1.半导体物理:半导体中的电子状态

合集下载

半导体物理习题及解答-刘诺

半导体物理习题及解答-刘诺

第一篇习题半导体中的电子状态1-1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

1-2、试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

1-3、试指出空穴的主要特征。

1-4、简述Ge、Si和GaAS的能带结构的主要特征。

1-5、某一维晶体的电子能带为其中E=3eV,晶格常数a=5х10-11m。

求:(1)能带宽度;(2)能带底和能带顶的有效质量。

第一篇题解半导体中的电子状态刘诺编1-1、解:在一定温度下,价带电子获得足够的能量(≥E)被激发到导带成为g导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge、Si的禁带宽度具有负温度系数。

1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。

主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、EP =-EnD、mP *=-mn*。

1-4、解:(1)Ge、Si:a)Eg (Si:0K) = ;Eg (Ge:0K) = ;b)间接能隙结构c)禁带宽度E g随温度增加而减小;(2)GaAs:a)Eg(300K)第二篇习题-半导体中的杂质和缺陷能级刘诺编2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。

2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。

2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。

半导体物理各考点总结

半导体物理各考点总结

第一章半导体中的电子状态1.分类说明半导体材料的晶格结构与结合特性。

答:金刚石结构特点:每个原子周围有四个最邻近的原子,组成一个正四面体结构,配位数是4. 夹角109°28′。

金刚石结构可以看成是两个面心立方晶包沿立方体的空间对角线相互位移四分之一对角线套构而成。

闪锌矿结构特点:双原子复式结构,它是由两类原子各自组成的面心立方晶胞沿立方体的空间对角线相互位移四分之一对角线套构而成。

以共价键为主,结合特性具有不同程度的离子性,称为极性半导体。

2.什么是电子共有化运动?原子中内层电子和外层电子参与共有化运动有何不同?答:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去。

因而,电子可以在整个晶体上运动。

因为个原子中相似壳层上的电子才有相同能量,电子只能在相似壳层上转移,因此共有化运动的产生是由于不同原子的相似壳层之间的交叠。

由于内外层交叠程度很不相同,所以只有最外层电子的共有化运动才显著。

3.说明能级分裂成能带的根本原因以及内外层能带有何不同?答:根本原因,当周围n个原子相互靠近时,每个原子中的电子除受到本身原子的势场作用外,还要受到其他原子的作用,其结果是每一个n度简并的能级都分裂为n个彼此相距很近的能级;·内壳层原来处于低能级,共有化运动很弱,能级分裂的很小,能带窄。

外壳层电子原来处于高能级,共有化运动显著,能带分裂的厉害,能带宽。

4.原子中的电子自由电子和晶体中电子受势场作用情况有何不同?自由电子和晶体中电子运动情况有何不同?答: 孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,晶体中的电子是在严格周期性重复排列的势场中运动5.导体、半导体和绝缘体能带的区别?答:金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。

绝缘体禁带宽度大,常温下激发到导带的电子很少,导电性差。

半导体物理问答题

半导体物理问答题

半导体物理问答题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一篇 习题 半导体中的电子状态1-1、什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。

1-2、试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。

1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。

求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。

第一篇 题解 半导体中的电子状态1-1、解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、解: 空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。

主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。

1-4、解:(1) Ge 、Si:a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )E g (300K )= 1.428eV , Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE oooo 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。

《半导体物理》胡礼中第三章 半导体中的电子状态

《半导体物理》胡礼中第三章 半导体中的电子状态

第三章半导体中的电子状态半导体独特的物理性质与其内部电子的运动状态密切相关。

本章扼要介绍一些有关的基本概念。

§3-1 电子的运动状态和能带§3-1-1孤立原子和自由空间中的电子状态为了便于理解半导体中的电子运动状态和能带的概念,先复习一下孤立原子中的电子状态和能级﹑自由空间中的电子状态和能谱的概念。

一.原子中的电子状态和能级。

原子是由带正电荷的原子核和带负电荷的电子组成的,原子核的质量远大于电子的质量。

因此,可认为电子是在原子核的库仑引力作用下绕着原子核运动的。

电子绕原子核运动遵从量子力学规律,处于一系列特定的运动状态,这些特定状态称量子态或电子态。

在每个量子态中,电子的能量(能级)是确定的。

处于确定状态的电子在空间的几率分布是一定的。

在讨论原子中的电子运动时,也常采用经典力学的“轨道”概念,不过其实际含义是指电子在空间运动的一个量子态和几率分布。

按“轨道”概念,对于原子中的电子,能级由低到高可分为E1﹑E2﹑E3﹑E4..等,分别对应于1s﹑2s﹑2p﹑3s…等一系列量子态。

如图3-1所示,内层轨道上的电子离原子核近,受到的库仑束缚作用强,能级低。

越往外层,电子受到的束缚越弱,能级越高。

总之,在单个原子中,电子运动的特点是其运动状态为一些局限在原子核周围的局域化量子态,其能级取一系列分立值。

二.自由空间中的电子状态和能谱。

根据量子力学理论,在势场不随位置变化的自由空间中,电子的运动状态满足下面的定态薛定谔方程)()()(222r k E r mψψ=∇- (3-1) 该方程的解为平面波:r k i ke V r ⋅=1)(ψ )(22)(222222z y x k k k mm k k E ++== (3-2) 其中,)(r k ψ称波函数,)(k E 称能量谱值或本征值,V 为空间体积,k 为平面波的波矢,其大小为波长倒数的2π倍,即k=2π/λ。

这里k 也起着量子数的作用,用来标志自由电子的运动状态。

半导体物理-第1章-半导体中的电子态

半导体物理-第1章-半导体中的电子态
4. (111)面的堆积与面心立方的密堆积类 似,但其正四面体的中心有一个原子,面 心立方的中心没有原子。
金刚石结构的(111) 面层包含了套构的原 子,形成了双原子层 的A层。以双原子层的 形式按ABCABC层排 列
金刚石结构的[100]面的投 影。0和1/2表示面心立方 晶格上的原子,1/4,3/4 表示沿晶体对角线位移1/4 的另一个面心立方晶格上的 原子。
2.每个原子最外层价电子为一个s态电子和三个p态电 子。在与相邻四个原子结合时,四个共用的电子对完全 等价,难以区分出s与p态电子,因而人们提出了“杂 化轨道”的概念:一个s和三个p轨道形成了能量相同 的sp3杂化轨道。之间的夹角均为109°28 ’。
3. 结晶学元胞为立方对 称的晶胞,可看作是两 个面心立方晶胞沿立方 体的空间对角线互相位 移了1/4对角线长度套 构而成。
Ψ(r,t) = Aexp[i2π(k ·r – v t)]
(3)
其中k 为波矢,大小等于波长倒数1/λ ,方
向与波面法线平行,即波的传播方向。得
能量:E = hν
动量:p = hk
(4) (5)
对自由电子,势能为零,故薛定谔方程为:
2
2m0
d 2 (x)
dx2
E (x)
(6)
由于无边界条件限制,故k取值可连续变化。即:与经 典物理(粒子性)得出相同结论。
能带形成的另一种情况
硅、锗外壳层有4个价电子,形成晶体时,产生SP杂化 轨道。原子间可能先进行轨道杂化(形成成键态和反键 态),再分裂成能带。
原子能级
反成键态
成键态
半导体(硅、锗)能带的特点
存在轨道杂化,失去能带与孤立原子能级的对应关系。 杂化后能带重新分开为上能带和下能带,上能带称为导 带,下能带称为价带。

半导体物理第1章 半导体中的电子状态

半导体物理第1章 半导体中的电子状态
作用很强,在晶体中电子在理想的周期势场内 作共有化运动 。
能带成因
当N个原子彼此靠近时,根据不相容原理 ,原来分属于N个原子的相同的价电子能 级必然分裂成属于整个晶体的N个能量稍 有差别的能带。
S i1 4 :1 s 2 2 s 2 2 p 6 3 s 2 3 p 2
能带特点
分裂的每一个能带称为允带,允带间的能量范 围称为禁带
一.能带论的定性叙述 1.孤立原子中的电子状态
主量子数n:1,2,3,…… 角量子数 l:0,1,2,…(n-1)
s, p, d, ... 磁量子数 ml:0,±1,±2,…±l 自旋量子数ms:±1/2
n1
主量子数n确定后:n= 2(2l 1) 2n2 0
能带模型:
孤立原子、电子有确定的能级结构。 在固体中则不同,由于原子之间距离很近,相互
Ⅲ-Ⅴ族化合物,如 G a A S , I n P 等 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞
等半金属材料。
1.1.3 纤锌矿型结构
与闪锌矿型结构相比 相同点 以正四面体结构为基础构成 区别 具有六方对称性,而非立方对称性 共价键的离子性更强
1.2半导体中的电子状态和能带
1.2.1原子的能级和晶体的能带
1.3半导体中电子的运动——有效质量
1.3.1半导体中的E(k)与k的关系 设能带底位于波数k,将E(k)在k=0处按
泰勒级数展开,取至k2项,可得
E (k)E (0 )(d d E k)k 0k1 2(d d k 2E 2)k 0k2
由于k=0时能量极小,所以一阶导数为0,有
E(k)E(0)1 2(d d2E 2k)k0k2
1.1.2 闪锌矿型结构和混合键
Ⅲ-Ⅴ族化合物半导体材料 结晶学原胞结构特点 两类原子各自组成的面心立方晶格,沿

半导体物理习题答案(1-3章)

半导体物理习题答案(1-3章)

第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。

试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。

解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102 V/m 、107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102 V/m 时,88.310t s -=⨯;当E = 107 V/m 时,138.310t s -=⨯。

半导体物理习题答案完整版

半导体物理习题答案完整版

半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。

即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。

解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。

试求:(2)能带底部和顶部电子的有效质量。

解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。

当时,代入(2)得:对应E(k)的极大值。

根据上述结果,求得和即可求得能带宽度。

故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。

2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

3 试指出空穴的主要特征。

4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。

求:(2)能带底和能带顶的有效质量。

6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。

半导体物理学 第一章__半导体中的电子状态

半导体物理学 第一章__半导体中的电子状态

The End of Preface
第一章 半导体中的电子状态
主要内容:
1.1 半导体的晶格结构和结合性质 1.2半导体中电子状态和能带 1.3半导体中电子运动--有效质量 1.4 本征半导体的导电机构--空穴 1.5 常见半导体的能带结构 (共计八学时)
本章重点:
*重 点 之 一:Ge、Si 和GaAs的晶体结构
晶体结构周期性的函数 uk (x) 的乘积。
分布几率是晶格的周期函数,但对每个原胞的
相应位置,电子的分布几率一样的。 波矢k描述晶体中电子的共有化运动状态。
它是按照晶格的周期 a 调幅的行波。
这在物理上反映了晶体中的电子既有共有化的 倾向,又有受到周期地排列的离子的束缚的特点。
只有在 uk (x) 等于常数时,在周期场中运动的 电子的波函数才完全变为自由电子的波函数。
硅基应变异质结构材料一维量子线零维量子点基于量子尺寸效应量子干涉效应量子隧穿效应以及非线性光学效应等的低维半导体材料是一种人工构造通过能带工程实施的新型半导体材料是新一代量子器件的基宽带隙半导体材料宽带隙半导体材料主要指的是金刚石iii族氮化物碳化硅立方氮化硼以及iivi族硫锡碲化物氧化物zno等及固溶体等特别是sicgan和金刚石薄膜等材料因具有高热导率高电子饱和漂移速度和大临界击穿电压等特点成为研制高频大功率耐高温抗辐射半导体微电子器件和电路的理想材料在通信汽车航空航天石油开采以及国防等方面有着广泛的应用前景
(1)元素半导体晶体
Si、Ge、Se 等元素
(2)化合物半导体及固溶体半导体
SiC
AsSe3、AsTe3、 AsS3、SbS3
Ⅳ-Ⅳ族
Ⅴ-Ⅵ族
化合物 半导体
InP、GaN、 GaAs、InSb、

半导体物理课件:第一章 半导体中的电子状态

半导体物理课件:第一章  半导体中的电子状态

14
1.1 半导体的晶格结构和结合性质
4. 闪锌矿结构和混合键
与金刚石结构的区别
▪ 共价键具有一定的极性 (两类原子的电负性不 同),因此晶体不同晶面 的性质不同。
▪ 不同双原子复式晶格。
常见闪锌矿结构半导体材料 ▪ Ⅲ-Ⅴ族化合物 ▪ 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞等半金属材料。
2024/1/4
量子力学认为微观粒子(如电子)的运动须用波 函数来描述,经典意义上的轨道实质上是电子出 现几率最大的地方。电子的状态可用四个量子数 表示。 (主量子数、角量子数、磁量子数、自旋量子数)
▪ 能级存在简并
2024/1/4
19
1.2 半导体中的电子状态和能带
▪ 电子共有化运动
原子中的电子在原子核的势场和其它电子的作用 下,分列在不同的能级上,形成所谓电子壳层 不同支壳层的电子分别用 1s;2s,2p;3s,3p,3d;4s…等符号表示,每一壳层对 应于确定的能量。
29
1.2 半导体中的电子状态和能带
▪ 金刚石结构的第一布里渊区是一个十四面体。
2024/1/4
30
1.2 半导体中的电子状态和能带
3. 导体、半导体、绝缘体的能带
能带产生的原因:
▪ 定性理论(物理概念):晶体中原子之间的相 互作用,使能级分裂形成能带。
▪ 定量理论(量子力学计算):电子在周期场中 运动,其能量不连续形成能带。
•结果每个二度简并的能级都分裂为二个彼此相距 很近的能级;两个原子靠得越近,分裂得越厉害。
2024/1/4
22
1.2 半导体中的电子状态和能带
▪ 内壳层的电子,轨道交叠少,共有化运动弱,可忽略 ▪ 外层的价电子,轨道交叠多,共有化运动强,能级分

半导体物理学复习提纲(重点)

半导体物理学复习提纲(重点)

第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。

几种常用半导体的禁带宽度; 本征激发的概念§1。

3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k )~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。

§1。

4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1。

5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2。

1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。

§2。

2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3。

1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关.1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。

3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。

半导体物理第三章半导体中的电子状态

半导体物理第三章半导体中的电子状态

有化运动:2s能级引起“2s”的共有化运动,2p能级引起
“共2有p化”的运动。
2p
• 2s • • •
► 晶体中电子的运动
► 晶体中电子做共有化运动时的能量是怎样的?
a: 考虑一些相同的原子,当它们之间的距离很大时,可以 忽略它们之间的相互作用,每个原子都可以看成孤立的, 它们有完全相同的电子能级。如果把这些原子看成一个 系统,则每一个电子能级都是简并的。(2个原子构成的 系统,为二度简并(不计原子本身的简并时);N个原 子构成的系统,为N度简并)。
b: 能带的形成:原子相互靠近时,由于之间的相互作用, 使简并解除,原来具有相同能量的能级,分裂成具有不 同能量的一些能级组成的带,称为能带。原子之间的距 离愈小它们之间的相互作用愈强,能带的宽度也愈大。 (图3.2)
• 原子能级和能带之间并不一定都存在一一对应的关系。 当共有化运动很强时,能带可能很宽而发生能带间的重 叠,碳原子组成的金刚石就是属于这种情况。(图3.3)
3:处于低能级的内壳层电子共有化运动弱,所以能级分裂小, 能带较窄;处于高能级的外壳层电子共有化运动强,能级分 裂大,因而能带较宽。
4:每个能带都是共有化电子可能的能量状态,称为允带;各允 带之间有一定的能量间隙,电子能量不可能在这一能量间隙 内,称之为禁带。
5:每个允带包含的能级数一般等于孤立原子相应能级的简并度 (不计自旋简并)× 组成晶体的原子数目。
设一维晶格长为L,
则有:
L
0
(
x
)
2
dx
1
( 归一化)
即:
L
0
2
A dx 1,
取A
1, L
则 ( x )=
1 exp(ikx) L

半导体物理

半导体物理

半导体物理考点归纳第一章 半导体中的电子状态一.名词解释1.电子的共有化运动:(P10)原子组成晶体后,由于电子壳的交叠,电子不再局限于某一个原子上,可以由一个原子转移到相邻的原子上去。

因而,电子可以在整个晶体中运动。

这种运动称为电子的共有化运动。

2.单电子近似:(P11)单电子近似方法认为,晶体中德电子是在周期性排列且固定不动的原子核势场,以及其他大量电子的平均势场中运动,这个势场是周期性变化的,且其周期与晶格周期相同。

3.有效质量:(P19)有效质量2*22n h m d Edk =,它直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括。

二.判断题1.金刚石和闪锌矿结构的结晶学原胞都是双原子复式格子,而纤锌矿结构与闪锌矿结构型类似,以立方对称的正四面体结构为基础。

(X )金刚石型结构为单原子复式格子,纤锌矿型是六方对称的。

2.硅晶体属于金刚石结构。

(√)3.Ge 的晶格是单式格子。

(X ) (复式)4.有效质量都是正的。

(X ) (有正有负)5.能带越窄,有效质量越小。

(X )(2*22n h m d Edk =,能带越窄,二次微商越小,有效质量越大) 6.硅锗都是直接带隙半导体。

(X ) (间接)7.Ge 和Si 的价带极大值均位于布里渊区的中心,价带中空穴主要分布在极大值附近,对应同一个k 值,()E k 可以有两个值。

8.实际晶体的每个能带都同孤立原子的某个能级相当,实际晶体的能带完全对应于孤立原子的能带。

(X ) (不相当,不完全对应)三.填空题1.晶格可以分为7大晶系,14种布拉菲格子,按照每个格子所包含的各点数,可分为原始格子,体心,面心,底心。

2.如今热门的发光材料LED 是直接带隙半导体,该种材料的能带结构特点是当k=0时的能谷的极值小。

3.Ge 、Si 是间接带隙半导体,InSb 、GaAs 是直接带隙半导体。

4.回旋共振实验中能测出明显的共振吸收峰,就要求样品纯度高,而且要在低温下进行。

半导体物理半导体中的电子状态

半导体物理半导体中的电子状态

半导体物理半导体中的电子状态半导体物理:半导体中的电子状态半导体是一种在电性能上介于导体和绝缘体之间的材料。

半导体中的电子状态对于半导体器件的特性和性能起着至关重要的作用。

本文将探讨半导体中的电子状态,并介绍与之相关的几个重要概念。

1. 能带结构半导体中的电子状态与能带结构密切相关。

能带是将材料中的电子能级按照能量高低进行分类的一种方式。

在半导体中,一般存在两个主要的能带,即价带和导带。

价带是电子处于较低能量状态的能带,而导带则是电子处于较高能量状态的能带。

能带之间的能隙决定了电子的跃迁行为。

2. 杂质能级半导体中的杂质能级是指由掺入杂质引起的局部能量水平。

掺杂是通过向半导体中引入少量的杂质元素改变其电子状态。

掺入五价元素(如磷)会产生施主能级,该能级位于导带上方,提供自由电子;而掺入三价元素(如硼)会产生受主能级,该能级位于价带下方,吸收自由电子。

杂质能级的引入对半导体器件的性能起着决定性作用。

3. 载流子在半导体中,载流子是负责电荷传输的粒子。

主要有电子(负载流子)和空穴(正载流子)两种类型。

在纯净的半导体中,电子和空穴的浓度相等,称为本征半导体。

通过掺杂,可以改变载流子的浓度,从而实现半导体的导电性的调控。

4. 载流子的浓度与掺杂浓度的关系半导体材料的光、热、电等特性与掺杂浓度有关。

掺杂浓度越高,材料的导电性能越好。

在一定范围内,载流子浓度与掺杂浓度成正比。

然而,过高的掺杂浓度可能导致材料中的杂质能级相互重叠,从而影响器件的性能。

5. 半导体的禁带宽度禁带宽度是指价带和导带之间的能量间隔,决定了半导体材料的电导率。

半导体的禁带宽度较小,比绝缘体的小,但比导体的大。

通过控制禁带宽度,可以实现对半导体的电学性质调控。

总结:本文讨论了半导体中的电子状态。

通过对能带结构、杂质能级、载流子浓度与掺杂浓度关系,以及禁带宽度等概念的介绍,我们可以更好地理解半导体器件的工作原理和性能特点。

半导体物理作为一门重要的学科领域,对于现代电子技术的发展和应用具有重要意义。

半导体物理 第1章 半导体中的电子态

半导体物理 第1章 半导体中的电子态

常用参数
• 晶格常数:硅 0.543nm, 锗 0.566nm
• 密度: Si : 5.00*1022cm-3,

Ge: 4.42*1022cm-3
• 共价键半径: Si : 0.117nm,

Ge: 0.122nm.
2.闪锌矿型结构和混合键
在金刚石结构中,若由两 类原子组成,分别占据两 套面心立方,则称为闪锌 矿结构。
堆积方式:III、V族原子构成双原子层堆积,每 一个原子层都是一个[111]面, III、V族化合物具 有离子性,因而构成一个电偶极层。
IIIV:[111]方向,III族原子层为[111]面。
与金刚石结构一样,闪锌矿结构的III-V化合物都由 两个面心立方结构套构而成。称这种晶格为双原子 复式晶格。晶格的周期性原胞中含有两个原子:一 个是III原子,另一个是V族原子。
结果:
n个靠得很近的能级 “准连续”带, 即形成了能带.
允带:能级分裂形成的每一个能带。
禁带:能级间没有能带的区域。
能带的特点: 1、在原有的能级基础上发生 分裂(分裂后的能级数与原子数有关),不 会大幅度改变原有的能级结构
★半导体中的能级分裂情况
原子能级 能带
能级电子的“座位” 能带总的座位集合 电子只能在这些位置上 作“跳跃”运动,能量 是突变、非连续变化的。 实际是准连续变化。
a.晶体中电子的波函数与自由电子的波函数形
式相似。反映出了晶体中电子的波函数实 际上相当于一被调幅的自由电子波。
且uk(x)= uk(x+a)
b.在空间某点找到电子的概率与波函数的强 度成比例。在晶体中找到电子的概率是周期 性变化的。反映出电子共有化运动的特征。
|Ψ|2=ΨkΨk* =uk(x)uk* (x) c. 与自由电子中的波函数一样,波矢k描述晶体中电 子的共有化运动状态。注意: 晶体中电子波函数K 取值非连续. 只要晶体边界确定,电子波函数的k值 即可被确定,与其它参量无关。

半导体物理(第一章)

半导体物理(第一章)
波矢k与自由电子波矢意义相似,具有量子数的作用,描述晶 体中电子共有化运动的量子状态。
3、布里渊区与能带
求解薛定谔方程可得出在晶格周期势场中运动的电子的 能量-动量(E~k)关系曲线。
当 k n ,(n=0, ±1, ±2…) 时,能量出现不连续——形成允带和
a 禁带。
允带出现的区域称为布里渊区。从k=0处向k>0和k<0延伸,分别有 第一布里渊区、第二布里渊区……,每一个布里渊区对应一个能带。
体的V(x)是很困难的。
研究发现,电子在周期性势场中运动的基本特点和自由电 子的运动十分相似。
1、自由电子的运动状态
V(x)=0。求解薛定谔方程可以得出:
( x) Ae-ikx
2k 2 E
k为波矢,k的大小为
k
2
2m0
(第六版以前的教材中的定义与此不同)
根据德布罗意关系,电子的能量、动量与频率、波矢之间 的关系为
1.2 半导体中的电子状态和能带
1.2.1 原子能级和晶体能带
单晶半导体是由按确定规律周期排列的原子构成,相邻原 子之间的间距只有几个埃,原子密度非常大。对于c-Si,原 子密度高达5×1022cm-3。所以,单晶半导体中电子的能量状 态与孤立原子中的一定不同,但可以想象,一定存在着某种 联系。
单个原子中电子的壳层排布为1s2 2s2 2p6 3s2 3p6 3d10……, 但多个原子密集排布在一起时,相似壳层对应的能级会发生 交叠——电子变为在整个晶体中运动——电子的共有化运动。 最外壳层电子的共有化最显著!
电子状态用波函数x描述, x满足薛定谔方程(假设
为一维单个电子):
2 2m0
d2 dx 2
V (x) (x)
E (x)

半导体物理习题答案

半导体物理习题答案

半导体物理习题答案 The document was prepared on January 2, 2021第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。

即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。

解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。

试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。

解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。

当时,代入(2)得:对应E(k)的极大值。

根据上述结果,求得和即可求得能带宽度。

故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。

2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

3 试指出空穴的主要特征。

4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。

求:(1)能带宽度;(2)能带底和能带顶的有效质量。

6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响8描述半导体中电子运动为什么要引入“有效质量”的概念用电子的惯性质量描述能带中电子运动有何局限性9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。

半导体物理刘恩科主编课后习题答案(112章)

半导体物理刘恩科主编课后习题答案(112章)

第一章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值周围能量E c (k )和价带极大值周围能量E v (k )别离为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =。

试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的转变。

[解] ①禁带宽度Eg依照dk k dEc )(=0232m kh +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k ,由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;而且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯= ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dkE d V -=,∴0222'61/m dk E d h m Vn -== ④准动量的改变量h △k =h (k min -k max )= a hk h 83431=2. 晶格常数为的一维晶格,当外加102V/m ,107V/m 的电场时,试别离计算电子自能带底运动到能带顶所需的时刻。

[解] 设电场强度为E ,∵F =hdtdk=q E (取绝对值) ∴dt =qE h dk∴t=⎰tdt 0=⎰a qE h 21dk =aqE h 21代入数据得: t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s ) 当E =102 V/m 时,t =×10-8(s );E =107V/m 时,t =×10-13(s )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纤锌矿型结构
由两类原子各自组成的六方排列的双原子层 堆积而成,它的(001) 面规则地按ABABA… 顺序堆积
纤维锌矿结构: ZnO、GaN、AlN、ZnS、ZnTe、CdS、CdTe…
4. 氯化钠型结构
特点: ①两个面心立方(不同的离子构成)沿棱方向平
移1/2周期套构而成。 ②离子性强。
③硫化铅、硒化铅、碲化铅等。
十四种布喇菲格子
三斜:简单 单斜:简单,底心 正交:简单,体心,面心,底心 四方:简单,体心 六角:简单 三角:简单 立方:简单,体心,面心
14 Bravais Lattices
❖ Triclinic:simple ❖ Monoclinic:simple,side-centered ❖ Orthorhombic:simple,body-centered,face-
centered,side-centered ❖ Tetragonal:simple,body-centered ❖Hexagonal :simple ❖Trigonal :simple ❖ Cubic:simple(sc),body-centered(bcc),face-
centered(fcc)
石墨烯(Graphene)是一种由碳原子构成的单层片状结 构的新材料。是一种由碳原子以sp2杂化轨道组成六角型 呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。 是世上最薄、最坚硬、电阻率最小的纳米材料。 石墨烯有望取代硅,制作纳米级高速晶体管等电子器件。
1. 金刚石型结构和共价键
许多材料的晶格结构与金刚石相同, 故称为金刚石结构
特点: ① 两个面心立方晶胞沿立方体的空间对角线平移1/4空间对
角线套构而成。 ② sp3杂化轨道为基础形成正四面体结构,夹角109º28´。 ③ 固体物理学原胞(包含两个原子)和面心立方晶格(包
含一个原子)相同,为复式晶格。 ④ 硅、锗(Ⅳ族元素)的典型晶格结构,共价键结合。 ⑤ 由共价键组成的许多正四面体积累起来构成金刚石结构
半导体的晶格:晶体中原子周期性的排列形式。
典型的半导体:硅Si和锗Ge以及砷化镓GaAs等。 金刚石型结构和共价键 闪锌矿型结构和混合键 纤锌矿型结构 氯化钠型结构
补充固体物理学中晶格的
晶系和布喇菲格子
❖ 原胞:晶格的最小周期 性重复单元
❖ 晶胞:描述晶格的周期 性和对称性的最小重复 单元
❖ 通常描写晶胞的六个物 理量是三个基矢的长度 和基矢之间的夹角,如 图所示
氯化钠型结构 氯化铯型结构如何?
氯化铯型结构:
•立方体的顶角上是Cl—,体心是Cs+或反之。
•各自组成简立方结构的子晶格。
•两个简立方的子晶格彼此沿立方体空间对角线 位移1/2长度套购而成。
•复式格子,固体物理原胞是简立方,不能说是 “体心立方“;就像氯化钠是面心立方,而不 是简立方。
5. 石墨烯
闪锌矿型结构
晶胞
(111)面的堆积 [在 (110)面上的投影]
闪锌矿结构的结晶学原胞
闪锌矿结构
3. 纤锌矿型结构
特点: ①六方对称性的正四面体结构为基础,不是立方对
称性(与闪锌矿区别)。
②相比共价键,离子性结合占优。
③部分Ⅱ-Ⅵ族化合物。硫化锌、硒化锌、硫化镉、 硒化镉可以闪锌矿型和纤锌矿型两种方式结晶。
单电子近似
求解薛定谔方程
复杂的多体问题
电子在周期性排列且固定不动的原子核势场 其它电子的平均势场中运动
半导体材料由大量原子周期性重复排列而成
原子核
相互作用
电子
能带 论
半导体组成、结构
1.1 半导体的晶格结构和结合性质
半导体的特点:易受温度、照光、磁场及微量杂质原子 的影响。
半导体对电导率的高灵敏度特性使半导体成为各种电子 应用中最重要的材料之一。
半导体物理
第1章 半导体中的电子状态
1 半导体中的电子状态
本章内容提要
• 半导体材料、基本晶体结构与共价键 (复习) • 能级与能带,电子共有化运动 • 半导体中电子运动规律,有效质量 • 能带模型及导电机构 • 常见半导体材料的能带结构 • 杂质与缺陷(课本第二章)
半导体独特的物理性质
半导体中电子状态及运动特点
(e) ﹛100﹜面上的投影 上下分为5层
金刚石型结构 硅、锗的金刚石结构
硅、锗的金刚石结构
2. 闪锌矿型结构和混合键
特点: ① 由两类原子各自组成的面心立方晶格套构而成。
(金刚石型结构由同种原子构成)
② 双原子复式格子。 ③ 结合性质依靠共价键结合,但具有不同程度的离
子性(极性半导体)。 ④ Ⅲ-Ⅴ族、Ⅱ-Ⅵ族化合物,如砷化镓、硫化锌。
❖ a,b,c,,,通常 又称为晶格常数,可以 由x射线确定
❖ 根据a,b,c,,, 的不同,晶格可分为七 大晶系和十四种布喇菲 格子
七大晶系
晶系名称 三斜晶系 单斜晶系 正交晶系 四方晶系 六角晶系
三角晶系 立方晶系
晶轴上的周期 abc abc abc a=bc a=bc
a=b=c a=b=c
晶轴间的夹角 90
(a) 正四面体结构; 固体物理学原胞,有
2个原子 (b) 金刚石型结构;
每个原子有4个相邻的 原子,成为4个四面体 的顶角;
(c) 金刚石型结构密堆积; 取垂直于(c)中对角线
的平面,如一个顶角的 3个最近邻顶角构成 (111)面,包含了套购 的原子,形成双原子层 A层,面心立方为ABC 排列
共价键
四面体结构中处于顶角的每个原子与中心原子 各出1个价电子为该两个原子所共有,共有的 电子在两个原子之间形成较大的电子云密度, 通过它们对原子实的引力把两个原子结合在一 起。 每个原子与周围4个原子组成4个共价键。
杂化轨道
四面体结构共价晶体中,每个原子最外层电子为1个s态电 子和3个p态电子。在与相邻4个原子结合时,4个共用电 子对完全等价,难以区分s态和p态电子,s态和p态电子波 函数的线性组合构成了所谓“杂化轨道”:1个s和3个p 轨道形成了能量相同的sp3杂化轨道。
==90, 90 ===90 ===90 ==90, =120 ==90 ===90
布喇菲格子 Bravais Lattices
属于每一晶系的空间格子,因为重复单元所 包括的点子(格点、结点)不同,又可分为 一种或几种类型。这样,七个晶系中共有 14种不同的重复单元,通常称为14种布喇 菲格子。14种布喇菲格子中,按每个格子 所包含的结点数目,又可分为原始(简单) 格子、底心格子、体心格子和面心格子四种。
相关文档
最新文档