物理化学第十二章模拟试卷A及答案知识讲解
2020版高考物理新设计一轮复习江苏专版讲义:第十二章 第2节 固体、液体和气体 含答案
第2节固体、液体和气体(1)大块塑料粉碎成形状相同的颗粒,每个颗粒即为一个单晶体。
(×)(2)单晶体的所有物理性质都是各向异性的。
(×)(3)晶体有天然规则的几何形状,是因为晶体的物质微粒是规则排列的。
(√)(4)液晶是液体和晶体的混合物。
(×)(5)船浮于水面上不是由于液体的表面张力。
(√)(6)水蒸气达到饱和时,水蒸气的压强不再变化,这时,水不再蒸发和凝结。
(×)(7)压强极大的气体不遵从气体实验定律。
(√)突破点(一)固体、液体的性质1.晶体和非晶体(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性。
(2)凡是具有各向异性的物体必定是晶体,且是单晶体。
(3)凡是具有确定熔点的物体必定是晶体,反之,必是非晶体。
(4)晶体和非晶体在一定条件下可以相互转化。
2.液体表面张力[题点全练]1.[多选]下列说法正确的是()A.当分子力表现为引力时,分子力和分子势能总是随分子间距离的减小而增大B.石墨晶体是层状结构,层与层原子间作用力小,可用作固体润滑剂C.潮湿的房间内,开空调制热,可降低空气的绝对湿度D.把玻璃管的裂口放在火焰上烧熔,它的尖端就会变钝,这跟表面张力有关解析:选BD两分子之间的距离大于r0时,分子力表现为引力,分子力随着分子间距的减小可能先增大后减小,也可能一直减小,分子势能随着分子间距的减小而减小,故A错误;石墨晶体是层状结构,层与层原子间作用力小,可用作固体润滑剂,故B正确;潮湿的房间内,开启空调制热,温度升高,水蒸气的压强增大,空气的绝对湿度升高,故C错误;玻璃管的裂口放在火焰上烧溶,它的尖端会变钝,是由于变成液体后表面张力的作用,故D正确。
2.(2018·宿迁期末)关于固体、液晶的性质,下列说法错误的是()A.单晶体的某些物理性质具有各向异性,而多晶体和非晶体是各向同性的B.有的物质能够生成种类不同的几种晶体,因为它们的物质微粒能够形成不同的空间结构C.液晶既像液体一样具有流动性,又跟某些晶体一样具有光学性质的各向异性D.液晶就是液态的晶体,其光学性质与多晶体相似,具有光学的各向同性解析:选D单晶体只有在某些物理性质上具有各向异性,而多晶体和非晶体的物理性质是各向同性的,故A正确;同种物质能够生成种类不同的几种晶体,是因为组成它们的分子形成了不同的空间结构,故B正确;液晶像液体一样具有流动性,又具有各向异性,故C正确,D错误。
物理化学全程导学及习题全解259-186 第十二章化学动力学基础(二)
第十二章 化学动力学基础 (二)本章知识要点与公式1. 碰撞理论双分子碰撞频率 :2AB AB A B Z pd L c = 22AA AA A 2Z d L π= 临界能c E 与活化能a E 的关系:12a c E E RT =+ 用简单碰撞理论计算双 分子反应的速率常数:2AB aEk d RT π⎛⎫=- ⎪⎝⎭ 2AA 2a E k d RT π⎛⎫=- ⎪⎝⎭ 概率子Pexp a E k PA RT ⎛⎫=- ⎪⎝⎭2ABA d π= A P A =n n n n 2. 过渡态理论用统计热力学方法计算速率常数:,0B B B exp E k T f k h f RT π≠⎛⎫=- ⎪⎝⎭用热力学方法计算速率常数:()0010B r m r m exp exp nk T S H k c h R RT ≠≠-⎛⎫⎛⎫∆∆=- ⎪ ⎪⎝⎭⎝⎭对于双分子理想气体反应:1n000B r m r m exp exp k T S H P k h RT R RT -≠≠⎛⎫⎛⎫⎛⎫∆∆=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.原盐效应稀溶液中,离子强度对反应速率的影响: A B 0lg2kz z k = A z 与B z 同号,产生正的原盐效应,I ↑ k ↑;A z 与B z 昇号,产生负的原盐效应,I k ↑↓。
4. 光化学反应光化学第一定律:只有被分子吸收的光才能引起分子的光化学反应。
光化学第二定律:在初级反应中, 一个反应分子吸收一个光子而被活化。
1 mol 光子能量(1 Einstein ) 101197J m mol Lhcu Lh νλλ-.===⋅⋅量子产率 ar I ϕ=5. 催化反应催化剂通过改变反应历程,改变反应的表观活化能来改变反应速率,只能缩短达到平蘅的时间,而不能改变平蘅的组成。
酶催化反应历程( Michaelis – Menten 机理)米氏常数12m 1k kK k -+=当[]S →∞ 时 []m m m111S K r r r =⋅+将1r对[]1S 作图,可求m K 和m r .典型俐题讲解例 1 500K 时,实验测得 NO 2 分解反应的提前因子为 61312.0010mol m s --⨯⋅⋅,碰撞截面为1921.0010m -⨯,试计算该反应的概率因子 P解 :2AA2A d π=c 2σ= ()()19223-12 1.0010m 602310mol-=⨯⨯⨯.⨯7-13133710mol m s -=.⨯⋅⋅61371320010mol m s 33710mol m s A P A --1∞--1∞.⨯⋅⋅==.⨯⋅⋅ 例 2 实验测得 N 2O 5 分解反应在不同温度时的反应速率常数,数据列于表中。
物理化学模拟题及答案
(C) 3H2 (g)+N2 (g)=2NH3 (g)
(D) 2H2 O(g)=2H2 (g)+ O2 (g)
( )23. 298K时, 反应CaCO3 (s)=CaO(s)+CO2 (g)的ΔG°m =130.17 KJ/mol。为了使CaCO3 顺利分解, 可采取的最合适的措施是
(A) ΔH >ΔU (B) ΔH <ΔU (C) ΔH =ΔU (D) 无法判断
( )22.增大压力能使平衡向生成物方向移动的反应是
(A) CaCO3 (s)=CaO(s)+CO2 (g)
(B) CO(g)+H2 O(g)=CO2 (g)+H2 (g)
一、选择题(将正确答案填入题前括号内,每题1分)
( )1. 反应H2 (g)+Cl2 (g)=2HCl(g)在等温等压下完成时放出的热称为
(A) HCl(g)的生成热 (B) H2 (g)的燃烧热
(C) Cl2 (g)的燃烧热 (D) 该化学反应的摩尔等压反应热效应
( )2. 关于热和功, 下面的说法中, 不正确的是
(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上
(B) 只有在封闭系统发生的过程中, 功和热才有明确的意义
(C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量
(B) 通过电解池的电流与超电势之间的关系
(C) 通过电解池的电量与发生电极反应的物质的量之间的关系
(D) 电解时电极上析出物质的量与电极面积的关系
7. 对于理想的水平液面,其值为零的表面物理量是
(A) 表面能 (B) 比表面吉布斯函数
物理化学第八~十二章课后习题参考答案(教师)
第八章电分析化学导论8- 1.解液接电位:它产生于具有不同电解质或浓度不同的同种电解质溶液界面之间,由于离子扩散通过界面的速率不同,有微小的电位差产生,这种电位差称为液体接界电位。
8- 2.解正极和负极是物理上的分类,阳极和阴极是化学上的称呼。
负极(电子流出的级),发生氧化反应,正极(电子流入的级),发生还原反应;阳极,接电源的正极,氧化反应;阴极接电源的负极,发生还原反应。
8- 3.解指示电极:在化学测试过程中,溶液的主体浓度不发生变化的电极参比电极:在测量过程中,具有恒定电位的电极。
8- 4.解:左半电池:Zn > Zn2e_右半电池:Ag - Ag电池反应:Zn - 2Ag1. 2Ag - Zn2'o 0.059 r 2+] 0.059E左二E Ig Zn - 0.763 丨gQ.1) =—0.7 92\52 2E右二E0 - 0.059lg Ag 1= 0.6815VE 二E右一E左=0.6 8 1V5—(—0.7 9 2V) =1.4 7V4所以,该电池是原电池。
8- 5.解:2H 2eN H2E = E00.059/2lg (H )2 1E左二E右-E =0.2443-0.413= -0.1 6 870.059 | 2 ]所以,lg (H )20.16872=lg H 亠0.2859pH 二pK a lg A「C HA8- 6.解:E=E 右- E 左所以,E 左二 E 右一 E= 0.2443- 0.921 二-0.6767V CdX/一二 Cd 2 4X -2.]K 0spCdX 42-]CdL X-4nK 0=1.3"0」2sp二K =7.7 10118- 7.解:E=E 右一 E 左E 左二E 右-E =0.2443-0.893=-0.6687V CdX 2 二 Cd 2 2X -Cd 2J 」X-f K sp - 'CdX 」所以 K 0sp =1.9 10」2第九章 电位分析法9- 1.解当被氢离子全部占有交换点位的水化胶层与试液接触时, 由于它们的氢离子活度 不同就会产生扩散,即H 水化层fH溶液当溶液中氢离子活度大于水化层中的氢离子活度时,则氢离子从溶液进入水化 层,反之,则氢离子由水化层进入溶液,氢离子的扩散破坏了膜外表面与试液间 两相界面的电荷分布,从而产生电位差,形成相界电位,同理,膜内表面与内参 比溶液两相界面也产生相界电位。
高分子物理化学模拟试卷A及答案
参考答案华东理工大学2002-2003年第二学期《高分子科学基础》(高分子物理)期终试卷(A)班级姓名学号得分一.单项选择题:(10分)(下面每个小题只有一个答案是正确的,请将正确答案的编号填在左边的括号里。
选对者得1分,不选、选错或多选均不得分)( A)1.在二氧六环中将锌粉与聚氯乙烯共煮,红外光谱表明产物中有环丙烷结构而无双键,则反应前聚氯乙烯结构单元的键接顺序为:(A) 头-尾键接; (B)头-头键接;(C)头-尾和头-头各占50%( C)2.某结晶性聚合物在偏光显微镜下呈现黑十字消光图案,则其结晶形态是:(A) 单晶; (B)串晶; (C)球晶; (D)片晶( B)3.在聚四氟乙烯的晶区中,其分子链的构象为:(A) 锯齿链;(B)螺旋链;(C)无规线团( D)4.用WLF方程计算聚合物的粘度时,其适用范围是:(A) T f ~T f -100 °C;(B)T g ~T g-100 °C;(C)T f~T f+100 °C;(D)T f以下且T g ~T g+100 °C( A)5.对含成核剂的PP等温结晶过程的研究表明,其Arami指数为3,则生成的是:(A) 球晶;(B)片晶;(C)针状晶体( C)6.下列因素中,使Tg降低的是:(A) 增加分子量;(B)分子之间形成氢键;(C)加入增塑剂;(D)交联( B)7.假塑性流体的熔体粘度随剪切应力的增大而:(A) 增大;(B)减小;(C)不变( B)8.聚合物的粘流活化能越大,则其熔体粘度:(A) 越大; (B)对温度越敏感; (C)对剪切速率越敏感( C)9.晶态高聚物发生强迫高弹形变的温度范围是:(A) T g ~ T f之间;(B)T b ~ T g之间;(C)T g ~ T m之间;(D)T b ~ T m之间( A)10.聚合物在外电场中发生极化时,速度最快的是:(A) 电子极化;(B)原子极化; (C)偶极极化;(D)界面极化(下面每个小题至少有一个答案是正确的,请将所有正确答案的编号填写在括号里。
物理化学表面现象练习题(含答案及详细讲解)
物理化学表面现象练习题一、判断题:1.只有在比表面很大时才能明显地看到表面现象,所以系统表面增大是表面张力产生的原因。
2.对大多数系统来讲,当温度升高时,表面张力下降。
3.比表面吉布斯函数是指恒温、恒压下,当组成不变时可逆地增大单位表面积时,系统所增加的吉布斯函数,表面张力则是指表面单位长度上存在的使表面张紧的力。
所以比表面吉布斯函数与表面张力是两个毫无联系的概念。
4.恒温、恒压下,凡能使系统表面吉布斯函数降低的过程都是自发过程。
5.过饱和蒸气之所以可能存在,是因新生成的微小液滴具有很低的表面吉布斯自由能。
6.液体在毛细管内上升或下降决定于该液体的表面张力的大小。
7.单分子层吸附只能是化学吸附,多分子层吸附只能是物理吸附。
8.产生物理吸附的力是范德华力,作用较弱,因而吸附速度慢,不易达到平衡。
9.在吉布斯吸附等温式中,Γ为溶质的吸附量,它随溶质(表面活性物质)的加入量的增加而增加,并且当溶质达饱和时,Γ达到极大值。
10.由于溶质在溶液的表面产生吸附,所以溶质在溶液表面的浓度大于它在溶液内部的浓度。
11.表面活性物质是指那些加入到溶液中,可以降低溶液表面张力的物质。
二、单选题:1.下列叙述不正确的是:(A) 比表面自由能的物理意义是,在定温定压下,可逆地增加单位表面积引起系统吉布斯自由能的增量;(B) 表面张力的物理意义是,在相表面的切面上,垂直作用于表面上任意单位长度切线的表面紧缩力;(C) 比表面自由能与表面张力量纲相同,单位不同;(D) 比表面自由能单位为J·m-2,表面张力单位为N·m-1时,两者数值不同。
2.在液面上,某一小面积S周围表面对S有表面张力,下列叙述不正确的是:(A) 表面张力与液面垂直;(B) 表面张力与S的周边垂直;(C) 表面张力沿周边与表面相切;(D) 表面张力的合力在凸液面指向液体内部(曲面球心),在凹液面指向液体外部。
3.同一体系,比表面自由能和表面张力都用σ表示,它们:(A) 物理意义相同,数值相同;(B) 量纲和单位完全相同;(C) 物理意义相同,单位不同;(D) 物理意义不同,单位不同。
《第十二章 热力学定律》试卷及答案_高中物理选择性必修第三册_沪科版_2024-2025学年
《第十二章热力学定律》试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、热力学第一定律的数学表达式为:A、ΔE = W + QB、ΔE = Q - WC、ΔE = W - QD、ΔE = Q + W2、一个理想气体在等压过程中,温度升高,以下哪个说法是正确的?A、体积一定减小B、体积一定增大C、压强一定增大D、密度一定增大3、一个绝热容器内有一个活塞,活塞将容器分为两部分,两部分的气体都可以视为理想气体。
初始时,左侧气体的温度高于右侧气体的温度。
若活塞能够自由移动,则最终两部分气体的温度将如何变化?A、左侧气体温度升高,右侧气体温度降低B、左侧气体温度降低,右侧气体温度升高C、两部分气体温度不变D、两部分气体温度相等4、在开口容器中,气体上方有适量的空气。
如果使容器温度升高,不考虑外界对容器的任何非体积功,下列哪一项叙述是正确的?A、气体对空气做的功为零B、气体的内能不变C、气体的温度降低D、气体吸收的热量不再发生变化5、一个理想气体等温膨胀时 _______ 。
A. 内能不变B. 内能增加C. 内能减少D. 气体的体积和压强同时增大6、根据热力学第二定律,从低温热源吸收热量并完全转化为功的过程中 _______ 。
A. 热机的效率为100%B. 热机的效率不能达到100%C. 热机的效率必须大于50%D. 热机的效率取决于热源的温度7、一个物体从温度为T1的热源吸收热量Q,然后将其全部用来对外做功,对外做功为W。
根据热力学第一定律,该物体的内能变化ΔU可表示为:A、ΔU = Q - WB、ΔU = Q + WC、ΔU = W - QD、ΔU = Q + W/T1二、多项选择题(本大题有3小题,每小题6分,共18分)1、一定质量的理想气体在等温膨胀过程中,下列说法正确的是()。
A、外界对气体做功,气体的内能增加。
B、气体吸收热量,温度不变。
C、气体对外界做功,气体的内能不变。
【单元练】杭州外国语学校八年级物理下第十二章【简单机械】阶段练习(含答案解析)
一、选择题1.如图所示,用一个始终水平向右的力F,把杠杆OA从图示位置缓慢拉至水平的过程中,力F的大小将()A.变小B.不变C.变大D.先变大后变小C 解析:C如图所示用一个始终水平向右的力F,把杠杆OA从图示位置缓慢拉至水平的过程中,阻力的大小不变(等于物重G),阻力臂变大,动力臂不断变小,根据杠杆平衡条件F1L1=F2L2可知,动力将F变大。
故选C。
2.如图用同样的滑轮组分别提起质量相等的一个物体和两个物体,比较甲、乙两图,正确表示机械效率关系的是()A.η甲=η乙B.η甲<η乙C.η甲>η乙D.无法比较B解析:B【分析】在额外功相同时,有用功越大,机械效率越大。
利用相同的滑轮组提升不同的物体时,物体越重,有用功越大,相同的滑轮组额外功相同,所以提升两个物体的乙机械效率大,故B正确。
故选B。
3.如图所示,杠杆处于平衡状态,下列操作中能让杠杆继续保持平衡的是()A.将左边的钩码去掉二个并保持位置不变,同时将右边钩码向左移二格B.在左右两边钩码的下方各加一个钩码,位置保持不变C.将左右两边的钩码各去掉一个,位置保持不变D.将左右两边的钩码均向外移动一格A解析:A设杠杆的一个小格是1cm,一个钩码的重是1N;A.将左边的钩码去掉二个并保持位置不变,同时将右边钩码向左移二格,(4-2)N×3cm =3N×(4-2)cm,杠杆仍然平衡,故A符合题意;B.在左右两边钩码的下方各加一个钩码,位置保持不变,由(4+1)N×3cm<(3+1)N×4cm得,杠杆的右端下沉,故B不符合题意;C.将左右两边的钩码各去掉一个,位置保持不变,由(4-1)N×3cm>(3-1)N×4cm 得,杠杆的左端下沉,故C不符合题意;D.将左右两边的钩码均向外移动一格,由4N×(3+1)cm>3N×(4+1)cm得,杠杆的左端下沉,故D不符合题意。
新物理化学下学期期末考试试卷A卷及其答案详解
新物理化学下学期期末考试试卷A卷及其答案详解新乡学院2009―2010学年度第一学期《物理化学》期末试卷A 卷课程归属部门:化学与化工学院试卷适用范围:级化学工程与工艺班.吉布斯吸附等温式(),若一溶质加入纯水中后使表面张力降低,则该溶质在溶液表面发生(正)吸附。
.不论是电解池或是原电池,极化的结果都是使阳极电势(更高),阴极电势(更低)。
.的水溶液,若,则平均离子活度。
.常见的亚稳态有四种,它们分别是(过冷液体),(过热液体),(过饱和蒸气),(过饱和溶液)。
.在下图中画出和。
.振动配分函数计算公式引入的k h Vν=Θ 的量纲为(或者温度)。
.由玻尔兹曼公式可知,任意两个能级的玻兹曼因子之比,等于(该两能级分配的粒子数之比)。
合成氨反应()()→ ()若反应在恒容条件下进行时,则其反应速率可表示为Υ ( 2H dc dt -;)或Υ ( 3NH dc dt ),两者之间的关系为( 2H dc dt - : 3NH dc dt :)。
碰撞理论的临界能C E 与Arrhenius 活化能a E 的关系为( a E C E 12RT )在()的条件下,可以认为a E 与温度无关。
憎液溶胶在热力学上是不稳定的,它能相对稳定存在的原因是(胶体粒子带电);(溶剂化作用)和(布朗运动)。
.原电池在恒温、恒压可逆放电,与的大小关系为()。
><无法判断.下列原电池中,其电池电动势与氯离子的活度无关的是().一定体积的水,当聚成一个大水球或分散成许多水滴时,相同温度下,两种状态相比,以下性质保持不变的是()表面吉布斯函数表面张力比表面液面下的附加压力.玻尔兹曼分布,只适用于定域子系统;只适用于离域子系统;只适用于独立子系统;只适用于相依子系统。
.酸碱催化的主要特征是()反应中有酸的存在反应中有碱的存在反应中有电解质存在反应中有质子的转移某反应,当反应物反应掉/所需时间是它反应掉/所需时间的倍时,该反应是()一级反应二级反应三级反应零级反应反应 1k ??→ ① 2k→ ② 。
第十二章课后习题答案
第四篇 气体动理论 热力学基础求解气体动理论和热力学问题的基本思路和方法热运动包含气体动理论和热力学基础两部分. 气体动理论从物质的微观 结构出发, 运用统计方法研究气体的热现象, 通过寻求宏观量与微观量之间 的关系, 阐明气体的一些宏观性质和规律. 而热力学基础是从宏观角度通过 实验现象研究热运动规律. 在求解这两章习题时要注意它们处理问题方法的 差异.气体动理论主要研究对象是理想气体, 求解这部分习题主要围绕以下三个方面: (1) 理想气体物态方程和能量均分定理的应用;率分布率的应用; (3)有关分子碰撞平均自由程和平均碰撞频率.热力学基 础方面的习题则是围绕第一定律对理想气体的四个特殊过程 和一个绝热过程 )和循环过程的应用,以及计算热力学过程的熵变,并用熵 增定理判别过程的方向.1.近似计算的应用一般气体在温度不太低、压强不太大时,可近似当作理想气体,故理想 气体也是一个理想模型. 气体动理论是以理想气体为模型建立起来的, 因此, 气体动理论所述的定律、 定理和公式只能在一定条件下使用. 我们在求解气 体动理论中有关问题时必须明确这一点. 然而, 这种从理想模型得出的结果 在理论和实践上是有意义的. 例如理想气体的内能公式以及由此得出的理想气体的摩尔定容热容 C V ,m iR/2和摩尔定压热容 C P ,mi 2 R/2都是近似公式, 它们与在通常温度下的实验值相差不大, 因此, 除了在低温情况 下以外, 它们还都是可以使用的. 在实际工作时如果要求精度较高, 摩尔定 容热容和摩尔定压热容应采用实验值. 本书习题中有少数题给出了在某种条 件下C v,m 和C p,m 的实验值就是这个道理.如习题中不给出实验值,可以采 用近似的理论公式计算.(2) 麦克斯韦速(三个等值过程2 .热力学第一定律解题过程及注意事项v2热力学第一定律Q W △,其中功W pv,内能增量V iAE #护.本章习题主要是第一定律对理想气体的四个特殊过程(等体、过程:等压、等温、绝热)以及由它们组成的循环过程的应用.解题的主要(1)明确研究对象是什么气体(单原子还是双原子),气体的质量或物质的量是多少?(2 )弄清系统经历的是些什么过程,并掌握这些过程的特征.(3 )画出各过程相应的P-V图.应当知道准确作出热力学过程的PV图,可以给出一个比较清晰的物理图像. (4 )根据各过程的方程和状态方程确定各状态的参量,由各过程的特点和热力学第一定律就可计算出理想气体在各过程中的功、内能增量和吸放热了.在计算中要注意Q和W的正、负取法.3 .关于内能的计算理想气体的内能是温度的单值函数,是状态量,与过程无关,而功和热量是过程量,在两个确定的初、末状态之间经历不同的过程,功和热量一般是不一样的,但内能的变化是相同的,且均等于△E M C v,m T2 T i.因此,对理想气体来说,不论其经历什么过程都可用上述公式计算内能的增量.同样,我们在计算某一系统熵变的时候,由于熵是状态量,以无论在始、末状态之间系统经历了什么过程,始、末两个状态间的熵变是相同的. 所以, 要计算始末两状态之间经历的不可逆过程的熵变,就可通过计算两状态之间可逆过程熵变来求得,就是这个道理.4 .麦克斯韦速率分布律的应用和分子碰撞的有关讨论深刻理解麦克斯韦速率分布律的物理意义,掌握速率分布函数f(v)和三种统计速率公式及物理意义是求解这部分习题的关键.三种速率为V p V2RT/M , V J8RT/的,府VsRT/M .注意它们的共同点都正比于J T / M,而在物理意义上和用途上又有区别. V p用于讨论分子速率分布图.V用于讨论分子的碰撞;J v2用于讨论分子的平均平动动能.解题中只要抓住这些特点就比较方便. 根据教学基本要求,有关分子碰撞内容的习题求解比较简单,往往只要记住平均碰撞频率公式Z J2d2nv和平均自由程X V/Z 1/42 nd2n ,甚至只要知道1 / n及V J T/M这种比值关系就可求解许多有关习题.章 气体动理论12 - 1处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,均平动动能也相同,则它们此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程P nkT ,当两者分子数密度n 相同时,它们压强也相同.故选(C).12 - 2三个容器A 、B 、C 中装有同种理想气体,其分子数密度 n 相同,1/2 2 1/2 2 1/2:v B : v C 1:2:4 ,则其压强之比P A : P B : P c 为( )4T 0,则平均速率变为 2v 0 ;又平均碰撞频率 Z J 2 nd 2nv ,由于容器体分子的平(A)温度,压强均不相同 (B)温度相同,但氦气压强大于氮气的压强 (C)温度,压强都相同(D)温度相同,但氦气压强小于氮气的压强分析与解理想气体分子的平均平动动能k3kT /2,仅与温度有关.因方均根速率之比v A(A) 1 : 2 : 4 (B) 1 : 4 : 8 (D) 4 : 2 : 1(C) 1 : 4 : 16分析与解 分子的方均根速率为 府 J3RT/M ,因此对同种理想气体有J v A : J v ;: J v C J T I : \汀2 : J T 3,又由物态方程 pkT ,当三个容器中分子数密度n 相同时,得P 1: P 2 :P 3 T 1 : T 2 : T 31:4:16.故选(C). 12 - 3在一个体积不变的容器中, 储有一定量的某种理想气体,温度为T 0时,气体分子的平均速率为v 0,分子平均碰撞次数为 Z 0,平均自由程为0 ,当气体温度升高为4T 0时, 气体分子的平均速率 v 、平均碰撞频率Z和平均自由程 分别为((A) v 4V 0,Z4Z 0,入 (B) 2V 0,Z 2Z 0,(C) v2v 0 ,Z2Z 0,-(D)分析与解理想气体分子的平均速率J8RT/ nM ,温度由T 0升至积不变,即分子数密度 n 不变,则平均碰撞频率变为 2Z 0;而平均自由程11迈nd 2n , n 不变,则珔 迪不变•因此正确答案为(B )•-4已知n 为单位体积的分子数,f v 为麦克斯韦速率分布函数,则-5 一打足气的自行车内胎,在t 1 7.0O C 时,轮胎中空气的压强为4.0 105Pa ,则当温度变为t 2 37.0o C 时,轮胎内空气的压强 p 2 P 2为多少?(设内胎容积不变)正比.由此即可求出末态的压强.p 2 T 2 p 1 / T 1 4.43 105 Pa可见当温度升高时, 轮胎内气体压强变大, 因此,夏季外出时自行车的车胎 不宜充气太足,以免爆胎.12 - 6 有一个体积为1.0 105 m 3的空气泡由水面下 50.0 m 深的湖底处 (温度为4° C )升到湖面上来•若湖面的温度为17.0oC ,求气泡到达湖面的体积.(取大气压强为p 0 1.013 105Pa )分析将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个12nf v dv 表示()(A) 速率v 附近,d v 区间内的分子数(B) 单位体积内速率在 v ~ v dv 区间内的分子数(C) 速率v 附近,d v区间内分子数占总分子数的比率(D) 单位时间内碰到单位器壁上,速率在dv 区间内的分子数 分析与解麦克斯韦速率分布函数 fv dN/Ndv ,而n N /v ,则有 nf v dv dN/V .即表示单位体积内速率在v ~ v dv 区间内的分子数. 正确答案为(B ) •12 P i分析 胎内空气可视为一定量的理想气体, 其始末状态均为平衡态,由于气体的体积不变,由理想气体物态方程 pVM mRT 可知,压强p 与温度T 成解 由分析可知,当T 2273.15 37.0 310.15 K ,轮胎内空气压强为不同的平衡状态.利用理想气体物态方程即可求解本题. 位于湖底时,气泡内的压强可用公式P P 0gh 求出, 其中P 为水的密度(常取331.0 103 kg m 3).解 设气泡在湖底和湖面的状态参量分别为 (P i ,V i ,T i )和(p 2 ,V 2 ,T 2 ).由可得空气泡到达湖面的体积为型吹玻璃车间,平均每天用去0.40 m 3压强为1.01 105Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变)分析 由于使用条件的限制, 瓶中氧气不可能完全被使用. 为此,可通过两条不同的思路进行分析和求解: (1)从氧气质量的角度来分析.利用理想气体物态方程pV^RT 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量 m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数n m, m 2 / m 3. (2)从容积角度来分析.利用等温膨胀条件将原瓶中氧气由初态(P J 1.30 107Pa ,V i 3.2 10 2m 3)膨胀到需充气条件下的终态 (P 2 1.00 106Pa N2待求),比较可得P 2状态下实际使用掉的氧气的体积为 V 2 V i .同样将每天使 用的氧气由初态(P 3 1.01 105Pa ,V 3 0.40 m 3)等温压缩到压强为 p 2的终态,并算出此时的体积V'2 ,由此可得使用天数应为 n V 2 V 1 /V 2 . 解1根据分析有m i MpM / RT ;m 2 MP 2V 2 / RT; m 3 MP 3V 3 / RT分析知湖底处压强为 P ,P 2 ph p 0 ph ,利用理想气体的物态方程 P i V iT TP 2V 2"T TV 2 PM / P 2T 1P opgh T 2V 1 / pj 6.11 10 5 m 312 - 7氧气瓶的容积为3.210 2 m 3,其中氧气的压强为1.3 107 Pa , 氧气厂规定压强降到 1.0 106Pa 时,就应重新充气,以免经常洗瓶.某小则一瓶氧气可用天数n m 1 m 2 /m 3 P 1 p 2V 1/ P 3V 3 9.5解2根据分析中所述,由理想气体物态方程得等温膨胀后瓶内氧气在压强 为p 21.00 106 Pa 时的体积为每天用去相同状态的氧气容积V 2则瓶内氧气可用天数为12 -8设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的.若 此理想气体的压强为1.35 1014Pa •试估计太阳的温度.(已知氢原子的质量m H 1.67 1027Pa ,太阳半径E H 1.67 10 27kg ,太阳质量30m s 1.99 10 kg )分析 本题可直接运用物态方程 P nkT 进行计算. 解氢原子的数密度可表示为n m s / E H V S4 3m S / m H - nR S3根据题给条件,由 P nkT 可得太阳的温度为T p/nk 4n)m H R 3/ 3m s k1.16 107K太阳温度与实际的温度相差较大.估算太阳 (或星体)表面温度的几种较实用的方法在教材第十五章有所介绍.12 - 9 一容器内储有氧气,其压强为1.01 105 Pa ,温度为27(1)气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能; 子间的平均距离.(设分子间均匀等距排列)分析 在题中压强和温度的条件下, 氧气可视为理想气体. 因此, 气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求V 2P l V1/ p2n V 2 V 1 /V 2P i P 2 V i / pV 9.5说明实际上太阳结构并非本题中所设想的理想化模型,因此,计算所得的C,求:可由理想解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为(1)单位体积分子数氧气的密度氧气分子的平均平动动能氧气分子的平均距离通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、 动动能、分子间平均距离等物理量的数量级有所了解.12 — 10 2.0 X0 2 kg 氢气装在4.0 W-3m 3的容器内,当容器内的压强为 3.90 105Pa时,氢气分子的平均平动动能为多大?分析 理想气体的温度是由分子的平均平动动能决定的,即k3kT/2 •因此,根据题中给出的条件,通过物态方程pV = m/MRT , 求出容器内氢气的温度即可得3kT /2 3pVMk 2mR 3.8912 — 11温度为0 C 和100 C 时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于 1eV ,气体的温度需多高? 解 分子在0 C 和100 C 时平均平动动能分别为由于1e V=1.6>10—19J,因此,分子具有1eV 平均平动动能时,气体温度为—3T 2 k / 3k 7.73 103 KV od 3,由数密度的含意可知 V 01/ n , d 即可求出.n p/ kT2.44 1025m 3m/V pM/ RT31.30 kg m -k3kT/26.21 10 21 Jd V r /n 3.4510 9m平均平解由分析知氢气的温度TMPV,则氢气分子的平均平动动能为mR13kT 1 /2 5.65 10 21J23kT 2 / 2 7.72 10 21JV31.69 10-1s 扫RT2\ M1.83 103 m s-1这个温度约为7.5 X03 C.12 —12某些恒星的温度可达到约1.0 1)08K,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1)质子的平均动能是多少?(2)质子的方均根速率为多大?分析将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度i = 3,因此,质子的平均动能就等于平均平动动能与温度的关系mV2/2 3kT/2,可得方均根速率(1)由分析可得质子的平均动能为质子的方均根速率为气体温度T2= 2.7K时,有•此外,由平均平动动能后.& 3mv2 /2 3kT/2 2.07 1015 J12 率、厅2厝“8 106m s-1—13 试求温度为300.0 K和2.7 K(星际空间温度方均根速率及最概然速率)的氢分子的平均速分析分清平均速率v、方均根速率J v2及最概然速率V p的物理意义,并利用三种速率相应的公式即可求解解氢气的摩尔质量M = 2 >10 3kg mol 1,气体温度T i = 300.0K,则有1.78 103 m s-1J v23町1.93 10 3 -1V p 1.58 103s-1V p H 2]2RT{一2-0MH2._3110 m s3-11.50 10 m s M12 -14如图所示,i 、n 两条曲线分别是氢气和氧气在同一温度下的麦克斯韦分子速率分布曲线•试由图中数据求:(1)氢气分子和氧气分子的最概它们的最概然速率V p 也就不同.因 M H 2 M O 2,故氢气比氧气的V P 要大, 由此可判定图中曲线n 所标V p = 2.0 X103 m-s ^1应是对应于氢气分子的最概然速率.从而可求出该曲线所对应的温度 .又因曲线I 、n 所处的温度相同,而曲线n 对应的V p 较大,因而代表 气体温度较高状态. 解(1)由分析知氢气分子的最概然速率为故曲线i 中氧气的最概然速率也可按上式求得 /2RT.同样,由V p 冷可知, 如果是同种气体,当温度不同时,最概然速率V p 也不同.温度越高,V P 越大.然速率;(2)两种气体所处的温度;(3)若图中i 、n 分别表示氢气在不同12 — 17温度相同的氢气和氧气, 若氢气分子的平均平动动能为 6.21 W 21J ,利用M O 2 / M H 2 = 16可得氧气分子最概然速率为V po 2 V p J 450102 ms 1T V 2M /2R 4.81 102 Kpn 代表气体温度较高状态—15日冕的温度为2.0 W 6K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能 解方均根速率好j 竺9.5 106 m s 1V m.平均动能兄 3kT / 24.1 10 17 J12 — 16在容积为2.03m 3的容器中,有内能为6.75 102J 的刚性双原子分子某理想气体.(1)求气体的压强;(2)设分子总数为5.4 X1022个,求分子的平均平动动能及气体的温度pV = mM RT 可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度, 则由公式P = nkT 可求气体温度.气体分子的平均平动动能可由 乙 3kT /2求出.解⑴由E捺护T和卩―mM RT可得气体压强气体分子的平均平动动能为由V p得气体温度V M12 分析 (1) 一定量理想气体的内能Em?RT,对刚性双原子分子而言,i = 5.由上述内能公式和理想气体物态方程(2)分子数密度n = N/V ,T p/ 2E/iV 1.35则该气体的温度nk pV / nk105 Pa3.62 105Pa3kT/2 7.49 1021 J12 —17温度相同的氢气和氧气,若氢气分子的平均平动动能为 6.21 W 21J,试求(1)氧气分子的平均平动动能及温度;(2)氧气分子的最概然速率.分析(1)理想气体分子的平均平动动能I 3kT / 2 ,是温度的单值函数,213kT/2 6.21 10 J,则氧气的温度为:T 2工/3k 300 K氧气的摩尔质量M = 3.2 10 2kg mol 1V p 3.95 102p V M想气体并具有相同的温度分析由题意声波速率U与气体分子的方均根速率成正比,即u J V2;而在一定温度下,气体分子的方均根速率W2J1/M,式中M为气体的摩尔质量.因此,在一定温度下声波速率U 71/ M .解依据分析可设声速U A J1/ M,式中A为比例常量.则声波通过氧气与氢气的速率之比为12 - 19已知质点离开地球引力作用所需的逃逸速率为V J2gr,其中r为地球半径.(1)若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2)说明大气层中为什么氢气比氧气要少.(取r=6.40 X06m) 分析气体分子热运动的平均速率V』8RT,对于摩尔质量M不同的气与气体种类无关.因此, 氧气和氢气在相同温度下具有相同的平均平动动能, 从而可以求出氧气的温度.(2)知道温度后再由最概然速率公式V p 崔即可求解V M V p .(1)由分析知氧气分子的平均平动动能为则有12 -18 声波在理想气体中传播的速率正比于气体分子的方均根速率•问声波通过氧气的速率与通过氢气的速率之比为多少? 设这两种气体都是理U H20.25U02 Y M O2V TT M体分子,为使V等于逃逸速率V,所需的温度是不同的;如果环境温度相同, 则摩尔质量M 较小的就容易达到逃逸速率解(1)由题意逃逸速率V J2gr ,而分子热运动的平均速率V J-8-RTY T Mv V时,有T鬻当由于氢气的摩尔质量M H2 2.0 10 3 kg mol 1,氧气的摩尔质量M O2 3.2 10 2 kg mol 1,则它们达到逃逸速率时所需的温度分别为T H2 1.18 104 K, T O2 1.89 105 K(2)根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多.按大爆炸理论,宇宙在形成过程中经历了一个极高温过程.在地球形成的初期,虽然温度已大大降低,但温度值还是很高.因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸.另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率线也可知道.从分布曲在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子故大气层中氢气比氧气要少12 —20容积为1m3的容器储有1mol氧气,以v= 10m • 1的速度运动, 设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少分析容器作匀速直线运动时,容器内分子除了相对容器作杂乱无章的热运动外,还和容器一起作定向运动.其定向运动动能(即机械能)为mv2/2.按照题意,当容器突然停止后,80%定向运动动能转为系统的内能.对一定量理想气体内能是温度的单值函数,则有关系式:m 5R AT 成立,从而可求AT.再利用理想气体物态方M 2当容器体积不变时,由 pV = mRT/M 得12 - 21 有N 个质量均为 m 的同种气体分子,⑵由N 和Vo求a值;(3)2△E mv 80%程,可求压强的增量 解由分析知AE 20.8mv /2 m 5A T,其中m为容器内氧气质量.又氧气的摩尔质量为M 3.22 110 kg mol ,解得AT =6.16 10: 2KAP 黑 AT 0.51Pa它们的速率分布如图所示.(1)说明曲线与横坐标所包围的面积的含义;分析 处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数f V的物理意义.f V dN/Ndv,题中纵坐标Nf v dN/dv,即处于速率V附近单位速率区间内的分子数.同时要掌握fv的归一化条件,即0 f vdv 1.在此基础上,根据分布函数并运用数学方法(如函数求平均值或极值等),即可求解本题.解(1)由于分子所允许的速率在0到2 V o的范围内,由归一化条件可知图中曲线下的面积of vdv即曲线下面积表示系统分子总数 N.速率在V o /2到3V o /2间隔内的分子数为分子速率平方的平均值按定义为(2 )从图中可知,在o 到v o 区间内,Nf v av/v 0 ;而在0到2 V o 区间,Nf v a 则利用归一化条件有voav J——2v oadvv oA N:空dvv o vo3v o /2adv 7N/12v 2ov 2dN/N v 2f v dv故分子的平均平动动能为V o2voa 2 I 31 2 —v dv ——mv o vN 3612 - 22试用麦克斯韦分子速率分布定律导出方均根速率和最概然速率分析麦克斯韦分子速率分布函数为3/22「, m 2 mvf v 4 n ----- v exp -------采用数学中对连续函数求自变量平均值的方法,求解分子速率平方的平均_2v 2dN值,即v -------- ,从而得出方均根速率.由于分布函数较复杂,在积分dN过程中需作适当的数学代换 .另外,最概然速率是指麦克斯韦分子速率分布函数极大值所对应的速率,因而可采用求函数极值的方法求得解(1)根据分析可得分子的方均根速率为r —N1/2J v 2 v 2dN/N3/2x m 4 4 n ---- v exp1/22mv , dv2kTmv F /2.■^齐表示在v附近单位速率区间的粒子数占总粒子数的百分比f v dv 0 f v dv ,因此根据题给条件可得令 mv2/2kT x 2,则有 J v 24 2kT /n m"dx1/23kT1/2 1.73 巴m1/212 令df v dv 0,即3/24 n2k uT2vex p2mv 2kT 2kT 1/2V p2 mv 2v 2—— 2kT exp2mv 2kTRT 1/2 1.41 —— m-23导体中自由电子的运动可看作类似于气体分子的运动(故称电子 气)•设导体中共有N 个自由电子,其中电子的最大速率为 V F(称为费米速率).v ~ v dv 之 间 的dN4 nA 2 . --- v dv N 0V Fv 0,A(1)画出分布函数图; (2)用 N 、v F定出常数A ;电子气中电子的平均动能飞37/5 ,其中分析理解速率分布函数的物理意义,就不难求解本题.速率分布函数它应满足归一化条件Vf v 〜v 的函数关系,由此可作出解析图和求出A .在f v 〜V 函数关系确的速率分布函数3N /4 n F,C 2V F4 nn 2 , 3V Fc --- v dv ---- 0N 5;mv 2/23乍/5后压强降为8.11 104Pa .设大气的温度均为27.0 C .问此时飞机距地面的高度为多少?(设空气的摩尔质量为2.89 X0-2kg mol -1 )分析 当温度不变时,大气压强随高度的变化主要是因为分子数密度的改变 而造成.气体分子在重力场中的分布满足玻耳兹曼分布.利用地球表面附近气压公式P P o exp mgh/kT ,即可求得飞机的高度h.式中p o 是地面的大 气压强. 解飞机高度为RT 3ln p 0/ p 1.93 10 m Mg12 — 25 在压强为1.01 105Pa 下,氮气分子的平均自由程为 6.0 X06cm,当温度不变时,在多大压强下,其平均自由程为— 1分析气体分子热运动的平均自由程入一—,其中分子数密度n 由物定的情况下,由 v2f v dv 可以求出v2,从而求出飞mv 2/2.4 T A 2--- v v NV Fv V F利用分析中所述归一化条件,有,其分布函数图如图所示V F 4 T A 0N v 2dV 1得12 -24一飞机在地面时,机舱中的压力计指示为1.01 105 Pa ,到高空(1)由—2vV 2 f vdvkTh ——ln P 0/Pmg1.0mm 。
2021版江苏高考物理一轮复习讲义:第12章 第2节 固体、液体和气体 Word版含答案
第2节固体、液体和气体一、固体的微观结构、晶体和非晶体液晶的微观结构1.晶体与非晶体晶体的微观结构特点:组成晶体的物质微粒有规则地、周期性地在空间排列。
3.液晶(1)液晶分子既保持排列有序而显示各向异性,又可以自由移动位置,保持了液体的流动性。
(2)液晶分子的位置无序使它像液体,排列有序使它像晶体。
(3)液晶分子的排列从某个方向看比较整齐,而从另外一个方向看则是杂乱无章的。
二、液体的表面张力1.作用液体的表面张力使液面具有收缩到表面积最小的趋势。
2.方向表面张力跟液面相切,且跟这部分液面的分界线垂直。
3.大小液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。
三、饱和蒸汽、未饱和蒸汽和饱和蒸汽压相对湿度1.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽。
(2)未饱和汽:没有达到饱和状态的蒸汽。
2.饱和汽压(1)定义:饱和汽所具有的压强。
(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。
3.相对湿度空气中水蒸气的压强与同一温度时水的饱和汽压之比。
即:相对湿度=水蒸气的实际压强。
同温度水的饱和汽压四、气体分子运动速率的统计分布1.气体分子运动的特点和气体压强2.气体的压强(1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力。
(2)决定因素①宏观上:决定于气体的温度和体积。
②微观上:决定于分子的平均动能和分子的密集程度。
五、气体实验定律理想气体1.气体实验定律(1)理想气体:把在任何温度、任何压强下都遵从气体实验定律的气体称为理想气体。
在压强不太大、温度不太低时,实际气体可以看作理想气体。
理想气体的分子间除碰撞外不考虑其他作用,一定质量的某种理想气体的内能仅由温度决定。
(2)理想气体状态方程:p1V1T1=p2V2T2(质量一定的理想气体)。
1.思考辨析(正确的画“√”,错误的画“×”)(1)大块塑料粉碎成形状相同的颗粒,每个颗粒即为一个单晶体。
物理化学试卷(A)含答案
物理化学试卷(A)2006.6班级 学号 姓名 分数一、选择题(共8题16分)1.101.325kPa ,-5℃时,H 2O(s)−−→H 2O(l),其体系熵变: ()(A)Δfus S 体系>0(B)Δfus S 体系<0(C)Δfus S 体系≤0(D)Δfus S 体系=0 2.有关化学势与物质流动方向的关系中下述哪种说法是不正确的。
()(A )重结晶制取纯盐过程中,析出的纯盐的化学势与母液中该盐的化学势相等(B )糖溶于水过程中,固体糖的化学势大于溶液中糖的化学势(C )自然界中,风总是从化学势高的地域吹向化学势低的地域(D )自然界中,水总是从化学势高的高地流向化学势低的低地3.已知某反应的级数为一级,则可确定该反应一定是:()(A)简单反应(B)单分子反应(C)复杂反应(D)上述都有可能4.对于物理吸附的描述中,哪一条是不正确的?()(A)吸附力来源于范德华力,其吸附一般不具有选择性(B)吸附层可以是单分子层或多分子层(C)吸附热较小(D)吸附速度较小5.下述说法哪一种不正确?()(A)理想气体经绝热自由膨胀后,其内能变化为零(B)非理想气体经绝热自由膨胀后,其内能变化不一定为零(C)非理想气体经绝热膨胀后,其温度一定降低(D)非理想气体经一不可逆循环,其内能变化为零6.在恒温抽空的玻璃罩中封入两杯液面高度相同的糖水(A)和纯水(B)。
经历若干时间后,两杯液面的高度将是:()(A)A 杯高于B 杯(B)A 杯等于B 杯(C)A 杯低于B 杯(D)视温度而定7.若298K 时,8.834p K =$,则当p (NO 2)=1kPa,p (N 2O 4)=10kPa 时,反应将:() (A )向生成N 2O 4方向进行(B )向生成NO 2方向进行(C )反应恰好达到平衡(D )不能判断其进行的方向8.物质A 发生两个一级平行反应Ak 1B ,A k 2C ,设两反应的指前因子相近且与温度无关,若E 1>E 2,则有:()(A)k 1>k 2(B)k 2>k 1 (C)k 2=k 1(D)无法比较k 1,k 2的大小二、填空题(共3题9分)1.在下列反应历程中(P 是最终产物,C 是活性中间物) A+B k 1C(1)C k2A+B(2)Ck3P(3)如果k2>>k3,则生成P的速率方程d[P]/d t= 。
物理化学学时试卷A及答案
5. 当克劳修斯–克拉贝龙方程应用于凝聚相转变为蒸气时,则:( )(A) p必随T之升高而降低(B) p必不随T而变(C) p必随T之升高而变大(D) p随T之升高可变大或减少6. 已知NaCl、NaAc、HCl的无限稀释时的摩尔电导分别为Λ1、Λ2、Λ3,则HAc的无限稀释时的摩尔电导为( )(A) Λ1+Λ2+Λ3(B) Λ1+Λ2-Λ3(C) Λ2+Λ3-Λ1(D) Λ1+Λ3-Λ27. 在一个绝热的刚壁容器中,发生一个化学反应,使系统的温度从T1升高到T2,压力从p1升高到p2,则( )(A) Q>O,W<0,△U<O (B) Q=0,W=0,△U=0(C) Q=0,W<0,△U<0 (D) Q>0,W=0,△U>08. 有两根半径相同的玻璃毛细管插入水中,水面上升高度为h,其中一根在h /3 处使其弯曲向下,试问水在此毛细管端的行为是( )(A) 水从毛细管端滴下;(B) 毛细管端水面呈凸形弯月面;(C) 毛细管端水面呈凹形弯月面;(D) 毛细管端水面呈水平面。
9.若某反应的反应物能在一定时间内完全反应掉,则该反应极可能为( )(A) 零级反应(B) 一级反应(C) 二级反应(D) 三级反应10.在外加电场作用下胶体粒子在分散介质中移动的现象称为( )(A) 电渗(B) 电泳(C) 流动电势(D) 胶体的无规则热运动二、计算题(6题,共66分)1. 5 mol某理想气体,C p, m = 29.10 J·K-1·mol-1,温度为400 K,压力为200 kPa。
今该气体恒压膨胀至原来体积的两倍,求此过程的Q、W、∆U、∆H。
(10分)2. 将装有0.1mol液体乙醚的小玻璃瓶放入容积为10dm3的恒容密闭的真空容器中,并在35.51℃的恒温槽中恒温。
35.51℃为乙醚在101.325kPa下的沸点。
已知在此条件下乙醚的摩尔蒸发焓△vap H m = 25.104 kJ . mol-1。
物理化学第五版课后习题答案
第十二章胶体化学12-1 如何定义胶体系统?总结胶体系统的主要特征。
答:(1) 胶体定义:胶体系统的主要研究对象是粒子直径d至少在某个方向上在1-100nm之间的分散系统。
(2) 胶体系统的主要特征:溶胶系统中的胶粒有布朗运动,胶粒多数带电,具有高度分散性,溶胶具有明显的丁达尔效应。
胶体粒子不能透过半透膜。
[注] 溶胶系统中的胶粒的布朗运动不是粒子的热运动,且只有溶胶才具有明显的丁达尔效应。
12-2 丁铎尔效应的实质及产生的条件是什么?答:丁铎尔现象的实质是光的散射作用。
丁铎尔效应产生的条件是分散相粒子的直径小于入射光波长、分散相与分散介质的直射率相差较大。
12-3 简述斯特恩双电层模型的要点,指出热力学电势、斯特恩(Stern)电势和ζ电势的区别。
答:斯特恩认为离子是有一定大小的,而且离子与质点表面除了静电作用外还有范德华力。
(1) 在靠近质点表面1~2个分子厚的区域内,反离子受到强烈地吸引而牢固地结合在质点表面,形成一个紧密地吸附层-斯特恩层,(2) 在斯特恩层,非离子的电性中心将形成一假想面-斯特恩面。
在斯特恩面内电势呈直线下降的变化趋势,即由质点表面的ϕ0直线下降至处的ϕs,ϕs称为斯特恩电势;(3) 其余的反离子扩散地分布在溶液中,构成双电层的扩散层部分。
在扩散层中,电势由ϕs降至零。
因此斯特恩双电层由斯特恩层和扩散层构成;(4) 当固、液两相发生相对运动时,紧密层中吸附在质点表面的反离子、溶剂分子与质点作为一个整体一起运动,滑动面与溶液本体之间的电势差,称为ζ电势。
热力学电势ϕ0是质点表面与液体内部的总的电位差,即固液两相之间双电层的总电势。
它与电极∕溶液界面的双电层总电势相似,为系统的热力学性质,在定温定压下,至于质点吸附的(或电离产生的)离子在溶液中活度有关,而与其它离子的存在与否无关。
斯特恩电势ϕs是斯特恩面与容液本体的电势差,其值与集中在斯特恩层里的正负离子的电荷总数有关,即与双电层的结构状态有关。
物理化学试题A卷参考答案-化学化工学院-09-10下
物理化学试题A卷参考答案-化学化⼯学院-09-10下西南⼤学课程考核《物理化学》课程试题【A】卷(C)φ平,阳<φ阳;?平,阴<φ阴(D)φ平,阳>φ阳;φ平,阴<φ阴2. [答] (B)3. 对⼤多数纯液体其表⾯张⼒随温度的变化率是:( )(A) (?γ/?T)p> 0(B) (?γ/?T)p< 0(C) (?γ/?T)p= 0(D) ⽆⼀定变化规律3. [答] (B)4. 298 K时,⽔-空⽓的表⾯张⼒γ= 7.17×10-2 N·m-1,若在298 K,标准压⼒p?下,可逆地增加4×10-4 m2⽔的表⾯积,环境对体系应做的功W为(?U = Q -W):( )(A) -2.868×10-5 J(B) 2.868×10-5 J(C) -7.17×10-5J(D) 7.17×10 –5 J4. [答](A)5. 如果反应2A + B =2D 的速率可表⽰为:r = -12d c A/d t = - d c B/d t =12d c D/d t则其反应分⼦数为:()(A) 单分⼦(B) 双分⼦(C) 三分⼦(D) 不能确定5. [答](D)6. 量⼦的思想最先是由提出的。
( 1)(A) 玻尔(B) 爱因斯坦(C) 普朗克(D) 薛定谔6. [答](C)7. 微观粒⼦的能量ε,动量p与其物质波的频率ν和波长λ的关系为( 1 )西南⼤学课程考核 (试题【A 】卷)(A) ε = h λ, p = h /ν (B) ε = h ν, p = h /λ (C)ε = h /ν, p = h λ (D) ε = h /λ, p = h ν 7. [答](B )8. 下列分⼦⼀定没有偶极矩的是 ( 4 )(A) H 2O 2 (B) NH 3 (C) ClHC=CHCl (D) H 2C=CH 2 8. [答](D )9. ⽤休克尔分⼦轨道法处理丁⼆烯分⼦的π电⼦结构,四个π分⼦轨道ψ i (i = 1, 2, 3, 4)的图形如右,它们的能量分别为E i (i = 1, 2, 3, 4)。
(必考题)初中物理八年级下册第十二章《简单机械》测试卷(有答案解析)(1)
一、选择题1.悬挂重物G的轻质杠杆,在力的作用下倾斜静止在如图所示的位置,若力施加在A 点,取小的力为F A,若力施加在B点或C点,最小的力分别为F B、F C,且AB=BO=OC。
下列选项中正确的是(忽略O点的位置变化)()A.F C<G B.F B=G C.F A>G D.F B>F C2.简单机械与人类的生产活动息息相关,以下关于简单机械的说法中不正确的是()A.定滑轮一定不省力也不费力B.指甲剪是由两个费力杠杆和一个省力杠杆组成的C.自行车把可以看作一个轮轴,可以省力,但是费距离D.生活中的斜面机械效率达不到100%3.如图所示,斜面高h=1m,长s=5m,小车重50N,用沿斜面方向的拉力F,将小车从斜面底端匀速拉到顶端,不计斜面和小车之间的摩擦,下列说法错误的是()A.拉力F做的功大小等于50JB.斜面对小车支持力做的功大小等于50JC.斜面是一种省力的简单机械D.斜面一定不能省功4.如图用同样的滑轮组分别提起质量相等的一个物体和两个物体,比较甲、乙两图,正确表示机械效率关系的是()A.η甲=η乙B.η甲<η乙C.η甲>η乙D.无法比较5.如图所示,杠杆在水平位置平衡.在其他条件不变的情况下,下列操作一定能使弹簧测力计示数增大的是A.将钩码悬挂点向右移B.将钩码和弹簧测力计的悬挂点均向左移C.增加钩码的个数并将钩码悬挂点向右移D.将弹簧测力计悬挂点向右移6.将一个重为4.5N的物体沿斜面从底端匀速拉到顶端,已知斜面长1.2m,高为0.4m,斜面对物体的摩擦力为1N(物体的大小、空气阻力等可忽略不计).则在上述过程中A.有用功为5.4J B.额外功为1.8JC.机械效率为60%D.沿斜面向上的拉力大小为2N7.如图所示,物体在沿斜面向上的拉力作用下,从斜面底端匀速拉到斜面顶端,已知斜面高为h,斜面长为s,且s=2h,物体所受重力为G,斜面的机械效率为75%,若物体受到的拉力和摩擦力分别用F和f表示,则( )A.F=16G,f=23G B.F=23G,f=16GC. F=23G,f=38G D. F=12G,f=23G8.如图,水平桌面上的物体A重100N,物体B重40N,此时物体B恰能匀速下降;当用一水平向左的力F拉动物体A在2s内匀速向左移动1m的过程中,若不计动滑轮和绳的重力,不计绳与滑轮及滑轮轴间的摩擦,则下列说法正确的是()A.B上升了2m B.拉力F的功率为20WC.物体A与桌面间的滑动摩擦力为40N D.吊着B物体的绳子所做的功为40J9.用如图所示的滑轮组(甲)和(乙)提升重物,不计绳重和摩擦,下列说法正确的是()A.若钩码重力和提升高度相同,则滑轮组的机械效率相同B.若滑轮重力和绳端拉力相同,则滑轮组的机械效率相同C.若钩码重力和绳端拉力相同,则滑轮组(甲)的机械效率高D.若滑轮重力和绳端拉力相同,则滑轮组(甲)的机械效率高10.如图所示,用40N的力F沿水平方向拉滑轮,可使重20N的物体A以0.3m/s的速度在水平面上匀速运动:物体B重10N,弹簧测力计的示数恒为10N(不计滑轮、测力计、绳子的重量,滑轮的转轴光滑)。
上海徐汇中学高中物理必修三第十二章《电能能量守恒定律》测试(含答案解析)
一、选择题1.如图的U-I图象中,直线I为某一电源的路端电压与电流的关系图象,直线Ⅱ为某一电阻R的伏安特性曲线。
用该电源与电阻R组成闭合电路,则()A.电源电动势 3V,内阻2ΩB.电阻的阻值为2ΩC.电源的效率为 66.7% D.电源的总功率为 4W2.现有标有“110V 40W”的灯泡L1和标有“110V 100W”的灯泡L2及一只最大阻值为500Ω的滑动变阻器R,将它们接在220V的电路中,在如图所示的几种接法中,能让L1,L2同时正常发光的是()A.B.C.D.3.在如图所示的电路中,闭合开关S后,L1、L2两灯泡都正常发光,后来由于某种故障使L2突然变亮,电压表读数减小,由此推断,该故障可能是()A.L1灯丝烧断B.电阻R2断路C.电阻R2短路D.电容器被击穿短路4.如图所示,直线OC为某一直流电源的总功率P总随着总电流I变化的图线,曲线OBC 为同一直流电源内部的热功率P r随电流I的变化图线,若A、B对应的横坐标为2A,则下面说法中不正确的是()A.电源电动势为3V,内阻为1ΩB.线段AB表示的功率为4WC.电流为2A时,外电路电阻为0.5ΩD.电流为3A时,外电路电阻为05.关于电源电动势,下列叙述正确的是()A.电源的电动势等于电源没有接入电路时两极间的电压,所以当电源接入电路时电动势将发生变化B.闭合电路时,并联在电源两端的电压表的示数就是电源的电动势C.电源的电动势是表示电源把其它形式的能转化为电能的本领大小的物理量D.在闭合电路中,电源的电动势等于内、外电路上电压之和,所以电动势实质就是电压6.如图所示,直流电路中,R1、R2是定值电阻,R3是光敏电阻,其阻值随光照增强而减小,当开关S闭合时,处在电容器两板间M点的带电液滴恰好能保持静止。
现用强光照射电阻R3时()A.电源的总功率减小B.A板的电势降低C.液滴向上运动D.电容器所带电荷量减少7.某实验小组将电流表G改装成欧姆表,所用器材除电流表G外还有电源、滑动变阻器、导线等,电路如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学第十二章模拟试卷A及答案物理化学第十二章模拟试卷A班级姓名分数一、选择题 ( 共10题 20分 )1. 2 分除了被吸附气体的气压须适当之外,下列因素中哪个对气体在固体表面发生多层吸附起主要影响? ( )(A) 气体须是理想气体(B) 固体表面要完全均匀(C) 气体温度须接近正常沸点(D) 固体应是多孔的2. 2 分气相中的大小相邻液泡相碰, 两泡将发生的变化是: ( )(A) 大泡变大, 小泡变小 (B) 大泡变小, 小泡变大(C) 大泡、小泡均不变 (D) 两泡将分离开3. 2 分若气体 A 在催化剂上的吸附活化能E a不随覆盖度θ变化, 则其吸附速率服从下列那种方程式? ( )(A) Langmuir速率方程式 (B) Elovich 速率方程式(C) Kwan 速率方程式 (D) 以上 A、B、C 皆可4. 2 分单组分气-液平衡体系,在孤立条件下,界面 A 发生了 d A > 0 的微小变化, 体系相应的熵变 d S变化为: ( )(A) d S > 0 (B) d S = 0(C) d S < 0 (D) 不能确定5. 2 分二元溶液及其溶剂的比表面自由能分别为γ和γ0,已知溶液的表面超量Γ2< 0,则γ与γ0之间的关系符合以下哪种? ( )(A) γ > γ0(B) γ = γ0(C) γ < γ0(D) 不能确定6. 2 分已知某溶液溶于水后,溶液表面张力γ与活度a的关系为:γ = γ0- Aln(1 + b a),其中γ0为纯水表面张力,A、b 为常数,则此溶液中溶质的表面过剩Γ与活度a的关系为: ( )(A) Γ = - A a / RT(1+b a)(B) Γ = - Ab a / RT(1+b a)(C) Γ = Ab a / RT(1+b a)(D) Γ = - b a / RT(1+b a)7. 2 分已知 1000 K 时,界面张力如下:γ( Al2O3(s)-g ) = 1 N·m-1,γ( Ag(l)-g )= 0.92 N·m-1, γ( Ag(l)-Al2O3(s) )= 1.77 N·m-1。
则 1000 K 时,液态银滴在 Al2O3(s) 表面上的接触角θ是: ( )(A) 33.2° (B) 46.5°(C) 101.2° (D) 146.8°8. 2 分水平仪中有一个椭球形的液泡,长短半轴分别为0.8和0.3cm,已知水的表面张力为0.07197N·m-1,液泡的附加压力为:()(A) 18Pa (B) 33Pa (C)48Pa (D) 66Pa9. 2 分汞不湿润玻璃,其密度ρ = 1.35×104 kg·m-3,水湿润玻璃,密度ρ = 0.9965×103 kg·m-3,汞在内径为 1×10-4 m 的玻璃管内下降h1,在直径为 1×10-3 m的玻璃管内下降h2;水在直径为 1×10-4 m 的玻璃管内上升h3,在直径为 1×10-3m的玻璃管内上升h4,令h1/h2= A,h3/h4= B,则有: ( )(A) A > B(B) A < B(C) A = B(D) 不能确定A与B的关系*. 2 分用同一支滴管滴下水的滴数和滴相同体积苯的滴数哪个多? ( )(A) 水的多(B) 苯的多(C) 一样多 (D) 随温度而改变二、填空题 ( 共 9题 18分 )11. 2 分室温时,水在一根粗细均匀的玻璃毛细管中,将上升到高度h,如将毛细管折断至h/2处,水将沿壁升至 _______ 处,此时管中水面的曲率半径将_________ 。
12. 2 分液态汞的表面张力γ= 0.4636 N·m-1 + 8.32×10-3 N·m-1·K-1·T - 3.13×10-7 N·m-1·K-2·T2在 400 K 时,汞的(∂U/∂A)T, V = 。
13. 2 分表面活性剂的结构特征是。
14. 2 分一般说来,物理吸附的吸附量随温度增高而 ___________ ,化学吸附的吸附量随温度增高而 ____________ 。
15. 2 分300 K 时,水的表面张力γ= 0.0728 N·m-1,密度ρ为 0.9965×103 kg·m-3。
在该温度下,一个球形水滴的饱和蒸气压是相同温度平面水饱和蒸气压的 2 倍,这个小水滴的半径是 ____________________ 。
16. 2 分界面吉布斯自由能和界面张力的相同点是不同点是。
17. 2 分从吸附的角度考虑催化剂的活性取决于 _____________ ,一个良好的催化剂应是___________ 。
18. 2 分在 298 K时,正丁醇水溶液表面张力对正丁醇浓度作图,其斜率为-0.103 N·m-1·mol-1·kg,正丁醇在浓度为 0.1 mol·kg-1时的表面超额Γ为:。
19. 2 分T = 298 K时, 水-空气表面张力γ= 7.17×10-2 N·m-1,(∂γ / ∂T)p, A = - 1.57×10-4 N·m-1·K-1。
在T,p 时,可逆地增加 2 cm2表面,对体系所作的功W =___________, 熵变∆S =_____________。
三、计算题 ( 共 5题 40分 )20. 10 分某一体系的吸附等温线可表达为经验式θ=A p n。
θ是固体表面在吸附气体的平衡压力p下的覆盖度, A和n均为经验常数。
在两个温度下测定其经验常数值见表。
∆H a, 并解释所得结果。
21. 10 分 200℃时, 测定氧在某催化剂上的吸附作用, 当氧的平衡压力为p 及10×p 时, 每克催化剂吸附氧的量换算成标准状况下的体积分别为 2.5 cm 3 和 4.2 cm 3。
设该吸附作用服从兰缪尔公式。
试计算当氧的吸附量为饱和吸附量的一半时,氧的平衡分压为若干?22. 10 分在 298 K, 小水滴的蒸气压是平面水蒸气压的 2.7 倍, 求液滴半径? 纯水蒸气的过饱和度达 2.7 时才能凝聚出上述大小的液滴, 求每滴水中含 H 2O 分子数目? 已知 这时纯水的 γ0 为 7.197×10-2 J ·m -2。
23. 5 分甲醇用浮石银作催化剂氧化脱氢制甲醛时,原料甲醇每小时进料量为2.5×103 m 3,每小时生成含甲醛36.7%、甲醇7.85%的水溶液3400 m 3。
该溶液密度为1095 kg ·m -3,试计算浮石银催化剂对生成甲醛反应的选择性,已知甲醇密度为793.2 kg ·m -3,甲醇浓度为99.5%。
24. 5 分25℃时,乙醇水溶液的表面张力 γ (N ·m -1)与活度的关系如下: γ =0.072-5.0×10-4a +2.0×10-4a 2, 求活度为 0.5 的溶液的表面超量Γ。
四、问答题 ( 共 3题 20分 )25. 10 分若一固体溶于某溶剂形成理想稀溶液,试导出半径为r 的固体饱和浓度c r 与颗粒大小有如下关系:r 02ln c M RT c r γρ= 其中c 0为大块固体的饱和浓度,γ为固-液界面张力,M 为固体的摩尔质量,ρ为固体的密度。
26. 5 分离子型表面活性剂可分为哪三类? 请各举一例。
27. 5 分微小尘粒落入过饱和盐溶液时, 立即有晶体析出。
由此说明盐-尘粒的界面张力γ盐-尘 与尘-液的界面张力γ尘-液何者较大?参考答案一、选择题 ( 共10题 20分 )1. 2 分[答] (C)2. 2 分[答] (A)3. 2 分[答] (A)4. 2 分[答] (C)5. 2 分[答] (A) (∂γ/∂a)T > 06. 2 分[答] (C) (∂γ/∂a)T = - Ab/(1 + b a)7. 2 分[答] (D)8. 2 分[答] (B) (2分)9. 2 分[答] (C)*. 2 分[答] (B)二、填空题 ( 共 9题 18分 )11. 2 分[答] 管端,变大。
12. 2 分[答] d U = T d S - p d V + γd A(∂U/∂A)T, V = T (∂S/∂A)T, V + γ = -T(∂γ /∂T)A, V + γ= 0.514 J·m-213. 2 分[答] 两亲性 (2分)14. 2 分[答] 降低;先增加,后降低15. 2 分[答] R' = 1.52×10-9 m16. 2 分[答] 量纲和数值相同;物理意义和单位不同。
17. 2 分[答] 化学吸附的强度;中等强度的化学吸附。
18. 2 分[答] 4.16×10-6 mol·m-219. 2 分[答] W = - γd A = -14.34×10-6 J∆S = 3.14×10-3 J·K-1三、计算题 ( 共 5题 40分 )20. 10 分[答] 由题给条件计算不同温度下, 各个θ下吸附气体的平衡压力值(见表) (4分)由式 ln(p2/ p1)= (∆H a/ R)(1/T2-1/T1), 求∆H aθ= 0.1 时∆H a= -179.8 kJ·mol-1θ= 0.5 时∆H a= -122.6 kJ·mol-1 (4分)随θ增加, ∆H a减小, 表明吸附总是首先发生在活性最大的位置上, 然后再依次分)21. 10 分[答] 兰缪尔公式 1/V = (1 / V m b)×(1/p) + 1/V m根据题意可联立方程(1) 1/2.5 = (1/ V m b)×(1/1) + 1/V m(2) 1/4.2 = (1/ V m b)×(1/10) + 1/V m解方程组得 1/V m= 0.22 cm-3, 1/b= 0.82p ,当V=( 1/2)V m时, 解得p=1/b = 0.82p22. 10 分[答] RT ln( p / p 0)= 2γ M / (ρR ’) (4分)R ’= 1.06×10-9 m, N = (4 / 3)π ( R ’)3ρL / M = 148 (各3分)23. 5 分[答] 21223222CH OH O HCHO H O H +→++ x =⨯⨯⨯-⨯⨯⨯⨯⨯⨯=0995251079323400007851095251079320995100%852%33........ y =⨯⨯⨯⨯⨯⨯⨯=3400036710952510793209953032100%7387%3..../.s y x ==867%. (5分)24. 5 分[答] d γ /d a =-5.0×10-4+2×2.0×10-4a (2分)Γ 2=-a /(RT )×d γ/d a =6.05×10-8 mol ·m -2 (3分)四、问答题 ( 共 3题 20分 )25. 10 分[答] 溶液中半径为r 的固体颗粒所受压力为 0s 'p p p =+,s ls 2pr γ-=(2分)溶解平衡时:(s)(l)ln cRT c μμμ==+ (2分)m (s)ln (s)(s)(s)T T c RT Vp p ∂μμ∂∂∂⎧⎫⎡⎤-⎡⎤⎪⎪⎣⎦==⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭()r 00ln 'm m 0ln dln (s)d (s)(s)'c p c p RT c V p V p p==-⎰⎰s l m r 02(s)ln V c RT c r γ-=(4分)而 V Mm (s)=ρs l r 02ln Mc RT c r γρ-= (2分)26. 5 分[答] (1) 阴离子型, 如羧酸盐 R-COONa (2分)(2) 阳离子型, 如伯胺盐 R-NH 2·H Cl (2分)(3) 两性型, 如氨基酸型 R-NHCH 2-COOH (1分)27. 5 分[答] 设尘-液界面为A1, 盐在尘上析出后, 得尘-盐界面为A1, 盐液界面为A2, 析出过程的∆G <0, 即∆G=γ盐-液A2+γ盐-尘A1-γ尘-液A1< 0 (2分)γ尘-液 > γ盐-液A2/A1+γ盐-尘所以γ尘-液 >γ盐北-尘 (3分)。