深圳金源学校数学一元一次方程单元培优测试卷
【精选】 一元一次方程单元测试卷附答案
一、初一数学一元一次方程解答题压轴题精选(难)1.数轴上,两点对应的数分别为,,且满足;(1)求,的值;(2)若点以每秒个单位,点以每秒个单位的速度同时出发向右运动,多长时间后,两点相距个单位长度?(3)已知从向右出发,速度为每秒一个单位长度,同时从向右出发,速度为每秒个单位长度,设的中点为,的值是否变化?若不变求其值;否则说明理由.【答案】(1)解:∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12(2)解:设x秒后A,B两点相距2个单位长度,根据题意得:|(2x+12)﹣(3x﹣6)|=2,解得:x1=16,x2=20.答:16秒或20秒后A,B两点相距2个单位长度(3)解:当运动时间为t秒时,点M对应的数为t﹣6,点N对应的数为2t+12.∵NO的中点为P,∴PO= NO=t+6,AM=t﹣6﹣(﹣6)=t,∴PO﹣AM=t+6﹣t=6,∴PO﹣AM为定值6.【解析】【分析】(1)根据绝对值和平方的非负性,求出a、b的值即可;(2)根据题意列出方程,求出含绝对值方程的解;(3)根据题意得到点M对应的数为t﹣6,点N对应的数为2t+12,再由NO的中点为P,得到PO、AM的代数式,得到PO﹣AM的值.2.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
一元一次方程单元测试题.docx
一元一次方程单元测试题一、选择题(每题2分,共10分)1. 解下列方程,求x的值:\[ 3x - 5 = 14 \]A. -1B. 3C. 5D. 72. 已知方程 \( ax + b = 0 \) 的解是 \( x = 5 \),那么 \( a \) 和 \( b \) 的关系是:A. \( a = 0 \)B. \( b = 0 \)C. \( 5a + b = 0 \)D. \( 5a = -b \)3. 如果方程 \( 2x - 1 = 7x + 3 \) 的解是正数,那么 \( x \) 的范围是:A. \( x > -1 \)B. \( x > 0 \)C. \( x < 0 \)D. \( x < -1 \)4. 方程 \( 3x + 2 = 2x + 5 \) 的解是:A. \( x = 1 \)B. \( x = 2 \)C. \( x = 3 \)D. \( x = 4 \)5. 根据题目中的信息,下列哪个方程没有解:A. \( x + 2 = 3x \)B. \( x - 5 = 2x + 3 \)C. \( 3x - 4 = 2x + 6 \)D. \( 4x + 5 = 5x - 4 \)二、填空题(每题2分,共10分)6. 解方程 \( 4x + 6 = 2x + 10 \) 后,\( x \) 的值为 _______。
7. 如果 \( x \) 是方程 \( 5x - 3 = 2x + 7 \) 的解,那么 \( 3x \) 的值为 _______。
8. 方程 \( ax - b = 0 \) 的解是 \( x = \frac{b}{a} \),当\( a \) 不等于 _______ 时,方程有唯一解。
9. 已知 \( x \) 是方程 \( 3x + 1 = 2x + 4 \) 的解,那么 \( x- 1 \) 的值为 _______。
10. 如果方程 \( 2x = 6 \) 的解也是方程 \( 3x - 5 = 0 \) 的解,那么 \( x \) 的值为 _______。
最新一元一次方程单元培优测试卷
一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
一元一次方程单元测试卷(三套含答案)
一元一次方程单元测试卷(1)一.选择题(每题3分,共18分) 1.下列等式变形正确的是( ) A.如果s=12ab ,那么b=2saB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my ,那么x=y 2.下列方程中,是一元一次方程的是( )A. 243x x -=B.0x =C.21x y +=D. 11x x-= 3.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x4.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是( ) A. 1,4B. 2,3C. 3,2D. 4,15.某区中学生足球赛共赛8轮(即每队均参赛8 场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了( )场.A.3B.4C.5D.66.某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店( )A.不赚不亏B.赚5元C.亏5元D. 赚10元 二.填空题(每题4分,共24分)7.当=x ________时,代数式24+x 与93-x 的值互为相反数.8.已知 ()0332=-+--m x m m 是关于x 的一元一次方程, 则m=________. 9.在梯形面积公式 S = 12(a + b ) h 中, 用 S 、a 、h 表示b ,b = ________, 当16,3,4S a h ===时, b 的值为________.10.若关于x 的方程mx+2=2(m-x )的解是12x =,则m=________. 11.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计).12.如图,一个长方形恰被分成六个正方形,其中最小的正方形面积是1平方厘米,则这个长方形的面积为________平方厘米. 三.解方程(每题5分,共30分)13). 5x +3=-7x+9 14). 14)13(2)1(5-=---x x x15).312x +=76x+ 16). 511241263x x x +--=+17).75.001.003.02.02.02.03=+-+xx 18).解关于x 的方程9(2)4(3)6m x m x m ---= 四.应用题(每题7分,共28分)19.甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运多少吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?21.某城市按以下规定收取煤气费:每月使用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,超过部分按每立方米1.2元收费。
七年级数学上册一元一次方程培优训练试题(共7页)
一元(yī yuán)一次方程解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.例1解方程例2解方程练习例3.假设关于x的一元一次方程=1的解是x=-1,那么k的值是〔〕A. B.1 C.- D.0例4.假设方程3x-5=4和方程的解一样,那么a的值是多少?当x = ________时,代数式与的值相等.例5.〔方程与代数式联络〕a、b、c、d为实数,现规定一种新的运算.〔1〕那么的值是;〔2〕当时,= .例6.〔方程(fāngchéng)的思想〕如图,一个瓶身为圆柱体的玻璃瓶内装有高厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,那么瓶内的墨水的体积约占玻璃瓶容积的〔〕不考虑瓶子的厚A .B .C .D .例7.解方程〔分类讨论〕例8.问当a、b满足什么条件时,方程2x+5-a=1-bx:〔1〕有唯一解;〔2〕有无数解;〔3〕无解。
例 9.解方程例10.解以下方程练习解方程解方程例11.+ m = my - m. (1)当 m = 4时,求y的值.(2)当y = 4时,求m的值.例12.小张在解方程〔x为未知数〕时,误将 - 2x 看成 2x 得到的解为,请你求出原来方程的解例13.关于x 的方程无解,求 a关于x 的方程无解,求 k例14.关于x 的方程有唯一的解,求这个方程的解例15.关于x 的方程无穷多解,求 a 、b.关于x 的方程无穷多解,求m 、n例16.不管k 为何值时,总是关于x 的方程的解,求a 、b不管 k为何值时,总是关于x 的方程的解,求a 、b例17.假设(jiǎshè)(3x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,那么a5-a4+a3-a2+a1-a0和a4+a2+a0的值分别为多少?应用题一、数字问题例1.一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?例2.有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,假设把百位与个位数字对调,那么新数比原数大594,求原数。
一元一次方程单元测试卷三套含答案
一元一次方程单元测试卷(1)一.选择题(每题3分,共18分)1.下列等式变形正确的是( )A.如果s=12ab ,那么b=2s aB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my ,那么x=y2.下列方程中,是一元一次方程的是( )A. 243x x -=B.0x =C.21x y +=D. 11x x -=3.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x xC. 611024=--+x x C. 611024=+-+x x4.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是( )A. 1,4B. 2,3C. 3,2D. 4,15.某区中学生足球赛共赛8轮(即每队均参赛8 场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了( )场.A.3B.4C.5D.66.某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店( )A.不赚不亏B.赚5元C.亏5元D. 赚10元二.填空题(每题4分,共24分)7.当=x ________时,代数式24+x 及93-x 的值互为相反数.8.已知 ()0332=-+--m x m m 是关于x 的一元一次方程, 则m=________.9.在梯形面积公式 S = 12(a + b ) h 中, 用 S 、a 、h 表示b ,b = ________, 当16,3,4S a h ===时, b 的值为________.10.若关于x 的方程mx+2=2(m-x )的解是12x =,则m=________. 11.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计).12.如图,一个长方形恰被分成六个正方形,其中最小的正方形面积是1平方厘米,则这个长方形的面积为________平方厘米.三.解方程(每题5分,共30分)13). 5x +3=-7x+9 14). 14)13(2)1(5-=---x x x15).312x +=76x + 16). 511241263x x x +--=+ 17).75.001.003.02.02.02.03=+-+x x 18).解关于x 的方程9(2)4(3)6m x m x m ---=四.应用题(每题7分,共28分)19.甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运多少吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?21.某城市按以下规定收取煤气费:每月使用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,超过部分按每立方米1.2元收费。
《一元一次方程》单元检测3
第7章 一元一次方程一、细心选一选(每小题3分,共24分)1、下列四个式子中:① 1523-=+x x ;② 143)21(2=+-;③ 532≤+x ;④ y y 212=-;其中是方程的有( )个A 、1 ;B 、2 ;C 、3 ;D 、4 ;2、下列式子中是一元一次方程的是( )A 、23-x ;B 、 01=-xy ;C 、12=x ;D 、0322=++x x ;3、下列方程中,和方程25132=-x 的解相同的方程是( ) A 、532=-x ;B 、1514=+x ;C 、713=-x ;D 、 2434=+x ;4、如果代数式731+-y 的值与21互为倒数,则y 的值为( ) A 、3 ; B 、2 ; C 、15 ; D 、5- ;5、解方程0)12(2)23(=--+x x 去括号正确的是( )A 、01223=+-+x x ;B 、01423=+-+x x ;C 、02423=--+x x ;D 、02423=+-+x x ;6、解方程21253+-=--x x x 时,去分母正确的是( ) A 、)1(52)3(2+-=--x x x ; B 、15102032+-=--x x x ;C 、)1(51020)3(2+-=--x x x ;D 、)1(1020)3(+-=--x x x ;7、若方程 42=+x m 与 1213+=-x x 的解相同,则m 的值为( )A 、1-;B 、1;C 、2-;D 、2;8、某商品提价10%后欲恢复原价,则应降价( )A 、10%;B 、9%;C 、%1119;D 、%9111; 二、精心填一填(每小题4分,共32分)1、方程1453-=x x 的解为2、当x = 时,代数式754+x 的值是3 3、当x = 时,代数式)2(3+x 与)32(5-x 的值相等4、若1-=x 是关于x 的方程a x x -=3的解,则a =_________5、七年级(2)班共有学生x 人,为希望工程共捐款172元,比平均每人3元多28元,那么可得方程___________6、某商品原价为x 元,降价20%后是原价的一半多30元,那可得方程________7、某长方形足球场的周长为310m ,长与宽的差为25m ,则这个足球场的长为 ___ 宽为8、红旗青年突击队80名共青团员到水利工地参加义务劳动,若每人每天平均挖土53m 或运土33m ,则他们应该安排 人挖土、 人运土才能使挖出的土及时运走三、用心做一做 (第1题每小题6分,第2、3、4、5题,每题8分,共44分)1、解下列方程①131221=-+-x x ② 2.15.023.01=+--x x2、如果2-=x 是关于x 的方程x a x a +=+21)3(的解,求122+-a a 的值3、七(3)班共有学生48人,其中男生人数比女生人数的2倍少15人,问这个班男、女学生各有多少人?4、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?5、张婶去布店买了28米的红布和黑布,其中红布每米3元,黑布每米5元,结账时售货员错把红布算作每米5元,黑布每米3元,结果收了张婶108元钱,是布店受了损失,还是张婶多付了钱?请说明你的理由。
一元一次方程单元测试卷(含答案)
一元一次方程单元测试卷一、选择题(每小题4分,共28分)1.下列方程中,是一元一次方程的是( B )A.342=-x xB.0=xC.12=+y xD.xx 11=- 2.下列方程的解是x =2的是 ( C )A.x -1=1+2xB.|x +1|-1=0C.2x ﹣1=1+xD.2(x ﹣2)=x3.若615-x 与37-互为倒数,那么x 的值是 ( C ) A.75- B.75 C. 3511- D.3511 4.21312--+x x =1去分母正确的是 ( D ) A.2(2x+1)-3(x-1)=1 B.6(2x+1)-6(x-1)=1C.2x+1-(x-1)=6D.2(2x+1)-3(x-1)=65.方程312=+x 与032=--x a 的解相同,则a 的值为 ( A ) A.7 B.0 C.3 D.56.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分必须答对的题数是 ( C )A.6B.7C.8D.97.在一张日历上,任意圈出竖列上的三个数的和不可能是 ( B )A.57B.40C.39D.60二、填空题(每小题5分,共25分)8.若05374=+-n x 是一元一次方程,则n= 2 .9.一个数的2倍减去8等于这个数的31加上7,则这个数为__9___ . 10.当=x 1 时,代数式24+x 与93-x 的值互为相反数.11.三个连续偶数的和为24,则这三个数分是 6、8、10 .12.一年定期储蓄年利率为2.25%,所得利息要交纳20%的利息税.已知某储户有一笔一年期定期储蓄,到期纳税后所得利息405元,那么该储户存入本金 90000 元.三、解答题(共43分)13.(12分)解下列方程:(1)842-=x x ;解:(1) 移项,得842-=-x x ,合并,得82-=-x ,系数化为1,得4=x .(2)()x x x 61235=+-;解:去括号,得x x x 6365=--.移项,得3665=--x x x .合并,得37=-x .系数化为1,得=x 73-.(3)141212110312-+=+--x x x 解:去分母,得12)12(3)110()12(4-+=+--x x x .去括号,得123611048-+=---x x x .移项合并,得48-=-x .系数化为1,得=x 21.14.一个学生有中外邮票共145张,其中中国邮票的张数比外国邮票的2倍少5张,问学生中外邮票各有几张?解:设有外国邮票x 张,则有中国邮票52-x 张,由题意,列方程为x +(52-x )=145.解得,x =50.即,有中国邮票95张,外国邮票50张.15.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?解:设这件商品的成本价为x 元,则标价为1.4x ,再打八折销售,则售价为1.4x ×0.8. 由题,列方程,得1.4x ×0.8=224.解得x =200元.16.随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展.某区2008和209年小学入学儿童人数之比为8:7,且2008年入学人数的2倍比2009年入学人数的3倍少1500人.某人估计2010年入学儿童将超过2300人.请你通过计算,判断他的估计是否符合当前的变化趋势.解:设2008入学儿童为8x 人,2009年入学儿童为7x 人,则有2×8x+1500=3×7x ,解之,得x=300(人),所以8x=2400人,7x=2100人,由于2300>2100,所以此人的判断不符合当前的变化趋势.17.滔滔长江水,滚滚向东流,时值盛夏,学校组织长江夜游,在流速2.5km/h 的航段从A 地上船,沿江而下,至B 地,然后逆江而上到C 地下船,共乘船4h.数学老师结合这次夜游给同学们留下了一道题:根据上述条件,若A 、C 两地相距10km ,船在静水中的速度为7.5km/h ,求A 、B 间的距离.解:设A 、B 间的距离为x ,则B 、C 间的距离为x ,船顺行的速度为2.5+7.5=10,船逆行的速度为7.5-2.5=5.由C 的位置有两种情况.(1)当C 在A 、B 中间时,则BC=x -10. 由题意,列方程为451010=-+x x ,解得x =20. (2)当C 在AB 外时,则BC=x +10. 由题意,列方程为451010=++x x ,解得x =320. 综上可知,A 、B 间的距离是20km 或320km.18.解方程:.1263x ax +=-解:由题意,方程化为3)12(-=+x a . 则当012=-a 时,得0=-3,无解.当012≠-a ,方程的解为a x +-=123。
一元一次方程培优测试题
一元一次方程测试题姓名:一、选择题(3分每题,共18分)1.在方程x x 22=-,13.0=x ,152-=x x ,342=-x x ,x=6,x+2y=0中,是一元一次方程的有( ) A.5个 B.4个 C.3个 D.2个2.下列各式运用等式的性质变形,错误的是( )A.由ac=bc,则a=bB.由a c =b c,则a=b C.由-a=-b,则a+3=b+3 D.由(m 2+1)a=(m 2+1)b,则a=b 3.已知x=4是关于x 的方程ax-1=3(x+a)的解,则a 的值是( )A.4B.9C.13D.154.某商店将一种商品的进价提价20%后,又降价20%以96元出售,则该商品卖出这件商品的盈亏情况是( )A.不亏不赚B.亏损4元C.赚6元D.亏损24元5.某种水费是这样计算的:用水量不超过20吨,按每吨1.2元收费,超过20吨则超过的部分按每吨1.5元收费。
某家庭五月份的平均水费是每吨1.25元。
则五月份应交水费( )A.20元B.24元C.30元D.36元6.一架飞机在A,B 两城之间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,则A,B 两城之间的距离x 的方程是( ) A.5.5x -6x =24 B.242.5x -=246x + C.6x +24=5.5x -24 D.245.5x +=246x - 二、填空题(3分每题,共27分)7、若13223=+-k x k 是关于x 的一元一次方程,则该方程的解为=x _________8、若单项式2a 2x+4与4a 4(-x+1)是同类项,则x 的值是9、三个连续偶数的和是60,则这三个偶数分别为10、在某大学班上,选修法语和不选修法语的人数比为2:5,后来从外班转入2个选修法语的人,结果该比变为1:2,则这个班原来的人数是_______11、将若干客房分给某旅行社,一个房间住7个人,则余下7位客人没处住,若一个房间住满9位客人,则空出一间房,则有_______间客房,有_______为客人12、当121---=mx x x 时,代数式的值为1,那么当1=x 时,此代数式的值为_________ 13、一项工程,A 队做要10天完成,B 队做要6天完成,现A 队先做2天,B 队再加入合作,完成这项工程共需x 天,可列方程为14、一家电信公司给顾客提供两种上网收费方式:方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月租费20元外,再以每分钟0.05元的价格按上网所用时间计费。
一元一次方程单元测试题
一元一次方程单元测试题(含答案)(总19页)-本页仅作为预览文档封面,使用时请删除本页-一元一次方程单元测试题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列是一元一次方程的是()A.x2﹣2x﹣3=0 B.x+1=0 C.x2+1x=1 D.2x+y=52.(3分)已知方程(a﹣2)x|a|﹣1+7=0是关于x的一元一次方程,则a的值为()A.2 B.﹣2 C.±2 D.无法确定3.(3分)下列变形正确的是()A.由ac=bc,得a=b B.由x5=x5−1,得a=b﹣1C.由2a﹣3=a,得a=3 D.由2a﹣1=3a+1,得a=2 4.(3分)若关于x的一元一次方程ax+3x=2的解是x=1,则a的值为()A.1 B.﹣1 C.5 D.﹣55.(3分)若x3+1与2x−73互为相反数,则m的值为()A.34B.43C.−34D.−436.(3分)下列各题中不正确的是()A.由5x=3x+1移项得5x﹣3x=1B.由2(x+1)=x+7去括号、移项、合并同类项得x=5C.由2x−13=1+x−32去分母得2(2x﹣1)=6+3(x﹣3)D.由2(2x﹣1)﹣3(x﹣3)=1去括号得 4x﹣2﹣3x﹣9=17.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣28.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x天,则下列方程正确的是()A .x +312+x 8=1 B .x 12+x +38=1 C .x −312+x 8=1 D .x 12+x −38=1 9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120 B .720+120=6(x +32x ) C .6x +6×32x +120=720D .6(x +32x )+120=72010.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x ﹣1与x +2的值相等,则x = . 12.(3分)若2a 3x +1与−15x 2x +4的和是单项式,则x 的值为 . 13.(3分)若P =2y ﹣2,Q =2y +3,2P ﹣Q =3,则y 的值等于 . 14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 .三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x ); (2)x −13=2x −32+117.(8分)已知方程2﹣3(x+1)=0的解与关于x的方程x+x2−3k=1﹣2x的解互为倒数,求(5k+12)3的值.18.(8分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么?(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人?21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱?(2)当标价总额是多少时?甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?一元一次方程单元测试题(含答案)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列是一元一次方程的是()A.x2﹣2x﹣3=0 B.x+1=0 C.x2+1x=1 D.2x+y=5【分析】利用一元一次方程的定义判断即可.【解答】解:x+1=0是一元一次方程,故选:B.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.(3分)已知方程(a﹣2)x|a|﹣1+7=0是关于x的一元一次方程,则a的值为()A.2 B.﹣2 C.±2 D.无法确定【分析】根据一元一次方程的定义,得出|a|﹣1=1,注意a﹣2≠0,进而得出答案.【解答】解:由题意得:|a|﹣1=1,a﹣2≠0,解得:a=﹣2.故选:B.【点评】此题主要考查了一元一次方程的定义,正确把握定义得出是解题关键.3.(3分)下列变形正确的是()A.由ac=bc,得a=b B.由x5=x5−1,得a=b﹣1C.由2a﹣3=a,得a=3 D.由2a﹣1=3a+1,得a=2【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A、由ac=bc,当c=0时,a不一定等于b,错误;B、由x5=x5−1,得a=b﹣5,错误;C、由2a﹣3=a,得a=3,正确;D、由2a﹣1=3a+1,得a=﹣2,错误;故选:C.【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.4.(3分)若关于x的一元一次方程ax+3x=2的解是x=1,则a的值为()A.1 B.﹣1 C.5 D.﹣5【分析】把x=1代入方程ax+3x=2得出a+3=2,求出方程的解即可.【解答】解:把x=1代入方程ax+3x=2得:a+3=2,解得:a=﹣1,故选:B.【点评】本题考查了一元一次方程的解和解一元一次方程的应用,解此题的关键是得出关于a的一元一次方程,难度适中.5.(3分)若x3+1与2x−73互为相反数,则m的值为()A.34B.43C.−3D.−4【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到m 的值.【解答】解:根据题意得:x3+1+2x−73=0,去分母得:m+3+2m﹣7=0,解得:m=43,故选:B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)下列各题中不正确的是()A.由5x=3x+1移项得5x﹣3x=1B.由2(x+1)=x+7去括号、移项、合并同类项得x=5C.由2x−13=1+x−32去分母得2(2x﹣1)=6+3(x﹣3)D.由2(2x﹣1)﹣3(x﹣3)=1去括号得 4x﹣2﹣3x﹣9=1【分析】根据解一元一次方程的步骤依次计算可得.【解答】解:A.由5x=3x+1移项得5x﹣3x=1,此选项正确;B.由2(x+1)=x+7去括号、移项、合并同类项得x=5,此选项正确;C.由2x−13=1+x−3去分母得2(2x﹣1)=6+3(x﹣3),此选项正确;D.由2(2x﹣1)﹣3(x﹣3=1)去括号得 4x﹣2﹣3x+9=1,此选项错误;故选:D.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.7.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x天,则下列方程正确的是()A.x+312+x8=1B.x12+x+38=1C.x−312+x8=1 D.x12+x−38=1【分析】设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天,根据甲完成的部分+乙完成的部分=整个工作量(单位1),即可得出关于x 的一元一次方程,此题得解.【解答】解:设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天, 根据题意得:x 12+x −38=1. 故选:D .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120 B .720+120=6(x +32x ) C .6x +6×3x +120=720D .6(x +3x )+120=720【分析】设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,根据相遇问题的数量关系建立方程求出其解即可.【解答】解:设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,由题意,得:120+6(x +32x )=720, 故列方程错误的是B . 故选:B .【点评】本题考查了由实际问题抽象一元一次方程的知识,解答本题的关键是仔细审题,根据等量关系建立方程.10.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A.DA边上B.AB边上C.BC边上D.CD边上【分析】要想知道乙追到甲时在哪一边上,则必须知道它们追上时所行的路程,那么只要求出追到时的时间,就可求出路程.根据路程计算沿正方形所走的圈数,就可知道在哪一边上.【解答】解:设乙第一次追上甲时,所用的时间为x,依题意得:100x=60x+3×80解得:x=6∴乙第一次追上甲时所行走的路程为:6×100=600m∵正方形边长为80m,周长为320m,∴当乙第一次追上甲时,将在正方形AB边上.故选:B.【点评】解决此题的关键是要求出它们相遇时的路程,然后根据路程求沿正方形所行的圈数,即可知道在哪一边上.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x﹣1与x+2的值相等,则x= 3 .【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣1=x+2,移项合并得:x=3,故答案为:3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.x2x+4的和是单项式,则x的值为 3 .12.(3分)若2a3x+1与−15【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求解.【解答】解:根据题意得:3x+1=2x+4,解得:x=3.故答案是:3.【点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(3分)若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于 5 .【分析】把P、Q的值代入2P﹣Q=3,得关于y的一次方程,求解方程即可.【解答】解:把P=2y﹣2,Q=2y+3,代入2P﹣Q=3,得2(2y﹣2)﹣(2y+3)=3整理,得2y=10,所以y=5.故答案为:5【点评】本题考查了一元一次方程的解法.把P、Q的值代入得关于y的方程是解决本题的关键.14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为x−1413=x+2614【分析】设春游的总人数是x人,根据大巴的载客量做为等量关系列方程求解.【解答】解:设春游的总人数是x人.根据题意所列方程为x−1413=x+2614,故答案为:x−1413=x+2614.【点评】本题考查理解题意的能力,因为同样的大巴,所以以大巴的载客量做为等量关系列方程求解.15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是1710元.【分析】设该照相机的原售价是x元,从而得出售价为,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.故答案为:1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解三.解答题(共8小题,满分75分)16.(8分)(1)5+3x=2(5﹣x);(2)x−13=2x−32+1【分析】(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)去括号得,5+3x=10﹣2x,移项得,3x+2x=10﹣5,合并同类项得,5x=5,系数化为1得,x=1;(2)去分母得,2(x﹣1)=3(2x﹣3)+6,去括号得,2x﹣2=6x﹣9+6,移项得,2x﹣6x=﹣9+6+2,合并同类项得,﹣4x=﹣1,系数化为1得,x=1;【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.17.(8分)已知方程2﹣3(x+1)=0的解与关于x的方程x+x2−3k=1﹣2x的解互为倒数,求(5k+12)3的值.【分析】先求出第一个方程的解得x=−13,再根据倒数的定义把x=﹣3代入第二个方程,求出5k=﹣17,然后代入(5k+12)3,计算即可.【解答】解:解方程2﹣3(x+1)=0得:x=−13,−13的倒数为﹣3,把x=﹣3代入方程x+x2−3k=1﹣2x得:x−32−3k=1+6,解得:5k=﹣17,则(5k+12)3=(﹣17+12)3=﹣125.【点评】本题考查了倒数、解一元一次方程、代数式求值,能得出关于k的方程是解此题的关键.18.(8分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】将x=﹣2代入原方程,即可得出关于k的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2或k﹣1=﹣2,解得:k=3或k=﹣1.答:k的值是3或﹣1.【点评】本题考查了一元一次方程的解,将x=﹣2代入原方程,找出关于k 的含绝对值符号的一元一次方程是解题的关键.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.【分析】(1)根据新定义运算法则解答;(2)根据“兄弟方程”的定义和已知条件得到:n﹣(﹣n)=8或﹣n﹣n=8,解方程即可;(3)求得方程2x+3m﹣2=0和3x﹣5m+4=0解,然后由“兄弟方程”的定义解答.【解答】解:(1)方程2x﹣4=x+1的解为x=5,将x=﹣5代入方程5x+m=0得m=25;(2)另一解为﹣n.则n﹣(﹣n)=8或﹣n﹣n=8,∴n=4或n=﹣4;(3)方程2x+3m﹣2=0的解为x=−3x+2,方程3x﹣5m+4=0的解为x=5x−4,则−3x+22+5x−43=0,解得m=2.所以,两解分别为﹣2和2.【点评】考查了一元一次方程的解的定义,解题的关键是掌握“兄弟方程”的定义.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么?(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人?【分析】(1)根据旅行社收费标准,分别求出两家旅行社所需的费用,再比较即可;(2)设带领的小孩有x人,根据这两家旅行社的总费用一样列出方程,求解即可.【解答】解:(1)由题意可得,甲旅行社所需费用为:3×200+×200×2=880(元),乙旅行社所需费用为:×(3+2)×200=800(元),故选择乙旅行社更优惠;(2)设带领的小孩有x人,根据题意得3×200+×200x=×(3+x)×200,解得x=6.答:如果这两家旅行社的总费用一样,那么带领的小孩有6人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b+20b﹣70|=10,解得,b1=167,b2=127,答:127小时或167小时后两人相距10千米.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.【分析】(1)设用x块金属原料加工螺栓,则用(20﹣x)块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求解即可;(2)设用y块金属原料加工螺栓,则用(26﹣y)块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求出的方程的解如果是正整数,那么加工的螺栓和螺帽恰好配套;否则不能配套;(3)设用a块金属原料加工螺栓,则用(n﹣a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.根据2×螺栓的个数=螺帽的个数列出方程,得出n与a的关系,进而求解即可.【解答】解:(1)设用x块金属原料加工螺栓,则用(20﹣x)块金属原料加工螺帽.由题意,可得2×3x=4(20﹣x),解得x=8,则3×8=24.答:最多能加工24个这样的零件;(2)若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y块金属原料加工螺栓,则用(26﹣y)块金属原料加工螺帽.由题意,可得2×3y=4(26﹣y),解得y=.由于不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3)设用a块金属原料加工螺栓,则用(n﹣a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n﹣a),解得a=2n,n,则n﹣a=35即n所满足的条件是:n是5的正整数倍的数.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系:2×螺栓的个数=螺帽的个数是解题的关键.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱?(2)当标价总额是多少时?甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是300元时,甲超市实付款=购物标价×,乙超市实付款=300×,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可;(3)首先计算出两次购物标价,然后根据优惠方案即可求解.【解答】解:(1)当一次性购物标价总额是300元时,甲超市实付款=300×=264(元),乙超市实付款=300×=270(元);(2)设当标价总额是x元时,甲、乙超市实付款一样.当一次性购物标价总额是500元时,甲超市实付款=500×=440(元),乙超市实付款=500×=450(元),∵440<450,∴x>500.根据题意得=500×+(x﹣500),解得x=625.答:当标价总额是625元时,甲、乙超市实付款一样;(3)小明两次到乙超市分别购物付款198元和466元,第一次购物付款198元,购物标价可能是198元,也可能是198÷=220元,第二次购物付款466元,购物标价是(466﹣450)÷+500=520元,两次购物标价之后是198+520=718元,或220+520=740元.若他只去一次该超市购买同样多的商品,实付款500×+(718﹣500)=元,或500×+(740﹣500)=642元,可以节省198+466﹣=元,或198+466﹣642=22元.答:若他只去一次该超市购买同样多的商品,可以节省或22元.【点评】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.。
一元一次方程单元测试题及答案
一元一次方程单元测试题一、选择题(40分)1.在方程4x-y=0, x+1x-2=0,-2x=1,x2-2x+7=0中一元一次方程的个数为(A)A.1个B.2个C.3个D.4个2.解方程x2-1=x-13时,去分母正确的是(B)A.3x-3=2x-2B.3x-6=2x-2C.3x-6=2x-1D.3x-3=2x-1 3.方程x-2=2-x的解是(C)A.x=1B.x= - 1C.x=2 D.x=04.如果等式ax=bc成立,则下列等式成立的是(D)A.abx=abc ;B.x= bca; C.b-ax=a-bc D.b+ax=b+bc5.增加2倍的值比扩大5倍少3,列方程得(D)A.2x=5x+3B.2x=5x-3C.3x=5x+3D.3x=5x-36.方程3a10+2x+42=4(x-1)的解为x=3,则a的值为(C)A.2;B.22;C.10;D.-27.已知a≠1,则关于x的方程(a-1)x=1-a的解是(C)A.x=0B.x=1C.x=- 1D.无解8.对∣x-2∣+3=4,下列说法正确的是(D)A.不是方程;B.是方程,其解为1;C.是方程,其解为3;D.是方程,其解为1、3。
9.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x 个月后,两厂库存钢材相等,则x =(A)A.3;B.5;C.2;D.410.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为(C)。
A.80元;B.85元;C.90元;D.95元二、填空题(48分)11.代数式-2a+1与1+4a 互为相反数,则a= -112.如果 - 3x 2a+1+6=0是一元一次方程,那么a= 0 ,方程的解为x= 2 。
13.若x= -4是方程ax 2-6x-8=0的一个解,则a= -1 。
14.如果5a 2b -3(2m+1)与-3a 2b 2(m+3)是同类项,则m= - 98。
七年级数学一元一次方程单元培优试题2
七年级数学一元一次方程单元培优试题一.选择题1.下列方程是一元一次方程的是()A. 2x﹣y=0B. x2﹣x=1C. xy﹣3=5D. x+1=22.当x+y=3时,5﹣x﹣y等于()A. 6B. 4C. 2D. 33.下列解方程去分母正确的是( )A. 由,得2x﹣1=3﹣3xB. 由,得2x﹣2﹣x=﹣4C. 由,得2y-15=3yD. 由,得3(y+1)=2y+64.下列各式中:①由3x=﹣4系数化为1得x=﹣;②由5=2﹣x移项得x=5﹣2;③由去分母得2(2x﹣1)=1+3(x﹣3);④由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1.其中正确的个数有()A. 0个B. 1个C. 3个D. 4个5.已知a=b,下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤.A. 5B. 4C. 3D. 26.方程的解为()A. x=﹣B. x=C. x=D. x=17.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A. 7B. ﹣7C. ﹣1D. 18.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A. B.C. D.9.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则代数式a2018+2016b+c2018的值为()A. 2018B. 2016C. 2D. 010.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是( )A. B.C. D.二.填空题11.当x为_____时,的值为﹣1.12.一次数学竞赛出了15个选择题,选对一题得4分,选错或不答一题倒扣2分,小明同学做了15题,得42分.设他做对了x道题,则可列方程为_______.13.代数式x2+x+3的值为7,则代数式﹣3的值为_____.14.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2019次输出的结果为_____.15.某通信公司的移动电话计费标准每分钟降低a元后,再下调了20%,现在收费标准是每分钟b元,则原来收费标准每分钟是_____元.16.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是_____%.17.已知数轴上A、B两点对应数分别为﹣20、40,P为数轴上一动点,对应数为x,若P点到A、B距离的比为2:3,则x的值为_____.18.一件商品的原价为a元,提高50%后标价,再按标价打七折销售,则此时售价为_____元.三.解答题19.解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)(x﹣5)=3﹣(x﹣5)(3)﹣1=(4)x﹣(x﹣9)=[x+(x﹣9)](5) -=0.5x+220.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?21.在做解方程练习时,学习卷中有一个方程“2y–=y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?22.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时,(1)两车同向而行,快车在后,求经过几小时快车追上慢车?(2)两车相向而行,求经过几小时两车相距50千米?23.某汽车行驶时油箱中余油量Q(升)与行驶时间t(小时)的关系如下表:(1)写出用行驶时间t表示余油量Q的代数式;(2)当t=时,余油量Q的值为升;(3)汽车每小时行驶60公里,问油箱中原有汽油可供汽车行驶多少公里?24.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P、Q均停止运动.设运动的时间为t秒.问:(1)用含t的代数式表示动点P在运动过程中距O点的距离;(2)P、Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少?(3)是否存在P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等时?若存在,请直接写出t的取值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.3.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.4.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。
(3)将小数化为分数,需要写出推理过程.【答案】(1)1.8;(2);(3)解:设 =x,则100x=95+x,解得:x= =1+ =【解析】【解答】(1)9÷5=1.8,22÷7= ;(2)设0. x,根据题意得:10x=5+x,解得:x ;设0. x,则10x=6+x,解得:x ..故答案为:.【分析】(1)由已学过的知识可知:分数均可化为有限小数或无限循环小数;是一个有限小数,是一个无限循环小数;(2)由阅读材料可求解;(3)由阅读材料可知,设循环节为x,即 =x,由材料可得方程 100x=95+x,解方程即可求解。
5.如图,在数轴上点A表示数a,点C表示数c,且 .我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.(1)求AC的值;(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒 3个单位长度,每秒4个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值.②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,请求出m的值.【答案】(1)解:∵|a+10|+(c-20)2=0,∴a+10=0,c-20=0,∴a=-10,c=20(2)解:当点D在点A的左侧,∵CD+AD=36,∴AD+AC+AD=36,∴AD=3,∴点D点表示的数为-10-3=-13;当点D在点A,C之间时,∵CD+AD=AC=30≠36,∴不存在点D,使CD+AD=36;当点D在点C的右侧时,∵CD+AD=36,∴AC+CD+CD=36,∴CD=3,∴点D点表示的数为20+3=23;综上所述,D点表示的数为-13或23(3)解:①∵AB=BC,∴|(1+t)-(-10+3t)|=|(1+t)-(20-4t)|∴t= 或;②∵2AB-m×BC=2×(11+4t)-m(19+3t)=(8-3m)t+22-19m,且2AB-m×BC的值不随时间t的变化而改变,∴8-3m=0,∴m= .【解析】【分析】(1)根据非负性可求出答案;(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时;进行讨论可求D点表示的数;(3)①用t的代数式表示AB,BC,列出等式可求解;②用t的代数式表示AB,BC,代入代数式可求解;6.一般情况下不成立,但有些数可以使得它成立,例如:.我们称使得成立的一对数,为“相伴数对”,记为 .(1)若是“相伴数对”,求的值;(2)若是一个“相伴数对”,请将所满足的等式化为,其中均为整数的形式(如);(3)若是“相伴数对”,求代数式的值.【答案】(1)解:根据题意得:,解得b=;(2)解:根据题意得:,即,∴,∴;(3)解:∵是“相伴数对”,∴,∴,∴原式.【解析】【分析】(1)根据“相伴数对”的定义列出方程求解即可;(2)根据“相伴数对”的定义列出等式,然后去分母,化简即可;(3)由(2)可得,变形得,然后对所求式子进行化简,代入计算即可.7.已知a是最大的负整数,b、c满足(b-3)2+|c+4|=0,且a、b、c分别是点A、B、C在数轴上对应的数.(1)点A表示的数为________,点B表示的数为________,点C表示的数为________;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到点B为5个单位长度?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于13,请写出所有点M 对应的数,并写出求解过程.【答案】(1)-1;3;-4(2)解:设点P运动t秒时到点B为5个单位长度,分以下两种情况:①点P在点B左边距离点B5个单位,则有:2t+5=3-(-4)解得t=1②点P在点B右边距离点B5个单位,则有:2t-5=3-(-4)解得t=6故当点P运动1秒或6秒后,点P到点B为5个单位长度(3)解:点B与点C之间的任何一点时到A、B、C三点的距离之和都小于13,因此点M的位置只有以下两种情况,设点M所表示的数为m,则:①点M在点C左边时,可得:-4-m-1-m+3-m=13 解得m=-5②点M在点B右边时,可得:m+4+m+1+m-3=13,解得m=故点M对应的数为-5或.【解析】【解答】解:(1)∵a是最大的负整数∴a=-1∵(b-3)2≥0,|c+4|≥0,而(b-3)2+|c+4|=0∴b=3,c=-4故答案为:-1;3;-4.【分析】(1)由题目中的条件可直接得出点A对应的数,根据平方与绝对值的非负性可得出B与C对应的数;(2)由点P到点B为5个单位长度,可两种情况,点P在点B左边及点P在点B右边,分别列方程即可求得;(3)分情况讨论,当点M在点C左边及当点M在点B右边,分别列方程可求得;而当点M在点C及点B之间时错误.8.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边0M与OC都在直线AB 的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时0N是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC-∠CON=30°-15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°.∠AON=15°,∴ON平分∠AOC(2)解:5秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∴三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠AOC-∠AON=45°,可得:6t-3t=15°,解得:t=5秒:(3)解:OC平分∠MOB∴∠AON+∠BOM=90°,∠BOC=∠COM,∴三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为 (90°-3t),∵OC平分∠MOB,可得:180°-(30°+6t)= (90°-3t),解得:t= 秒;如图:【解析】【分析】(1)①根据角平分线结合已知条件可得∠COM=75°,从而求得∠CON=∠AON=15°,根据旋转即可求得时间t;②由①知∠CON=∠AON=15°,从而可得ON平分∠AOC.(2)根据角平分线结合已知条件可得∠CON=∠COM=45°,根据题意可设∠AON为3t,∠AOC为30°+6t,由∠AOC-∠AON=45°,列出方程,解之即可.(3)根据题意可设∠AON为3t,∠AOC为30°+6t,由角平分线和邻补角可得180°-(30°+6t)= (90°-3t),解之即可.9.某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.购票张数 1~40张 41~80张 81张(含81张)以上平均票价(元/张) 100 90 80买门票能节省多少钱?(2)问甲、乙两个班各有多少名学生?(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?【答案】(1)解:一起购买门票,所需费用为:80×86=6880(元),能节省8120﹣6880=1240(元),答:联合起来购买门票能节省1240元钱(2)解:设甲班有x人,86×90=7740(元),7740<8120,∴35≤x≤40,40<86﹣x≤80,根据题意得:100x+90(86﹣x)=8120,解得:x=38,86﹣x=48,答:甲班有38人,乙班有48人(3)解:若0<m<6时,此时总人数大于等于81人,则最省钱的购买门票的方案为:购买(86﹣m)张,当m≥6时,若90(86﹣m)>81×80,解得:m<14,即6≤m<14时,最省钱的购买门票的方案是:购买81张,若90(86﹣m)=81×80,解得:m=14,即m=14时,最省钱的购买门票的方案是:购买81张或72张,若14<m<20时,最省钱的购买门票的方案为:购买(86﹣m)张,综上可知:当0<m<6或14<m<20时,购买(86﹣m)张最省钱,当m=14时,购买72或81张最省钱,当6≤m<14时,购买81张最省钱【解析】【分析】(1)依据表格中的数据计算出联合购票的钱数,与分别购买团体票的钱数之间的差为节省出来的钱;(2)依题意设甲班有x人,并且x≥35,确定x的取值范围,假设两班人数都是41人到80人之间,则方程无解;因为乙班人数多于甲班人数,所以甲班人数在35≤x≤40 乙班人数在40<86﹣x≤80,列方程解方程即可.(3)依据题意分类讨论:①总人数在81人以上时,即0<m<6时,求出(86﹣m)张;②当总人数小于81,当总价款又大于团购81张的总价款时,即6≤m<14时,按81张购买即可;③当总人数小于81,当平均票价为90元的总价款等于团购81张的总价款时,即m=14时,有两种方式购买81张或72张;④当总人数小于81,平均票价为90元是最省钱方式,即14<m<20时,得出(86﹣m)张.10.将从1开始的正整数按一定规律排列如下表:(1)数40排在第________行,第________列;数2018排在第________行,第________列;(2)探究如图“+”框中的5个数:①设这5个数中间的数为a,则最小的数为________,最大的数为________;②若这5个数的和是240,求出这5个数中间的数;________③这5个数的和可能是2025吗,若能,求出这5个数中间的数,若不能,请说明理由.________【答案】(1)5;4;225;2(2)a﹣9;a+9;解:根据题意可得:a﹣9+a﹣1+a+a+1+a+9=240∴a=48;根据题意可得:a﹣9+a﹣1+a+a+1+a+9=2025∴a=405∵405÷9=45∴405是第9列的数,∴这5个数的和不可能是2025.【解析】【解答】(1)解:∵40÷9=4 (4)∴数40排在第5行第4列∵2018÷9=224 (2)∴数2018排在第225行第2列故答案为5,4,225,2( 2 )①设中间的数为a,其他四个数分别为a﹣9,a﹣1,a+1,a+9则最小的数a﹣9,最大的数为a+9故答案为:a﹣9,a+9【分析】(1)由题意可求解;(2)①设中间的数为a,由数列的规律可得其他四个数分别为a−9,a−1,a+1,a+9,即可得最小的数和最大的数;②根据题意列出方程,求解即可;③根据题意列出方程,可求a为405,可得a是9的倍数,则a在第9列,则这5个数的和不可能是2025.11.已知|a+4|+(b﹣2)2=0,数轴上A、B两点所对应的数分别是a和b(1)填空:a=________,b=________(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ 的中点,当PQ=16时,求MN的长.【答案】(1)﹣4;2(2)解:设C点表示的数为x,根据题意得,①当点C在A、B之间时,有c+4=2(2﹣c),解得,c=0;②当点C在B的右侧时,有c+4=2(c﹣2),解得,c=8.故点C表示的数为0或8(3)解:设运动的时间为t秒,根据题意得,2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P:﹣4﹣2×2=﹣8,Q:2+3×2=8,M:0﹣4×2=﹣8,N:(-8+8)÷2=0,∴MN=0﹣(﹣8)=8.【解析】【解答】(1)解:由题意得,a+4=0,b﹣2=0,解得,a=﹣4,b=2,故答案为:﹣4;2【分析】(1)根据“几个非负数和为0,则这几个数都为0”可列方程求解;(2)由题意分两种情况:点C在A、B之间和点C在B的右侧.可列方程求解;(3)设运动时间为t秒,根据PQ=16可列关于t的方程求得t,于是可求得运动后的M、N点表示的数.12.如图是一种数值转换机的运算程序.(1)若输入的数x=1,y=-1,则输出的数为________;若输入的数x=3,y=-5,则输出的数为________;若输入的数x=n,y=-n,则输出的数为________;(2)若输入的数x=2,输出的数为20,求输入的数y.【答案】(1)1;17;n2(2)解:由图可知:输出数为:,∵x=2,输出的数为20,∴=20,解得:y=±6.【解析】【解答】解:(1)由图可知:输出数为:,∵x=1,y=-1,∴==1;∵x=3,y=-5,∴==17;∵x=n,y=-n,∴==n 2;故答案为:1,,17,n2.【分析】(1)由图可知输出数为:,分别将x、y的值代入,计算即可得出答案.(2)由图可知输出数为:,,分别将x、输出的数代入,计算即可求得y值.。