a +1)>f (b +2)2.(2010年广东三校模拟)定义在R 上的函数f (x )既是奇函数又是以2为周期的周期函数,则f (1)+f (4)+f (7)等于________.解析:f (x )为奇函数,且x ∈R ,所以f (0)=0,由周期为2可知,f (4)=0,f (7)=f (1),又由f (x +2)=f (x ),令x =-1得f (1)=f (-1)=-f (1)⇒f (1)=0,所以f (1)+f (4)+f (7)=0.答案:03.(2009年高考山东卷改编)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25)、f (11)、f (80)的大小关系为________.解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0,得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,所以-f (1)<0,即f (-25)<f (80)<f (11).答案:f (-25)<f (80)<f (11)4.(2009年高考辽宁卷改编)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 取值范围是________. 解析:由于f (x )是偶函数,故f (x )=f (|x |),由f (|2x -1|)<f (13),再根据f (x )的单调性得|2x -1|<13,解得13<x <23.答案:(13,23) 5.(原创题)已知定义在R 上的函数f (x )是偶函数,对x ∈R ,f (2+x )=f (2-x ),当f (-3)=-2时,f (2011)的值为________.解析:因为定义在R 上的函数f (x )是偶函数,所以f (2+x )=f (2-x )=f (x -2),故函数f (x )是以4为周期的函数,所以f (2011)=f (3+502×4)=f (3)=f (-3)=-2.答案:-26.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1)证明:f (1)+f (4)=0;(2)求y =f (x ),x ∈[1,4]的解析式;(3)求y =f (x )在[4,9]上的解析式.解:(1)证明:∵f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又∵y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)当x ∈[1,4]时,由题意可设f (x )=a (x -2)2-5(a >0),由f (1)+f (4)=0,得a (1-2)2-5+a (4-2)2-5=0,∴a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=0,又知y =f (x )在[0,1]上是一次函数,∴可设f (x )=kx (0≤x ≤1),而f (1)=2(1-2)2-5=-3,∴k =-3,∴当0≤x ≤1时,f (x )=-3x ,从而当-1≤x <0时,f (x )=-f (-x )=-3x ,故-1≤x ≤1时,f (x )=-3x .∴当4≤x ≤6时,有-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15.当6<x ≤9时,1<x -5≤4,∴f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎪⎨⎪⎧ -3x +15, 4≤x ≤62(x -7)2-5, 6<x ≤9.B 组1.(2009年高考全国卷Ⅰ改编)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则下列结论正确的是________.①f (x )是偶函数 ②f (x )是奇函数 ③f (x )=f (x +2)④f (x +3)是奇函数解析:∵f (x +1)与f (x -1)都是奇函数,∴f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),∴函数f (x )关于点(1,0),及点(-1,0)对称,函数f (x )是周期T =2[1-(-1)]=4的周期函数.∴f (-x -1+4)=-f (x -1+4),f (-x +3)=-f (x +3),即f (x +3)是奇函数.答案:④2.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,f (1)+f (2)+…+f (2009)+f (2010)=________.解析:f (x )=-f (x +32)⇒f (x +3)=f (x ),即周期为3,由f (-2)=f (-1)=-1,f (0)=2,所以f (1)=-1,f (2)=-1,f (3)=2,所以f (1)+f (2)+…+f (2009)+f (2010)=f (2008)+f (2009)+f (2010)=f (1)+f (2)+f (3)=0.答案:03.(2010年浙江台州模拟)已知f (x )是定义在R 上的奇函数,且f (1)=1,若将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则f (1)+f (2)+f (3)+…+f (2010)=________.解析:f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则满足f (-2+x )=-f (x ),即f (x +2)=-f (x ),所以周期为4,f (1)=1,f (2)=f (0)=0,f (3)=-f (1)=-1,f (4)=0,所以f (1)+f (2)+f (3)+f (4)=0,则f (1)+f (2)+f (3)+…+f (2010)=f (4)×502+f (2)=0.答案:04.(2010年湖南郴州质检)已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,则在(0,+∞)上f (x )是增函数,在(-∞,0)上是减函数,又f (x )在R 上是偶函数,且f (-1)=0,∴f (1)=0.从而可知x ∈(-∞,-1)时,f (x )>0;x ∈(-1,0)时,f (x )<0;x ∈(0,1)时,f (x )<0;x ∈(1,+∞)时,f (x )>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1).5.(2009年高考江西卷改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2009)+f (2010)的值为________.解析:∵f (x )是偶函数,∴f (-2009)=f (2009).∵f (x )在x ≥0时f (x +2)=f (x ),∴f (x )周期为2.∴f (-2009)+f (2010)=f (2009)+f (2010)=f (1)+f (0)=log 22+log 21=0+1=1.答案:16.(2010年江苏苏州模拟)已知函数f (x )是偶函数,并且对于定义域内任意的x ,满足f (x+2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2009.5)=________. 解析:由f (x +2)=-1f (x ),可得f (x +4)=f (x ),f (2009.5)=f (502×4+1.5)=f (1.5)=f (-2.5)∵f (x )是偶函数,∴f (2009.5)=f (2.5)=52.答案:527.(2010年安徽黄山质检)定义在R 上的函数f (x )在(-∞,a ]上是增函数,函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,则f (2a -x 1)与f (x 2)的大小关系为________.解析:∵y =f (x +a )为偶函数,∴y =f (x +a )的图象关于y 轴对称,∴y =f (x )的图象关于x =a 对称.又∵f (x )在(-∞,a ]上是增函数,∴f (x )在[a ,+∞)上是减函数.当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有a -x 1<x 2-a ,即a <2a -x 1<x 2,∴f (2a -x 1)>f (x 2).答案:f (2a -x 1)>f (x 2)8.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1).若f (a )=-2,则实数a =________.解析:当x ≥0时,f (x )=x (x +1)>0,由f (x )为奇函数知x <0时,f (x )<0,∴a <0,f (-a )=2,∴-a (-a +1)=2,∴a =2(舍)或a =-1.答案:-19.(2009年高考山东卷)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (4-x )=f (x ),因此,函数图象关于直线x =2对称且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4.由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8. 答案:-810.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解:∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg(2+x ),即f (x )=-x lg(2+x ) (x >0).∴f (x )=⎩⎪⎨⎪⎧-x lg(2-x ) (x <0),-x lg(2+x ) (x ≥0).即f (x )=-x lg(2+|x |)(x ∈R ). 11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).(1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值. 解:(1)证明:∴函数定义域为R ,其定义域关于原点对称.∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ),∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2010]上的所有x 的个数.解:(1)证明:∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴f (x )是以4为周期的周期函数.(2)当0≤x ≤1时,f (x )=12x , 设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1) 又设1<x <3,则-1<x -2<1,∴f (x -2)=12(x -2), 又∵f (x -2)=-f (2-x )=-f [(-x )+2]=-[-f (-x )]=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎪⎨⎪⎧ 12x (-1≤x ≤1)-12(x -2) (1<x <3)由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数.故f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2010,则14≤n ≤50234,又∵n ∈Z ,∴1≤n ≤502(n ∈Z ),∴在[0,2010]上共有502个x 使f (x )=-12.第三章 指数函数和对数函数第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a-2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a-b =-2.答案:-22.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3.答案:33-33.函数y =(12)2x -x 2的值域是________. 解析:∵2x -x 2=-(x -1)2+1≤1,∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________. 解析:由题意知⎩⎪⎨⎪⎧ 0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧ a >1a 0-1=0a 2-1=2⇒a =3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数.(1)求a ,b 的值; (2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1. 从而有f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2. (2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1, 由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13. 法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0 即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0 整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),。
【高三】集合2021年全国各地高考题汇编(文科)
【高三】集合2021年全国各地高考题汇编(文科)2021年全国各地高考文科数学试题分类汇编1:集合一、1 .(2021年高考安徽(文))已知 ,则()A. B. C. D.【答案】A2 .(2021年高考北京卷(文))已知集合 , ,则()A. B. C. D.【答案】B3 .(2021年上海高考数学试题(文科))设常数 ,集合 , .若 ,则的取值范围为()A . B. C. D.【答案】B4 .(2021年高考天津卷(文))已知集合A = {x∈R x≤2}, B= {x∈R x≤1}, 则()A. B.[1,2]C.[-2,2]D.[-2,1]【答案】D5 .(2021年高考四川卷(文))设集合 ,集合 ,则()A. B. C. D.【答案】B6 .(2021年高考山东卷(文))已知集合均为全集的子集,且 , ,则()A.{3}B.{4}C.{3,4}D.【答案】A7 .(2021年高考辽宁卷(文))已知集合()A. B. C. D.【答案】B8 .(2021年高考课标Ⅱ卷(文))已知集合={x-3<X<1},N={-3,-2,-1,0,1},则∩N=()A.{-2,-1,0,1}B.{-3,-2,-1 ,0}C.{-2,-1,0}D.{-3,-2,-1 }【答案】C9 .(2021年高考课标Ⅰ卷(文))已知集合 , ,则()A.{0}B.{-1,,0}C.{0,1}D.{-1,,0,1}【答案】A10.(2021年高考江西卷(文))若集合A ={x∈Rax2+ax+1=0}其中只有一个元素,则a=()A.4B.2C.0D.0或4【答案】A11.(2021年高考湖北卷(文))已知全集 ,集合 , ,则()A. B. C. D.【答案】B12.(2021年高考广东卷(文))设集合 , ,则()A. B. C. D.【答案】A13.(2021年高考福建卷(文))若集合 ,则的子集个数为()A.2B.3C.4D.16【答案】C14.(2021年高考大纲卷(文))设集合()A. B. C. D.【答案】B15.(2021年高考浙江卷(文))设集合S={xx>-2},T={x-4≤x≤1},则S∩T=()A.[-4,+∞)B.(-2, +∞)C.[-4,1]D.(-2,1]【答案】D16.(2021年高考重庆卷(文))已知集合 ,集合 , ,则()A. B. C. D.【答案】D二、题17.(20 13年高考湖南(文))对于E={a1,a2,.a100}的子集X={a1,a2,,an},定义X的“特征数列”为x1,x2,x100,其中x1=x10=xn=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,0,0,,0(1)子集{a1,a3,a5}的“特征数列”的前三项和等于____ _______;(2)若E的子集P的“特征数列”P1,P2,,P100 满足P1+Pi+1=1, 1≤i≤99;E 的子集Q的“特征数列” q1,q2,q100 满足q1=1,q1+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为________ _.【答案】(1) 2 (2) 1718.(2021年高考湖南(文))已知集合 ,则 _____【答案】19.(2021年高考福建卷(文))设是的两个非空子集,如果存在一个从到的函数满足;(i) ;(ii)对任意 ,当时,恒有 .那么称这两个集合“保序同构”.现给出以下3对集合:① ;② ;③ .其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号)【答案】①②③感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数的概念
一、选择题
1 .设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)=
( )
A .{1,2,3,4,6}
B .{1,2,3,4,5}
C .{1,2,5}
D .{1,2}
2 .设集合A ={x |1<x <4},B ={x |x 2
-2x -3≤0},则A ∩(C R B )=
( )
A .(1,4)
B .(3,4)
C .(1,3)
D .(1,2)
3 .设集合{,}A a b =,{,,}B b c d =,则A
B =
( )
A .{}b
B .{,,}b c d
C .{,,}a c d
D .{,,,}a b c d 4 .已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()
U A B 为
( )
A .{1,2,4}
B .{2,3,4}
C .{0,2,4}
D .{0,2,3,4}
5 .已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则
()()U U C A C B ⋂=
( )
A .{5,8}
B .{7,9}
C .{0,1,3}
D .{2,4,6}
6 .已知集合A={x |x 2
-x -2<0},B={x |-1<x <1},则
( )
A .A ⊂≠B
B .B ⊂≠A
C .A=B
D .A∩B=∅
7 .若全集U={x∈R|x 2
≤4} A={x∈R||x+1|≤1}的补集CuA 为
( )
A .|x∈R |0<x<2|
B .|x∈R |0≤x<2|
C .|x∈R |0<x≤2|
D .|x∈R |0≤x≤2|
8 .设集合{}{}21,0,1,|M
N x x x =-==,则M N ⋂=
( )
A .{}1,0,1-
B .{}0,1
C .{}1
D .{}0
9 .已知集合
{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件
A C
B ⊆⊆的集合
C 的个数为
( )
A .1
B .2
C .3
D .4
10. (集合)设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =
( )
A .{}2,4,6
B .{}1,3,5
C .{}1,2,4
D .U
11.已知集合{}{}1,2,3,4,2,2M
N ==-,下列结论成立的是
( )
A .N M ⊆
B .M N M ⋃=
C .M N N ⋂=
D .{}2M N ⋂=
12.已知集合{}|A x x =
是平行四边形,{}|B x x =是矩形,
{}|C x x =是正方形,{}|D x x =是菱形,则( )
A .A
B ⊆
B .
C B ⊆ C .
D C ⊆ D .A D ⊆
13.已知集合{}320A x R x =
∈+>,{}(1)(3)0B x R x x =∈+->,则A
B =( )
A .(,1)-∞-
B .2(1,)3
--
C .2(,3)3
-
D .(3,)
+∞
14 .已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个
数为 ( )
A .3
B .6
C .8
D .10
15 .集合{|lg 0}M x x =>,2
{|4}N x x =≤,则M N =( )
A .(1,2)
B .[1,2)
C .(1,2]
D .[1,2]
16 .已知全集{}0,1,2,3,4U
=,集合{}{}1,2,3,2,4A B ==,则U C A B 为( )
A .{}1,2,4
B .{}2,3,4
C .{}0,2,4
D .{}0,2,3,4
17 .已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
则)()(B C A C U U 为
( )
A .{5,8}
B .{7,9}
C .{0,1,3}
D .{2,4,6}
18 .设集合M={-1,0,1},N={x|x 2
≤x},则M∩N=
( )
A .{0}
B .{0,1}
C .{-1,1}
D .{-1,0,0}
19 . (集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =
( )
A .U
B .{}1,3,5
C .{}3,5,6
D .{}2,4,6
20 .已知集合{{},1,,A B m A B A =
=⋃=,则m =
( )
A .0
B .0或3
C .1
D .1或3
21 .已知集合{}320A x R x =
∈+>,{}(1)(3)0B x R x x =∈+->,则A
B =( )
A .(,1)-∞-
B .2
(1,)3
--
C .2(,3)3
-
D .(3,)+∞
22.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为 ( )
A .5
B .4
C .3
D .2
二、填空题 23.集合{}|25A x R x =
∈-≤中最小整数位_________.
24.若集合}012|{>-=x x A ,}1|
{<=x x B ,则B A =_________ .
25.已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,则
=m __________,=n ___________.
26.设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则
=)()(B C A C U U _______. 27.若集合}012|{>+=x x A ,}21|
{<-=x x B ,则B A =_________ .
28.已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A
B =则k =______.
29.已知集合{124}A =,,,{246}B =,,,则A
B =____.
1. 【答案】D
2. 【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B
3. [答案]D
4. 解析:}4,2,0{)(},4,0{==B A C A C U U .答案选C.
5. 【答案】B .
6. 【解析】A=(-1,2),故B ⊂≠A,故选B.
7. C 【解析】{|22}U x x =-≤≤,{|20}A x x =-≤≤,则{|02}U C A x x =<≤. 8. 【答案】B
9. D 【解析】求解一元二次方程,得 10.解析:A.{}2,4,6U C M =. 11. 【答案】D 12.答案B 13. 【答案】D
14. 【解析】选D 5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 15. 故选C. 16. C. 17. 【答案】B 18. 【答案】B
19. 解析:C.{}3,5,6U C M =. 20. 答案B 21. 【答案】D
22. C 23. 解析:运用排除法,奇函数有1
y x
=
和||y x x =,又是增函数的只有选项D 正确. 24. 【答案】D 25. B 26. 【答案】B 27. 【解析】
3-不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合
}73{≤≤-=x x A ,所以最小的整数为3-.
28. [解析] ),(21∞+=A ,)1,1(-=B ,A ∩B =)1,(2
1. 29. 【答案】1-,1 30. [答案]{a, c, d}
31. [解析] ),(21∞+-=A ,)3,1(-=B ,A ∩B =)3,(2
1-. 32. 3
1,2,4,6.
33. 【答案】{}。