电磁感应中导轨+杆模型

合集下载

电磁感应定律的综合应用——杆模型

电磁感应定律的综合应用——杆模型

2、已知轨道 NMPQ 水平放置,间距为 l,电阻不计,磁感应 强度为 B 的匀强磁场方向竖直向上。定值电阻为 R,杆 ab 质量为 m,电阻为 r,在恒力 F 作用下由静止开始运动。摩 擦不计,接触良好。求: (1)、杆做什么运动?并画 v-t 图像。 (2)、写出 a 与 v 的关系式,画出 a-v 图像。 (3)、杆 ab 最大速度。 (4) 、若杆 ab 在加速阶段的时间为 t0,则通过 R 电量, 杆 ab 的位移分别为多少。
模 型 三 双杆
栏目导航
5.如图所示,两根质量均为 m=2 kg 的金属棒垂直放在光滑的水 平导轨上,左右两部分导轨间距之比为 1∶2,导轨间有大小相等 但左、右两部分方向相反的匀强磁场,两棒电阻与棒长成正比, 不计导轨电阻。现用 250 N 的水平拉力 F 向右拉 CD 棒,CD 棒运 动 s=0.5 m 时其上产生的焦耳热为 Q2=30 J,此时两棒速率之比 为 vA∶vC=1∶2,现立即撤去拉力 F,设导轨足够长且两棒始终 在不同磁场中运动,求: (1)在 CD 棒运动 0.5 m 的过程中,AB 棒上产生的焦耳热; (2)撤去拉力 F 瞬间,两棒的速度大小 vA 和 vC; (3)撤去拉力 F 后,两棒最终匀速运动的速度大小 vA′和 vC′。
强度为 B 的匀强磁场方向竖直向上。定值电阻为 R,杆 ab
V0
质量为 m,电阻为 r,以初速度 V0 向右沿轨道运动,摩擦
不计,接触良好。求:
(1)、杆做什么运动?并画 v-t 图像。
(2)、写出 a 与 v 的关系式,画出 a-v 图像。
(3)、通过 R 的电量。
(4)、杆 ab 的位移。
(5) 、杆 ab 产生的热量。
栏目导航
高考热点 分层突破

(含答案)应用动力学和能量观点解决电磁感应中的“导轨 杆”模要点

(含答案)应用动力学和能量观点解决电磁感应中的“导轨 杆”模要点

应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题一、基础知识1、模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2、常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分S闭合,棒ab受安培力F=,此时加速度a=,棒ab速度v↑→感应电动势E′=BL v↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=gsin α,棒ab速度v↑→感应电动势E=BL v↑→电流I=↑→安培力F=BIL↑→加速度a↓,当安培力F=mgsin α时,a=0,v最大,最后匀速运动析能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,vm=vm=匀速运动二、练习1、如图解析(1设甲在磁场区域abcd内运动时间为t1,乙从开始运动到ab位置的时间为t2,则由运动学公式得L=·2gsin θ·t,L=gsin θ·t解得t1=,t2= (1分因为t1<t2,所以甲离开磁场时,乙还没有进入磁场.(1分设乙进入磁场时的速度为v1,乙中产生的感应电动势为E1,回路中的电流为I1,则m v=mgLsin θ(1分E1=Bd v1(1分I1=E1/2R(1分mgsin θ=BI1d(1分解得R= (1分(2从释放金属杆开始计时,设经过时间t,甲的速度为v,甲中产生的感应电动势为E,回路中的电流为I,外力为F,则v=at(1分E=Bd v(1分I=E/2R(1分F+mgsin θ-BId=ma(1分a=2gsin θ联立以上各式解得F=mgsin θ+mgsin θ ·t(0≤t≤ (1分方向垂直于杆平行于导轨向下.(1分(3甲在磁场运动过程中,乙没有进入磁场,设甲离开磁场时速度为v0,甲、乙产生的热量相同,均设为Q1,则v=2aL(1分W+mgLsin θ=2Q1+m v(2分解得W=2Q1+mgLsin θ乙在磁场运动过程中,甲、乙产生相同的热量,均设为Q2,则2Q2=mgLsin θ(2分根据题意有Q=Q1+Q2(1分解得W=2Q(1分答案(1(2F=mgsin θ+mgsin θ ·t(0≤t≤ ,方向垂直于杆平行于导轨向下(32Q2、如图甲所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响,求:甲乙(1磁感应强度B的大小;(2金属棒ab在开始运动的1.5 s内,通过电阻R的电荷量;(3金属棒ab在开始运动的1.5 s内,电阻R上产生的热量.答案(10.1 T(20.67 C(30.26 J解析(1金属棒在AB段匀速运动,由题中图象乙得:v==7 m/sI=,mg=BIL解得B=0.1 T(2q=Δt=ΔΦ=B解得:q=0.67 C(3Q=mgx-mv2解得Q=0.455 J从而QR=Q=0.26 J3、如图所示,足够长的光滑平行金属导轨cd和ef水平放置,在其左端连接倾角为θ=37°的光滑金属导轨ge、hc,导轨间距均为L=1 m,在水平导轨和倾斜导轨上,各放一根与导轨垂直的金属杆,金属杆与导轨接触良好.金属杆a、b质量均为m=0.1 kg,电阻R a=2 Ω、R b=3 Ω,其余电阻不计.在水平导轨和斜面导轨区域分别有竖直向上和竖直向下的匀强磁场B1、B2,且B1=B2=0.5 T.已知从t=0时刻起,杆a在外力F1作用下由静止开始水平向右运动,杆b在水平向右的外力F2作用下始终保持静止状态,且F2=0.75+0.2t (N.(sin 37°=0.6,cos 37°=0.8,g取10 m/s2(1通过计算判断杆a的运动情况;(2从t=0时刻起,求1 s内通过杆b的电荷量;(3若t=0时刻起,2 s内作用在杆a上的外力F1做功为13.2 J,则这段时间内杆b上产生的热量为多少?答案(1以4 m/s2的加速度做匀加速运动(20.2 C(36 J解析(1因为杆b静止,所以有F2-B2IL=mg tan 37°而F2=0.75+0.2t(N解得I=0.4t (A整个电路中的电动势由杆a运动产生,故E=I(Ra+RbE=B1Lv解得v=4t所以,杆a做加速度为a=4 m/s2的匀加速运动.(2杆a在1 s内运动的距离d=at2=2 mq=Δt=E==q===0.2 C即1 s内通过杆b的电荷量为0.2 C(3设整个电路中产生的热量为Q,由能量守恒定律得W1-Q=mvv1=at=8 m/s解得Q=10 J 从而Qb=Q=6 J4、(2012·山东理综·20如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静止释放,当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g.下列选项正确的是 (A.P=2mgv sin θB.P=3mgv sin θC.当导体棒速度达到时加速度大小为sin θD.在速度达到2v以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功答案AC解析根据I==,导体棒由静止释放,速度达到v时,回路中的电流为I,则根据共点力的平衡条件,有mg sin θ=BIL.对导体棒施加一平行于导轨向下的拉力,使其以2v的速度匀速运动时,则回路中的电流为2I,则根据平衡条件,有F+mg sin θ=B·2IL,所以拉力F=mg sin θ,拉力的功率P=F×2v=2mgv sin θ,故选项A正确,选项B错误;当导体棒的速度达到时,回路中的电流为,根据牛顿第二定律,得mg sin θ-BL=ma,解得a=sin θ,选项C正确;当导体棒以2v的速度匀速运动时,根据能量守恒定律知,重力和拉力所做的功之和等于R上产生的焦耳热,故选项D错误.。

电磁感应中的“杆—轨”模型

电磁感应中的“杆—轨”模型

第 3页
高考调研 ·高三总复习 ·物理
题 型 透 析
第 4页
高考调研 ·高三总复习 ·物理
电磁感应中的“单杆”模型 【基本模型】 如图,金属导轨水平光 滑,导轨间距为 L,导体棒的质量为 m, 回路总电阻为 R.导体棒在水平力 F 的作用 下运动,进入磁场时的速度为 v0,导体棒 在磁场中的运动情况分析如下:
(3)棒由 EF 处向右移动 2 s 的过程中,通过导体横截面的磁 通量为: ΔФ′= EΔ t′= 12 Wb ΔΦ′ 棒扫过的面积为:ΔS′= = 24 m2 B 1 2 2 s 的过程棒移动了 x′,则Δ S′= Lx′+ x′ 2 x′= 4 m 此时电动势不变,为: E=B研 ·高三总复习 ·物理
例 2
(2017· 泉州二模 ) 如图,水平面内有一光滑金属导轨
QPMN,MP 边长度为 d= 3 m、阻值为 R= 1.5 Ω ,且 MP 与 PQ 垂直,与 MN 的夹角为 135°,MN、 PQ 边的电阻不计.将 质量 m= 2 kg、电阻不计的足够长直导体棒搁在导轨上,并与 MP 平行,棒与 MN、 PQ 交点 E、 F 间的距离 L= 4 m,整个空 间存在垂直于导轨平面的匀强磁场,磁感应强度 B= 0.5 T.在外 力作用下,棒由 EF 处以初速度 v0=3 m/s 向右做直线运动,运 动过程中回路的电流强度始终不变.求:
第 5页
高考调研 ·高三总复习 ·物理
运动条件 B2L2v0 F= R F为 恒力 B2L2v0 F> R B2L2v0 F< R F 随时间 t 按一定线 性规律变化
运动情况分析 合力为零,做匀速运动 v ↑⇒BLv ↑⇒I↑ ⇒BIL↑ ⇒a↓ ⇒a=0 ,匀速运动. v↓ ⇒ BLv↓ ⇒ I↓ ⇒ BIL ↓ ⇒ a ↓⇒ a= 0,匀速运动

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型热点概述:电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。

[热点透析]单杆模型初态v0≠0v0=0示意图质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定续表初态v0≠0v0=0运动分析导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBL,最后以v m匀速运动当a=0时,v最大,v m=FRB2L2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2a F-F安=ma,a =Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量分析动能转化为内能,12m v2=Q电能转化为动能和内能,E电=12m v2m+Q外力做功转化为动能和内能,W F=12m v2m+Q外力做功转化为电能和动能,W F=E电+12m v2注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用,分析方法与表格中受外力F时的情况类似,这里就不再赘述。

(2020·山东省聊城市一模)(多选)如图所示,宽为L的水平光滑金属轨道上放置一根质量为m的导体棒MN,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R的电阻连接,匀强磁场的方向垂直于轨道平面向里,磁感应强度大小为B,电容器的电容为C,金属轨道和导体棒的电阻不计。

现将开关拨向“1”,导体棒MN在水平向右的恒力F作用下由静止开始运动,经时间t0后,将开关S拨向“2”,再经时间t,导体棒MN恰好开始匀速向右运动。

电磁感应中的“杆 导轨”类问题(3大模型)解题技巧

电磁感应中的“杆 导轨”类问题(3大模型)解题技巧

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。

【内化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。

完整版电磁感应定律单杆导轨模型含思路分析

完整版电磁感应定律单杆导轨模型含思路分析

单杆+导轨”模型1.单杆水平式(导轨光滑)注:加速度a的推导,a=F合/m (牛顿第二定律),F合=F-F安,F安=BIL ,匸E/R 整合一下即可得到答案。

v变大之后,根据上面得到的a的表达式,就能推出a变小这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1, 2s末是5, 3s末是6, 4s末是6.1,每秒钟速度的增加量都是在变小的)2.单杆倾斜式(导轨光滑)BLv T【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L二1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m= 0.1 kg,空间存在磁感应强度B= 0.5 T、竖直向下的匀强磁场。

连接在导轨左端的电阻R= 3.0約金属杆的电阻r 二1.0約其余部分电阻不计。

某时刻给金属杆一个水平向右的恒力F, 金属杆P由静止开始运动,图乙是金属杆P运动过程的v—t图象,导轨与金属杆间的动摩擦因数尸0.5。

在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3 : 5。

g取10 m/s2。

求:(1)水平恒力F的大小;⑵前4 s内电阻R上产生的热量。

【答案】(1)0.75 N (2)1.8 J【解析】(1)由图乙可知金属杆P先做加速度减小的加速运动,2 s后做匀速直线运动当t= 2 s时,v= 4 m/s,此时感应电动势E= BLv感应电流1=吕R+ rB2I2v安培力F = BIL =R+ r根据牛顿运动定律有F —F '―卩m= 0解得 F = 0.75 N o过金JI杆p的电荷量厂"二磊^甘十);△型BLx所以尸驚qa为尸的位移)设第一个2 s內金属杆P的位移为Xi ;第二个肚内P的位移为助则二号g,又由于如:血=3 : 5麻立解得«=8mj IL=<8m前4 s内由能量守恒定律得其中 Q r : Q R = r : R = 1 : 3解得 Q R = 1.8 J o注:第二问的思路分析,要求 R 上产生的热量,就是焦耳热,首先想到的是公式Q=l2Rt ,但是在这里,前2s 的运动过程中,I 是变化的,而且也没办法求出I 的有效值来(电荷量对应的是电流的平均值,求焦耳热要用有效值,两者不一样), 所以这个思路行不通。

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。

根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。

需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。

举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。

根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。

加速度随速度增大而减小,最终特征为匀速运动。

在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。

需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。

1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。

整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。

重力加速度为g,导轨电阻不计,杆与导轨接触良好。

求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。

(完整版)电磁感应导棒-导轨模型

(完整版)电磁感应导棒-导轨模型

电磁感应“导棒-导轨”问题专题一、“单棒”模型【破解策略】单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。

(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t∆Φ=∆或E BLv =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。

(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。

<1> 单棒基本型00≠v 00=v示 意 图(阻尼式)单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L(电动式)轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L (发电式)轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定 力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力R vL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLEa =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力 ↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E= 开始时mFa =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由 a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m = 图 像 观 点能 量 观 点 动能全部转化为内能:2021mv Q =电能转化为动能W 电212mmv = F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 运动 状态变减速运动,最终静止变加速运动,最终匀直变加速运动,最终匀直<2> 单棒模型变形类型“发电式”有摩擦“发电式”斜轨变形示意图已知量棒ab长L,质量m,电阻R;导轨不光滑且水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析导体棒相当于电源,当速度为v时,电动势E=Blv;安培力为阻力,并随速度增大而增大22BB l vF BIl vR==∝加速度随速度增大而减小22--==--BF F mg F B l va gm m mRμμ(1) v=0时,有最大加速度mF mgamμ-=(2) a=0时,有最大速度22-=()mF mg RvB lμ棒ab释放后下滑,此时加速度a=singα,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=sinmgα时,a=0,v最大,最后匀速运动能量转化212E mFs Q mgS mvμ=++克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动22-=()mF mg RvB lμ匀速运动22vmmgRsinB Lα=二、“双棒”模型类型等间距水平光滑导轨无水平外力不等间距水平光滑导轨无水平外力等间距水平光滑导轨受水平外力竖直导轨示意图终态分析两导体棒以相同的速度做匀速运动若两杆m,r,L全相同,末速度为02v两导体棒以不同的速度做匀速运动若两杆m,r全相同,122l l=末速度为212v v=两导体棒以不同的速度做加速度相同的匀加速运动两导体棒以相同的速度做加速度相同的匀加速运动速度图象解题策略动量守恒定律,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识变形等间距水平不光滑导轨;受水平外力示意图速度图象F>2f2F f≤三、“电容”式单棒模型类型电容放电型电容无外力充电型电容有外力充电型示意图力学观点电容器放电,相当于电源;导体棒受安培力而运动。

高分策略之电磁感应中的杆导轨模型

高分策略之电磁感应中的杆导轨模型

一、单棒问题基本模型运动特点最终特征阻尼式a逐渐减小的减速运动静止I=0电动式匀速a逐渐减小的加速运动I=0 (或恒定)匀速发电式a逐渐减小的加速运动I 恒定二、含容式单棒问题基本模型运动特点最终特征放电式a逐渐减小的加速运动匀速运动I=0 无外力充电式a逐渐减小的减速运动匀速运动I=0 有外力充电式匀加速运动匀加速运动I 恒定三、无外力双棒问题基本模型运动特点最终特征无外力等距式杆1做a渐小的加速运动杆2做a渐小的减速运动v1=v2I=0无外力不等距式杆1做a渐小的减速运动杆2做a渐小的加速运动a=0I=0L1v1=L2v2四、有外力双棒问题基本模型运动特点最终特征有外力等距式杆1做a渐大的加速运动杆2做a渐小的加速运动a1=a2,Δv 恒定I恒定有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动a1≠a2,a1、a2恒定I 恒定题型一阻尼式单棒模型如图。

1.电路特点:导体棒相当于电源。

2.安培力的特点:安培力为阻力,并随速度减小而减小。

F B =BIl=3.加速度特点:加速度随速度减小而减小,a= =4.运动特点:速度如图所示。

a 减小的减速运动5.最终状态:静止 6.三个规律 (1)能量关系:-0 = Q , =(2)动量关系: 00BIl t mv -⋅∆=-q =, q ==(3)瞬时加速度:a= =【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a<L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v<v 0)那么( )A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C是不可能的【答案】B【解析】设线圈完全进入磁场中时的速度为v x。

线圈在穿过磁场的过程中所受合外力为安培力。

电磁感应中的导轨模型

电磁感应中的导轨模型
电磁感应中的“杆+导轨”模型
一、单棒模型
阻尼式
1.电路特点 导体棒相当于电源 2.安培力的特点 安培力为阻力,并随速度减小而减小。
FB
BIl
B2l 2v Rr
3.加速度特点 4.运动特点
加速度随速度减小而减小
a 减小的减速运动
a
FB m
B2l 2v m(R r)
v0
5.最终状态 静止
6.三个规律 (1)能量关系:
易错点:认为电容器最终带电量为零
电容无外力充电式
1.电路特点 导体棒相当于电源;电容器被充电.
v0
2.电流的特点 导体棒相当于电源; F 安为阻力, 棒减速, E 减小
有I感
I Blv UC
I 感渐小 电容器被充电。
R
UC 渐大,阻碍电流 当 Blv=UC 时,I=0, F 安=0,棒匀速运动。
3.运动特点 a 渐小的减速运动,最终做匀速运动。
FB BIl =B (E Blv)l B (E E反)l
Rr
Rr
3.加速度特点 加速度随速度增大而减小
4.运动特点 a 减小的加速运动
a FB mg = B (E Blv)l g
m
m(R r)
5.最终特征 匀速运动
6.两个极值 (1)最大加速度: v=0 时,E 反=0,电流、加速度最大 (2)最大速度: 稳定时,速度最大,电流最小
电容器放电电量: Q Q0 Q CE CBlvm
对杆应用动量定理: mvm BIl t BlQ
BlCE vm m B2l 2C
6.达最大速度过程中的两个关系
安培力对导体棒的冲量
I安
mvm
mBlCE m B2l2C

电磁感应中的杆轨模型

电磁感应中的杆轨模型

发展方向:研究新型感应技术和应 用降低能耗和成本
电磁感应中的杆 轨模型在电力系 统中的应用广泛 可以提高电力系 统的效率和稳定 性。
杆轨模型在电磁 感应中的应用可 以促进新能源技 术的发展如太阳 能、风能等。
杆轨模型在电磁 感应中的应用可 以促进电磁感应 技术的发展如电 磁感应加热、电 磁感应驱动等。
计算杆的电流:使用电流公 式I=U/Z其中U为电压Z为阻 抗
计算杆的功率:使用功率公 式P=I^2*R其中I为电流R为 电阻
实例:计算杆轨模型 的感应电动势
解析:利用法拉第电磁 感应定律和欧姆定律进 行计算
实例:计算杆轨模型 的感应电流
解析:利用欧姆定律和 电流连续性方程进行计 算
实例:计算杆轨模型 的感应功率
准备材料:杆轨模型、电 源、开关、电流表、电压 表等
搭建实验装置:按照图纸 搭建杆轨模型连接电源、 开关、电流表、电压表等
实验操作:打开电源观察 电流表和电压表的读数记 录数据
分析实验结果:根据实验 数据分析杆轨模型的电磁 感应现象得出结论
实验注意事项:注意安全 遵守实验操作规程确保实 验顺利进行
杆轨模型在电磁 感应中的应用可 以促进电磁感应 技术的应用领域 如电磁感应加热、 电磁感应驱动等。
感谢您的观看
汇报人:
应用:杆轨模型可以用来解释交流电的 产生和传输
电磁感应:电流在磁场中受到力的作用 产生感应电动势
交流发电机:利用电磁感应原理产生交 流电的设备
交流电动机:利用电磁感应原理将交流 电能转换为机械能的设备
杆轨模型:由一根导轨和一根导线组成导线在导轨上滑动 直流电:电流方向保持不变大小可能发生变化 应用:在直流电中杆轨模型可以用来产生感应电动势 感应电动势:当导线在导轨上滑动时导线中的电流会产生感应电动势 应用实例:直流电动机、直流发电机等设备中杆轨模型被广泛应用

高二物理:电磁感应中的“杆+导轨”模型

高二物理:电磁感应中的“杆+导轨”模型
(2)金属杆的质量m和阻值r; (3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做 的功W。
转到解析
3.规律方法
解决此类问题的分析要抓住三点 (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力 为零); (2)整个电路产生的电能等于克服安培力所做的功; (3)电磁感应现象遵从能量守恒定律。
(1)电阻R消耗的功率; (2)水平外力的大小。
答案
B2l2v2 (1)
B2 (2)
l2v+μmg
R
R
转到解析
【思维训练2】(2016·泰州一模)如图13甲,MN、PQ两条平行的光滑 金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在 空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B= 0.5 T。质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为 r。现从静止释放杆ab,测得最大速度为vm。改变电阻箱的阻值R,得 到vm与R的关系如图乙所示。已知轨距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计。求:(1)杆ab下滑过程中感应电流的方 向及R=0时最大感应电动势E的大小;
2.典例剖析
【思维训练1】(2015·海南单科,13)如图12,两平行金属导轨位于同 一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中, 磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上 ,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保 持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为μ,重 力加速度大小为g,导轨和导体棒的电阻均可忽略。求
目录页
Contents Page
物理建模:电磁感应 中的“杆+导轨”模型

电磁感应中的杆和导轨问题

电磁感应中的杆和导轨问题

电磁感应中的杆+导轨问题“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是各种考试的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们学习中的重点和难点。

导轨放置方式可分为水平、竖直和倾斜;轨道可能光滑,也可能粗糙;杆可能有电阻也可能没有电阻;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,多种情景组合复杂,题目形式多变。

下面是几种最基本的模型及分析,有兴趣(无兴趣可以无视)的同学可以学习、体会、研究。

需要注意的是:模型中的结论是基于表中所述的基本模型而言,不一定有普遍性,物理情景有变化,结论可能不同,但分析的方法是相同的、有普遍性的。

1.单杆水平式物理模型匀强磁场与导轨垂直,磁感应强度为B,棒ab长为L,质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计动态分析设运动过程中某时测得的速度为v,由牛顿第二定律知棒ab的加速度为a=Fm -=B2L2vmR,a、v同向,随速度的增加,棒的加速度a减小,当a=0时,v最大,电流I=BLv mR不再变化收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化2.单杆倾斜式物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒质量为m,电阻为R,导轨光滑,电阻不计动态分析棒ab刚释放时a=g sin α,棒ab的速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F =BIL↑→加速度a↓,当安培力F=mg sin α时,a=0,速度达到最大v m=mgR sin αB2L2收运动形式匀速直线运动尾状态力学特征 受力平衡,a =0电学特征I 不再变化3、有初速度的单杆物理模型杆cd 以一定初速度v 0在光滑水平轨道上滑动,质量为m ,电阻不计,两导轨间距为L动态分析杆以速度v 切割磁感线产生感应电动势E =BLv ,电流I =BLv R ,安培力F =BIL =B 2L 2vR.杆做减速运动:v ↓?F ↓?a ↓,当v =0时,a =0,杆保持静止能量转化情况动能全部转化为内能:Q =12mv 24、含有电容器的单杆物理模型轨道水平光滑,单杆ab 质量为m ,电阻不计,两导轨间距为L ,拉力F 恒定动态分析开始时a=Fm,杆ab速度v?感应电动势E=BLv,经过时间Δt速度为v+Δv,此时感应电动势E′=BL(v+Δv),Δt时间内流入电容器的电荷量Δq=CE′-C E=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa (所以电流的大小恒定)安培力F安=BLI=CB2L2a(所以安培力的大小恒定)F-F安=ma,a=Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量转化情况F做的功使其它形式的能E其它一部分转化为动能,一部分转化为电场能E电场能:W F=E其它=12mv2+E电场能5、含有电源时的单杆物理模型轨道水平光滑,单杆ab质量为m,电阻不计,两导轨间距为L。

微专题 电磁感应中的“杆+导轨”模型

微专题  电磁感应中的“杆+导轨”模型

(2)0~4 s 内磁场均匀变化,产生的感应电动势 E1=ΔΔBt L1L2=0.5 V 由闭合电路欧姆定律得 I1=RE+1 r=0.1 A 0~4 s 内小灯泡上产生的焦耳热 Q1=I12Rt1=0.16 J
4~5 s 内导体棒在磁场中匀速运动,导体棒运动的位移 x=vt2=1 m<L2, 导体棒没有出磁场,小灯泡上产生的焦耳热 Q2=I22Rt2=0.16 J 0~5 s 内小灯泡上产生的焦耳热 Q=Q1+Q2=0.32 J. [答案] (1)0.8 kg 0.2 N (2)0.32 J
Q 总=-W 安=mgxsin θ-12mv2=2 J
QR=R+R rQ 总=1.5 J. 答案:(1)1 A b→a (2)1 N 平行于导轨平面向上 (3)1.5 J
3.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为 θ, 导轨间距为 l,所在平面的正方形区域 abcd 内存在有界匀强磁场,磁感 应强度大小为 B,方向垂直于斜面向上.将阻值相同、质量均为 m 的相 同甲、乙两金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙 相距 l.从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的 外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且 加速度大小为 a=gsin θ,乙金属杆刚进入磁场时做匀速运动.
[典例 3] 如图所示,两根足够长的平行金属导轨固 定在倾角 θ=30°的斜面上,导轨电阻不计,间距 L= 0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边 界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直斜 面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场 的磁感应强度大小均为 B=0.5 T.在区域Ⅰ中,将质量为 m1=0.1 kg、电阻为 R1=0.1 Ω 的金属条 ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量 为 m2=0.4 kg、电阻为 R2=0.1 Ω 的光滑导体棒 cd 置于导轨上,由静止开始下 滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd 始终与导轨垂直且两端 与导轨保持良好接触,取 g=10 m/s2.求:

电磁感应中杆-导轨模型专题

电磁感应中杆-导轨模型专题

电磁感应中杆-导轨模型专题对杆在导轨上运动组成的系统,杆在运动中切割磁感线产生感应电动势,并受到安培力的作用改变运动状态最终达到稳定的运动状态,该系统称为“杆+导轨”模型.“杆+导轨”模型中杆有单杆和双杆之分,导轨可分为水平、竖直、倾斜导轨.求解此类问题的关键有三点:1.电路结构分析分析电路结构找出电源;用电器及其参数2.动力学分析(1)受力分析:杆一般会受到重力、支持力、摩擦力、拉力、安培力,确定哪些力为变力,哪些力为恒力,按效果把力分为动力和阻力(必要时使用力的合成与分解)(2)动态分析:由牛顿第二定律确定加速度的表达式,结合初速度判断杆是加速还是减速,按照下面模式分析:直至确定收尾状态(3)常见收尾状态:①静止;②匀速直线运动;③匀加速直线运动.●3.能量分析●①动能定理Ek′-Ek=W安+W其他力;●②棒的动能、电路中的电能、其他能的转化与守恒.一.单杆--导轨模型1、导轨(1)导轨的形状:常见导轨的形状为U形,还可以为圆形、三角形、三角函数图形等;(2)导轨的闭合性:导轨本身可以不闭合,也可闭合;(3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻;(4)导轨的放置:水平、竖直、倾斜放置等等.幻灯片5[例1] 如图1所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝(图中粗线表法),R1= 4Ω、R2=8Ω(导轨其它部分电阻不计).导轨OAC的形状满足方程)(3sin2mxyπ=(单位:m).磁感强度B=0.2T的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F作用下,以恒定的速率v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的电阻.求:(1)外力F的最大值;(2)金属棒在导轨上运动时电阻丝R1上消耗的最大功率;(3)在滑动过程中通过金属棒的电流I与时间t的关系.解析:本题难点在于导轨呈三角函数图形形状,金属棒的有效长度随时间而变化,但第(1)(2)问均求的是某一状态所对应的物理量,降低了一定的难度.解第(3)问时可根据条件推导出外力F 的表达式及电流I 与时间t 的关系式,由三角函数和其他条件求出需要的量即可.(1)金属棒匀速运动F 外=F 安 ,当安培力为最大值时,外力有最大值.∵E=BLv , 总R E I = , F 安=BIL=总R vL B 22即当L 取最大值时,安培力有最大 Lmax=2m22sin=π Ω382121R R R R ==+总R代入数据得Fmax=0.3(N )(2)R1、R2相并联,由电阻丝R1上的功率121R E P =,可知当max L L =时P1有最大功率,即121R E P =m 22sin =π总R v L B 22(W )图1图1(3)金属棒与导轨接触点间的长度随时间变化)(sin 23m x L π=且x=vt ,E=BLv)(35sin 43B A t R lV R E I π==总总=∴A .随着ab 运动速度的增大,其加速度也增大B .外力F 对ab 做的功等于电路中产生的电能C .当ab 做匀速运动时,外力F 做功的功率等于电路中的电功率D .无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能设ab 的速度为v ,运动的加速度a =F -B 2l 2v R m ,随着v 的增大,ab 由静止先做加速度逐渐减小的加速运动,当a =0后做匀速运动,则A 选项错误;由能量守恒知,外力F 对ab 做的功等于电路中产生的电能和ab 增加的动能之和,ab 克服安培力做的功一定等于电路中产生的电能,则B 选项错误,D 选项正确;答案CD2. 如图2所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒ab .导轨的一端连接电阻R ,其他电阻均不计,磁感应强度为B 的匀强磁场垂直于导轨平面向下,金属棒ab 在一 水平恒力F 作用下由静止开始向右运动.则 ( )。

2021版人教版高三物理一轮复习基础梳理第九章 小专题六 电磁感应中的“杆导轨”模型

2021版人教版高三物理一轮复习基础梳理第九章 小专题六 电磁感应中的“杆导轨”模型

小专题六电磁感应中的“杆+导轨”模型1.模型分类“杆+导轨”模型分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜三种;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等。

情景复杂,形式多变。

2.分析方法通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

[典例1] 如图,两条平行导轨所在平面与水平地面的夹角为θ,两导轨间距为L。

导轨上端接有一平行板电容器,电容为C。

导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。

在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中始终保持与导轨垂直并良好接触。

已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。

忽略所有电阻。

让金属棒从导轨上端由静止开始下滑。

求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系。

解析:(1)设金属棒下滑的速度大小为v,则感应电动势为E=BLv①平行板电容器两极板之间的电势差为 U=E ②设此时电容器极板上积累的电荷量为Q,则C=Q U ③联立①②③式得 Q=CBLv 。

④(2)设金属棒的速度大小为v 时经历的时间为t,通过金属棒的电流为i 。

金属棒受到的磁场的作用力方向沿导轨向上,大小为 f 1=BLi ⑤设在时间间隔(t,t+Δt)内流经金属棒的电荷量为ΔQ,按电流的定义有i=Q t∆∆⑥ ΔQ 也是平行板电容器两极板在时间间隔(t,t+Δt)内增加的电荷量。

由④式得 ΔQ=CBL Δv ⑦式中,Δv 为金属棒的速度变化量。

按加速度的定义有a=v t∆∆⑧ 金属棒所受到的摩擦力方向斜向上,大小为 f 2=μN ⑨式中,N 是金属棒对于导轨的正压力的大小,有 N=mgcos θ⑩金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有mgsin θ-f 1-f 2=ma 联立⑤至式得a=()22sin cos m m B L Cθμθ-+g 由式及题设可知,金属棒做初速度为零的匀加速运动。

电磁感应中的“杆—轨道”模型

电磁感应中的“杆—轨道”模型

速度 图像
F 做的功一部分转 F 做的功一部分转
动 能 全 部 转 化 电源输出的电能
能量 为内能
化为杆的动能,一 化为动能,一部分 转化为杆的动能
分析 Q=12mv20
W 电=12mv2m
部分产生焦耳热 WF=Q+12mv2m
转化为电场能 WF=12mv2+EC
例 1 (多选)如图 1 所示,两平行光滑长直金属导轨水平放置,间距为 L,两导轨间 存在磁感应强度大小为 B、方向竖直向下的匀强磁场。一质量为 m、电阻为 R、 长度恰好等于导轨间宽度的导体棒 ab 垂直于导轨放置。闭合开关 S,导体棒 ab 由静止开始运动,经过一段时间后达到最大速度。已知电源电动势为 E、内阻为
01 02 03 04 05 06
教师备选用题
而做加速运动,由于两者的速度差逐渐减小,可知 感应电流逐渐减小,安培力逐渐减小,可知 cd 向右 做加速度减小的加速运动,故 B 正确;ab 从释放到 刚进入磁场过程,由动能定理得 mgR=21mv20,对 ab 和 cd 系统,合外力为零,则由动量守恒定律有 mv0 =m·2vcd+2m·vcd,解得 vcd=14v0=41 2gR,对 cd 由动量定理有 B-IL·Δt=2m·vcd, 其中 q=-I·Δt,解得 q=m2B2LgR,故 C 正确;从 ab 由静止释放,至 cd 刚离开磁 场过程,由能量守恒定律得 mgR=21m2vcd2+12×2mv2cd+Q,又 Qcd=32Q,解得 Qcd=152mgR,故 D 错误。
析 v↓⇒F↓⇒a↓,当 v=0 速度 a↓,当 E 感= -F 安=ma 知 a↓, 安培力 F 安=ILB=CB2L2a
时,F=0,a=0,杆保 持静止
E 时,v 最大,且 vm =BEL

电磁感应中导轨+杆模型

电磁感应中导轨+杆模型

电磁感应中导轨+杆模型摘要: 电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。

关键词:安培力,稳定速度,安培力做的功和热量解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路。

电磁感应和我们以前所学的力学,电学等知识有机的结合在一起能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力,其中导轨+杆的模型更是历次考试的重点和难点。

下面我就具体给大家总结一下此类问题。

一模型特点1导轨+杆模型分为单杆型和双杆型;放置的方式可分为水平,竖直和倾斜。

2导体棒在导轨上切割磁感线运动,发生电磁感应现象3导体棒受到的安培力为变力,在安培力的作用下做变加速运动4当安培力与其他力平衡时,导体棒速度达到稳定,称为收尾速度二解题思路1涉及瞬时速度问题,用牛顿第二定律求解2求解导体棒稳定速度,用平衡条件求解3涉及能量问题,用动能定理或者功能关系求解.其中导体棒切割磁感线克服安培力做功→焦耳热等于克服安培力做的功:Q=W三两类常见的模型例1:如图所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中。

质量为m 、电阻为r 的导体棒与固定弹簧相连后放在导轨上。

初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。

整个运动过程中导体棒始终与导轨垂直并保持良好接触。

已知弹簧的劲度系数为k ,弹簧的中心轴线与导轨平行。

⑴求初始时刻通过电阻R 的电流I 的大小和方向;⑵当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;⑶导体棒最终静止时弹簧的弹性势能为Ep ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中导轨+杆模型
摘要: 电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。

关键词:安培力,稳定速度,安培力做的功和热量
解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路。

电磁感应和我们以前所学的力学,电学等知识有机的结合在一起能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力,其中导轨+杆的模型更是历次考试的重点和难点。

下面我就具体给大家总结一下此类问题。

一模型特点
1导轨+杆模型分为单杆型和双杆型;放置的方式可分为水平,竖直和倾斜。

2导体棒在导轨上切割磁感线运动,发生电磁感应现象
3导体棒受到的安培力为变力,在安培力的作用下做变加速运动
4当安培力与其他力平衡时,导体棒速度达到稳定,称为收尾速度
二解题思路
1涉及瞬时速度问题,用牛顿第二定律求解
2求解导体棒稳定速度,用平衡条件求解
3涉及能量问题,用动能定理或者功能关系求解.
其中导体棒切割磁感线克服安培力做功→焦耳热等于克服安培力做
的功:Q=W
三两类常见的模型
例1:如图所示,固定的光滑金属导轨间距为L ,导轨电阻不计,上端a 、b 间接有阻值为R 的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中。

质量为m 、电阻为r 的导体棒与固定弹簧相连后放在导轨上。

初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。

整个运动过程中导体棒始终与导轨垂直并保持良好接触。

已知弹簧的劲度系数为k ,弹簧的中心轴线与导轨平行。

⑴求初始时刻通过电阻R 的电流I 的大小和方向; 类型
“电—动—电”型 “动—电—动”型 示


已知 棒ab 长L ,质量m ,电阻R ;导轨光滑水平,电阻不计 棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计
分 析 S 闭合,棒ab 受安培力F =BLE R
,此时a =BLE mR
,棒ab 速度v ↑→感应电动势BLv ↑→电流I ↓→安培
力F =BIL ↓→加速度a ↓,当安培
力F =0时,a =0,v 最大,最后匀

棒ab 释放后下滑,此时a =g sin α,棒ab 速度v ↑→感应电动势E =BLv ↑→电流I =E R ↑→安培力F =BIL ↑→加速度a ↓,当安培力F =mg sin α时,a =0,v 最大,最后匀速 运动
形式
变加速运动 变加速运动 最终
状态 匀速运动v m =E BL 匀速运动 v m =mgR sin αB 2L
2
⑵当导体棒第一次回到初始位置时,速度变为v ,求此时导体棒的加速度大小a ;
⑶导体棒最终静止时弹簧的弹性势能为Ep ,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q 。

【答案】⑴棒产生的感应电动势01BLv E =
通过R 的电流大小r R BLv r R E I +=+=011 电流方向为b→a
⑵棒产生的感应电动势为BLv E =2 感应电流
r R BLv r R E I +=+=22 棒受到的安培力大小
r R v L B BIL F +==22,方向沿斜面向上 根据牛顿第二定律 有 ma F mg =-θsin
解得 )(sin 22r R m v L B g a +-=θ
⑶导体棒最终静止,有 kx mg =θsin 压缩量k mg x θ
sin = 设整个
过程回路产生的焦耳热为Q 0,根据能量守恒定律 有
2001sin 2P mv mgx E Q θ+=+ 22001(sin )2P mg Q mv E k θ=+-
电阻R 上产生的焦耳热2
2001(sin )[]2P R R mg Q Q mv E R r R r k θ==+-++
例:2:如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上(两导轨与水平面的夹角也为θ),导轨上端连接一个定值电阻。

导体棒a 和b 放在导轨上,与导轨垂直并良好接触。

斜面上水平虚线PQ 以下区域,存在着垂直穿过斜面向上的匀强磁场。

现对a 棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导
轨下端的b 棒恰好静止。

当a 棒运动到磁场的上边界PQ 处时,撤去拉力,a 棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b 棒已滑离导轨。

当a 棒再次滑回到磁场上边界PQ 处时,又恰能沿导轨匀速向下运动。

已知a 棒、b 棒和定值电阻的
阻值均为R ,b 棒的质量为m ,重力加速度为g ,
导轨电阻不计。

求:
⑴a 棒的质量m a ;
⑵a 棒在磁场中沿导轨向上运动时所受的拉
力F 。

解 ⑴a 棒在PQ 上方运动的过程中只有重力做功,机械能守恒,故可知a 棒在磁场中沿导轨向上匀速运动和向下匀速运动的速度大小相等,进一步结合法拉第电磁感应定律可知,在这两个过程中,a 棒因切割磁感线而产生的感应电动势的大小相等,设为E 。

a 棒在磁场中沿导轨向上匀速运动时,b 棒中的电流为:1322
b E I R =⨯ 此时,b 棒恰好静止,有:I b LB =mg sin θ 。

a 棒在磁场中沿导轨向下匀速运动时,设a 棒中的电流为I a ′,有:´2a E I R
= I a ′LB =m a g sin θ 解得:m a =1.5m 。

⑵a 棒在磁场中沿导轨向上运动时,设a 棒中的电流为I a ,有:I a =2I b ,处于磁场中的a 棒在平行导轨斜向上的拉力F 作用下沿导轨匀速向上运动,有:
F =I a LB +m a g sin θ 又:I b LB =mg sin θ 解得:F =3.5mg sin θ。

相关文档
最新文档