导数中恒成立问题(最值问题)
第10讲 恒成立能成立3种常见题型(解析版)
第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。
高考数学导数恒成立问题的解法及例题
高考数学导数恒成立问题的解法
对于恒成立问题,一般采取的方法有两种:一是利用函数的单调性,二是利用函数的最值。
1. 利用函数的单调性
如果函数f(x)在区间D上单调,可以根据函数的单调性来解决问题。
例如,不等式f(x) > 0在区间D上恒成立,那么只需要找到满足f(x)min > 0的x值即可。
2. 利用函数的最值
如果函数f(x)在区间D上不是单调的,那么可以转化为求函数的最值问题。
例如,不等式f(x) > 0在区间D上恒成立,可以转化为求f(x)的最小值,只要最小值大于0,那么不等式就恒成立。
例题:已知函数f(x) = x2 + ax + 4在区间[-1,2]上都不小于2,求a的取值范围。
解法:首先根据题意得到函数f(x) = x2 + ax + 4在区间[-1,2]上的最小值为2,然后根据二次函数的性质得到对称轴为x=-b/2a=-a/2。
我们需要分三种情况讨论:
1. 当-a/2≤-1时,即a≥2时,函数在[-1,2]上是增函数,只需要满足f(-1)=1-a+4≥2即可,解得a≤3,所以2≤a≤3;
2. 当-a/2≥2时,即a≤-4时,函数在[-1,2]上是减函数,只需要满足
f(2)=4+2a+4≥2即可,解得a≥-4,但是此时a没有合适的取值,故舍去;
3. 当-1<-a/2<2时,即-4<a<2时,函数在对称轴左侧是减函数,右侧是增函数,只需要满足f(-a/2)=(-a/2)2-a2/4+4≥2即可,解得-4<a≤-2。
综上可得a的取值范围为:[-4,-2]∪[2,3]。
导数的最值、取值范围与恒成立问题(理科目标版含答案)
【例 2】 (2015 石景山一模理 18) 已知函数 f ( x) x a ln x , g ( x) (Ⅰ)若 a 1 ,求函数 f ( x) 的极值; (Ⅱ)设函数 h( x) f ( x) g ( x) ,求函数 h( x) 的单调区间; (Ⅲ)若存在 x0 1,e ,使得 f ( x0 ) g ( x0 ) 成立,求 a 的取值范围. 解: (Ⅰ) f ( x) x a ln x 的定义域为 0, . 当 a 1 时, f ( x)
1 x 2 并进一步转化为 a x
1 x 2 在区间上的最小值。 x
(6) 注意当无法想清逻辑关系时, 做示意图, 利用数形结合判断大小关系并转化; (7) 注意结果要判断是否与题设的区间端点或参数范围相吻合。 补充说明: 有些题目不是典型的恒成立问题, 但可以有多种解法, 掌握多种解法有利于避免卡题并 提高解决问题的灵活性与准确性。 在北京高考中,题设函数通常有几种类型:三次函数型,多项式+分式函数型,多项式 +对数函数型,多项式+指数函数型,含三角函数的表达式以及它们的乘、加、甚至复合。 为保证导数问题有效解决,一定要熟练掌握求导法则,首先保证求导结果的准确。
√
√ √ √ √ √ √
自检自查必考点
单调区间、 最值与取值范围问题是导数最常见的经典问题, 需重点掌握分类讨论模型 及参变分离模型。 (1) 单调区间。 作为前几年最经典的第二问, 单调区间问题须注意其基本模型是什 么?容易忽略的条件是什么?如何处理含参问题单调区间的讨论?前提与结 论该怎样规范书写?怎样做到不重不漏等等。 (2) 最值。最值问题该如何转化?该问题与经典的单调区间问题有什么联系?怎样
利用导数解决恒成立问题
恒成立问题常见处理恒成立问题的三种方法:第一种:参变分离法求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0),一般地:m x f >)(恒成立⇔m x f >min )(;m x f <)(恒成立⇔m x f <max )(;第二种:变更主元法:(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 第三种:构造函数求最值 题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型,或直接求最值。
例1. 设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--; (1)若()y f x =在区间(]3,0上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.例 2.已知函数32()f x x ax =+图象上一点P(1,b)处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (1)求,a b 的值;(2)当[1,4]x ∈-时,求()f x 的值域;(3)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。
例3.(2014陕西)设函数()ln ,m f x x m R x=+∈. (1)当m e =(e 为自然对数的底数)时,求()f x 的最小值;(2).讨论函数()'()3x g x f x =-零点的个数(3)若对任意()()0,1f b f a b a b a ->><-恒成立,求m 的取值范围.练习1.已知函数f (x )=|x |,g (x )=﹣|x ﹣4|+m(Ⅰ)解关于x 的不等式g [f (x )]+2﹣m >0;(Ⅱ)若函数f (x )的图象恒在函数g (x )图象的上方,求实数m 的取值范围.2.已知函数f (x )=lnx ﹣.(Ⅰ)若a >0,试判断f (x )在定义域内的单调性;(Ⅱ)若f (x )在[1,e ]上的最小值为,求实数a 的值;(Ⅲ)若f (x )<x 2在(1,+∞)上恒成立,求实数a 的取值范围.3.已知f (x )=xlnx ﹣ax ,g (x )=﹣x 2﹣2.(1)当a=﹣1时,求f (x )的单调区间;(2)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明:对一切x∈(0,+∞),都有成立.4.设a∈R,函数f(x)=lnx﹣ax.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)设F(x)=f(x)+ax2+ax,问F(x)是否存在极值,若存在,请求出极值;若不存在,请说明理由;(Ⅲ)设A(x1,y1),B(x2,y2)是函数g(x)=f(x)+ax图象上任意不同的两点,线段AB的中点为C(x0,y0),直线AB的斜率为为k.证明:k>g′(x0).5.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.6.已知f(x)=+nlnx(m,n为常数)在x=1处的切线为x+y﹣2=0.(1)求y=f(x)的单调区间;(2)若任意实数x∈[,1],使得对任意的t∈[,2]上恒有f(x)≥t3﹣t2﹣2at+2成立,求实数a的取值范围.7.已知函数f(x)=e x(其中e是自然数的底数),g(x)=x2+ax+1,a∈R.(1)记函数F(x)=f(x)•g(x),且a>0,求F(x)的单调增区间;(2)若对任意x1,x2∈[0,2],x1≠x2,均有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数a的取值范围.8.已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.(Ⅰ)求函数f(x)的最小值;(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅲ)证明:对一切x∈(0,+∞),都有成立.9.已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.。
高考数学恒成立问题---最值分析法知识讲解与例题讲解
高考数学恒成立问题---最值分析法知识讲解与例题讲解最值法求解恒成立问题是三种方法中最为复杂的一种,但往往会用在解决导数综合题目中的恒成立问题。
此方法考研学生对所给函数的性质的了解,以及对含参问题分类讨论的基本功。
是导数中的难点问题。
一、基础知识: 1、最值法的特点:(1)构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参 (2)参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论2、理论基础:设()f x 的定义域为D(1)若x D ∀∈,均有()f x C ≤(其中C 为常数),则()max f x C ≤ (2)若x D ∀∈,均有()f x C ≥(其中C 为常数),则()min f x C ≥ 3、技巧与方法:(1)最值法解决恒成立问题会导致所构造的函数中有参数,进而不易分析函数的单调区间,所以在使用最值法之前可先做好以下准备工作:① 观察函数()f x 的零点是否便于猜出(注意边界点的值) ② 缩小参数与自变量的范围:通过代入一些特殊值能否缩小所求参数的讨论范围(便于单调性分析)观察在定义域中是否包含一个恒成立的区间(即无论参数取何值,不等式均成立),缩小自变量的取值范围(2)首先要明确导函数对原函数的作用:即导函数的符号决定原函数的单调性。
如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号。
(3)在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内。
二、典型例题:例1:设()222f x x mx =−+,当[)1,x ∈−+∞时,()f x m ≥恒成立,求m 的取值范围思路:恒成立不等式为2220x mx m −+−≥,只需()2min220x mx m−+−≥,由于左端是关于x 的二次函数,容易分析最值点位置,故选择最值法解:恒成立不等式为2220x mx m −+−≥,令()222g x x mx m =−+−则对称轴为x m =(1)当1m ≤−时,()g x 在[)1,−+∞单调递增,()()min 11220g x g m m ∴=−=++−≥ 3m ∴≥−即[]3,1m ∈−−(2)当1m >−时,()g x 在()1,m −单调递减,在(),m +∞单调递增 ()()22min 22021g x g m m m m m ∴==−+−≥⇒−≤≤(]1,1m ∴∈− 终上所述:[]3,1m ∈−小炼有话说:二次函数以对称轴为分解,其单调性与最值容易分析。
导数中的恒成立问题整理
B.
C.
D.
一一一一一一一
【解答】
解:因为
所以 在定义域上单调递增, ,
则由 ,得 ,
即 ,
令 ,
在同一坐标系里画出函数 与函数 的图象;
, 时,曲线 的切线的斜率 ;
要满足存在 使得, 有解,则直线 的斜率 ;
故实数 的取值范围为 .
故选D.
一一一一
【题文6】
若对任意的 , 恒成立,则实数 的取值范围是
故 ,
故选C.
一一一一一一一一
【题文4】
设 ,若对任意的 , 恒成立,则 的范围是 .
A.
B.
C.
D.
一一一一一一一一一一
【解答4】
解:任意的 , 恒成立,
即为 恒成立,
由 , 取得等号 ,
时, ,
即有 ,
可得 ,
即 , 当 取得等号 ,
则 .
故选A.
一一一
【题文5】
已知函数 ,若 在 上有解,则实数 的取值范围为
A.
B.
C.
D.
一一一一一一一一一一一一一
一一
【解答20】
解:令 ,
则 ,
故 在 上单调递减,
因为 ,所以 ,
所以不等式
,
则 ,
或 ,
解得 或 .
故选B.
【题文21】
设函数 ,若 存在的极值点 满足 ,则实数 的取值范围是
A.
B.
C.
D.
一一一一一一一一
【解答21】
解:由正弦函数的图象可知, 的极值点 满足 ,
可得切线方程: ,切线与 轴的交点为 ,可得此时 , ,
综合函数图像可得 ;
利用导数求解参数问题(恒成立问题)经典题目
用导数解参数问题已知函数的单调性,求参变量的取值范围,实质上是含参不等式恒成立的一种重要题型。
本文将举例说明此类问题的求解策略。
结论一、 不等式()()f x g a ≥恒成立⇔[]min()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max()()f x g a ≤(求解()f x 的最大值).结论二、 不等式()()f x g a ≥存在解⇔[]max()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min()()f x g a ≤(即求解()f x 的最小值).一、(2008湖北卷)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞- 二、若不等式()2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。
解:设()()()2121f m m x x =---,对满足2m ≤的m ,()0f m <恒成立,()()()()()()2221210202021210x x f f x x ⎧----<-<⎧⎪⎪∴∴⎨⎨<---<⎪⎪⎩⎩解得:1122x -++<<三、(2009浙江)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析:(Ⅰ)略(Ⅱ))2()1(23)(2+--+='a a x a x x f函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a 四、(新课程卷 )若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.解:[])1()1()1()(2---=-+-='a x x a ax x x f令0)(='x f ,解得x=1或x=a-1,并且 a≠2,否则f (x)在整个定义域内单调。
利用导数解决恒成立问题
分析:已知版心的面
x
积,你能否设计出版心的
高,求出版心的宽,从而
列出海报四周的面积来?
图3.4-1
解 : 设 版 心 的 高 为 x d m , 则 版 心 的 宽 为 1 2 8 d m , 此 时 四 周 空 白 面 积 为
S(x)(x4)(1282)128 x x
2x5128,x0 x
令 求 : 导 S数 '(x,)得 S 2'(因是1面x56x)1此最积d22m, 小 最2,x值小0=宽点。5 1x为1 6。22 是8所d函以m数解 ,时S得 当,(x: )版能的心使x 极 高四小1 为周值6 , 空,白x 也 1 ( 6舍 )
延伸学习
已知 f(x函 )a 数 xlnx(a0)g ,(x)x22x2. 若 对 x1 (0,) 均 , 存 x2 [0 在 ,1]使 , f(得 x1)g(x2) 成立 a的 ,取 求 .值范围
已知函数 f (x) (1 x) ex 1. .
(I)求函数 f (x) 的最大值; (Ⅱ)设 g(x) f (x) , x 1,且x 0 ,
202X
利用导数 研究“恒成立”的 问题
单击此处添加副标题
【问题展示】
不等式恒成立问题是近年高考的热点问题, 常以压轴题形式出现,交汇函数、方程、不 等式和数列等知识,有效地甄别考生的数学 思维能力.由于不等式恒成立问题往往都可以 转化为函数的最值问题,而导数,以其本身 所具备的一般性和有效性,在求解函数最值 中,起到无可替代的作用,
x 证明: g(x) <1.
(Ⅰ)f (x)=-xex. 当 x∈(-∞,0)时,f (x)>0,f (x)单调递增; 当 x∈(0,+∞)时,f (x)<0,f (x)单调递减. 所以 f (x)的最大值为 f (0)=0. (Ⅱ)由(Ⅰ)知,当 x>0 时,f (x)<0,g (x)<0<1. 当-1<x<0 时,g (x)<1 等价于设 f (x)>x. 设 h (x)=f (x)-x,则 h (x)=-xex-1. 当 x∈(-1,-0)时,0<-x<1,0<ex<1,则 0<-xex<1, 从而当 x∈(-1,0)时,h (x)<0,h (x)在(-1,0]单调递减. 当-1<x<0 时,h (x)>h (0)=0,即 g (x)<1.
导数中恒成立问题(最值问题)
导数中恒成立问题(最值问题)导数中恒成立问题(最值问题)恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。
知识储备(我个人喜欢将参数放左边,函数放右边)先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题如:化简后我们分析得到,对[],x a b ∀∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ∃∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题如:化简后我们分析得到,对[]12,,x x a b ∀∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ∀∈,[]2,x c d ∃∈使12()()f x g x ≥,那么只需min min ()()f x g x ≥如:化简后我们分析得到,[]1,x a b ∃∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量)3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(2014.03苏锡常镇一模那题特别典型)今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是11,,e e之类),所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。
导数压轴题中恒成立问题方法总结
导数压轴题中恒成立问题方法总结恒成立问题作为高中数学学习中不可缺少一部分,掌握高中数学恒成立问题的解题方法和思路不仅是高中阶段的重要任务,也是为日后学习数学奠定扎实基础的关键。
现主要从掌握高中数学恒成立问题的解题方法与思路的意义出发,对恒成立问题的类型和求解方法作一小结,如“一次型”函数恒成立问题,利用函数单调性;“二次型”函数恒成立问题,数形结合理解;可以分离参数的,转化为函数最值求解;确定主元,利用函数单调性求解;数形结合,直观求解,以对高中数学恒成立问题常见的解题方法和思路进行分析。
一、单变量恒成立问题1.分离参数:利用分离参数法来确定不等式f(x,a)≥0(x∈D,a为参数)恒成立时,参数a的取值范围的一般思路:将题目中的参数与变量分离,化为g (a)≤f(x)(或g(a)≥f(x))恒成立的形式。
接下来求解出函数f(x)的最小(或最大)值,最后解不等式g(a)≤f(x)min(或g(a)≥f(x)max),进而求得a的取值范围,该思路一般适用于参数与变量易分离且最值易求得的题型。
高考引例1(2007年山东文)当x∈(1,2)时,x2+mx+4<0恒成立,则m 的取值范围是。
本引例中,注意到x的取值范围,可以采用分离参数的方法.解:由x∈(1,2),x2+mx+4<0恒成立,对不等式分离参数,得。
令,,易知f(x)在(1,2)上是减函数,所以x∈(1,2)时,4<f(x)<5,则,所以m≤-5。
又如高考引例2,也可以采用分离参数的方法,只不过要分段讨论,最终结果取“交集”。
解:∀x∈[-3,+∞),f(x)≤恒成立⇒∀x∈[-3,0],x2+2x+α-2≤-x且∀x∈(0,+∞),-x2+2x-2α≤x⇒α≤(-x2-3x+2)=2且α≥min max=⇒α∈[,2]。
1.函数思想一般思路:首先分清楚题目中的变量与参数。
一般来说,题目给出取值范围的元为变量,最终求解范围的元为参数,通过构造变量的函数,借助所构造的函数的取值特征进行求解。
导数的零点问题及恒成立问题(教师版)
导数的零点问题与恒成立问题1.已知函数f (x )=ln x +ax +1.(1)讨论f (x )的单调性;(2)对任意x >0,xe 2x ≥f (x )恒成立,求实数a 的最大值.【答案】(1)答案见解析;(2)2.【解析】(1)f (x )=1x +a =1+axx(x >0)当a ≥0时,x ∈(0,+∞),f (x )=1+axx>0,所以f (x )在(0,+∞)上单调递增;当a <0时,x ∈0,-1a ,f (x )=1+ax x >0,所以f (x )在0,-1a上单调递增;x ∈-1a ,+∞ ,f (x )=1+ax x <0,所以f (x )在-1a,+∞ 上单调递减;综上:当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在0,-1a 上单调递增,在-1a,+∞ 上单调递减.(2)任意x >0,xe 2x ≥f (x ),即xe 2x -ln x -ax -1 ≥0恒成立,即e ln x +2x -ln x -ax -1≥0恒成立;令g (x )=e ln x +2x -ln x -ax -1,则任意x >0,g (x )=e ln x +2x -ln x -ax -1≥0,因为,存在正实数x 0,满足:ln x 0+2x 0=0且g (x 0)=eln x 0+2x 0-ln x 0-ax 0-1≥0,所以2x 0-ax 0≥0,所以a ≤2.下证:当a =2时成立:即证:e ln x +2x -ln x -2x -1≥0,因为∀x ∈R ,e x ≥x +1,所以:e ln x +2x -ln x -2x -1≥ln x +2x +1-ln x -2x -1=0显然成立;所以实数a 的最大值为2.2.已知函数f x =a ln x +2 -x a ∈R .(1)讨论f (x )的单调性和最值;(2)若关于x 的方程e x =2m -1m ln mx +2(m >0)有两个不等的实数根x 1,x 2,求证:e x 1+e x 2>2m.【答案】(1)见解析;(2)见解析【解析】(1)f x =a x +2-1=a -2-xx +2,其中x >-2若a ≤0,则f x <0在-2,+∞ 上恒成立,故f (x )在-2,+∞ 上为减函数,故f (x )无最值.若a >0,当x ∈-2,a -2 时,f x >0;当x ∈a -2,+∞ 时,f x <0;故f (x )在-2,a -2 上为增函数,在a -2,+∞ 上为减函数,故f (x )max =f a -2 =a ln a -a +2,f (x )无最小值.(2)方程e x =2m -1m ln mx +2(m >0)即为me x +x +ln m =x +2+ln x +2 ,故e x +ln m +ln e x +ln m =x +2+ln x +2 ,因为y =x +ln x 为0,+∞ 上的增函数,所以x +2=e x +ln m =me x所以关于x 的方程e x =2m -1m ln mx +2(m >0)有两个不等的实数根x 1,x 2即为:x +2=me x 有两个不同的实数根x 1,x 2.所以x 1+2=me x 1,x 2+2=me x 2,所以x 1-x 2=m e x 1-e x 2,不妨设x 1>x 2,t =x 1-x 2,故e x 1+e x 2=e x1+e x 2x 1-x 2m e x1-e x 2,要证:e x 1+e x 2>2m 即证e x 1+e x 2x 1-x 2m e x1-e x 2>2m ,即证e x 1-x 2+1 x 1-x 2e x 1-x2-1>2,即证e t +1 te t -1>2t >0 ,即证e t +1 t >2e t -2t >0 ,设s t =e t +1 t -2e t +2,则s t =e t +1+te t -2e t =t -1 e t +1,故s t =te t >0,所以s t 在0,+∞ 上为增函数,故s t >s 0 =0,所以s t 在0,+∞ 上为增函数,所以s t >s 0 =0,故e x 1+e x 2>2m成立.3.已知f x =sin n x ,g x =ln x +me x (n 为正整数,m ∈R ).(1)当n =1时,设函数h x =x 2-1-2f x ,x ∈0,π ,证明:h x 有且仅有1个零点;(2)当n =2时,证明:f x 2+g x <x +m e x -1.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)当n =1时,h x =x 2-1-2sin x 0<x <π 记φx =h x =2x -2cos x ,则φ x =2+2sin x >0所以φx =h x 在区间0,π 上单调递增而φ0 =-2<0,φπ2 =π>0所以存在x 0∈0,π2,使得φx 0 =0,即h x 0 =0当x ∈0,x 0 时,φx =h x <0,h x 单调递减当x ∈x 0,π 时,φx =h x >0,h x 单调递增又h 0 =-1<0,h x 0 <h 0 <0,h π =π2-1>0所以h x 在0,x 0 上没有零点,在x 0,π 上有一个零点,综上所述,函数h x 在0,π 内只有一个零点.(2)当n =2时,f x =2sin x cos x =sin2x ,要证f x 2+g x <x +m e x -1,即证sin2x2+ln x +1-xe x <0,令H x =sin2x -2x (x >0),则H x =2cos2x -2≤0,所以H x 在0,+∞ 单调递减,H x <H 0 =0,即sin2x <2x ,要证sin2x 2+ln x +1-xe x <0只需证x +ln x +1-xe x ≤0,令μx =e x -x -1,则μ x =e x -1,∴μx 在-∞,0 单调递减,在0,+∞ 单调递增,∴μx ≥μ0 =0,即e x ≥x +1,∴e x +ln x ≥x +ln x +1,即xe x ≥x +ln x +1,所以x +ln x +1-xe x ≤0成立,∴原命题得证.4.已知函数f x =e x -a ln x ,a ∈R .(1)当a =0时,若曲线y =f x 与直线y =kx 相切于点P ,求点P 的坐标;(2)当a =e 时,证明:f x ≥e ;(3)若对任意x ∈0,+∞ ,不等式f x >a ln a 恒成立,请直接写出a 的取值范围.【答案】(1)1,e ;(2)证明见解析;(3)0,e 【解析】(1)当a =0时,f x =e x ,f x =e x .设P x 0,e x 0 ,则切线斜率k =e x 0.由切点性质,得k =e x 0e x 0=kx 0 ,解得x 0=1.所以点P 的坐标1,e .(2)当a =e 时,f x =e x -e ln x ,其中x >0,则f x =e x -ex,令g x =e x -e x ,其中x >0,则g x =e x +e x 2>0,故函数f x 在0,+∞ 上单调递增,且f1 =0,当x 变化时,x ,f x ,f x 变化情况如下表:x 0,111,+∞f x -0+f x单调递减极小值单调递增由上表可知,f (x )min =f 1 =e.所以f x ≥e.(3)实数a 的取值范围0,e .理由如下:方法一:(数形结合)在0,+∞ 上f x =e x -a ln x >a ln a 恒成立,即e x >a ln x +ln a .因而函数y 1=e x 的图象在函数y 2=a ln x +a ln a 的图象上方.考虑函数y 1=e x 图象在函数y 2=a ln x +a ln a 图象恰好有一个公共点的临界情形(如图所示),此时它们在交点处有一条公切线m ,设交点的横坐标为x 0.又y '1=e x,y '2=a x,由切点性质知e x=a x 0e x 0=a ln x 0+a ln a,所以a x 0=a ln x 0+a ln a 即1x 0=ln x 0+ln a ,由e x 0=a x 0得x 0e x 0=a ,所以1x 0=ln x 0+ln x 0e x 0即2ln x 0+x 0-1x 0=0记h x =2ln x +x -1x ,x ∈0,+∞ ,则h x =2x +1+1x2>0,所以h x在0,+∞ 上是增函数.又因为h 1 =0,所以方程2ln x 0+x 0-1x 0=0的解是x 0=1.因此,当两函数恰好有一个交点时,交点坐标是1,e ,此处公切线方程是y =ex .所以当函数y 1=e x 的图象在函数y 2=a ln x +a ln a 的图象上方时,实数a 的取值范围0,e .方法二:(同构变形)显然a >0,在0,+∞ 上f x =e x -a ln x >a ln a 恒成立,即e x -ln a -ln x >ln a 恒成立即e x -ln a -ln a >ln x 恒成立,所以e x -ln a +x -ln a >x +ln x =e ln x +ln x 恒成立,构造函数g x =e x +x ,x ∈0,+∞ ,易知g x 在0,+∞ 上是增函数,所以x -ln a >ln x 恒成立,即ln a <(x -ln x )min ,令h x =x -ln x ,h x =x -1x(x >0),当x ∈0,1 时,h x <0,所以h x 在0,1 上单调递减,当x ∈1,+∞ 时,h x >0,所以h x 在1,+∞ 上单调递增,所以h (x )min =h 1 =1,所以ln a <1,解得0<a <e ,所以实数a 的取值范围0,e .5.已知函数f x =x -a ln x ,a ∈R(1)请讨论函数f x 的单调性(2)当x ∈1e ,+∞ 时,若e x≥λx ln ln x +x +1 +1 恒成立,求实数λ的取值范围【答案】(1)答案见解析;(2)λ≤1【解析】(1)f (x )=1-a x =x -ax(x >0)当a ≤0时,f (x )>0,f (x )在(0,+∞)上递增当a >0时,在(0,a )上f (x )<0,f (x )单调递减在(a ,+∞)上f (x )>0,f (x )单调递增(2)原式等价于xe x =e ln x +x ≥λ(ln (ln x +x +1)+1)设t =ln x +x ,x ∈1e ,+∞ 由(1)当a =-1时,f (x )=ln x +x 为增函数,∴t ∈1e-1,+∞ ,∴等式等价于e t ≥λ(ln (t +1)+1),t ∈1e-1,+∞恒成立,t =1e -1时,e 1e -1>0成立,t ∈1e -1,+∞ 时,λ≤e tln (t +1)+1,设g (t )=e t ln (t +1)+1,t ∈1e -1,+∞ ,g (t )=e t (ln (t +1)+1)-e t 1t +1 (ln (t +1)+1)2=e t ⋅ln (t +1)+1-1t +1(ln (t +1)+1)2,设h (t )=ln (t +1)+1-1t +1,h (t )=1t +1+1(t +1)2>0所以h (t )在1e -1,+∞ 上为增函数,又因为h (0)=0,所以在1e-1,0 上,h (t )<0,∴g (t )<0,g (t )为减函数,在(0,+∞)上,h (t )>0,∴g (t )>0,g (t )为增函数,∴g (t )min =g (0)=1,∴λ≤1.6.已知函数f x =ax 2-1ln x,其图象在x =e 处的切线过点2e ,2e 2 .(1)求a 的值;(2)讨论f x 的单调性;(3)若λ>0,关于x 的不等式λxf x ≤e 2λx -1在区间[1,+∞)上恒成立,求λ的取值范围.【答案】(1)1;(2)f x 在0,1 上递增,在1,+∞ 上递增;(3)1e ,+∞【解析】(1)因为函数f x =ax 2-1ln x,所以f e =ae 2-1,f x =2ax ln x -ax 2-1 1xln x2,则f e =ae +1e,所以函在x =e 处的切线方程为y -ae 2-1 =ae +1ex -e ,又因为切线过点2e ,2e 2,所以2e 2-ae 2-1 =ae +1e2e -e ,即2ae 2=2e 2,解得a =1;(2)由(1)知;f x =x 2-1ln x ,x >0且x ≠1,则fx =2x 2ln x -x 2+1x ln x 2,令g x =2x 2ln x -x 2+1,则g x =4x ln x ,当0<x <1时,g x <0,g x 单调递减;当x >1时,g x >0,g x 单调递增;所以g x ≥g 1 =0,f x ≥0,所以f x 在0,1 ,1,+∞ 上递增;(3)因为x 的不等式λxf x ≤e 2λx -1在区间[1,+∞)上恒成立,所以e 2λx -1λx≥x 2-1ln x 在区间[1,+∞)上恒成立,即f e λx ≥f x 在区间[1,+∞)上恒成立,因为f x 在1,+∞ 上递增,所以e λx ≥x 在区间[1,+∞)上恒成立,即λ≥ln xx在区间[1,+∞)上恒成立,令h x =ln x x ,则h x =1-ln xx 2,当0<x <e 时,h x >0,当x >e 时,h x <0,所以当x =e 时,h x 取得最大值h e =1e,所以λ≥1e.7.已知函数f x =e x -1-mx 2m ∈R .(1)选择下列两个条件之一:①m =12;②m =1;判断f x 在区间0,+∞ 是否存在极小值点,并说明理由;(2)已知m >0,设函数g x =f x +mx ln mx .若g x 在区间0,+∞ 上存在零点,求实数m 的取值范围.【答案】(1)答案见解析;(2)m ≥1.【解析】(1)若选择①m =12,f x =e x -1-12x 2,则f x =e x -1-x ,f x =e x -1-1,由f x 在R 上单调递增,且f 1 =0,所以f x 在0,1 上单调递减,1,+∞ 上单调递增,有f x ≥f 1 =0,则f x 在0,+∞ 上单调递增,不存在极小值点.若选择②m =1,f x =e x -1-x 2,则f x =e x -1-2x ,f x =e x -1-2,由f x 在R 上单调递增,且f 1+ln2 =0,所以f x 在0,1+ln2 上单调递减,1+ln2,+∞ 上单调递增,有f x ≥f 1+ln2 =-2ln2<0,而f 4 =e 3-8>0,所以存在极小值点x 0∈1+ln2,4 .(2)令g x =0,有e x -1-mx 2+mx ln mx =0,又mx >0,所以e x -1mx -x +ln mx =e x -1e ln mx -x +ln mx =e x -ln mx -1-x -ln mx=0,令t =x -ln mx ,即转化为e t -1-t =0有解,设h t=e t -1-t ,则由h t =e t -1-1可得,h t 在t ∈-∞,1 单调递减,在t ∈1,+∞ 单调递增,而h 1 =0,所以h t =e t -1-t 由唯一零点t =1.若g x 在区间0,+∞ 存在零点,即为1=x -ln mx 在0,+∞ 有解.整理得:1+ln m =x -ln x ,设l x =x -ln x ,由l x =1-1x知,l x 在x ∈0,1 单调递减,在x ∈1,+∞ 单调递增,则l x ≥l 1 =1,所以1+ln m ≥1,故有m ≥1.8.已知函数f x =e 2x +a -12ln x +a 2(1)若函数y =f x 在0,12上单调递减,求a 的取值范围;(2)若函数y =f x 在定义域内没有零点,求a 的取值范围.【答案】(1)a ≤-1-ln2;(2)a >-1-ln2.【解析】(1)f x =2e 2x +a -12x因为函数f x 在0,12 单调递减,所以f x =2e 2x +a -12x ≤0在0,12恒成立,两边取以e 为底的对数,即a ≤-2x -1n 4x 在0,12恒成立,设g x =-2x -ln4x ,g x =-2-1x<0所以g x 在0,12 递减,所以g (x )min =g 12=-1-ln2,所以a ≤-1-ln2;(2)f x =e 2x +a -12ln x +a2在0,+∞ 无零点,等价于方程e 2x +a -12ln x +a2=0在0,+∞ 无实根,亦即e 2x +a +2x +a 2=e ln x +ln x2在0,+∞ 无实根,因为e x +x2在0,+∞ 为单调增函数,原方程无零点等价于2x +a =ln x 在0,+∞ 无实根,即:a =ln x -2x 在0,+∞ 无实根,构造函数h x =ln x -2x ,h (x )=1x -2=1-2x x ,x ∈0,12 ,h (x )>0,x ∈12,+∞ ,h (x )<0所以h x 在0,12 上单调递增,在12,+∞ 上单调递减,且h (x )max =h 12=-1-ln2,x →0,h x →-∞所以a >-1-ln2.9.已知函数f (x )=ae x -ln (x +1)+ln a -1.(1)若a =1,求函数f (x )的极值;(2)若函数f (x )有且仅有两个零点,求a 的取值范围.【答案】(1)极小值0,无极大值;(2)0<a <1.【解析】(1)当a =1时,f (x )=e x -ln (x +1)-1,f ′(x )=e x -1x +1,x >-1,显然f ′(x )在(-1,+∞)单调递增,且f ′(0)=0,∴当-1<x <0时,f ′(x )<0,f (x )单调递减,当x >0时,f ′(x )>0,f (x )单调递增,∴f (x )在x =0处取得极小值f (0)=0,无极大值.(2)函数f (x )有两个零点,即f (x )=0⇒ae x +ln a +x =ln (x +1)+x +1有两个解,即ae x +ln ae x =ln (x +1)+(x +1)有两个解,设h (t )=t +ln t ,则h ′(t )=1+1t>0,h (t )单调递增,∴ae x =x +1(x >-1)有两个解,即a =x +1e x(x >-1)有两个解.令s (x )=x +1e x (x >-1),则s ′(x )=-xe x ,当x ∈(-1,0)时,s ′(x )>0,s (x )单调递增,当x ∈(0,+∞)时,s ′(x )<0,s (x )单调递减,又x =-1时,s (x )=x +1e x=0,且s (0)=1,当x →+∞时,s (x )→0,且s (x )>0所以当x >-1时,x +1ex ∈(0,1]∴0<a <1.10.已知f x =x ln x +a 2x 2+1.(1)若函数g x =f x +x cos x -sin x -x ln x -1在0,π2上有1个零点,求实数a 的取值范围.(2)若关于x 的方程xe x -a =f x -a 2x 2+ax -1有两个不同的实数解,求a 的取值范围.【答案】(1)0<a ≤8π2;(2)a >1【解析】(1)g (x )=a 2x 2+x cos x -sin x ,x ∈0,π2,所以g ′(x )=x (a -sin x ),当a ≥1时,a -sin x ≥0,所以g (x )在0,π2单调递增,又因为g (0)=0,所以g (x )在0,π2上无零点;当0<a <1时,∃x 0∈0,π2,使得sin x 0=a ,所以g (x )在x 0,π2 单调递减,在(0,x 0)单调递增,又因为g (0)=0,g π2 =a π28-1,所以若a π28-1>0,即a >8π2时,g (x )在0,π2 上无零点,若a π28-1≤0,即0<a ≤8π2时,g (x )在0,π2 上有一个零点,当a ≤0时,g ′(x )=a -x sin x <0,g (x )在0,π2上单调递减,g (x )在0,π2 上无零点,综上当0<a ≤8π2时,g (x )在0,π2 上有一个零点;(2)由xe x -a =f x -a2x 2+ax -1x >0 ,即xe x -a=x ln x +ax ,即e x -a =ln x +a ,则有e x -a +x -a =x +ln x ,令h x =x +ln x ,x >0,则h e x -a =e x -a +x -a ,h x =1+1x>0,所以函数h x 在0,+∞ 上递增,所以e x -a =x ,则有x -a =ln x ,即a =x -ln x ,x >0,因为关于x 的方程xe x -a =f x -a2x 2+ax -1有两个不同的实数解,则方程a =x -ln x ,x >0有两个不同的实数解,令φx =x -ln x ,则φ x =1-1x =x -1x,当0<x <1时,φ x <0,当x >1时,φ x >0,所以函数φx =x -ln x 在0,1 上递减,在1,+∞ 上递增,所以φx min =φ1 =1,当x →0时,φx →+∞,当x →+∞时,φx →+∞,所以a >1.11.在数学中,我们把仅有变量不同,而结构、形式相同的两个式子称为同构式,相应的方程称为同构方程,相应的不等式称为同构不等式.若关于a 的方程ae a =e 6和关于b 的方程b (ln b -2)=e 3λ-1(a ,b ∈R )可化为同构方程.(1)求ab 的值;(2)已知函数f (x )=x ln x +13λ.若斜率为k 的直线与曲线y =f '(x )相交于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,求证:.x 1<1k<x 2【答案】(1)e 8;(2)答案见解析.【解析】(1)对ae a =e 6两边取自然对数,得ln a +a =6(1),对b (ln b -2)=e 3λ-1(a ,b ∈R )两边取自然对数,得ln b +ln (ln b -2)=3λ-1,即ln b -2+ln (ln b -2)=3λ-3(2).,因为(1)(2)方程为两个同构方程,所以3λ-3=6,解得λ=3,设φ(x )=ln x +x ,x >0,则φ'(x )=1x+1>0 ,所以φ(x )在(0,+∞)单调递增,所以方程φ(x )=6的解只有一个,所以a =ln b -2,所以ab =(ln b -2)b =b (ln b -2)=e 3×3-1=e 8,故ab =e 8 .(2)由(1)知:f (x )=x ln x +13λ =x ln x +13×3 =x ln x +x ,x ∈(0,+∞).所以f(x )=ln x +2,k =f (x 2)-f (x 1)x 2-x 1=ln x 2-ln x 1x 2-x 1,要证x 1<1k<x 2,即证明x 1<x 2-x 1ln x 2-ln x 1<x 2,等价于1<x 2x 1-1ln x 2x 1<x 2x 1,令t =x 2x 1(t >1),则只要证明1<t -1ln t <t 即可,由t >1知,ln t >0,故等价于证ln t <t -1<t ln t (t >1).设g (t )=t -1-ln t (t >1), 则g '(x )=1-1t>0(t >1),即g (t )在(1,+∞)单调递增,故g (t )>g (1)=0,即t -1>ln t .设h (t )=t ln t -(t -1)(t >1),则h '(t )=ln t >0(t >1),即h (t )在(1,+∞)单调递增,故h (t )>h (1)=0,即t -1<t ln t 。
【一题一课 难点突破】导数中的恒成立问题
1 1 2当a 0时,f x 在 0, 上递增, 在 , 上递减, f x max a a 1 1 f ln 0, 即恒成立。 a a
转化手段
单变量恒成立问题 方法3:参变量半分离法解恒成立问题
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以半分离:lnx<-ax-1,构造f (x)=lnx与g(x)=-ax-1 由图像得:a<-1
转化手段
单变量恒成立问题 方法4:端点值代入法解恒成立问题
例题:设函数f (x)=(x+1)ln(x+1),若对于所有的x≥0, 都有f (x)≥ax,求a的问题 方法4:端点值代入法解恒成立问题
例题:设函数f (x)=(x+1)ln(x+1),若对于所有的x≥0, 都有f (x)≥ax,求a的取值范围?
f x f a 1若x a且f x f a , f x 在x a处可导,则f a xlim 0 a xa f x f a 2若x a且f x f a , f x 在x a处可导,则f a xlim 0 a xa
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以直接讨论:
求导:f x
这与f x 0恒成立矛盾。
1 a, x 1当a 0时,f x 0, f x 在0, 讨论: 恒增,找到f 1 a 1 0
转化手段
单变量恒成立问题 方法1:参变量分离法解恒成立问题
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以转化为:
导数背景下的恒成立与存在性问题—可转化为函数最值问题
导数背景下的恒成⽴与存在性问题—可转化为函数最值问题导数背景下的恒成⽴与存在性问题—可转化为最值问题—恒成⽴问题和存在性问题⼀直是⾼考中的热门问题,同时学⽣在理解与掌握的过程中存在⼀定的困难,经常混淆不清。
⼀般得这两类问题都可以转化为函数最值问题,通过最值之间的⽐较,从⽽得出参数的取值范围。
下⾯把问题细分为9个⽅⾯,希望对你有所帮助。
⼀、若对?x I ∈,)(x f a >恒成⽴,则只需max )(x f a >即可;若对?x I ∈,)(x f a <恒成⽴,则只需min )(x f a <即可.例题1、已知函数)30(ln )(≤<+=x x a x x f ,若以其图象上任意⼀点),(00y x P 为切点的切线的斜率 21≤k 恒成⽴,求实数a 的取值范围. 【解答】Q 221()a x a f x x x x -'=-=,∴0020'()x a k f x x -==∴12k …恒成⽴等价于02012x a x -…恒成⽴即2001()2max a x x -+…,(分离参数) Q 当01x =时,20012x x -+取得最⼤值12,∴12a …. ⼆、若I ∈?x ,满⾜不等式)(x f a >,则只需min )(x f a >即可;若I ∈?x ,满⾜不等式)(x f a <,则只需max ()a f x <即可;例题2、已知函数ax ax x f 2)(2+=,xe x g =)(,若在),0(+∞上⾄少存在⼀个实数0x ,使得)()(00x g xf >成⽴,求实数a 的取值范围.【解答】由)()(00x g x f >可得0202x ax ax e +>,即22xe a x x>+,(分离参数)Q 在),0(+∞上⾄少存在⼀个实数0x ,使得)()(00x g x f >成⽴,∴2min 2x e a x x ??> ?+??,令2()2xe h x x x=+,222(2)'()(2)x e x h x x x -=+,当(0,2)x ∈时,'()0h x <,即()h x 在(0,2)递减,当(2,)x ∈+∞时,'()0h x >,即()h x 在(0,2)递增,∴2min (21)()(2)e h x h -==,∴2(21)2e a ->三、若对I ∈?21,x x ,使得不等式a x f x f <-)()(21(a 为常数)恒成⽴,则a x f x f <-min max )()( .例题3、已知函数)1()1(21ln )(2e a x a x x a x f ≤<+-+=.证明:对于[]12,1,x x a ?∈,恒有1)()(21<-x f x f 成⽴.分析:只需证明max min |()()|1f x f x -<即可.【解答】由题可知,2(1)()(1)'()(1)a x a x a x a x f x x a x x x-++--=+-+==,当[]1,x a ∈时,0,10x a x -≤-≥,∴'()0f x ≥在[]1,x a ∈上恒成⽴,即()f x 在[]1,a 上单调递减,2min 1()()ln 2f x f a a a a a ==--,max 1()(1)2f x f a ==--,∴2max min 11()()ln 22f x f x a a a -=-+,令2max min 11()()()ln 22g a f x f x a a a =-=-+,(1)a e <≤,则'()ln 1g a a a =+-,令()'()ln 1a g a a a ?==+-,则1'()10a a ?=-<恒成⽴,∴()a ?在(1,]e 上单调递减,即()(1)0a ??<=,∴'()0g a <,即()g a 在(1,]e 上单调递减,则()(1)0g a g <=2min 11()()122g a g e e e ==-+>-,∴1()0g a -<≤,即max min 1()()0f x f x -<-≤,∴max min 0|()()|1f x f x ≤-<,∴对于[]12,1,x x a ?∈,有21max min |()()||()()|1f x f x f x f x -≤-<,∴原命题得证.四、若I x x ∈?21,,满⾜⽅程)()(21x g x f =,则只需两函数值域交集不空即可.例题4、已知函数?????????? ??∈+∈+-=)1,21(12)21,0(6131)(3x x x x x x f ,函数)0(226sin )(>+-=a a x a x g π,若[]1,0,21∈?x x ,使得)()(21x g x f =成⽴,试求实数a 的取值范围.【分析】判断函数f (x )的单调性,求出函数f (x )的值域,根据若存在x 1,x 2∈[0,1],使得f (x 1)= g (x 2)成⽴得到,f (x )的值域和g (x )的值域交集不是空集即可得到结论.【解答】当<x ≤1时,f (x )=的导数f ′(x )===>0,则此时函数f (x )为增函数,则f ()<f (x )≤f (1),即<f (x )≤1,当0≤x ≤时,f (x )=﹣x +为减函数,则0≤f (x )≤,即函数f (x )的值域为[0,]∪(,1] 函数g (x )=ax 2﹣2a +2(a >0),在[0,1]上为增函数,则g (0)≤g (x )≤g (1),即2﹣2a ≤g (x )≤2﹣a ,即g (x )的值域为[2﹣2a ,2﹣a ]若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成⽴,则[2﹣2a ,2﹣a ]∩([0,]∪(,1])≠?,若[2﹣2a ,2﹣a ]∩([0,]∪(,1])=?,则2﹣a <0或或2﹣2a >1,即a >或a ⽆解或0<a <,即若[2﹣2a ,2﹣a ]∩([0,]∪(,1])≠?,则≤a ≤,故答案为:≤a ≤.五、若对?1x 1I ∈总?2x 2I ∈使得)()(21x g x f =成⽴,则只需)(x f 值域?)(x g 值域即可.例题5、已知函数)1(23)(,274)(232≥--=--=a a x a x x g xx x f 对?1x []1,0∈总?2x []1,0∈使得 )()(21x g x f =成⽴,试求实数a 的取值范围.【解答】对函数()g x 求导,则22()3()g x x a '=-.1a Q …,当(0,1)x ∈时,2()3(1)0g x a '<-…,因此当(0,1)x ∈时,()g x 为减函数,从⽽当[0x ∈,1]时有()[g x g ∈(1),(0)]g ,⼜g (1)2123a a =--,(0)2g a =-,即当[0x ∈,1]时有2()[123g x a a ∈--,2]a -,任给1[0x ∈,1],1()[4f x ∈-,3]-,存在2[0x ∈,1]使得21()()g x f x =,则2[123a a --,2][4a -?-,3]-,即2123423a a a ?---?--?①②……,解①式得1a …或53a -…,解②式得32a …,⼜1a …,故a 的取值范围内是312a 剟.六、若对?1x 1I ∈,2x 2I ∈使得不等式)()(21x g x f <恒成⽴,则只需min max )()(x g x f <即可.例题6、已知两个函数x x x x g c x x x f 4042)(,287)(232-+=--=,若对?1x []3,3-∈,2x []3,3-∈,都有不等式)()(21x g x f ≤恒成⽴,求实数c 的取值范围.【解答】由⼆次函数的性质可得max ()(2)28f x f c ==--,2'()68402(2)(310)g x x x x x =+-=+-,令'()0g x =得2x =-和103x =,由[]3,3x ∈-可得()g x 在[3,2)--递增,在(2,3]-上递减,∵(3)102g -=,(3)30g =-,∴min ()(3)30g x g ==-,∵对?1x []3,3-∈,2x []3,3-∈,都有不等式)()(21x g x f ≤恒成⽴,∴max min ()()f x g x ≤,即2830c --≤-解得2c ≥.七、若对?1x 1I ∈,2x 2I ∈满⾜不等式)()(21x g x f <,则只需max min )()(x g x f <即可.例题7、已知两个函数12)(,93)(223++=+--=x x x g c x x x x f ,若对?1x []6,2-∈,2x []6,2-∈,。
导数应用之不等式恒成立问题
立,求实数 a 的范围援
解:疫(f x)=x3-
1 2
x2-2x+5
亦f(忆 x)=3x2-x-2
姨 姨 盂当 a跃1 时,令 f(忆 x)=0,即:3ax2-3=0亦x=依
1 a
(0约
1 a
约1)
又 疫x沂(0,1]
令 f(忆 x)=0,即 3x2-x-2=0
亦x=1
或-
2 3
又 疫x沂[-1,2]
1 c
-
1 2
亦c-
7 2
跃
1 c
-
1 2
解得:3-
姨13 2
约c约0
或
c跃
3+ 姨13 2
分析:例 1 和例 2 两题,都是直接利用所给函数的最值解决问
题的,虽然例
2
函数
(f x)=x3+
3 2
x2-6x+c 中含有参数 c,但 c 并不影
分析:通过上面两种方法的比较发现,第一种比第二种方法麻 烦一些,还需要分类讨论援之所以要分类讨论,就是因为函数 (f x) 当中含有参数,会影响到求函数的最值援而第二种方法由于将参数 分离出来了,再求函数最值的时候就方便很多了援
2013-04
教学实践
导数应用之不等式恒成立问题
文/鄢 琼
函数是高中数学学习的重点,也是学生学习的难点,很多学生 都有 (f x)逸0 恒成立,求实数 a 的范围援
一看到函数头就懵了援但等到学习了导数之后,函数的一些性质就
解:方法一:疫 对任意 x沂(0,1]时,都有 (f x)逸0 恒成立
可以通过导数的运算分析出来援 本文主要通过几个例题介绍如何 利用导数解决不等式恒成立问题援
导数恒成立问题3种基本方法
导数恒成立问题3种基本方法
这种方法是根据导数定义和基本求导公式来求导数的,需要掌握一些基本公式,如:
1.导数的定义:f'(x) = lim(h→0) [f(x+h) - f(x)]/h
2.常数的导数:(c)' = 0
3.幂函数的导数:(x^n)' = nx^(n-1)
4.指数函数的导数:(a^x)' = a^xlna
5.对数函数的导数:(loga x)' = 1/(xlna)
6.三角函数的导数:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x
二、运算法则法
这种方法是根据导数的运算法则来求导数的,需要掌握一些基本运算法则,如:
1.加减法则:(f+g)' = f' + g'
2.乘法法则:(fg)' = f'g + fg'
3.除法法则:(f/g)' = [f'g - fg']/g^2
4.复合函数法则:(f(g(x)))' = f'(g(x))g'(x)
三、对数微分法
这种方法是使用对数微分法来求导数的,需要掌握以下公式:
1.对数微分法:y = f(x),y' = [ln(y)]'
2.求导公式:[ln(f(x))]′ = f′(x)/f(x)
3.应用:可以将y = f(x)转化为lny = lnf(x),再求导。
以上就是求导的三种基本方法,掌握它们可以更好地理解导数的概念和作用。
函数导数中的恒成立问题解题技巧
函数导数中的恒成立问题解题技巧函数导数中的恒成立问题解题技巧随着新课标下的高考越来越重视考查知识的综合应用,恒成立问题成为了考试中的热点问题。
这种问题涉及方程、不等式、函数性质与图象及它们之间的综合应用,同时渗透换元、转化与化归、数形结合、函数与方程等思想方法,考查综合解题能力。
在函数、导数中,这种问题更为明显。
本文将介绍两种解题技巧。
一、利用函数的性质解决XXX成立问题利用函数的性质解决恒成立问题,主要是函数单调性的应用。
例如,对于已知函数$f(x)=x^3+(1-a)x^2-a(a+2)x+b(a,b\in R)$,若函数$f(x)$的图象过原点,且在原点处的切线斜率是$-3$,求$a,b$的值。
我们可以先求出$f'(x)$,然后令$f(0)=b=0$,$f'(-1)$和$f'(1)$的乘积小于$0$,解出$a=-3$或$a=1$。
再比如,若函数$f(x)$在区间$(-1,1)$上不单调,求$a$的取值范围。
我们可以利用导函数$f'(x)$在给定的区间上有零点这一性质,根据函数零点的存在性定理解出$a$的取值范围。
二、利用数形结合思想解决恒成立问题利用数形结合思想解决恒成立问题,可以通过画图来求出函数的单调区间、极值点等信息,再结合数学方法解决问题。
例如,对于已知$x=3$是函数$f(x)=a\ln(1+x)+x^2-10x$的一个极值点,求$a$。
我们可以求出$f'(x)$,然后令$f'(3)=0$,解出$a=16$。
再比如,若直线$y=b$与函数$y=f(x)$的图象有$3$个交点,求$b$的取值范围。
我们可以根据函数$f(x)$的单调性来求出其极大值和极小值,画出图象,数形结合可以求出$b$的取值范围。
这些技巧可以帮助我们更好地解决函数导数中的恒成立问题,提高我们的解题能力。
方法点评:分离参数是解决恒成立问题的一种重要方法,通过构造新函数并求其最值,可以得到参数取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数中恒成立问题(最值问题)恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。
知识储备(我个人喜欢将参数放左边,函数放右边)先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题如:化简后我们分析得到,对[],x a b ∀∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ∃∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题如:化简后我们分析得到,对[]12,,x x a b ∀∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ∀∈,[]2,x c d ∃∈使12()()f x g x ≥,那么只需min min ()()f x g x ≥如:化简后我们分析得到,[]1,x a b ∃∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量)3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(2014.03苏锡常镇一模那题特别典型)今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是11,,e e之类),所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。
那么我们先从一道练习题说起一.二次函数型(通常方法是讨论对称轴,根据图像求最值)例题1.已知()f x =R ,求a 的取值范围思考:① 引入定义域(非R )②参数在二次项,就需考虑是否为0③引入高次(3次,4次,1x ,ln x ,x e 等等)④引入2a ,3a 等项(导致不能分离变量)方法:1.一次函数,二次函数直接根据图像讨论最值(二次函数也可以分离变量)2.对于高次或者特殊函数,一般分离变量求最值(分离变量后对函数求导,确定导函数的正负情况,确定单调性,从而确定在已知定义域上的最值)3.对于不能分离变量的,只能直接求导,对参数讨论,从而确定单调性,确定最值变式:①已知()f x ax b =+,若对任意的(,)x m n ∈,均有()0f x ≥,求a 的取值范围 ②已知2()25f x ax x =+-,若对任意的(3,2)x ∈-,均有()0f x ≥,求a 的取值范围 ③已知22()2(1)5f x ax a x =++-,若对任意的(3,2)x ∈-,均有()0f x ≥,求a 的取值范围 ④已知3()2(1)5f x ax a x =++-,若对任意的(3,2)x ∈-,均有()0f x ≥求a 的取值范围 ⑤已知32()2(9)5f x ax a x =+--,若对任意的(3,2)x ∈-,均有()0f x ≥求a 的取值范围 例题2.(改编)已知函数()122+-=x ax x f 在[]3,1上的最大值为()a M ,最小值为()a m ,又已知函数()()()a m a M a g -=,(1)求()a g 的表达式;(2)指出()a g 的单调区间,并求出()a g 的最小值答案:根据对a 是否为0以及对称轴的讨论,易知11,2()195,2a a M a a a ⎧-≤⎪⎪=⎨⎪->⎪⎩195,311()1,131,1a a m a a a a a ⎧-≤⎪⎪⎪=-<<⎨⎪-≥⎪⎪⎩,所以易知184,31112,()321196,1284,1a a a a g a a a a a a a ⎧-+≤⎪⎪⎪+-<≤⎪=⎨⎪+-<≤⎪⎪⎪->⎩ 所以()g a 在1(,)2-∞单调递减,在1(,)2+∞单调递增,所以当12x =时,()f x 有最小值12点评:本题考察的主要是二次函数带参数在已知定义域上的最值问题的讨论变式:1.对称轴不动(①定义域不动 ②定义域动(含参数)) 2.对称轴动(含参),定义域不动(考试最喜欢考)3.对称轴动(含参),定义域动(含参) 但是参数还是同一个参数 方法:找出对称轴与定义域边界及定义域中值的临界点讨论即可4.对称轴动(含参),定义域动(含参)①参数不一样,那么或许可以看看题目中参数的范围,是否可以直接根据单调性求 ②参数不一样,参数也没范围,那么真不能做了(13江苏)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数1y x=(x >0)图象上一动点.若点P ,A之间的最短距离为,则满足条件的实数a 的所有值为__________.解:设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+= 1a =- , 3a =(舍去)2.2a >时,22min 2()228PA f a a a ==-∴-=a =,a =综上1a =-或a =点评:本题综合性较高,考查了带参数的二次函数在已知定义域上的最值问题(高一下学期必须学会),同时考查了换元思想,分类讨论的思想 是一道非常漂亮的题目二.三次函数及特殊函数型(通常是求导后对二次函数的零点进行讨论,从而求最值)先来几个比较特殊的题目,平时稍微长点心眼,多记记,就记住了1.(原创)已知函数()0f x >且'()()0xf x f x ->,对所有满足条件的函数()f x ,始终有3(2)(23)(1)f a a f >-+成立,求a 的取值范围答案:由题可知0x =时,0(0)0f ->与题目()0f x >矛盾,所以显然有0x ≠ 所以由条件易知()f x x 单调递增,由题可知3(2)23(1)22f a a f -+>始终成立,即 3(2)232(1)21f a a f -+>恒成立,因为()f x x 单调递增,又()f x x 是满足条件的所有函数, 所以(2)2(1)1f f 的最小值总大于1,所以有32312a a -+≤,知a的范围是12a --≤或112a -+≤≤ 点评:对于某些题中既有()f x 又有()'f x 的这种题型,我们不妨去联想它的原函数2.(原创)已知函数22()log (1)f x x x ax =++-;若对于任意31,2a ⎛⎤∈ ⎥⎝⎦,总存在⎥⎦⎤⎢⎣⎡∈1,210x ,使得不等式0()f x m >成立,则m 的取值范围是_____________________答案:分析知2log (1+)x 单增,又分析知2x ax -在1x =时取最大值,所以0()f x 的最大值为(1)f ,所以有(1)m f <恒成立,分离变量易知12m <3.322()=+(0)f x x ax a x m a -+>若对任意[]3,6a ∈,()1f x ≤在[]2,2x ∈-上恒成立,求m 范围解答:先看成是a 的二次函数,对称轴为[]1,12x∈-,所以最大值不是在3处就是在6处,所以有32323916361x x x m x x x m ⎧+-+≤⎪⎨+-+≤⎪⎩对[]2,2x ∈-恒成立,易知87m <- 点评:对于一些双变量的函数最值问题,我们难以处理时,往往可以去看看本身的定义域,从而确定原函数的单调性,确定最值4. 对满足2p ≤所有实数p ,求使不等式212x px p x ++>+恒成立的x 的取值范围解答:看成是p 的一次函数点评:对哪个参数恒成立,就看成是哪个参数的函数5.已知2101m x mx -<+对4x ≥恒成立,求m 的取值范围解答:法1:看成乘积小于0恒成立,转变成二次函数恒成立 法2:必须有一正一负恒成立变式:2101m x mx ->-对4m ≥恒成立,求x 的取值范围 解答:如果看成是m 的函数,乘积后就变成关于m 的三次函数,所以我们可以转变思维,转变成两个式子同正或同负6.若对于满足13t -≤≤的一切实数t ,不等式222(3)(3)0x t t x t t -+-+->恒成立,则x 的 取值范围为 .解答:分解因式易知[]2()(3)0x t x t ---> 所以必须有同正或同负恒成立点评:通过这几个题目的对比,所以我们发现虽然我们常说对哪个参数恒成立就看成是哪个参数的函数,但是有时候也需要转变思维,不能太死板7.已知2237()345x x f x a x ++=+-+,若对任意的[]1,3x ∈-,()0f x ≥恒成立,求a 的取值范围 类题:(10.江苏). 将边长为m 1正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是 .点评:二次比二次型的值域问题,一定要熟练掌握,先分离常数,转变成一次比二次,设一次为t ,转变成关于t 的对勾函数,解决值域另外一次比一次型的其实只是对称中心改变而已,可以直接画图,建议跟学生讲明白8.228()1mx x nf x x ++=+的最大值是9,最小值是1,求m 与n 的值 解答:整理成关于x 的二次函数,由题意知二次函数一定有解,所以有0δ≥恒成立,转变成关于y 的一个二次函数恒成立,易知5和9是它的两个根,容易把,m n 求出来点评:此题比较特殊,只要讲过,那么以后碰到这类题,就不再那么无从下手了9.(08江苏)已知13)(3+-=x ax x f 对于[]1,1-∈x 总有0)(≥x f 成立,则a = 解:2()'33f x ax =-法1:分离变量,求最值 法2:直接求导10.若不等式|3ln ax x -|≥1对任意(0,1]x ∈都成立,则实数a 取值范围是 .解析:显然1x =时,有||1,1,,1a a or a ≥≤-≥。