第11章 拉曼光谱分析法

合集下载

拉曼光谱法

拉曼光谱法

拉曼光谱法0421拉曼光谱法1拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差及化合物振动频率、转动频率间关系的分析方法。

与红外光谱类似,拉曼光谱是一种振动光谱技术。

所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐射。

拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。

这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以cm-1 为单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。

频率不变的散射称为弹性散射,即所谓瑞利散射。

如果产生的拉曼散射频率低于入射频率,则称之为斯托克散射。

反之,则称之为反斯托克散射。

实际上,几乎所有的拉曼分析都是测量斯托克散射。

用散射强度对拉曼位移作图得到拉曼光谱图。

由于功能团或化学键的拉曼位移与它们在红外光谱中的吸收波数相一致,所以谱图的解析也与红外吸收光谱相同。

然而,通常在拉曼光谱中出现的强谱带在红外光谱中却成为弱谱带甚至不出现,反之亦然。

所以,这两种光谱技术常互为补充。

拉曼光谱的优点在于它的快速,准确,测量时通常不破坏样品(固体,半固体,液体或气体),样品制备简单甚至不需样品制备。

谱带信号通常处在可见或近红外光范围,可以有效地和光纤联用;这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃,塑料内)或将样品溶于水中获得。

现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。

因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便(可以使用单变量和多变量方法以及校准)。

除常规的拉曼光谱外,还有一些较为特殊的拉曼技术。

它们是共振拉曼光谱,表面增强拉曼光谱,拉曼旋光,相关-反斯托克拉曼光谱,拉曼增益或减失光谱以及超拉曼光谱等。

其中,在药物分析应用相对较多的是共振拉曼和表面增强拉曼光谱法。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是光谱学中重要的一个分支,主要研究物质中原子结构的组成和构型结构,利用拉曼散射原理分析物质对广谱激发源的散射反应。

拉曼光谱分析方法被广泛应用于分子的结构异质性研究、环境材料的测定、有机合成反应机理的研究、可见光和红外区域的分子性质的研究等方面。

拉曼光谱的分析方法包括多种,其中最常用的是红外-可见拉曼光谱(IR-vis Raman spectroscopy),这种技术在各种分析应用中都十分有效、稳定。

拉曼光谱分析可以在多种范围内提供良好的空间分辨率、时间分辨率和动态分析性能,且结果可靠。

拉曼光谱分析主要以拉曼光谱仪为仪器,以激发源、解调装置、光谱检测器、数据处理系统等组成,可进行对不同物质的定量分析。

拉曼光谱的研究方法有许多,其中最常用的是拉曼显微镜的应用,这种方法可以使显微样品中的全部结构特征得到清晰的绘制,拉曼显微镜可用来分析单分子及结构光谱学研究、微量物质成份及结构研究以及其他有机和无机分析等领域。

另外,还有拉曼聚焦显微镜,它是结合传统的拉曼光谱技术和显微成像技术的一种有效的组合,可以同时采集拉曼光谱和显微图像,这在分析特定位置的光谱特征方面有很大的用处,这类技术的系统也可以应用于生物样本的光谱探测分析,可以获得更为精确的结果。

拉曼光谱分析技术也在电化学领域发挥了重要作用,利用拉曼光谱技术可以快速准确地测定电化学反应物质中各种元素的含量,这种方法被用来研究聚合物材料及其电化学性质。

拉曼光谱分析在研究物质化学结构和性质的领域中发挥重要的作用,同时也在生物医学方面被广泛应用,可用来对细胞核基因组和细胞膜的化学特性进行研究,帮助科学家解释复杂的细胞过程。

总之,拉曼光谱分析是光谱学的一种重要技术,它可以提供准确的结果,在生物、物理等多个领域都有重要的应用,未来仍将有更大的发展前景。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析简介拉曼光谱分析是一种非常重要的光谱分析技术,它通过测量物质产生的拉曼散射光谱,来获取样品的结构和化学特性信息。

拉曼光谱分析是一种非毁灭性的分析技术,具有快速、灵敏、无需样品处理等优点。

本文将介绍拉曼光谱分析的原理、仪器设备以及应用领域。

原理拉曼光谱是一种由分子振动引起的散射光谱,它是分子能级间跃迁导致的,这种能级间跃迁通常称为拉曼散射。

拉曼散射有两种类型:弹性散射和非弹性散射。

弹性散射不改变光子的能量,而非弹性散射改变光子的能量。

拉曼光谱分析主要关注非弹性散射。

拉曼光谱分析的原理可以用以下简单的公式表示:其中,ω0是激发激光的频率,ωR是散射光的频率。

Δω = ωR - ω0称为拉曼位移,它表示了散射光与激发激光的频率差异。

仪器设备进行拉曼光谱分析需要使用拉曼光谱仪。

典型的拉曼光谱仪由以下几个主要部分组成:1.激光源:用于提供激发激光。

激光源通常使用激光二极管或气体激光器。

2.光学系统:包括收集和聚焦激光光束的透镜、散射样品的光学系统和收集散射光的光学系统。

3.光谱仪:用于分析收集到的散射光谱。

光谱仪通常包括光栅或狭缝,用于分离不同频率的散射光。

4.光敏探测器:用于测量分离后的散射光强度。

光敏探测器常用的包括光电二极管和光电倍增管。

5.数据处理系统:用于控制仪器设备,获取和分析光谱数据。

应用拉曼光谱分析在很多领域都有广泛的应用,以下列举了一些常见的应用领域:化学分析拉曼光谱可以用于分析和鉴定化学物质。

由于每种化学物质具有独特的拉曼光谱特征,因此可以通过比对样品的拉曼光谱与标准库中的光谱,来确定样品的成分和浓度。

生物医学研究拉曼光谱分析在生物医学研究中有很多应用。

例如,可以使用拉曼光谱分析来研究细胞的组成和结构,从而了解生物体内部的变化和疾病发展。

材料科学拉曼光谱分析在材料科学中也有广泛应用。

它可以用于表征和鉴定材料的结构、纯度和晶格缺陷等特性。

同时,拉曼光谱还可以研究材料的相变和相互作用等过程。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是20世纪80年代发展起来的一种无损检测技术,由于它能够直接检测出样品中微量元素的特征波长,因此这种方法可用于任何类型材料的定性、定量检测。

拉曼光谱通常是使用电子轰击被检物品,从而引起其内部结构的变化,形成以拉曼位移为特征的吸收光谱。

由于人体组织会发生多种物理和化学反应,因此拉曼光谱也可以对其进行定性、定量分析。

拉曼光谱既适用于各种样品的定性、定量检测,也适用于原材料的鉴别。

拉曼光谱是利用多层次样品对光的选择吸收,如同黑暗中的电灯泡,辐射光源照射在物质上,物质对不同频率的电磁波产生的选择吸收不同。

样品在拉曼光谱仪器里所受到的辐射强度正比于样品浓度的平方,光的强度越大,吸收就越强,被吸收的辐射功率就越弱,这个信号就是拉曼位移信号,它有一个峰值。

把光谱分成若干个区间,每一个区间代表一个样品,这样就得到了被分析样品的拉曼光谱图。

对于拉曼光谱法,由于需要专业的设备,操作也较为复杂,还有一些缺点,因此它只适合于某些特殊的场合,例如:科研机构研究单一样品;某些工艺流程中的产品或某一特殊阶段产品等。

例如,金属铜中含有Cu,分析其含量,可以采用其他方法,但是由于该铜样品本身具有磁性,用传统的方法测试比较困难,此时可以采用拉曼光谱法,只要检测出Cu的拉曼光谱,即可以测定铜中的含量,又如钢铁中碳的含量测定,在工业生产过程中会加入微量元素,当碳含量达到0。

1%时就不能排除其他杂质,此时就可以采用拉曼光谱分析法,找到碳含量小于0。

1%的碳,那么此批钢铁的合格率就能达到100%。

再如食品和药品等也可以通过拉曼光谱法进行检测。

目前我国的日用化学品已经全部列入强制性检验范围,凡是进口的产品都必须进行拉曼光谱分析。

以下介绍拉曼光谱的工作原理:被检测样品与入射电子之间存在着相互作用,引起样品中特征拉曼位移的强度称为拉曼增强。

拉曼位移的强度与样品浓度呈线性关系,可用拉曼增强的拉曼位移来确定样品的浓度。

拉曼增强的位移与样品的种类和浓度有关,并且随样品浓度增加而增大。

拉曼光谱分析法

拉曼光谱分析法
2)红外光谱中,由C N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。
3)环状化合物的对称呼吸振动常常是最强的拉曼谱带。
4)在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键 的对称伸缩振动是强谱带,反这类键的对称伸缩振 动是弱谱带。红外光谱与此相反。
5)C-C伸缩振动在拉曼光谱中是强谱带。
Infrared and Raman Spectra of Benzene
IR
Raman
拉曼光谱与红外光谱分析方法比较
拉曼光谱
红外光谱
光 谱 范 围 40-4000C m -1
光 谱 范 围 400-4000C m -1
水可作为溶剂
样品可盛于玻璃瓶,毛细管等容器 中直接测定
固体样品可直接测定
水不能作为溶剂 不能用玻璃容器测定 需要研磨制成 KBR 压片
• spectrum independent of excitation wavelength (488, 632.8, or 1064 nm)
Spectrum of CCl4, using an Ar+ laser at 488 nm.
Raman Spectroscopy
Another spectroscopic technique which probes the rovibrational structure of molecules. C.V. Raman discovered in 1928; received Nobel Prize in 1931. Can probe gases, liquids, and solids. Must use a laser source for excitation. Resurgence in recent years due to the development of new detectors with improved sensitivity. Shift back away from FT-Raman to dispersive Raman with multichannel detector systems.

拉曼光谱分析法

拉曼光谱分析法

红外活性和拉曼活性振动
①红外活性振动 ⅰ永久偶极矩;极性基团; ⅱ瞬间偶极矩;非对称分子;
红外活性振动—伴有偶极矩变化的振动可以
产生红外吸收谱带.
②拉曼活性振动
eE
诱导偶极矩 = E
r
非极性基团,对称分子;
e
拉曼活性振动—伴随有极化率变化的振动。
对称分子:
对称振动→拉曼活性。
不对称振动→红外活性
• a series of anti-Stokes shifted peaks (still lower intensity, shorter wavelength)
• spectrum independent of excitation wavelength (488, 632.8, or 1064 nm)
Watch for Fluorescence
Spectrum of anthracene. A: using Ar+ laser at 514.5 nm. B: using Nd:YAG laser at 1064 nm.
Want to use short wavelength because scattering depends on 4th power of frequency. …BUT… Want to use long wavelength to minimize chance of inducing fluorescence.
The Spectrum
A complete Raman spectrum consists of:
• a Rayleigh scattered peak (high intensity, same wavelength as excitation)

仪器分析第11章 拉曼光谱分析法

仪器分析第11章  拉曼光谱分析法

试样室
单色器
要求杂射光尽可能低,并有高的分 辨率和透射率。 双联单色器(仪器心脏):2个光 栅,七面反射镜,4个狭缝;有效降 低杂散光水平。 第三单色器:为检测拉曼位移很低 波数。
拉曼散射光位于可见区 光电倍增管检测器 阵列型多道光电检测器:电荷耦合 阵列检测器(CCD)和电荷注入阵列 检测器(CID); CCD有很高的量子 效率及很低的暗电流和噪声,适于微 弱光信号的检测。
能量增加,波长(数)变短(大) 室温时处于激发态的分子比基态的分子数少,
散射示意图
e e
Anti-Stocks线
Stocks线
e e
温度升高 概率大!
3振 2h 散射
Raman 散射
2、 拉曼光谱图
CCl4的拉曼光谱 Rayleigh scattering
红外C=C 1621 cm-1 强
CN C NH2 C
CN
NH2
互斥法则:有对称中心的分子其分子振动
对红外和拉曼之一有活性,则另一非活性
互允法则:无对称中心的分子其分子振动
对红外和拉曼都是活性的
互禁法则:对少数分子的振动,其红外和拉
曼都是非活性的。如乙烯分子的扭曲振动,不发生极化率和偶极矩
的变化,其红外和拉曼都是非活性的。
λ 变
λ
样 品 池
λ
透过光λ不变 瑞 利 散 射
λ 不 变
Stocks(斯托克斯)线:
3.2 方法原理
能量减少,波长(数)变长(小) 受激虚态不稳定,很快(10-8s)跃回基态
大部分能量不变,小部分产生位移。 Anti-Stocks线: Anti-stocke线也远弱于stocks线。 温度升高,反斯托克斯线增加。

拉曼光谱

拉曼光谱

拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

在很长的一段时间,由于拉曼与生俱来的缺点(信号弱)而限制了它的应用,但是随着仪器技术的发展,仪器的灵敏度和分辨率不断提高,体积减小了,操作也简单了,同时仪器的价格也降低了,很多单位已经可以买的起了,用户也越来越多。

总体来说现在拉曼光谱仪已经向分析型仪器方向发展了,应用领域也由原来的材料领域,拓展到了化学、催化、刑侦、地质领域、艺术、生命科学等各个领域,甚至有一些QC领域也已经开始使用拉曼光谱仪了。

不过,我们同时也发现,由于当前拉曼光谱仪的用户还不是很多,很多用户拉曼光谱相关基础较弱,在使用过程中总会遇到一些问题,如Ramanshift和wavenumber是一回事吗?拉曼谱里面得到的荧光背景和荧光光谱仪里面的荧光图区别在哪里?激光拉曼光谱和红外光谱有什么区别?为此,小编今天给大家分享一下拉曼光谱仪使用过程中的一些常见问题和解决方案,其中也包括了一些基础的概念性问题帮助您更好的理解其中的原理,即使您是“门外汉”,看完这些对拉曼光谱也会有一个比较清楚的了解。

详细内容如下:一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。

1. 两者是一回事。

ramanshift即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图横坐标就是波数wavenumber,单位cm-1。

2.两者一回事。

拉曼频移ramanshift指频率差,但通常用波数wavenumber表示,单位cm-1,可以说某个谱峰拉曼位移是??波数,或??cm-1。

3.在Raman谱中,wavenumber有两种理解,一种是相对波数,这时就等于Ramanshift;另一种是绝对波数(这在荧光光谱中用的比较多),这个绝对波数是与激发波长有关,不同的激发波长得到的绝对波数是不一样的,这时Ramanshift等于(10000000/激发波长减去Raman峰的绝对波数)。

拉曼光谱分析的原理及应用

拉曼光谱分析的原理及应用

拉曼光谱分析的原理及应用1. 引言拉曼光谱分析是一种非常重要的光谱分析技术,可以用于物质的成分分析和结构表征。

本文将介绍拉曼光谱分析的基本原理,并探讨其在各个领域的应用。

2. 拉曼光谱分析的原理拉曼光谱分析基于拉曼散射效应,其原理可以简单概括为:物质受到激光照射后,光子与分子进行相互作用,一部分光子会被散射并改变频率,这个频率差称为拉曼散射频移。

通过测量拉曼散射光的频移,可以获取物质的结构信息和振动模式。

3. 拉曼光谱分析的步骤拉曼光谱分析包括以下几个步骤: - 选择适当的激光源和光谱仪,确保实验条件和仪器精度; - 将样品与激光束进行交互作用,通常采用激光聚焦技术,使激光与样品相互作用,产生拉曼散射光; - 使用光谱仪收集拉曼散射光,并对其进行光谱分析,包括频移的测量和峰谱分析; - 对光谱数据进行处理和解析,以获取样品的结构信息和振动模式。

4. 拉曼光谱分析的应用领域拉曼光谱分析在各个领域都有广泛的应用。

以下列举了几个典型的应用领域:4.1 材料科学•材料成分分析:通过拉曼光谱分析,可以对材料的成分进行快速、非破坏性的检测,如金属合金、聚合物材料等。

•相变研究:通过观察拉曼光谱中的频移和峰形变化,可以研究材料在不同温度和压力下的相变过程。

4.2 生物医学•药物分析:拉曼光谱可以用于药物的质量控制和表征,如药物的纯度、结晶形态等。

•细胞研究:通过拉曼光谱技术,可以对细胞内的分子成分和代谢物进行分析,以研究细胞的结构和功能。

4.3 环境监测•气体检测:拉曼光谱分析可以用于快速检测大气中的气体成分,如空气中的二氧化碳、甲烷等。

•水质检测:通过拉曼光谱分析,可以对水质进行快速、非破坏性的检测,如水中的重金属离子、有机物等。

4.4 犯罪科学•鉴定和分析:拉曼光谱分析可以被用于犯罪现场的样品分析和鉴定,如毒品、爆炸物等。

5. 拉曼光谱分析的优势和挑战拉曼光谱分析具有以下优势: - 非破坏性:样品不需要受到破坏或改变,可以进行多次分析。

拉曼光谱分析

拉曼光谱分析

拉曼光谱分析拉曼光谱分析是一种基于光谱仪技术的分析方法,通常用于分析分子结构,研究物质的组成成分,识别有机和无机化合物。

拉曼光谱是物质中分子键的动力学反应的结果。

当分子键之间的应力改变时,分子中的电子会从一种能量状态转变到另一种能量状态,这时会有光谱信号产生。

通过对拉曼光谱的研究,可以了解分子的结构及分子内的化学键的特性,从而完成分子结构鉴定等实验。

拉曼光谱分析的主要原理是,当物质由较低能级到较高能级时,由于能量平衡要求,物质发出拉曼谱线,用以表示分子结构的特征。

由于当物质进入较低能级时,物质发出的拉曼谱线比较弱,因此,传统的拉曼光谱分析需要用特殊的仪器,如电子光谱仪和质谱仪,来获取分子结构的特异性信号,然后用统计学方法对信号进行处理以获取拉曼光谱。

拉曼光谱分析具有一些独特的优点,如灵敏度高、量程可调,可以用于检测微量样品中的化合物。

它可以用于检测复杂结构物质,如生物分子等,可以检测分子内部的结构特征和定量分析分子中的各种元素含量。

此外,拉曼光谱分析可用于检测吸收形式的化学反应。

因此,拉曼光谱分析是不可缺少的实验技术,在分析有机化合物结构、研究物质组成成分、鉴定有机物等方面被广泛应用。

拉曼光谱分析是一种非常重要的分析技术,它可用于研究分子结构、分析有机化合物的组成成分和鉴定有机物,在分子结构的研究中发挥着重要作用。

它的灵敏度高、量程可调,可用于检测微量样品中的化合物,可以检测分子内部的结构特征和定量分析分子中的各种元素含量,并且可用于研究复杂结构物质,因此得到了更广泛的应用。

总之,拉曼光谱分析是一种重要的实验技术,它是一种既高灵敏又量程可调的分析技术,可以用来分析物质的组成成分、识别有机物和无机物,也可以用来研究分子的结构特征,并定量分析分子中的各种元素含量,是研究分子结构和检测化合物定量分析的重要工具。

拉曼光谱分析法教学课件

拉曼光谱分析法教学课件
增管、电荷耦合器件等。
拉曼光谱仪的使用方法
样品制备
将待测样品制备成适合测量的 形态,如固体、液体或气体等 。
光谱采集
将制备好的样品放入样品室, 关闭样品室门,开始采集拉曼 光谱。
开机预热
打开拉曼光谱仪电源,进行预 热,使仪器处于稳定工作状态 。
参数设置
根据样品类型和测量要求,设 置合适的激光波长、功率、积 分时间等参数。
拉曼光谱分析法的发展前景与展望
拓宽应用领域
01
拉曼光谱分析法在环境监测、食品安全、生物医药等领域有着
广泛的应用前景,未来将进一步拓宽其应用领域。
提高检测效率
02
通过优化光路设计、改进信号处理方法等手段,提高拉曼光谱
分析法的检测效率,实现更快速、更准确的检测。
加强国际合作与交流
03
加强国际间的合作与交流,共同推动拉曼光谱分析法的发展与
拉曼光谱分析法特点
01
02
03
无损检测
拉曼光谱分析法是一种无 损检测技术,可以在不破 坏样品的情况下进行分析 。
高分辨率
拉曼光谱分析法具有高分 辨率,能够区分不同的化 学键和官能团。
广泛应用
拉曼光谱分析法在化学、 生物、医学、材料科学等 领域都有广泛的应用。
拉曼光谱仪的构成
02
与使用
拉曼光谱仪的构成
拉曼光谱分析法的
04
数据处理与解析
拉曼光谱数据的预处理方法
基线校正
消除光谱基线漂移,提高信噪比 。
平滑处理
降低光谱噪声,提高数据质量。
归一化处理
消除光强差异,便于不同光谱间 的比较。
拉曼光谱数据的解析方法
峰位识别
确定拉曼特征峰的位置,鉴别物 质种类。

拉曼光谱

拉曼光谱

分析技术
种类
优点
不足
几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 拉曼光谱2、以CCD为代表的多通道探测器的拉曼光谱分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 拉曼光谱用于分析的优点和缺点
1、拉曼光谱用于分析的优点
含义
光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散 射光有比激发光波长长的和短的成分,统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。
拉曼光谱-原理 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级 (点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:
相关信息
电化学原位拉曼光谱法,是利用物质分子对入射光所产生的频率发生较大变化的散射现象,将单色入射光(包 括圆偏振光和线偏振光)激发受电极电位调制的电极表面,通过测定散射回来的拉曼光谱信号(频率、强度和偏振 性能的变化)与电极电位或电流强度等的变化关系。一般物质分子的拉曼光谱很微弱,为了获得增强的信号,可采 用电极表面粗化的办法,可以得到强度高104-107倍的表面增强拉曼散射(Surface Enhanced Raman Scattering, SERS)光谱,当具有共振拉曼效应的分子吸附在粗化的电极表面时,得到的是表面增强共振拉曼散射(SERRS)光谱, 其强度又能增强102-103。
拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分 析过程中操作简便,测定时间短,灵敏度高等优点。
2、拉曼光谱用于分析的不足 (1)拉曼散射面积 (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响 (3)荧光现象对傅立叶变换拉曼光谱分析的干扰 (4)在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题 (5)任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析 的结果产生一定的影响。

拉曼光谱法的原理和应用

拉曼光谱法的原理和应用

拉曼光谱法的原理和应用1. 拉曼光谱法的基本原理拉曼光谱法是一种非常重要的光谱分析方法,它基于拉曼散射的原理。

拉曼散射是指当入射光与样品发生相互作用时,一部分光子的能量被转移给样品分子,然后以不同的频率重新散射出来。

这种重新散射的光子所具有的能量差值既可以是正的,也可以是负的,分别对应着被称为斯托克斯线和反斯托克斯线的拉曼散射光。

•斯托克斯线:当光子从较高的能级跃迁到较低的能级时,拉曼散射光的频率减小,能量减小,波长增加。

•反斯托克斯线:当光子从较低的能级跃迁到较高的能级时,拉曼散射光的频率增加,能量增加,波长减小。

2. 拉曼光谱法的应用领域拉曼光谱法具有广泛的应用领域,包括但不限于以下几个方面。

2.1. 材料科学•物质成分分析:拉曼光谱法可以用于材料的组成分析,通过比对样品的拉曼光谱图与数据库中的标准光谱进行比对,可以准确分析样品中的成分。

•结构表征:拉曼光谱法可以提供物质的分子结构信息,该信息可以用于研究材料的晶体结构、化学键的构型等重要参数。

•表面增强拉曼光谱:通过表面增强效应,可以提高样品的散射和检测灵敏度。

这种技术可以应用于纳米材料、生物分析、化学传感等领域。

2.2. 化学分析•溶液分析:拉曼光谱法可以用于溶液中化学物质的浓度和组成分析,具有快速、无需特殊处理的优势。

•反应动力学研究:通过监测反应溶液中物质浓度的变化,可以推断反应的动力学过程和速率常数。

2.3. 生物医学•药物分析:拉曼光谱法可以用于药物的质量控制、纯度检测等方面,具有快速、无损、无需特殊处理的特点。

•生物分子分析:拉曼光谱法可用于蛋白质、DNA、RNA等生物分子的结构和成分分析,可以研究生物分子的结构、功能和相互作用。

2.4. 环境监测•气体分析:拉曼光谱法可以用于空气污染物的检测和分析,例如检测有毒气体、工业废气等。

•土壤和水质分析:拉曼光谱法可以用于土壤和水质中的有机物、无机物的检测和分析,具有快速、无损的特点。

拉曼光谱分析

拉曼光谱分析

Intensity (Arb. Units)
TiO2/300℃
20000 228
TiO2/400℃
TiO2/500℃ 0 145 294 404 516 635 TiO2/600℃ 500 800 1000 200 Raman Shift / cm–1
Raman scattering
拉曼原理
n
斯托克斯(Stokes)拉曼散射 分子由处于振动基态E0被激发到激发态E1时,分子获得的能量为ΔE, 恰好等于光子失去的能量:ΔE=E1-E0,由此可以获得相应光子的频 率改变Δν=ΔE/h
n
Stokes散射光线的频率低于激发光频率 。反Stokes线的频率νas=ν0+ ΔE/h,高于激发光源的频率。 拉曼散射的产生与分子的极化率α有关系 α 是衡量分子在电场作用下电荷分布发生改变的难易程度,或诱导偶极 距的大小,即单位电场强度诱导偶极距的大小。 散射光与入射光频率的差值即是分子的振动频率
n
n
n n
局限:不适于有荧光产生的样品 解决方案:改变激光的激发波长,尝试 FT-Raman光谱仪
Raman光谱仪
优势:激发波长较长, 可以避免部分荧光产生
局限:黑色样品会产生热背景 薄膜样品的厚度应 >1m 光谱范围:5~4000cm-1
分析方法
n
普通拉曼光谱 一般采用斯托克斯分析
n
反斯托克斯拉曼光谱 采用反斯托克斯分析
温度范围: 液氮温度(-195℃)至 1000℃ 自动设置变温程序
适于分析随温度变化发生的: 相变 形变 样品的降解 结构变化
样品制备
n
溶液样品 一般封装在玻璃毛细管中测定 固体样品 不需要进行特殊处理
n
材料分析中的应用

《拉曼光谱分析》PPT课件

《拉曼光谱分析》PPT课件
优势:激发波长较长, 可以避免部分荧光产生
局限:黑色样品会产生热背景
>1m
薄膜样品的厚度应
23
光谱范围:5~4000cm-
分析方法
普通拉曼光谱 一般采用斯托克斯分析
反斯托克斯拉曼光谱 采用反斯托克斯分析
24
Raman光谱可获得的信息
Raman 特征频率
Raman 谱峰的改变
Raman 偏振峰
化学反应形成界面层,增强化学结合 物理扩散形成界面层,增强物理结合力
49
ACP(%)
ACP (%)
100
Cr
C
50
0 0
50
O
Cr
C
O
2
4
6
8
sputtering time / min
100 depth profile lines
Cr as Cr2C C as diamond
C as Cr2C
C
Cr 50
原位变温附件
适于分析随温度变化发生的: 相变 形变 样品的降解 结构变化
31
温度范围: 液氮温度(-195℃) 至1000℃
自动设置变温程序
样品制备
溶液样品 一般封装在玻璃毛细管中测定
固体样品 不需要进行特殊处理
32
材料分析中的应用
无机化学研究 无机化合物结构测定,主要利用 拉曼光谱研究无机键的振动方式, 确定结构。
如纳米Ag,Au胶颗粒吸附染料或有机物质,其检测灵敏度可以提高105~109量 级。可以作为免疫检测器。
29
紫外拉曼光谱
为了避免普通拉曼光谱的荧光作用,使用波长较短的紫外激光光源,可以使 产生的荧光与散射分开,从而获得拉曼信息。适合于荧光背景高的样品如催 化剂,纳米材料以及生物材料的分析。

拉曼光谱拉曼光谱分析

拉曼光谱拉曼光谱分析

引言概述:拉曼光谱是一种非侵入性的光谱分析技术,可以用来研究物质的化学成分、结构和分子间相互作用等信息。

通过测量样品与激发光相互作用后反散射光的频移,可以得到样品的拉曼光谱图谱。

拉曼光谱具有快速、灵敏和无需样品处理等优势,因此在化学、材料科学、生物医学和环境科学等领域被广泛应用。

正文内容:一、理论基础1. 拉曼散射原理:介绍拉曼光谱的基本原理,包括应力引起的拉曼散射和分子振动引起的拉曼散射。

2. 基本理论模型:介绍拉曼光谱的基本理论模型,包括简谐振动模型和谐振子模型等。

二、仪器设备1. 激发光源:介绍常用的激发光源,如激光器和光纤激光器等,以及它们的特点和选择。

2. 光谱仪:介绍常用的拉曼光谱仪,包括激光外差光谱仪和光纤光谱仪等,以及它们的原理和优缺点。

3. 采样系统:介绍拉曼光谱的采样系统,包括反射式、透射式和光纤探头等,以及它们的适用范围和操作注意事项。

三、数据处理与分析1. 光谱预处理:介绍光谱预处理的方法,包括光谱平滑、噪声抑制和基线校正等,以提高数据质量和减少干扰。

2. 谱图解析:介绍拉曼光谱谱图的解析方法,包括峰拟合、峰识别和谱图比较等,以确定样品的化学成分和结构信息。

3. 定量分析:介绍拉曼光谱的定量分析方法,包括多元线性回归和主成分分析等,以快速准确地测量样品的含量和浓度。

四、应用领域1. 化学分析:介绍拉曼光谱在化学分析中的应用,包括有机物和无机物的定性和定量分析,以及催化剂和原位反应研究等。

2. 材料科学:介绍拉曼光谱在材料科学中的应用,包括纳米材料、多晶材料和聚合物等的表征和结构分析。

3. 生物医学:介绍拉曼光谱在生物医学中的应用,包括体液中代谢产物和蛋白质的检测,以及癌症和药物代谢研究等。

4. 环境科学:介绍拉曼光谱在环境科学中的应用,包括土壤和水体中有机物和无机物的检测,以及大气污染和环境污染物的监测等。

五、发展前景与挑战1. 发展前景:介绍拉曼光谱在未来的发展前景,包括高灵敏度和高分辨率的光谱仪、纳米尺度的光学探针和超快激光技术等。

拉曼光谱分析技术ppt课件

拉曼光谱分析技术ppt课件

Δν/cm-1
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拉曼效应的机制和荧光现象不同,并不吸收激发光,因此不 能用实际的上能级来解释,玻恩和黄昆用虚的上能级概念 说明拉曼效应。
假设散射物分子原来处于电子基态,振动能级如上图所示。当 受到入射光照射时,激发光与此分子的作用引起极化可以 看作虚的吸收,表述为跃迁到虚态虚能级上的电子立即跃 迁到下能级而发光,即为散射光。存在如图所示的三种情 况,散射光与入射光频率相同的谱线称为瑞利线,与入射 光频率不同的谱线称为拉曼线。
1.2 拉曼光谱技术的优越性
提供快速、简单、可重复且更重要的是无损伤的定性 定量分析,它无需样品准备,样品可直接通过光纤探 头或者通过玻璃、石英和光纤测量。此外
1) 由于水的拉曼散射很微弱,拉曼光谱是研究水 溶液中的生物样品和化学化合物的理想工具。
2) 拉曼光谱一次可同时覆盖50-4000波数的区间, 可对有机物及无机物进行分析。相反,若让红外光谱 覆盖相同的区间则必须改变光栅、光束分离器、滤波 器和检测器
(1)拉曼光谱是一个散射过程,因而任何尺寸、形状、 透明度的样品,只要能被激光照射到,就可直接用来 测量。由于激光束的直径较小,且可进一步聚焦,因 而极微量样品都可测量。
(2)水是极性很强的分子,因而其红外吸收非常强烈。 但水的拉曼散射却极微弱,因而水溶液样品可直接进 行测量,这对生物大分子的研究非常有利。
(3)对于聚合物及其他分子,拉曼散射的选择定则的 限制较小,因而可得到更为丰富的谱带。S—S,C—C, C=C,N=N等红外较弱的官能团,在拉曼光谱中信号 较为强烈。
拉曼光谱研究高分子样品的最大缺点是荧光散射 。

拉曼光谱分析法范文

拉曼光谱分析法范文

拉曼光谱分析法范文拉曼光谱分析法是一种非常重要的光谱分析方法。

它以拉曼散射现象为基础,通过测量样品散射光中产生的拉曼散射光谱,来研究样品的结构、成分以及其他相关信息。

拉曼光谱具有独特的优点,包括非破坏性、非侵入性、高灵敏度、高分辨率等,因此广泛应用于化学、生物、环境、材料科学等众多领域。

拉曼散射是指入射光与样品交互作用后,产生的散射光中具有法拉第旋转分量的现象。

当入射光与样品分子或晶格相互作用时,部分光子与样品产生能量和频率的交换,从而产生散射光谱。

这种交换能量和频率的过程被称为拉曼散射。

在拉曼光谱中,有两个核心概念:拉曼散射光和拉曼位移。

拉曼散射光由斯托克斯线和反斯托克斯线组成。

斯托克斯线对应于入射光的频率低于散射光的频率,反斯托克斯线则相反。

拉曼位移指的是入射光与散射光之间的频率差,它反映了样品的结构和振动信息。

拉曼光谱分析法有几个常用的技术。

首先是常规拉曼光谱分析。

这种方法使用连续波激光作为光源,测量样品散射光的强度和频率来确定分子结构和成分。

它广泛应用于有机化学、无机化学等领域,对于分子结构的研究非常有价值。

此外,还有共振拉曼光谱分析法。

共振拉曼利用共振增强效应,通过选定能级的激发来增强拉曼信号。

这种方法对于复杂样品和低浓度样品的分析具有很高的灵敏度。

例如,在生物医学领域,共振拉曼技术常被用于细胞和组织的研究。

另一个重要的拉曼光谱技术是表面增强拉曼光谱(SERS)。

SERS利用纳米颗粒或纳米结构表面的增强效应,将拉曼信号增强到非常高的程度。

这种技术对于分析低浓度物质非常有用,例如药物、环境污染物等。

SERS还可以用于研究催化反应、表面化学等方面。

在拉曼光谱分析中,数据处理和解释也是非常重要的。

拉曼光谱数据通常包含大量信息,需要利用统计学、化学信息学等方法进行数据处理和分析。

常见的数据处理方法包括主成分分析、聚类分析、偏最小二乘法等。

这些方法可以帮助提取样品的关键信息,实现更深入的研究和分析。

11第11章 激光拉曼光谱分析法PPT课件

11第11章  激光拉曼光谱分析法PPT课件
• 入射光与样品分子之间还存在着概率更小的非弹性碰 撞(仅为总碰撞数的十万分之一),光子与分子间发 生能量交换,使光子的方向和频率均发生变化。这种 散射光频率与入射光频率不同,且方向改变的散射为 Raman散射,对应的谱线称为Raman散射线(Raman 线)。
• 与入射光频率ν0相比,频率降低的为Stokes(Stokes) 线,频率升高的则为反Stokes线。Stokes线或反Stokes 线与入射光的频率差为Raman位移。
是共振Raman光谱,灵敏度高,检出限可到10-6~10-8 mol·L-1。 • 4. Raman光谱所需样品量少,g级即可。 • 5. 由于共振Raman光谱中谱线的增强是选择性的,因 此可用于研究发色基团的局部结构特征。
3
11.2 基本原理
• 11.2.1 Raman散射与Raman位移
• 当频率为ν0的位于可见或近红外光区的强激光照射样 品时,有0.1%的入射光子与样品分子发生弹性碰撞, 此时,光子以相同的频率向四面八方散射。这种散射 光频率与入射光频率相同,而方向发生改变的散射, 称为Rayleigh(瑞利)散射。
• 当物质颗粒尺寸等于或大于入射光波长, 产生丁达尔散射。
• 当物质颗粒尺寸小于入射光波长,产生 拉曼散射和瑞利散射。
• 弹性碰撞时 无能量交换,且不改变频 率,,仅改变运动方向,称瑞利散射;
• 非弹性碰撞不但改变方向,还有能量交 换和频率改变,称拉曼散射。
1
整体概况
概况一
点击此处输入 相关文本内容
15
11.4 激光Raman光谱法的应用
• 11.4.1 定性分析
• Raman位移△ ~表征了分子中不同基团振动的特性,
因此,可以通过测定△ 对分~子进行定性和结构分 析。另外,还可通过退偏比ρ的测定确定分子的对 称性。 • 无机、有机、高分子等化合物的定性分析; • 生物大分子的构象变化及相互作用研究; • 各种材料(包括纳米材料、生物材料、金刚石)和 膜(包括半导体薄膜、生物膜)的Raman分析; • 矿物组成分析; • 宝石、文物、公安样品的无损鉴定等方面。 16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前置单色器
计算机系统
激光器
✓激光器
激发光源常用连续气体激光器; 如最常用Ar+激光器 488.0/514.5nm, 频率高,拉曼光强大; 其它如氦-氖、氪离子激光器; 共振拉曼光谱:从激光器的输出激光线 中选择或用可调谐激光器(如染料激光 器)。 见表11-2(P.334)
✓试样室
➢前置单色器:选取某固定波长的激光 并降低杂射光的影响 ➢90º照明方式;发射透镜:使激光聚 焦在样品上;会集透镜:使拉曼光聚焦
拉曼活性与红外活性
O=C=O
对称伸缩
O=C=O
反对称伸缩
偶极矩不变无红外活性 偶极矩变有红外活性
极化率变有拉曼活性 极化率不变无拉曼活性
互斥法则:有对称中心的分子其分子振动 对红外和拉曼之一有活性,则另一非活性。
互允法则:无对称中心的分子其分子振动 对红外和拉曼都是活性的。
互禁法则:对少数分子的振动,其红外和 拉曼都是非活性的。如乙烯分子的扭曲振 动,不发生极化率和偶极矩的变化,其红 外和拉曼都是非活性的。
第11章 激光拉曼光谱分析
(Laser Raman Spectroscopy)
§11-1 拉曼光谱原理 §11-2 拉曼光谱与红外光谱的关系 §11-3 激光拉曼光谱仪 §11-4 激光拉曼光谱的应用
§11-1 拉曼光谱原理
一、概述 二、拉曼光谱图
1、瑞利散射与拉曼散射 2、拉曼光谱图 3、拉曼光谱与分子极化率的关系
Nd-YAG激光器代替可见光激光器; 产生1.064μm近红外激发光,比可见光 长约1倍,影响信噪比,FT技术克服; 激发光能量低于荧光所需阈值。
✓迈克 尔逊干 涉仪
➢与FTIR使用的干涉仪一样,只是使用 CaF2分束器(适于近红外) ➢干涉图经计算机变换得到拉曼散射强 度随拉曼位移变化的拉曼光谱图
与红外光谱相比拉曼光谱的其它优点: 拉曼光谱有较宽的测定范围(4000cm-1~40cm-1) 激光拉曼光谱较易确定谱带的归宿,谱图解析较方便 共振拉曼效应对有生色团的化合物研究有显著优越性 拉曼光谱有利于水溶液的测定 拉曼光谱试样的制备处理很简单
§11-3 激光拉曼光谱仪
LRS-II型激光拉曼/荧光光谱仪 激光拉曼光谱仪可分为 色散型和傅里叶变换型
I||
对称分子ρ= 0 非对称分子ρ介于0到3/4之间 ρ值越小,分子对称性越高
一般的光谱只能得到频率和强度两个参数,而拉 曼光谱还可得到另一个重要的参数——去偏振度。这 对于各振动形式的谱带归属和重叠谱带的分离是很有 用的。
处于218cm-1及314cm-1的拉曼谱带,测得值约为 ρ= 0.75,属于不对称振动;459cm-1处的ρ= 0.007 则为对称振动。
➢扫描速率快
✓试样室
➢采用背向照明方式,收集尽可能多 的拉曼信号;
➢仪器的光学反射镜面镀金,获更高 的反射率。
✓滤光 片组
➢滤除很强的瑞利散射光;
➢干涉滤光片组,由折射率高低不同 的多层材料交替组合而成。
✓检测器
➢室温下的铟鎵砷检测器 ➢液氮冷却的锗检测器
三、激光显微拉曼光谱仪
使入射激光通过显微镜聚焦到试样的微小部位 (直径小至5 μm ),可精确获取所照射部位的拉 曼光谱图。 ➢ 共焦显微激光拉曼光谱仪(使用CCD检测器): 显微镜的物镜和目镜的示微区的不同深度 和三维结构信息。 ➢ 激光拉曼光纤探针:光导纤维传感技术与显微镜 耦合而成,可对远距离、特殊环境中试样的拉曼散 射进行原位遥感探测。
§11-4 激光拉曼光谱的应用
一、 无机体系
➢ 优于红外 ➢ M-O也具有Raman活性 ➢ Raman谱证实:
V(IV)是VO2+不是V(OH)22+ 硼酸离解是B(OH)4-不是H2(BO)3-
➢ Raman光谱测定H2SO4等强酸的解离常数。
二、 有机化合物
➢ 与红外互补 ➢ Raman适骨架,IR适端基
振动 σ/cm-1 拉曼强度 红外强度
O-H 3650-3000 w
s
C=C 1900-1500 vs-m
m-w
N=N芳取代 1440-1410 m
m
三、 发展 1 共振拉曼光谱RRS
➢ 激发频率等于或接近电子吸收带频率时共振
➢ 拉曼强度增万至百万倍,高灵敏度,宜定量 ➢ 共振,高选择性 ➢ 可调染料激光器
➢ 同核双原子分子,它们振动是否具有红外或拉曼活性?
➢CS2分子的对称伸缩振动时,是否具有红外或拉曼活性? 反对称伸缩振动时呢?
Rayleigh scattering
Stocks lines
anti-Stockes lines
Δν/cm-1
CCl4的拉曼光谱
10000
便携式仪器实测图
456
8000
(Stocks线)
311
6000
相对强度
4000
217
可见,拉曼光谱观测的是相对于入射光频率 的2位00移0 (用波数表示)。
0
0
100
200
300
400
500
600
Δν/cm-1
因此,拉曼光谱图是以拉曼位移为横坐标,谱带 强度为纵坐标作图得到。
拉曼位移(Raman shift)
Δν=| ν拉曼散射 – ν激发光 |
即拉曼散射光频率与激发光频率之差取绝对值。Δv 取决于分子振动能级的分布,具有特征性。
由于拉曼光谱是以激发光波数作为零并处于图的最 边且略去反斯托克斯线而得到的谱带,因此得到的是 便于与红外吸收光谱相比较的拉曼光谱图。
如果分子的振动形式对于红外和拉曼都是活性的, 那么它们的基团频率是等效和通用的。
拉曼光谱的各种基团特征频率在一些专著中都以分 类列出并出版有标准谱图(如Sadtler 标准光谱图)。 目前红外光谱图明显占优势,拉曼还需累积。
综上所述,拉曼光谱和红外光谱各有所长,相互补 充,两者结合可得到分子振动光谱更为完整的数据, 从而有利于研究分子振动和结构组成。
瑞利散射λ不变 拉曼散射λ变
①:散射光的波长与入射光相同。 弹性碰撞无能量交换。→ 瑞利散射
②:瑞利散射波长两侧还有散射光,非弹性碰 撞,有能量交换,波长有变化。 → 拉曼散射
λ
λ


增减散 大小射

λ


透过光λ不变

瑞 利


λ
不 变
受激虚态不稳定,很快(10-8s)跃回基态
大部分能量不变,小部分产生位移。
拉曼光谱的发展:
是印度物理学家拉曼(C.V.Raman)于1928年首次发 现(获1930年诺贝尔物理学奖)。
1928~1940年,受广泛重视,曾是研究分子结构的主 要手段。
1940~1960年,拉曼光谱的地位一落千丈。主要是因 为红外技术的进步和商品化得到发展;而拉曼效应太弱 (约为入射光强的10-6),且对被测样品要求高。
(b)试样的平行偏振
四、共振拉曼效应
当激光器的激发线等于或接近于待测分子中生色 团的电子吸收(紫外-可见吸收)频率时,入射激光 与生色基团的电子耦合而处于共振状态,所产生的共 振拉曼效应可使拉曼散射增强102~106倍。
共振拉曼效应除可使灵敏度得到提高外,还可提 高选择性。而利用共振拉曼光谱的某些拉曼谱带的选 择增强,可得到分子振动和电子运动相互作用信息。
三、去偏振度
仪器结构
试样室
双联单色器 第三单色器 检测系统
计算机系统
前置单色器
激光器
激光是偏振光。若在试样池和前置单色器狭缝之间放置
一起偏振器,根据起偏振器的安放方向与激光束的偏振方向平 行或垂直,所记录的拉曼谱带强度(I⊥/I∥)有差别。从而得 到去偏振度的概念。
去偏振度ρ(或退偏比)
I
应用中 问题
应使用多谱线输出的激光器或可调谐激光器
试样吸收激光能而热分解(脉冲激光光源 和旋转试样架) 荧光干扰(利用时间差消除)
§11-2 拉曼光谱与红外光谱的关系

同属分子振(转)动光谱
异 红:外红:外适用于分研子究对不同红原外子光的极的性吸键收振动 -OH强, 度-由C=分O子,偶-极C-距X决定
室温时处于激发态的分子比基态的分子数少,
Anti-stocke线也远弱于stocks线。 温度升高,反斯托克斯线增加。
散射示意图
Anti-Stocks线
Stocks线
e
e
e
e
温度升高 概率大!
3振 电
2动 子
1 0
能 级
基 态
e e
Rayleigh 散射
Raman 散射
2、 拉曼光谱图
CCl4的散射光谱
异 拉:曼拉:曼适用于分研子究对同原激子光的的非极散性射键振动
-N-强N度-由, 分-子C-极C化-率决定
互补
通常有必要同时测定
拉曼位移和红外吸收峰的波数相同,只 是相对强度不同。
结构分析:H4C4N4
拉曼C=C 1623 cm-1 强 红外C=C 1621 cm-1 强
CN C
NH2
CN C
NH2
2 表面增强拉曼光谱SERS
➢ 试样吸附在金属表面上,增103~106 ➢ 表面与共振联用检测限10-9~10-12 mol/L
思考题
➢ 红外光谱取决于分子振动过程中所引起的( )的变化;
拉曼光谱取决于分子振动过程中所引起的( )的变化;若 分子振动过程中既有偶极矩的变化,又有极化率的变化, 则产生( )光谱。
与入射光波长无关
适用于分子结构分析
3、拉曼光谱与分子极化率的关系 拉曼活性取决于振动中极化率是否变化。
若分子在电场E(光波的电磁场)中,产生诱导偶极距μ
μ = αE α为极化率
反映了分子中电子云 变形的难易程度
相关文档
最新文档