三角函数与解三角形(师)
第4章 三角函数、解三角形 第1节 任意角和弧度制及任意角的三角函数
因此 cos 2θ=2cos 2θ-1=25-1=-35.
索引
(3)函数 y= 2cos x-1的定义域为__2__k_π_-__π3_,__2_k_π_+__π3__(k_∈__Z__) _.
解析 ∵2cos x-1≥0, ∴cos x≥21. 由三角函数线画出x满足条件的终边范围(如图阴 影部分所示), ∴x∈2kπ-π3,2kπ+π3 (k∈Z).
索引
2.弧度制的定义和公式 (1)定义:把长度等于__半__径__长__的弧所对的圆心角叫做1弧度的角,弧度记作
rad. (2)公式
角 α 的弧度数公式 角度与弧度的换算
|α|=rl(弧长用 l 表示)
1°=1π80
180° rad;1 rad=___π___
弧长公式 扇形面积公式
弧长 l=_|_α_|_r_ S=__12_lr__=__12_|_α_|r2
索引
感悟提升
应用弧度制解决问题时应注意: (1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
索引
训练1 (1)(2021·长沙质检)已知弧长4π的弧所对的圆心角为2弧度,则这条弧所
在的圆的半径为( D )
A.1
B.2
C.π
D.2π
解析 ∵弧长4π的弧所对的圆心角为2弧度,
∴4rπ=2,解得 r=2π, ∴这条弧所在的圆的半径为2π.
索引
10π (2)在单位圆中,200°的圆心角所对的弧长为______9__,由该弧及半径围成的
5π 扇形的面积为______9__. 解析 单位圆半径 r=1,200°的弧度数是 200×1π80=109π. ∴l=109π,S 扇形=12lr=21×109π×1=59π.
三角函数与解三角形题型归纳及习题含详解
题型 53 终边相同的角的集合的表示与区别 思路提示
(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方 法解决.
(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也 可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标
4. 熟练运用同角三角函数函数关系式和诱导公式进行三角函数式的化简、求值
和简单恒等式的证明.
命题趋势探究
1.一般以选择题或填空题的形式进行考查.
2.角的概念考查多结合函数的基础知识.
3.利用同角三角函数关系式和诱导公式进行三角函数式的化简、求值是重要考点. 知识点精讲 一、基本概念
正角---逆时针旋转而成的角; (1)任意角 负角---顺时针旋转而成的角;
二、任意角的三角函数 1.定义 已 知 角 终 边 上 的 任 一 点 P(x, y) ( 非 原 点 O ), 则 P 到 原 点 O 的 距 离
r OP x2 y2 0 . sin y , cos x , tan y .
r
r
x
此定义是解直三角形内锐角三角函数的推广.类比,对 y ,邻 x ,斜 r , 如图 4-2 所示.
的终边逆时针旋转整数圈,终边位置不变.
注:弧度或 rad 可省略 (5)两制互化:一周角= 3600 2 r 2 (弧度),即 1800 .
r
1(弧度)
180
0
57.30
57018
故在进行两制互化时,只需记忆 1800 ,10 两个换算单位即可:如: 180
5 5 1800 1500 ; 360 36 .
C. 0, ,是第一、二象限角
三角函数解三角形计算
三角函数解三角形计算在解三角形计算中,三角函数是一种非常有用的工具。
通过运用三角函数,我们可以轻松地计算出三角形的各种属性,包括角度、边长和面积等。
一、三角函数的定义在解三角形计算中,三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
它们的定义如下:1. 正弦函数(sin):正弦函数用于计算三角形中的角度和边长之间的关系。
对于一个角度为θ的三角形,其正弦值为三角形的对边与斜边的比值,即sinθ =对边 / 斜边。
2. 余弦函数(cos):余弦函数可用于计算三角形中的角度和边长之间的关系。
对于一个角度为θ的三角形,其余弦值为三角形的邻边与斜边的比值,即cosθ = 邻边 / 斜边。
3. 正切函数(tan):正切函数可以计算三角形中的角度和边长之间的关系。
对于一个角度为θ的三角形,其正切值为三角形的对边与邻边的比值,即tanθ = 对边 / 邻边。
二、应用实例下面以一个具体的实例来说明如何利用三角函数解三角形计算。
假设有一个三角形,已知其中一条边长为8 cm,另一条边长为10 cm,夹角为30度。
我们要求解该三角形的角度和剩余边长。
1. 求解角度:首先,利用余弦函数可以解出夹角的值。
根据余弦函数的定义,cosθ = 邻边 / 斜边,代入已知数据可得cosθ = 8 / 10,解得cosθ = 0.8。
然后,通过反余弦函数可求得夹角的值,即θ = arccos(0.8) ≈ 37度。
2. 求解剩余边长:利用正弦函数可以解出对边的长度。
根据正弦函数的定义,sinθ =对边/ 斜边,代入已知数据可得sinθ = x / 10,其中x表示对边的长度。
解得x ≈ 5.77 cm。
三、总结通过上述实例,我们可以看出,三角函数在解三角形计算中的重要性。
通过运用正弦函数、余弦函数和正切函数,我们可以准确地计算出三角形的各种属性。
在实际应用中,掌握三角函数的使用方法可以更加便捷地解决与三角形相关的问题。
三角函数及解三角形知识点总结
1. 任意角的三角函数的定义: 设〉是任意一个角,p (x,y )是〉的终边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o ,位置无关。
2. 三角函数在各象限的符号:(一全二正弦,三切四余弦)+L i+ ——L+ _ - + ------ ■——+ -■sin : cos : tan :3. 同角三角函数的基本关系式:4.三角函数的诱导公式 k 二.一诱导公式(把角写成2…形式,利用口诀:奇变偶不变,符(2)商数关系:tan-E屮一、cos 。
(用于切化弦) (1)平方关系: 2 2 2sin 工 cos ■■ -1,1 tan : 1cos 2:※平方关系一般为隐含条件,直接运用。
注意“ 1”的代换si …y,cos 」那么r三角函数值只与角的大小有关,而与终边上点5. 特殊角的三角函数值度 0s30cA45“A60“90 120cA135“150s 180c 270° 360弧31JIJI2n3兀 5兀 JI3兀 2兀度64323462si n 。
01 竝迈1旦1 01222222cosa亦11念力12_112 2222号看象限)sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanxsin ( -x ) - - sin x cos (-x ) =cosx H )tan(-x ) - - tanxm )|sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一sin (— -〉)= cos ..zsin (㊁:)=cos :V )-?) = sin :6. 三角函数的图像及性质7.函数厂Asi n( X J图象的画法:n 5m —兀-2兀①“五点法” __设X-x…•,令X = 0, 2,,2,求出相应的X 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。
三角函数与解三角形:正弦定理和余弦定理
正弦定理和余弦定理【考点梳理】1.正弦定理和余弦定理(1)S=12a·h a(h a表示边a上的高);(2)S=12ab sin C=12ac sin B=12bc sin A.(3)S=12r(a+b+c)(r为内切圆半径).【考点突破】考点一、利用正、余弦定理解三角形【例1】在△ABC中,∠BAC=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.[解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin 2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.【类题通法】1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.【对点训练】1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为()A.30°B.45°C.60°D.120°[答案]A[解析] 由正弦定理a sin A =b sin B =csin C 及(b -c )·(sin B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,∴a 2+c 2-b 2=3ac .又∵cos B =a 2+c 2-b 22ac ,∴cos B =32,∴B =30°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[答案] 2113[解析] 在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又∵a sin A =b sin B ,∴b =a sin B sin A =1×636535=2113.考点二、判断三角形的形状【例2】(1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,满足a cos A =b cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形(2)设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] (1)D (2)A[解析] (1)因为a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,故选D.(2)由A +B +C =π,A +B <C ,可得C >π2,故三角形ABC 为钝角三角形,反之不成立.故选A. 【类题通法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能. 【对点训练】1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A cos B =sin C ,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] 法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .2.在△ABC 中,c =3,b =1,∠B =π6,则△ABC 的形状为( )A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形[答案] D[解析]根据余弦定理有1=a2+3-3a,解得a=1或a=2,当a=1时,三角形ABC为等腰三角形,当a=2时,三角形ABC为直角三角形,故选D.考点三、与三角形面积有关的问题【例3】已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin A sinC.(1)若a=b,求cos B;(2)设B=90°,且a=2,求△ABC的面积.[解析] (1)由题设及正弦定理可得b2=2ac.又a=b,可得b=2c,a=2c.由余弦定理可得cos B=a2+c2-b22ac=14.(2)由(1)知b2=2ac.因为B=90°,由勾股定理得a2+c2=b2,故a2+c2=2ac,进而可得c=a= 2.所以△ABC的面积为12×2×2=1.【类题通法】三角形面积公式的应用方法:(1)对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【对点训练】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.[解析] (1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C.可得cos C=12,所以C=π3.(2)由已知得12ab sin C=332.又C=π3,所以ab=6.由已知及余弦定理得a2+b2-2ab cos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+7.。
(完整版)三角函数及解三角形知识点总结
1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==,()tan ,0yx xα=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。
2.三角函数在各象限的符号:(一全二正弦,三切四余弦)+ + - + - + - - - + + -sin α cos α tan α3. 同角三角函数的基本关系式:(1)平方关系:22221sincos 1,1tan cos αααα+=+=(2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。
注意“1”的代换4.三角函数的诱导公式诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限)Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(5.特殊角的三角函数值6.三角函数的图像及性质 sin y x =cos y x = tan y x =图像定义域 R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k Z ∈时,max 1y =;当22x k ππ=-()k Z ∈时,当()2x k k Z π=∈时,max 1y =;当2x k ππ=+()k Z ∈时,min 1y =-.既无最大值也无最小值度0 30 45 60 90 120 135 150 180︒270360弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α122232132 22121cos α132 2212 012- 22- 32- 1- 0 1tan α 0 3313无3-1-33-无函数 性 质7.函数sin()y A x ωϕ=+图象的画法: ①“五点法”――设X x ωϕ=+,令X =0,3,,,222ππππ求出相应的x 值,计算得出五点的坐标,描点后得出图象; ②图象变换法:这是作函数简图常用方法。
三角函数和解三角形知识点汇总
三角函数和解三角形知识点汇总知识点一三角函数(一)、角的概念的推广1.定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.分类:按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.3.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.(二)、弧度制的定义和公式1.定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.公式(三)、任意角的三角函数(四)、同角三角函数的基本关系 1.平方关系:sin 2α+cos 2α=1. 2.商数关系:sin αcos α=tan α.(五)、三角函数的诱导公式知识点二 三角函数的图像与性质(一)、用五点法作正弦函数和余弦函数的简图1.正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).2.余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).(二)、正弦、余弦、正切函数的图象与性质(下表中k ∈Z )知识点三函数y=A sin(ωx+φ)的图像及应用(一)、“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:1.定点:如下表所示.2.作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.3.扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.(二)、函数y=A sin(ωx+φ)中各量的物理意义当函数y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞) 表示一个振动量时,几个相关的概念如下表:(三)、函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径知识点四 三角恒等变换(一)、两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.(二)、二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.(三)、有关公式的逆用、变形等 1.tan α±tan β=tan(α±β)(1∓tan αtan β). 2.cos 2α=1+cos 2α2, sin 2α=1-cos 2α2. 3.1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.(四)、函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b .知识点五 解三角形(一)、正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则(二)、S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.(三)、实际问题中的常用角1.仰角和俯角:在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角:从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫作方位角.如B点的方位角为α(如图2).3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.。
数学(浙江专用)总复习教师用书:第四章 三角函数、解三角形 第讲 三角函数的图象与性质
第3讲三角函数的图象与性质最新考纲 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;2。
理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
知识梳理1。
用五点法作正弦函数和余弦函数的简图(1)正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),错误!,(π,0),错误!,(2π,0).(2)余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),错误!,(π,-1),错误!,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)函数y=sin x y=cos x y=tan x图象定义域R R{x错误!错误!值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数1。
判断正误(在括号内打“√”或“×")(1)由sin错误!=sin 错误!知,错误!是正弦函数y=sin x(x∈R)的一个周期。
( )(2)余弦函数y=cos x的对称轴是y轴.()(3)正切函数y=tan x在定义域内是增函数.( )(4)已知y=k sin x+1,x∈R,则y的最大值为k+1。
( )(5)y=sin|x|是偶函数。
()解析(1)函数y=sin x的周期是2kπ(k∈Z).(2)余弦函数y=cos x的对称轴有无穷多条,y轴只是其中的一条.(3)正切函数y=tan x在每一个区间错误!(k∈Z)上都是增函数,但在定义域内不是单调函数,故不是增函数。
(4)当k〉0时,y max=k+1;当k<0时,y max=-k+1.答案(1)×(2)×(3)×(4)×(5)√2。
(2015·四川卷)下列函数中,最小正周期为π的奇函数是( )A。
y=sin错误!B。
y=cos错误!C.y=sin 2x+cos 2xD.y=sin x+cos x解析y=sin错误!=cos 2x是最小正周期为π的偶函数;y=cos错误!=-sin 2x是最小正周期为π的奇函数;y=sin 2x+cos 2x=2sin错误!是最小正周期为π的非奇非偶函数;y=sin x+cos x=错误!sin错误!是最小正周期为2π的非奇非偶函数.答案B3。
三角函数与解三角形
三角函数与解三角形三角函数是解决三角形相关问题的一种重要工具。
在解三角形的过程中,我们可以运用三角函数的定义和性质,从而得出角度和边长的关系,进而求解未知的角度或边长。
本文将介绍三角函数的定义和性质,并结合实例来解释如何利用三角函数解三角形的问题。
一、三角函数的定义与基本性质在直角三角形ABC中,角A的对边为a,邻边为b,斜边为c。
根据三角函数的定义,我们可以得到以下三个基本的三角函数:1. 正弦函数(sine):sin(A) = a/c2. 余弦函数(cosine):cos(A) = b/c3. 正切函数(tangent):tan(A) = a/b这些定义是解决三角形问题的基础,通过它们我们可以求解未知的角度或边长。
此外,三角函数还具有以下一些基本性质:1. sin(A) = cos(90° - A)cos(A) = sin(90° - A)tan(A) = 1/tan(90° - A)2. sin^2(A) + cos^2(A) = 1tan(A) = sin(A) / cos(A)3. sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A)tan(B))这些基本性质在解三角形问题时经常被使用,可以帮助我们得出更多的关系式,从而进一步求解未知的角度或边长。
二、根据三角函数解三角形在解三角形的过程中,我们通常会遇到以下几种情况:1. 已知两边和夹角:如果我们已知两边和它们夹角的大小,我们可以使用余弦定理和正弦定理来求解第三边的长度和其他角度的大小。
2. 已知两边和一个角的正弦:如果我们已知两边和一个角的正弦值,我们可以使用正弦函数的逆函数来求解这个角度的大小,然后再根据已知的角度和两边长度使用正弦定理或余弦定理来求解其他未知的角度或边长。
三角函数解三角形两角和与差的正弦余弦和正切公式课件文
三角函数解三角形两角和与差的正弦余弦和正切公式课件xx年xx月xx日CATALOGUE目录•三角函数的定义•三角函数的基本性质•三角形中的边角关系•两角和与差的正弦余弦和正切公式•解直角三角形的方法•实例讲解01三角函数的定义1正弦函数23正弦函数是三角函数的一种,记作sin(x),定义域为所有实数,值域为[-1,1]。
定义正弦函数的图像也称为正弦曲线,它是以原点为圆心,以1为半径的圆上的一部分。
图像正弦函数是周期函数,最小正周期为2π。
性质余弦函数是三角函数的一种,记作cos(x),定义域为所有实数,值域为[-1,1]。
余弦函数定义余弦函数的图像也称为余弦曲线,它是由一系列的水平和垂直线段组成的。
图像余弦函数是周期函数,最小正周期为2π。
性质图像正切函数的图像也称为正切曲线,它是由一系列的斜线组成的。
定义正切函数是三角函数的一种,记作tan(x),定义域为所有不等于π/2+kπ(k∈Z)的实数,值域为所有实数。
性质正切函数是奇函数,图像关于原点对称。
正切函数02三角函数的基本性质正弦函数和余弦函数的周期都是2π,即$f(x+2\pi)=f(x)$和$g(x+2\pi)=g(x)$。
正切函数的周期是π,即$h(x+π)=h(x)$。
周期性1 2 3正弦函数的振幅是1,即$f(x) \in [-1,1]$。
余弦函数的振幅也是1,即$g(x) \in [-1,1]$。
正切函数的振幅需要特别注意,它的振幅不是1,而是没有限制的,即$h(x) \in \mathbf{R}$。
正弦函数和余弦函数的相位可以用正负号来表示,例如$f(x)=sin\omega x$和$g(x)=cos\omega x$,其中$\omega >0$。
正切函数的相位需要特别注意,它没有固定的相位,也就是说$h(x)$中不存在相位的概念。
正弦函数和余弦函数的初相都是一个常数,例如$f(0)=A$和$g(0)=B$。
正切函数的初相需要特别注意,它没有固定的初相,也就是说$h(x)$中不存在初相的概念。
解三角形与三角函数最全知识总结
解三角形与三角函数最全知识总结三角形与三角函数是数学中非常重要的内容,广泛应用于几何学、物理学、工程学等多个领域。
以下是对三角形与三角函数的最全知识总结。
一、基本概念1.三角形:由三条边和三个内角组成的图形。
根据边的长度和角的大小关系,可以分为等边三角形、等腰三角形、直角三角形等等。
2.内角和:三角形的三个内角的和为180度,或者π弧度。
3.值得注意的几何关系:三角形的内角对应的边对边长相等,相等的两个角对应的边对边长也相等。
4.三角形的面积:可以通过底边和高的乘积的一半来计算,也可以通过三边的长度来计算。
二、三角函数的定义与性质1. 正弦函数(sin):在直角三角形中,对于一个锐角A,正弦函数的值等于对边与斜边的比值。
即sin(A) = 对边/斜边。
2. 余弦函数(cos):在直角三角形中,对于一个锐角A,余弦函数的值等于邻边与斜边的比值。
即cos(A) = 邻边/斜边。
3. 正切函数(tan):在直角三角形中,对于一个锐角A,正切函数的值等于对边与邻边的比值。
即tan(A) = 对边/邻边。
4.三角恒等式:包括平方恒等式、和差恒等式、倍角恒等式等等,可以通过这些恒等式将一个三角函数的式子转化为另外一个三角函数的式子。
5.周期性:三角函数是周期函数,即在每个周期内的函数值是相同的。
三、三角函数的图像与性质1.正弦函数图像:正弦函数的图像是一个连续、周期为2π的曲线,以原点为对称中心。
2.余弦函数图像:余弦函数的图像也是一个连续、周期为2π的曲线,但它的图像是以横坐标π/2为对称轴。
3.正切函数图像:正切函数的图像是一个连续、以π为周期的曲线,有无穷多个渐近线。
四、三角函数的应用1.解三角形:通过已知的边长和角度,可以利用三角函数解出未知的边长和角度。
2.测高度:利用三角形的性质,可以通过测量两个视角和距离,计算出高度的长度。
3.平衡力问题:在物理学中,利用三角函数可以计算出干涉力、斜面上的力等问题。
高中数学教案:三角函数与解三角形
高中数学教案:三角函数与解三角形一、引言三角函数是数学中的重要分支,解三角形是数学中的常见问题。
理解三角函数与解三角形对于学生的数学素养的提升至关重要。
本教案将以三角函数与解三角形为主题,设计一节高中数学课,帮助学生掌握相关知识和技能。
二、知识与技能目标1. 理解三角函数的概念和性质;2. 掌握常用三角函数的定义和计算方法;3. 学会利用三角函数解决实际问题;4. 理解解三角形的基本概念和原理;5. 掌握解三角形的常用方法。
三、教学重难点1. 三角函数的定义和性质;2. 解三角形的常用方法。
四、教学过程(一)引入教师可以从生活中的实际问题导入,如测量高楼的高度、计算两岸垂直相距较远的两点之间的距离等。
通过这些问题,引导学生思考如何利用三角函数和解三角形的知识来解决实际问题。
(二)三角函数的定义和性质1. 讲解正弦函数和余弦函数的定义,即直角三角形中的对边与斜边的比值;2. 介绍正弦函数和余弦函数的性质,如周期性、奇偶性等;3. 引导学生计算角度的度数和弧度的换算,并讲解正弦函数和余弦函数的图像特点。
(三)解三角形的基本概念和原理1. 讲解解三角形的基本概念,如角、边、高、中线等;2. 介绍解三角形的原理,即利用已知条件和三角函数的性质来确定未知边和角的关系。
(四)解三角形的常用方法1. 讲解正弦定理和余弦定理的原理和推导过程;2. 引导学生通过实例学会应用正弦定理和余弦定理解决三角形的问题;3. 介绍解直角三角形的特殊方法,如利用三角函数和勾股定理求解。
(五)练习与巩固布置相关练习题,包括计算正弦、余弦的值,解决三角形问题等。
通过练习,巩固学生对于三角函数与解三角形的理解和应用能力。
五、教学辅助手段1. 教学PPT:展示三角函数和解三角形的定义、性质、公式和解题步骤;2. 白板和马克笔:用于引导学生演算题目和解题思路。
六、教学评价与反思本节课教学以生活实际问题为切入点,通过讲解三角函数的定义和性质以及解三角形的基本概念和原理,引导学生掌握三角函数的计算和解决三角形问题的方法。
高考数学复习热点06 三角函数与解三角形(解析版)-2021年高考数学专练(新高考)
热点06 三角函数与解三角形【命题形式】新高考环境下,三角函数与解三角形依然会作为一个热点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考。
1、题目分布:"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题。
2、考察的知识内容:(1)三角函数的概念;(2)同角三角函数基本关系式与诱导公式及其综合应用;(3)三角函数的图像和性质及综合应用;(4)三角恒等变换及其综合应用;(5)利用正、余弦定理求解三角形;(6)与三角形面积有关的问题;(7)判断三角形的形状;(8)正余弦定理的应用。
3、新题型的考察:(1)以数学文化和实际为背景的题型;(2)多选题的题型;(3)多条件的解答题题型。
4、与其它知识交汇的考察:(1)与函数、导数的结合;(2)与平面向量的结合;(3)与不等式的结合;(4)与几何的结合。
【满分技巧】1、夯实基础,全面系统复习,深刻理解知识本质从三角函数的定义出发,利用同角三角函数关系式、诱导公式进行简单的三角函数化简、求值,结合三角函数的图像,准确掌握三角函数的单调性、奇偶性、周期性、最值、对称性等性质,并能正确地描述三角函数图像的变换规律。
要重视对三角函数图像和性质的深入研究,三角函数,是高考考查知识的重要载体,是三角函数的基础。
“五点法”画正弦函数图像是求解三角函数中的参数及正确理解图像变换的关键,因此复习时应精选典型例题(选择题、填空题、解答题)加以训练和巩固,把解决问题的方法技巧进行归纳、整理,达到举一反三、触类旁通。
2、切实掌握两角差的余弦公式的推导及其相应公式的变换规律以两角差的余弦公式为基础,掌握两角和与两角差的正余弦公式、正切公式、二倍角公式,特别是用一种三角函数表示二倍角的余弦,掌握公式的正用、逆用、变形应用,迅速正确应用这些公式进行化简、求值与证明,即以两角差的余弦公式为基础.推出三角恒等变换的相应公式,掌握公式的来龙去脉。
2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数
2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。
三角函数和解三角形知识点汇总
三角函数和解三角形知识点汇总三角函数和解三角形是高中数学中的重要内容,这两个知识点在解决几何问题和求解三角方程等方面具有广泛的应用。
本文将对三角函数和解三角形的相关概念和性质进行汇总和总结。
一、三角函数的基本概念和性质1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边之比。
在单位圆中,正弦函数定义为点在单位圆上的纵坐标。
2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边之比。
在单位圆中,余弦函数定义为点在单位圆上的横坐标。
3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边之比。
在单位圆中,正切函数定义为点在单位圆上的纵坐标与横坐标之比。
4. 三角函数的周期性:正弦函数、余弦函数和正切函数都具有周期性,周期为360度或2π弧度。
5. 三角函数的基本关系:正弦函数、余弦函数和正切函数之间存在一定的关系,如正弦函数与余弦函数的平方和等于1,正切函数与正弦函数的比值等于余弦函数。
二、解三角形的基本方法1. 解直角三角形:直角三角形是最简单的三角形,可以通过已知两个角或两个边长度,求解出三个角和三个边的长度。
解直角三角形常用的方法包括正弦定理、余弦定理和勾股定理。
2. 解一般三角形:一般三角形包括三个不等边和三个不等角。
解一般三角形的关键是要找到足够的已知条件,一般包括已知两个角和一个边的长度,或已知两个边和一个角的大小。
解一般三角形常用的方法有正弦定理和余弦定理。
三、三角函数和解三角形的应用1. 几何问题的求解:三角函数和解三角形广泛应用于几何问题的求解,如求解三角形的面积、角度、边长等。
2. 物理问题的求解:三角函数和解三角形也在物理问题的求解中发挥着重要作用,如求解力的合成与分解、两个物体之间的角度等。
3. 工程问题的求解:在工程问题中,三角函数和解三角形用于求解斜面的倾斜角度、测量高楼大厦的高度等。
四、总结本文对三角函数和解三角形的相关知识进行了汇总和总结。
2022数学第三章三角函数解三角形第一节任意角和蝗制及任意角的三角函数教师文档教案文
第一节任意角和弧度制及任意角的三角函数授课提示:对应学生用书第50页[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按逆时针方向旋转形成的角;②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z}.2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角.(2)角α的弧度数公式:|α|=错误!.(3)角度与弧度的换算:360°=2π rad,1°=错误!rad,1 rad=(错误!)°≈57°18′。
(4)扇形的弧长及面积公式:弧长公式:l=α·r.面积公式:S=错误!l·r=错误!α·r2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=错误!(x≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫作角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数sin(α+k·2π)=sin__α,cos(α+k·2π)=cos__α,tan(α+k·2π)=tan__α(其中k∈Z),即终边相同的角的同一三角函数的值相等.1.一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.2.两个关注点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)在同一个问题中采用的度量制度必须一致,不能混用.3.三角函数定义的推广设点P(x,y)是角α终边上任意一点且不与原点重合,r=|OP|,则sin α=错误!,cos α=错误!,tan α=错误!.4.四种角的终边关系(1)β,α终边相同⇔β=α+2kπ,k∈Z。
三角函数与解三角形
三角函数与解三角形三角函数是数学中重要的概念,广泛用于解决与三角形相关的问题。
本文将介绍三角函数的概念和性质,并探讨如何利用三角函数的知识来解决三角形的各种问题。
一、三角函数的概念和性质1. 正弦函数(sin):在直角三角形中,对于一个锐角A,正弦函数的值等于该角的对边与斜边之比。
即sin(A) = 对边/斜边。
2. 余弦函数(cos):在直角三角形中,对于一个锐角A,余弦函数的值等于该角的邻边与斜边之比。
即cos(A) = 邻边/斜边。
3. 正切函数(tan):在直角三角形中,对于一个锐角A,正切函数的值等于该角的对边与邻边之比。
即tan(A) = 对边/邻边。
4. 三角函数的基本关系:根据勾股定理,我们知道在直角三角形中,斜边的平方等于对边的平方与邻边的平方之和。
利用这个关系,可以推导出三角函数之间的互相关系,例如sin^2(A) + cos^2(A) = 1。
二、解三角形的常用方法1. 已知两边求角:如果已知一个三角形的两边长度,我们可以利用余弦定理来求解这个三角形的角度。
余弦定理表达式为c^2 = a^2 + b^2 - 2abcos(C),其中c为三角形的斜边,a和b为两个已知边的长度,C为斜边对应的角度。
通过求解这个方程,我们可以得到角C的值。
2. 已知一边一角求边:如果已知一个三角形的一边长度和一个角度,我们可以利用正弦定理来求解这个三角形的另外两条边。
正弦定理表达式为a/sin(A) = b/sin(B) = c/sin(C),其中a、b、c为三角形的三条边的长度,A、B、C为对应的角度。
通过代入已知的值和未知的变量,可以解出另外两条边的长度。
3. 已知两角求边:如果已知一个三角形的两个角度和一条边的长度,我们可以利用正弦函数或者正切函数来求解这个三角形的其他边的长度。
根据已知的信息,可以设置各种方程式来解出未知变量。
三、实例分析假设一个三角形的两条边分别为3cm和4cm,对应的角度为60度。
第三章 三角函数、解三角形 复习讲义
第1节 任意角和弧度制及任意角的三角函数◆考纲·了然于胸◆ 1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.[要点梳理]1.角的概念(1)角的分类(按旋转的方向):角⎩⎪⎨⎪⎧正角:按照逆时针方向旋转而成的角。
负角:按照顺时针方向旋转而成的角。
零角:射线没有旋转.(2)象限角与轴线角:(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S ={β|β=α+k·360°,k ∈Z }. 质疑探究1:(1)第二象限角一定是钝角吗?(2)终边相同的角一定相等吗?提示:(1)钝角是第二象限角,但第二象限角不一定是钝角;(2)终边相同的角不一定相等. 2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式(3)规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx(x ≠0).三个三角函数的初步性质如下表:如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .质疑探究[小题查验]1.-870°角的终边在第几象限( )A .一B .二C .三D .四2.(2016·龙岩质检)已知α为第二象限角,sin α=45,则tan α的值为( )A.34 B .-34 C.43 D .-433.(2016·洛阳一模)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B,3cos A -1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________. 5.给出下列命题:①三角形的内角必是第一、二象限角.②第一象限角必是锐角.③不相等的角终边一定不相同.④若β=α+k ·720°(k ∈Z ),则α和β终边相同.⑤点P (tan α,cos α)在第三象限,则角α的终边在第二象限. 其中正确的是________.(写出所有正确命题的序号)考点一 象限角及终边相同的角(基础型考点——自主练透)[方法链接]1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 2.表示区间角的三个步骤:(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.3.已知角α终边所在的象限,求2α、α2、π-α等角的终边所在象限问题,可由条件先写出α的范围,解不等式得出角2α、α2、π-α等的范围,再根据范围确定象限.[题组集训]1.若角θ的终边与6π7角的终边相同,则在[0,2π)内终边与θ3角的终边相同的角为________.2.终边在直线y =3x 上的角的集合为________. 3.已知角α的终边落在阴影所表示的范围内(包括边界),则角α的集合为______________________.4.如果α是第三象限的角,则角-α的终边所在位置是____________,角2α的终边所在位置是________,角α3终边所在的位置是________.考点二 三角函数的定义(深化型考点——引申发散)[一题多变]【例1】 设角α终边上一点P (-4a,3a )(a <0),求sin α的值. [发散1] 若本例中“a <0”,改为“a ≠0”,求sin α的值.[发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 活学活用 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α,tan α的值. [类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 三角函数线、三角函数值的符号(重点型考点——师生共研) 【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)已知cos α≤-12,则角α的集合为________.【名师说“法”】(1)熟练掌握三角函数在各象限的符号.(2)利用单位圆解三角不等式(组)的一般步骤:①用边界值定出角的终边位置;②根据不等式(组)定出角的范围;③求交集,找单位圆中公共的部分;④写出角的表达式.跟踪训练(1)y=sin x-32的定义域为____________.(2)已知sin 2θ<0,且|cos θ|=-cos θ,则点P(tan θ,cos θ)在第________象限.考点四扇形的弧长、面积公式的应用(深化型考点——引申发散)【例3】已知扇形周长为10,面积是4,求扇形的圆心角.[发散1]去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?[发散2]若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[发散3]若本例条件变为:扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.易错警示3错用三角函数的定义(2016·天津模拟)已知角θ的终边上一点P(3a,4a)(a≠0),则sin θ=________.成功破障已知角α的终边经过点P(-3,m),且sin α=34m(m≠0),则tan α的值为________.[课堂小结]【方法与技巧】1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.【失误与防范】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.课时活页作业(十七)[基础训练组]1.(2016·南平质检)喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是() A.30°B.-30°C.60°D-60°2.(2014·新课标全国卷Ⅰ)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>03.(2016·乌鲁木齐模拟)设函数f (x )满足f (sin α+cos α)=sin α cos α,则f (0)=( )A .-12B .0 C.12 D .14.(2016·潍坊模拟)如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 5.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,126.在与2010°终边相同的角中,绝对值最小的角的弧度数为________. 7.已知角β的终边在直线y =3x 上,则sin β=________.8.(2016·玉溪模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.9.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值. 10.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .[能力提升组]11.(2016·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称12.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-313.(2016·太原模拟)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 14.(2016·合肥调研)函数y =lg(3-4sin 2x )的定义域为________. 15.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;(3)试判断tan α2 sin α2 cos α2的符号.第2节 同角三角函数基本关系及诱导公式◆考纲·了然于胸◆1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.[要点梳理]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系31.给出下列命题:①sin 2θ+cos 2φ=1.②同角三角函数的基本关系式中角α可以是任意角.③六组诱导公式中的角α可以是任意角. ④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关. ⑤若sin(k π-α)=13(k ∈Z ),则sin α=13.其中正确的是( )A .①③B .④C .②⑤D .④⑤2.(2015·高考福建卷)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512 3.sin 585°的值为( )A .-22 B.22 C .-32 D.324.若cos α=-35,且α∈(π,3π2),则tan α=________.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2 α的值是________.考点一 同角三角函数关系式的应用(深化型考点——引申发散)[一题多变]【例1】 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求sin α+cos α的值.[发散2] 保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值.[发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5,求tan α的值.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 考点二 三角函数的诱导公式的应用(基础型考点——自主练透)[方法链接](1)给角求值的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π4之间角的三角函数,然后求值,其步骤为:(2)给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现π2的倍数,则通过诱导公式建立两者之间的联系,然后求解.常见的互余与互补关系①常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题.[题组集训]1.sin(-1 200°)·cos 1 290°+cos (-1 020°)·sin(-1 050°)+tan 945°=________. 2.已知cos(π6-α)=23,则sin(α-2π3)=________.3.设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos (3π2+α)-sin 2(π2+α)(1+2sin α≠0),则f (-23π6)=________.4.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.考点三 同角关系式、诱导公式在三角形中的应用(重点型考点——师生共研)【例2】 在△ABC 中,若sin(3π-A )=2sin(π-B ),cos(3π2-A )=2cos(π-B ).试判断三角形的形状.【名师说“法”】(1)在△ABC 中常用到以下结论:sin(A +B )=sin(π-C )=sin C ,cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin(A 2+B 2)=sin(π2-C 2)=cos C 2,cos(A 2+B 2)=cos(π2-C 2)=sin C 2.(2)求角时,一般先求出该角的某一个三角函数值,如正弦值,余弦值或正切值,再确定该角的范围,最后求角. 跟踪训练在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.思想方法11 分类讨论思想在三角函数化简中的应用 典例 化简:sin(4n -14π-α)+cos(4n +14π-α)(n ∈Z ).即时突破 已知A =sin (kπ+α)sin α+cos (kπ+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[课堂小结]【方法与技巧】同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ(1+1tan 2θ)=tan π4=….【失误与防范】利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.课时活页作业(十八)[基础训练组]1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32 B.32 C .-12 D.122.(2016·济南质检)α∈(-π2,π2),sin α=-35,则cos(-α)的值为( )A .-45 B.45 C.35 D .-353.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f (-25π3)的值为( )A.12 B .-12 C.32 D .-324.(2016·皖北模拟)若sin(π6+α)=35,则cos(π3-α)=( )A .-35 B.35 C.45 D .-455.(2016·石家庄模拟)已知α为锐角,且2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377 C.31010 D.136.(2016·成都一模)已知sin(π-α)=log 814 ,且α∈(-π2,0),则tan(2π-α)的值为________.7.(2015·辽宁五校第二次联考)已知sin x =m -3m +5,cos x =4-2m m +5,且x ∈(3π2,2π),则tan x =________.8.已知cos(π6-θ)=a (|a |≤1),则cos(5π6+θ)+sin(2π3-θ)的值是________.9.已知sin(3π+α)=2sin(3π2+α),求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.10.设0≤θ≤π,P =sin 2θ+sin θ-cos θ.(1)若t =sin θ-cos θ,用含t 的式子表示P ; (2)确定t 的取值范围,并求出P 的最大值和最小值.[能力提升组]11.(2016·厦门模拟)已知cos 31°=a ,则sin 239°·tan 149°的值是( )A.1-a 2aB.1-a 2C.a 2-1aD .-1-a 212.(2016·太原二模)已知sin α+cos α=2,α∈(-π2,π2),则tan α=( )A .-1B .-22 C.22D .1 13.(2016·海淀模拟)已知sin 2θ+4cos θ+1=2,那么(cos θ+3)(sin θ+1)的值为( )A .6B .4C .2D .014.(2016·新疆阿勒泰二模)已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 15.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A ;(2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tanB.第3节 三角函数的图象与性质◆考纲·了然于胸◆1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.[要点梳理]1.用五点法作正弦函数和余弦函数的简图:正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象和性质1.下列说法正确的是( )A .函数y =cos x 在第一象限内是减函数B .函数y =tan x 在定义域内是增函数C .函数y =sin x cos x 是R 上的奇函数D .所有周期函数都有最小正周期2.(2015·新课标卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(k -14,k +34),k ∈ZC .(2k π-14,2k π+34),k ∈ZD .(2k -14,2k +34),k ∈Z3.(2016·三明模拟)已知函数f (x )=2sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则f (π6)等于( )A .2或0B .-2或2C .0D .-2或0 4.函数y =tan (2x +π4)的图象与x 轴交点的坐标是________.5.(2015·江苏高考)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是__.考点一 三角函数的定义域、值域问题(基础型考点——自主练透)[方法链接](1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[题组集训]1.函数y =sin x -cos x 的定义域为________.2.函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为________.3.当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.考点二 三角函数的单调性(重点型考点——师生共研) 【例】 (1) y =sin(π3-2x )的单调递减区间为________.(2)(2016·洛阳模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3] 上是增函数,则ω的取值范围是________.互动探究 在本例(1)中函数不变,求函数在[-π,0]上的单调递减区间. 【名师说“法”】求三角函数单调区间的两种方法](1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.提醒:]求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 跟踪训练(1)y =tan(2x -π3)的单调递增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 考点三 三角函数的奇偶性、周期性和对称性(高频型考点——全面发掘)[考情聚焦]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用. 角度一 三角函数的周期1.函数y =-2cos 2(π4+x )+1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数2.(2016·长沙一模)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.角度二 求三角函数的对称轴或对称中心3.(2016·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称 B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称角度三 三角函数对称性的应用 4.(2016·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为( )A .-34 B .-14 C .-12 D.345.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[通关锦囊](1)求三角函数周期的方法: ①利用周期函数的定义;②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;③利用图象:对含绝对值的三角函数的周期问题,通常要画出图象,结合图象进行判断. (2)三角函数的对称性、奇偶性①正弦、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数图象只是中心对称图形,应熟记它们的对称轴和对称中心.②若f (x )=A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z );若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ).③若求f (x )=A sin(ωx +φ)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.[题组集训]1.(2016·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π32.(2016·湖南六校联考)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是(π8,0),则f (x )的最小正周期是________.易错警示4 三角函数单调性忽视x 的系数致错 典例 求函数y =12sin(π4-2x3)的单调区间为________.提醒:](1)对于其它形式的三角函数,首先要变换到y =A sin(ωx +φ)或y =A cos(ωx +φ),y =A tan(ωx +φ)(ω>0)才可.(2)求单调区间要注意定义域.即时突破 函数y =cos(2x +π6)的单调递增区间为________.[课堂小结]【方法与技巧】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 【失误与防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响. 2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.课时活页作业(十九)[基础训练组]1.函数y =cos x -32的定义域为( ) A .[-π6,π6] B .[k π-π6,k π+π6],k ∈Z C .[2k π-π6,2k π+π6],k ∈Z D .R2.(2016·南昌联考)已知函数f (x )=sin (ωx +π6)-1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π23.(2016·广州测试)若函数y =cos(ωx +π6)(ω∈N *)的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 4.(2016·九江模拟)下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 5.将函数f (x )=3sin 2x -cos 2x 的图象向左平移|m |个单位,若所得的图象关于直线x =π6对称,则|m |的最小值为( )A.π3 B.π6 C .0 D.π126.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.7.(2016·大庆模拟)若f (x )=2sin ωx (0<ω<1)在区间[0,π3]上的最大值是2,则ω=________.8.(2016·荆州质检)函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点(-3π8,0)对称,则函数的解析式为________.9.设函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin 2⎝⎛⎭⎫x +π2.(1)求f (x )的最小正周期和对称轴方程;(2)当x ∈⎣⎡⎦⎤-π3,π4时,求f (x )的值域. 10.设函数f (x )=sin(πx 3-π6)-2cos 2πx6.(1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.[能力提升组]11.(2014·课标全国Ⅰ)在函数①y =cos |2x |,②y =|cos x |,③y =cos(2x +π6),④y =tan(2x -π4)中,最小正周期为π的所有函数为( )A .②④ B .①③④ C .①②③ D .①③12.(2016·济南调研)已知f (x )=sin 2 x +sin x cos x ,则f (x )的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]13.(2016·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点(4π3,0)成中心对称,且-π2<φ<π2,则函数y =f (x +π3)为( )A .奇函数且在(0,π4)上单调递增B .偶函数且在(0,π2)上单调递增C .偶函数且在(0,π2)上单调递减D .奇函数且在(0,π4)上单调递减14.(2015·安阳模拟)已知函数y =A cos(π2x +φ)(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为________. 15.(2016·荆门调研)已知函数f (x )=a (2cos 2x 2+sin x )+b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.第4节 函数y =A sin(ωx +φ)的图象及应用◆考纲·了然于胸◆1.了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.[要点梳理]1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.2.函数y3.图象的对称性:函数y =A sin(ωx +φ) (A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形.[小题查验]1.函数y =sin(2x -π3)在区间[-π2,π]上的简图是( )2.(2015·高考山东卷)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.函数y =tan(π4x -π2)的部分图象如图所示,则(OB →-OA →)·OB →=( )A .-4B .2C .-2D .44.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.5.把函数y =sin(5x -π2)的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________.考点一 求函数y =A sin(ωx +φ)的解析式(基础型考点——自主练透)确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[题组集训]1.(2016·山西四校联考)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }2.(2016·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( ) A .y =4sin(4x +π6) B .y =2sin(2x +π3)+2 C .y =2sin(4x +π3)+2 D .y =2sin(4x +π6)+23.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .2+3 B.3 C.33D .2- 3 考点二 函数y =A sin(ωx +φ)的图象(题点多变型考点——全面发掘)【例1】 (2014·重庆高考)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.[发散1] 将本例变为:由函数y =sin x 的图象作怎样的变换可得到y =2sin(2x -π3)的图象?[发散2] 将本例中函数f (x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为. [发散3] 将本例变为:若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为________.[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.[提醒] ]平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 考点三 三角函数模型的应用(重点型考点——师生共研)【例2】 (2014·湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cosπ12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 【名师说“法”】本题属三角函数模型的应用,通常的解决方法:转化为y =sin x ,y =cos x 等函数解决图象、最值、单调性等问题,体现了化归的思想方法;用三角函数模型解决实际问题主要有两种:一种是用已知的模型去分析解决实际问题,另一种是需要建立精确的或者数据拟合的模型去解决问题,尤其是利用数据建立拟合函数解决实际问题,充分体现了新课标中“数学建模”的本质. 跟踪训练如图所示,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin(ωx +φ)+b ,φ∈(0,π).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.规范答题3 三角函数图象与性质的综合问题典例 (本小题满分12分)已知函数f (x )=23sin(x 2+π4)·cos (x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.即时突破 (2016·湖北八校联考)已知函数f (x )=2cos 2x +23sin x cos x ,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π6,π4]上的值域.[课堂小结]【方法与技巧】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点(-φω,0)作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离) 【失误与防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,则平移时要把x 前面的系数提出来. 2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.课时活页作业(二十)[基础训练组]1.(2016·深圳二模)如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期为T ,且当x =2时,f (x )取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]3.(2016·长沙一模)定义⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,若函数f (x )=⎪⎪⎪⎪⎪⎪sin2x cos 2x 1 3,则将f (x )的图象向右平移π3个单位所得曲线的一条对称轴的方程是( )A .x =π6B .x =π4C .x =π2D .x =π4.(2016·长春模拟)函数f (x )=sin(2x +φ)(|φ|<π2)向左平移π6个单位后是奇函数,则函数f (x )在[0,π2]上的最小值为( )A .-32 B .-12 C.12 D.32。
三角函数与解三角形知识点总结
三角函数与解三角形知识点总结三角函数是数学中的一种重要的函数,在几何学、物理学、工程学等多个学科中都有广泛的应用。
解三角形则是利用三角函数求解三角形的各个边长和角度的过程。
下面将对三角函数和解三角形的相关知识进行总结。
一、三角函数的概念及性质1. 正弦函数:在一个直角三角形中,对于一些锐角,其对边与斜边的比值被定义为正弦,用sin表示。
正弦函数的定义域是实数集,值域是[-1,1]。
2. 余弦函数:在一个直角三角形中,对于一些锐角,其邻边与斜边的比值被定义为余弦,用cos表示。
余弦函数的定义域是实数集,值域是[-1,1]。
3. 正切函数:在一个直角三角形中,对于一些锐角,其对边与邻边的比值被定义为正切,用tan表示。
正切函数的定义域是实数集,值域是(-∞,∞)。
4. 余切函数:在一个直角三角形中,对于一些锐角,其邻边与对边的比值被定义为余切,用cot表示。
余切函数的定义域是实数集,值域是(-∞,∞)。
5. 正割函数:在一个直角三角形中,对于一些锐角,其斜边与邻边的比值被定义为正割,用sec表示。
正割函数的定义域是实数集,值域是(-∞,-1]∪[1,∞)。
6. 余割函数:在一个直角三角形中,对于一些锐角,其斜边与对边的比值被定义为余割,用csc表示。
余割函数的定义域是实数集,值域是(-∞,-1]∪[1,∞)。
二、解三角形的基本原理解三角形的基本原理是利用三角函数的定义和性质来求得三角形的各个边长和角度。
1.利用已知边长和角度求解三角形:如果已知一个三角形的两个角度和一个边长,可以利用三角函数的定义和性质来求解三角形的其他边长和角度。
例如,已知一个三角形的两边长分别为a和b,以及夹角C,可以利用余弦定理和正弦定理来求解三角形的第三边长和其他两个角度。
2.利用已知边长求解三角形的角度:如果已知一个三角形的三个边长,可以利用余弦定理和正弦定理来求解三角形的三个角度。
例如,已知一个三角形的三个边长分别为a、b、c,可以利用余弦定理求解三个角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数与解三角形一、 y=Asin (ωx+φ)函数的图像与性质重难点突破二、经验分享【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】用“五点法”作sin()y A x ωϕ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取30,,,,222ππππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 【知识点2 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换:sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的(横坐标不变),它的值域[-A ,A],最大值是A ,最小值是-A.若A<0可先作y=-Asinx 的图象,再以x 轴为对称轴翻折.A 称为振幅. 2.周期变换:函数()sin 01y x x R ωωω=∈>≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1ω倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换:函数()sin y x x R ϕ=+∈,(其中0ϕ≠)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时)平行移动ϕ个单位长度而得到.(用平移法注意讲清方向:“左加右减”).一般地,函数()sin()0,0y A x A x R ωϕω=+>>∈,的图象可以看作是用下面的方法得到的:(1) 先把y=sinx 的图象上所有的点向左(ϕ>0)或右(ϕ<0)平行移动ϕ个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的1ω倍(纵坐标不变); (3) 再把所得各点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍(横坐标不变). 【知识点3 正弦型函数和余弦型函数的性质】函数sin()y A x ωϕ=+与函数cos()y A x ωϕ=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R ; (2)值域:[],A A -;(3)单调区间:求形如sin()y A x ωϕ=+与函数cos()(,0)y A x A ωϕω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ωϕ+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x 的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间.(4)奇偶性:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>不一定具备奇偶性.对于函数sin()y A x ωϕ=+,当()k k z ϕπ=∈时为奇函数,当()2k k z πϕπ=±∈时为偶函数;对于函数cos()y A x ωϕ=+,当()k k z ϕπ=∈时为偶函数,当()2k k z πϕπ=±∈时为奇函数.(5)周期:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期与解析式中自变量x 的系数有关,其周期为2T πω=.(6)对称轴和对称中心与正弦函数sin y x =比较可知,当()2x k k z πωϕπ+=±∈时,函数sin()y A x ωϕ=+取得最大值(或最小值),因此函数sin()y A x ωϕ=+的对称轴由()2x k k z πωϕπ+=±∈解出,其对称中心的横坐标()x k k z ωϕπ+=∈,即对称中心为,0()k k z πϕω-⎛⎫∈⎪⎝⎭.同理,cos()y A x ωϕ=+的对称轴由()x k k z ωϕπ+=∈解出,对称中心的横坐标由()2x k k z πωϕπ+=±∈解出.三、题型分析(一) 五点法作图例1.(2019·石嘴山市第三中学高一月考)已知函数323y sin x π⎛⎫=-⎪⎝⎭(1)用五点作图在下面坐标系中做出上述函数在766ππ⎡⎤⎢⎥⎣⎦,的图象.(请先列表,再描点,图中每个小矩形的宽度为)12π(2)请描述上述函数图象可以由函数y =sin x 怎样变换而来?【答案】(1)详见解析;(2)详见解析. 【解析】(1)由题意,因为x ∈7[]66x ππ∈,,所以2[0,2]3x ππ-∈,列表如下:x6π512π 23π 1112π76π 23x π-2π π32π 2π3(2)3y sin x π=-0 30 ﹣3 0描点、连线,得出所要求作的图象如下:(2)把sin y x =的图象向右平移3π个单位,可得sin()3y x π=-的图象;再把所得图象的横坐标变为原来的12倍,纵坐标不变,可得sin(2)3y x π=-的图象;再把所得图象的纵坐标变为原来的3倍,横坐标不变,可得3sin(2)3y x π=-的图象;(二) 函数图像变换例2.(2018·浙江高一期末)将函数f (x )=sin (ωx +4π)(ω>0)的图象向左平移8π个单位,所得到的函数图象关于y 轴对称,则函数f (x )的最小正周期不可能是( ) A .9πB .5π C .πD .2π【答案】D【解析】将函数()sin()(0)4f x x πωω=+>的图象向左平移8π个单位, 可得sin()84y x ωππω=++的图象,根据所得到的函数图象关于y 轴对称, 可得842k ωππππ+=+,即82k ω=+,k Z ∈. ∴函数的最小正周期为241k ππω=+,则函数()f x 的最小正周期不可能是2π,故选:D .例3.(2019·宁夏高一期末)要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象( )A .向左平移3π个单位长度B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向右平移6π个单位长度 【答案】D【解析】因为2sin 22cos 22cos 2636y x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以只需将2cos2y x =的图象向右平移6π个单位. (三) 已知函数图像求y=Asin (ωx+φ)例4.(2019·广东高考模拟(理))把函数()y f x =的图象向左平移23π个单位长度,再把所得的图象上每个点的横、纵坐标都变为原来的2倍,得到函数()g x 的图象,并且()g x 的图象如图所示,则()f x 的表达式可以为( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()sin 46f x x π⎛⎫=+⎪⎝⎭C .()sin 46f x x π⎛⎫=- ⎪⎝⎭D .()2sin 46f x x π⎛⎫=-⎪⎝⎭【答案】B【解析】∵g (0)=2sinφ=1,即sinφ12=,∴φ52,6k ππ=+或φ2,6k k Z ππ=+∈(舍去) 则g (x )=2sin (ωx 56π+),又755122,,2,12667k k Z k ππωπω⎛⎫+=∈∴=-⨯ ⎪⎝⎭当k=1, 2ω= 即g (x )=2sin (2x 56π+),把函数g (x )的图象上所有点的横坐标缩短到到原来的12,得到y =2sin (4x 56π+),再把纵坐标缩短到到原来的12,得到y =sin (4x 56π+),再把所得曲线向右平移23π个单位长度得到函数g(x )的图象, 即g (x )=sin[4(x -23π)56π+]=8511sin 4x sin 4sin 43666x x ππππ⎡⎤⎛⎫⎛⎫-+=-=+ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭故选:B .例5.(2017·浙江高一期末)已知函数()=2sin()f x x ωϕ+(0,0)2πωω><<一部分图象如图所示,则ω=__________,函数()f x 的图象可以由()2sin g x x ω=的图象向左平移至少__________ 个单位得到.【答案】26π【解析】由函数图象可得,函数的最小正周期为236T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦, 结合最小正周期公式有:222T ππωπ===;令6x π=-有:()22,263x k k k Z ππωϕϕπϕπ⎛⎫+=⨯-+=∴=+∈ ⎪⎝⎭, 令0k =可得:3πϕ=,函数的解析式为:()2sin 23f x x π⎛⎫=+⎪⎝⎭绘制函数()2sin 2sin 2g x x x ω==的图象如图所示,观察可得函数()f x 的图象可以由()2g x sin x ω=的图象向左平移至少6π个单位得到.(四) 函数y=Asin (ωx+φ)综合应用例6.(2019·湖北高二月考)已知函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其相邻两条对称轴之间的距离为2π,将()y f x =的图象向右平移6π个单位后,所得函数的图象关于y 轴对称,则( )A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于直线7x =π对称C .()f x 在区间,63ππ⎛⎫-⎪⎝⎭单调递增 D .()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭单调递增 例7.(2018·浙江诸暨中学高一月考)已知函数()sin()(0,0,)2f x A wx A w πϕϕ=+>><在一个周期内的简图如图所示,则函数的解析式为__________,方程()f x m =(其中12m <<)在[0,3]π内所有解的和为__________.【答案】2sin(2)6y x π=+ 7π【解析】根据函数()()sin (0,0,)2f x A wx A w πϕϕ=+>><在一个周期内的的图象,可得2021A f sin ϕ===,(), 即126sin πϕϕ=∴=,, 再根据五点法作图可得5126ππωπ⋅+=,求得2ω=,故函数()2sin 26f x x π⎛⎫=+⎪⎝⎭因为函数函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭在[]0,3π内与直线()f x m =(其中12m <<)由六个交点,它们分别关于713,,666x x x πππ===对称,则1234567132227666x x x x x x ππππ+++++=⨯+⨯+⨯= 即答案为(1). 2sin 26y x π⎛⎫=+ ⎪⎝⎭ (2). 7π专题4.2 三角恒等变换一、题型全归纳题型一 三角函数公式的直接应用【题型要点】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β;tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α±β,α,β均不为k π+π2,k ∈Z . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α,2α均不为k π+π2,k ∈Z .【例1】(2020·云南腾冲一中一模)已知tan(α-5π4)=15,则tan α=【答案】 32【解析】法一:因为tan(α-5π4)=15,所以tan α-tan5π41+tan αtan5π4=15,即tan α-11+tan α=15,解得tan α=32.法二:因为tan(α-5π4)=15,所以tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-5π4+5π4=tan ⎝⎛⎭⎫α-5π4+tan 5π41-tan ⎝⎛⎭⎫α-5π4tan 5π4=15+11-15×1=32. 【例2】(2020·东北师大附中高三期末)已知α∈⎪⎭⎫ ⎝⎛20π,,2sin 2α=cos 2α+1,则sin α=( ) A.15 B.55C.33D .255【答案】B【解析】 (1)依题意得4sin αcos α=2cos 2α,由α∈⎪⎭⎫⎝⎛20π,,知cos α>0,所以2sin α=cos α.又sin 2α+cos 2α=1,所以sin 2α+4sin 2α=1,即sin 2α=15.又α∈⎪⎭⎫⎝⎛20π,,所以sin α=55,选B.题型二 三角函数公式的逆用与变形应用【题型要点】(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系;②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.【例1】在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B.22C.12 D .-12【答案】 B【解析】由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又(A +B )∈(0,π),所以A +B =3π4,则C =π4,cos C =22. 【例2】.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= . 【答案】-12【解析】因为sin α+cos β=1,cos α+sin β=0, 所以sin 2α+cos 2β+2sin αcos β=1 ①, cos 2α+sin 2β+2cos αsin β=0 ②,①②两式相加可得sin 2α+cos 2α+sin 2β+cos 2β+2(sin αcos β+cos αsin β)=1, 所以sin(α+β)=-12.题型三 两角和、差及倍角公式的灵活应用【题型要点】三角函数公式应用的解题思路(1)角的转换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎪⎭⎫⎝⎛+απ4+⎪⎭⎫ ⎝⎛απ-4=π2,α2=2×α4等. (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.【易错提醒】转化思想是实施三角恒等变换的主导思想,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.命题角度一 三角函数公式中变“角”【例1】(2020·黑龙江大庆实验中学考前训练)已知α,β∈⎪⎭⎫⎝⎛ππ,43,sin(α+β)=-35,sin ⎪⎭⎫ ⎝⎛4-πβ=2425,则cos ⎪⎭⎫⎝⎛+απ4= . 【答案】-45【解析】 由题意知,α+β∈⎪⎭⎫⎝⎛ππ223,,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎪⎭⎫ ⎝⎛432ππ,,所以cos ⎪⎭⎫⎝⎛4-πβ=-725,cos ⎪⎭⎫⎝⎛+απ4=cos ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+4--πββα=cos(α+β)cos ⎪⎭⎫ ⎝⎛4-πβ+sin(α+β)sin ⎪⎭⎫⎝⎛4-πβ=-45. 【例2】(2020·甘肃、青海、宁夏联考改编)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= . 【答案】:-1 12【解析】:因为tan(α+2β)=2,tan β=-3,所以tan(α+β)=tan(α+2β-β)=tan (α+2β)-tan β1+tan (α+2β)tan β=2-(-3)1+2×(-3)=-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=12.命题角度二 三角函数公式中变“名”【例3】(2020·山西太原三中模拟)求值:1+cos 20°2sin 20°-sin 10°⎪⎭⎫⎝⎛︒︒5tan -tan 1. 【答案】32【解析】 原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎪⎭⎫⎝⎛︒︒︒︒cos55sin -5sin cos5 =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10° =cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝⎛⎭⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.题型五 三角函数式的求值【题型要点】三角函数求值的3种情况命题角度一 给角求值【例1】 计算2cos 10°-23cos (-100°)1-sin 10°= .【答案】 2 2 【解析】2cos 10°-23cos (-100°)1-sin 10°=2cos 10°+23sin 10°1-sin 10°=4⎝⎛⎭⎫12cos 10°+32sin 10°1-2sin 5°cos 5°=4cos 50°cos 5°-sin 5°=4cos 50°2cos 50°=2 2.命题角度二 给值求值【例2】 已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值. 【答案】(1)-725;(2)-211【解析】 (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2 α+cos 2 α=1,所以cos 2 α=925,因此,cos 2α=2cos 2 α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255,因此tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2 α=-247,因此,tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.命题角度三 给值求角【例3】在平面直角坐标系xOy 中,锐角α,β的顶点为坐标原点O ,始边为x 轴的非负半轴,终边与单位圆O 的交点分别为P ,Q .已知点P 的横坐标为277,点Q 的纵坐标为3314,则2α-β的值为 .【答案】 π3【解析】 法一:由已知可知cos α=277,sin β=3314.又α,β为锐角,所以sin α=217,cos β=1314. 因此cos 2α=2cos 2α-1=17,sin 2α=2sin αcos α=437,所以sin(2α-β)=437×1314-17×3314=32.因为α为锐角,所以0<2α<π. 又cos 2α>0,所以0<2α<π2,又β为锐角,所以-π2<2α-β<π2,又sin(2α-β)=32,所以2α-β=π3. 法二:同法一得,cos β=1314,sin α=217.因为α,β为锐角,所以α-β∈⎪⎭⎫⎝⎛22-ππ,. 所以sin(α-β)=sin αcos β-cos αsin β=217×1314-277×3314=2114. 所以sin(α-β)>0,故α-β∈⎪⎭⎫⎝⎛20π,,故cos(α-β)=1-sin 2(α-β)=1-⎝⎛⎭⎫21142=5714. 又α∈⎪⎭⎫ ⎝⎛20π,,所以2α-β=α+(α-β)∈(0,π).所以cos(2α-β)=cos[α+(α-β)]=cos αcos(α-β)-sin α·sin(α-β)=277×5714-217×2114=12.所以2α-β=π3.专题4.5 正弦定理和余弦定理的应用一、题型全归纳题型一 利用正弦、余弦定理解三角形【题型要点】(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;②利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. (2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【例1】 (2020·广西五市联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =3,A =30°,B 为锐角,那么A ∶B ∶C 为( ) A .1∶1∶3 B .1∶2∶3 C .1∶3∶2 D .1∶4∶1【答案】B.【解析】:法一:由正弦定理a sin A =b sin B ,得sin B =b sin A a =32.因为B 为锐角,所以B =60°,则C =90°,故A ∶B ∶C =1∶2∶3,选B.法二:由a 2=b 2+c 2-2bc cos A ,得c 2-3c +2=0,解得c =1或c =2.当c =1时,△ABC 为等腰三角形,B =120°,与已知矛盾,当c =2时,a <b <c ,则A <B <C ,排除选项A ,C ,D ,故选B.【例2】(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3 【答案】A 【解析】选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A. 【例3】(2020·济南市学习质量评估)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c +a =2b cos A . ①求角B 的大小;②若a =5,c =3,边AC 的中点为D ,求BD 的长. 【答案】见解析【解析】 (1)选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc=-14,得bc=6.故选A. (2)①由2c +a =2b cos A 及正弦定理, 得2sin C +sin A =2sin B cos A ,又sin C =sin(A +B )=sin A cos B +cos A sin B , 所以2sin A cos B +sin A =0, 因为sin A ≠0,所以cos B =-12,因为0<B <π,所以B =2π3.②由余弦定理得b 2=a 2+c 2-2a ·c cos ∠ABC =52+32+5×3=49,所以b =7,所以AD =72.因为cos ∠BAC =b 2+c 2-a 22bc =49+9-252×7×3=1114,所以BD 2=AB 2+AD 2-2·AB ·AD cos ∠BAC =9+494-2×3×72×1114=194,所以BD =192. 题型二 判断三角形的形状【题型要点】判定三角形形状的两种常用途径【易错提醒】“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.【例1】(2020·蓉城名校第一次联考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .不确定【答案】A【解析】 (1)法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A ,所以sin B cos C +sin C cos B =sin 2 A , 即sin(B +C )=sin 2 A ,所以sin A =sin 2 A , 故sin A =1,即A =π2,因此△ABC 是直角三角形.【例2】在△ABC 中,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为 . 【答案】等腰或直角三角形【解析】因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A , 故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B , A =π2或A =B ,故△ABC 为等腰或直角三角形.题型三 与三角形面积有关的问题命题角度一 计算三角形的面积【题型要点】1.△ABC 的面积公式 (1)S △ABC =12a ·h (h 表示边a 上的高).(2)S △ABC =12ab sin C =12ac sin B =12bc sin A .(3)S △ABC =12r (a +b +c )(r 为内切圆半径).2.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【例1】(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =6,a =2c ,B =π3,则△ABC的面积为 . 【答案】63【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC 的面积S =12×23×6=6 3.【例2】(2020·福建五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为 . 【答案】32【解析】因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C=π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32. 命题角度二 已知三角形的面积解三角形【题型要点】已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.【提示】正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用. 【例3】(2020·湖南五市十校共同体联考改编)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且△ABC 的面积为32,则ab = ,a +b = . 【答案】 933【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cos C =13,则C 为锐角,所以sin C =223.由△ABC 的面积为32,可得12ab sin C =32,所以ab =9.由c 是a ,b 的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【例4】(2020·长沙市统一模拟考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若△ABC 的面积为3,周长为8,求a . 【答案】见解析【解析】:(1)由题设得a sin C =c cos A2,由正弦定理得sin A sin C =sin C cos A2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12. 又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.题型四 三角形面积或周长的最值(范围)问题【题型要点】求有关三角形面积或周长的最值(范围)问题在解决求有关三角形面积或周长的最值(范围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.【例1】(2020·福州市质量检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求△ABC 外接圆的直径; (2)求a +c 的取值范围. 【答案】见解析【解析】:(1)因为角A ,B ,C 成等差数列,所以2B =A +C , 又因为A +B +C =π,所以B =π3.根据正弦定理得,△ABC 的外接圆直径2R =bsin B =32sin π3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知△ABC 的外接圆直径为1,根据正弦定理得, a sin A =b sin B =csin C=1, 所以a +c =sin A +sin C =sin A +sin ⎪⎭⎫ ⎝⎛A -32π=3⎪⎪⎭⎫ ⎝⎛+A A cos 21sin 23=3sin ⎪⎭⎫ ⎝⎛+6πA . 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎪⎭⎫ ⎝⎛+6πA ≤1,从而32<3sin ⎪⎭⎫ ⎝⎛+6πA ≤3,所以a +c 的取值范围是⎥⎦⎤ ⎝⎛323, 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac ≥(a +c )2-322⎪⎭⎫ ⎝⎛+c a =14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3, 又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 题型五 解三角形与三角函数的综合应用【题型要点】标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.【例1】 (2020·湖南省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ∈R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,△ABC 的面积为12,求a 的值.【答案】见解析【解析】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎪⎭⎫ ⎝⎛+62πx +1.令2x +π6∈⎥⎦⎤⎢⎣⎡++ππππk k 22,22-,k ∈Z ,解得x ∈⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ∈Z ,所以函数f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ∈Z .(2)因为f (A )=sin ⎪⎭⎫⎝⎛+62πA +1=2, 所以sin ⎪⎭⎫⎝⎛+62πA =1.因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由△ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ), 解得a =3-1.【例2】△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B . (1)求角C 的大小; (2)求3cos A +sin ⎪⎭⎫⎝⎛+3πB 的最大值,并求出取得最大值时角A ,B 的值. 【答案】见解析【解析】:(1)法一:在△ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B , 又A +B +C =π,则sin A =sin(π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0, 则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac ,整理得a 2+b 2-c 2=ab , 即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,于是3cos A +sin ⎪⎭⎫⎝⎛+3πB =3cos A +sin(π-A )=3cos A +sin A =2sin ⎪⎭⎫⎝⎛+3πA , 因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎪⎭⎫ ⎝⎛+3πA 的最大值为2,此时B =π2.三 解答题1.(2020·兰州模拟)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0. (1)求角A 的大小;(2)若a =25,b =2,求边c 的长. 【答案】见解析【解析】:(1)因为a sin B +b cos A =0, 所以sin A sin B +sin B cos A =0, 即sin B (sin A +cos A )=0, 由于B 为三角形的内角, 所以sin A +cos A =0, 所以2sin ⎪⎭⎫⎝⎛+4πA =0,而A 为三角形的内角, 所以A =3π4.(2)在△ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ⎪⎪⎭⎫⎝⎛22-,解得c =-42(舍去)或c =2 2. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b,求cos B 的值. 【答案】见解析【解析】:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c ,即c 2=13.所以c =33. (2)因为sin A a =cos B2b ,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb, 所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ), 故cos 2B =45.因为sin B >0,所以cos B =2sin B >0, 从而cos B =255.3.(2020·福建五校第二次联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A .(1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值. 【答案】见解析【解析】:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A , 即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32, 又A 为三角形的内角,所以A =π6.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc ,所以bc ≤4(2+3),所以S △ABC =12bc sin A ≤2+3,故△ABC 面积的最大值为2+ 3.4.(2020·广东佛山顺德第二次质检)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2b sin C cos A +a sin A =2c sin B .(1)证明:△ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且∠ADB =2∠ACD ,a =3,求b 的值. 【答案】见解析【解析】:(1)证明:因为2b sin C cos A +a sin A =2c sin B , 所以由正弦定理得2bc cos A +a 2=2cb , 由余弦定理得2bc ·b 2+c 2-a 22bc +a 2=2bc ,化简得b 2+c 2=2bc ,所以(b -c )2=0,即b =c . 故△ABC 为等腰三角形.(2)法一:由已知得BD =2,DC =1, 因为∠ADB =2∠ACD =∠ACD +∠DAC , 所以∠ACD =∠DAC ,所以AD =CD =1. 又因为cos ∠ADB =-cos ∠ADC ,所以AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD ,即12+22-c 22×1×2=-12+12-b 22×1×1,得2b 2+c 2=9,由(1)可知b =c ,得b = 3.法二:由已知可得CD =13a =1,由(1)知,AB =AC ,所以∠B =∠C ,又因为∠DAC =∠ADB -∠C =2∠C -∠C =∠C =∠B , 所以△CAB ∽△CDA ,所以CB CA =CA CD ,即3b =b1,所以b = 3.5.(2020·重庆市学业质量调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为32ac cos B ,且sin A =3sin C . (1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长. 【答案】【解析】:(1)因为S △ABC =12ac sin B =32ac cos B ,所以tan B = 3. 又0<B <π,所以B =π3.(2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6.由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7. 所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎪⎪⎭⎫⎝⎛147-=13. 所以BD =13.6.(2020届湘东五校联考)已知函数f (x )=32sin 2x -cos 2x -12. (1)求f (x )的最小值,并写出取得最小值时的自变量x 的集合;(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,f (C )=0,若sin B =2sin A ,求a ,b 的值. 【答案】见解析 【解析】:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -cos 2x 2-1=sin ⎪⎭⎫ ⎝⎛-62πx -1. 当2x -π6=2k π-π2,即x =k π-π6(k ∈Z )时,f (x )的最小值为-2,此时自变量x 的集合为xx =k π-π6,k ∈Z .(2)因为f (C )=0,所以sin ⎪⎭⎫⎝⎛-62πC -1=0,又0<C <π,所以2C -π6=π2,即C =π3.在△ABC 中,sin B =2sin A ,由正弦定理知b =2a , 又c =3,所以由余弦定理知(3)2=a 2+b 2-2ab cos π3,即a 2+b 2-ab =3,联立⎩⎪⎨⎪⎧a 2+b 2-ab =3,b =2a ,解得⎩⎪⎨⎪⎧a =1,b =2.7.渔政船在东海某海域巡航,已知该船正以153海里/时的速度向正北方向航行,该船在A 点处时发现在北偏东30°方向的海面上有一个小岛,继续航行20分钟到达B 点,此时发现该小岛在北偏东60°方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里? 【答案】见解析【解析】:根据题意画出相应的图形,如图所示,过C 作CD ⊥AD 于点D ,由题意得:AB =2060×153=53(海里),因为∠A =30°,∠CBD =60°, 所以∠BCA =30°,所以△ABC 为等腰三角形,所以BC =5 3. 在△BCD 中,因为∠CBD =60°,CD ⊥AD ,BC =53,所以CD =152,则该船向北继续航行,船与小岛的最小距离为7.5海里.8.(2020·云南四校联考)某港湾的平面示意图如图所示,O ,A ,B 分别是海岸线l 1,l 2上的三个集镇,A 位于O 的正南方向6 km 处,B 位于O 的北偏东60°方向10 km 处.(1)求集镇A ,B 间的距离;(2)随着经济的发展,为缓解集镇O 的交通压力,拟在海岸线l 1,l 2上分别修建码头M ,N ,开辟水上航线.勘测时发现:以O 为圆心,3 km 为半径的扇形区域为浅水区,不适宜船只航行.请确定码头M ,N 的位置,使得M ,N 之间的直线航线最短.【答案】见解析【解析】:(1)在△ABO 中,OA =6,OB =10,∠AOB =120°, 根据余弦定理,得AB 2=OA 2+OB 2-2·OA ·OB ·cos 120°=62+102-2×6×10×⎪⎭⎫⎝⎛21-=196, 所以AB =14,故集镇A ,B 间的距离为14 km. (2)依题意得,直线MN 必与圆O 相切. 设切点为C ,连接OC (图略),则OC ⊥MN . 设OM =x ,ON =y ,MN =c ,在△OMN 中,由12MN ·OC =12OM ·ON ·sin 120°,得12×3c =12xy sin 120°,即xy =23c , 由余弦定理,得c 2=x 2+y 2-2xy cos 120°=x 2+y 2+xy ≥3xy ,所以c 2≥63c ,解得c ≥6 3.当且仅当x =y =6时,c 取得最小值6 3.所以码头M ,N 与集镇O 的距离均为6 km 时,M ,N 之间的直线航线最短,最短距离为6 3 km.一、选择题1、(2020新课标Ⅲ卷·理科T7)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B.13C. 12 D. 23【答案】A 【解析】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A.真题体验【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. (2020新课标Ⅲ卷·文科T11)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( ) A.5 B. 25C. 45D. 85【答案】C【解析】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴= 22221145cos sin 1()tan 452999a cb B B B ac +-==∴=-=∴=故选:C【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题. 二、填空题1、(2020新课标Ⅰ卷·理科T16)如图,在三棱锥P –ABC 的平面展开图中,AC =1,3AB AD ==,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14- 【解析】AB AC ⊥,3AB =1AC =,由勾股定理得222BC AB AC =+=,同理得6BD =6BF BD ∴==在ACE △中,1AC =,3AE AD ==,30CAE ∠=,由余弦定理得22232cos30132131CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF 中,2BC =,6BF =,1CF=,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.2、(2020江苏卷·T13)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】∵,,A D P 三点共线, ∴可设()0PA PD λλ=>, ∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+, 若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫-⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒, ∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185. 当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=>.三、解答题1、(2020新课标Ⅱ卷·理科T17)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.2、(2020新课标Ⅰ卷·文科T18)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C ,求C .【答案】(1(2)15︒.【解析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B ==; (2)30A C +=︒,sin sin(30)A C C C ∴+=︒-+1cos sin sin(30)222C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒, 3045,15C C ∴+︒=︒∴=︒.【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.3、(2020新课标Ⅱ卷·文科T17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若3b c a -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =, 故222b a c =+, 即ABC 是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.4、(2020山东省新高考全国Ⅰ卷·T17)同(2020海南省新高考全国Ⅱ卷·T17)在①ac ②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【解析】解法一:由sin 3sin AB 可得:ab=不妨设(),0a b m m ==>,则:2222222cos 322c a b ab C m m m m =+-=+-⨯⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==,此时:sin 3c A m ==,则:c m ==选择条件③的解析: 可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =∴23A π=,∴6B C π==,若选①,ac =a ==2=若选②,3csinA =,3=,c =;若选③,与条件=c 矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.5、(2020北京卷·T17)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin 4C =, 4S =. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b += 22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=(Ⅱ)1cos (0,)sin 77A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 27a c C A C C ==∴=11sin (118)8222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin ,sin 816A B ∴====由正弦定理得:6sin sin a b a A B ===(Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.6、(2020江苏卷·T16)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知3,45a c B ===︒.。